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MODERATE DEVIATIONS IN CYCLE COUNT

JOE NEEMAN, CHARLES RADIN, AND LORENZO SADUN

ABSTRACT. We prove moderate deviations bounds for the lower tail of the number of odd
cycles in a G(n,m) random graph. We show that the probability of decreasing triangle
density by 3, is exp(—0(n?t?)) whenever n=3/* <« 3 < 1, while for k > 5 we give the
same estimate for the probability of decreasing the k-cycle density by t*, but for the larger
range n~ ' < t* < 1. When m > %(’2‘), we also find the leading coefficient in the exponent.

This complements results of Goldschmidt et al., who showed that for n=3/2 <« t* < n=1,
the probability is exp(—0(n3t?)). That is, deviations of order smaller than n~! behave
like small deviations, and deviations of order larger than n=3/4 (for triangles) or n=! (for
k-cycles with k > 5) behave like large deviations. For triangles, we conjecture that a sharp
change between the two regimes occurs for deviations of size n =3/, which we associate with
a single large negative eigenvalue of the adjacency matrix becoming responsible for almost
all of the cycle deficit.

Our results can be interpreted as finite size effects in phase transitions in constrained
random graphs.

1. INTRODUCTION

We prove moderate deviations bounds for the lower tail of the number of odd k-cycles in a
G(n,m) random graph, i.e. a uniformly random graph among all the graphs with n vertices
and m edges. We study deviations larger than those of Goldschmidt et al. [1] but smaller
than large deviations, which are of order the mean of the cycle density. For instance, with
the notation that 75(G) is the triangle density of a G(n,m) graph G where n — oo and
m = p(}) + O(1), for some 1/2 < p < 1 that is fixed as n — oo and n™3/* < * < 1, we
prove (see Theorem 1) that

In -2-
<33 — I e O 2, 2
(1) Pr (73(G) < p® —t*) = exp 22— 1)15 n” + o(t*n®)

The number of triangles in a random graph is a fundamental and surprisingly important
random variable in the study of probabilistic combinatorics. The probabilistic behavior of
these triangle counts is at least partially responsible for the development of many important
methods related to concentration inequalities for dependent random variables, including
Janson’s inequality [2], the entropy method [3], martingale difference techniques in random
graphs, and others [1].
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The traditional point of view, as exemplified by the seminal paper by Janson and Rucinski [5],
holds that the lower tail of the triangle count is easy to characterize while the upper tail
is hard. This view stems at least partly from the fact that most earlier works studied the
G(n,p) model for p — 0, and a substantial part of the difficulty in the study of the upper
tail is to obtain the correct dependence on p. For dense graphs (i.e. when p is fixed), the
lower tail has more subtle behavior, as was noted already by [12]. In this regime the G(n, m)
model, in which the number of edges is fixed at m, differs substantially from the G(n,p)
model. For example, one can easily see that under G(n, p), the number of triangles, T3(G),
satisfies Var(T3(G)) = O(n*), while under G(n,m), Var(T3(G)) = ©(n®). The distinction
between the two models — especially in the lower tail — becomes even more pronounced at
larger deviations. This can be intuitively explained by the fact that in G(n, p) one can easily
“depress” the triangle count simply by reducing the number of edges: a graph G with edge
number |E(G)| ~ q(’;) will typically have triangle density 73 ~ ¢%, and the probability of
seeing such a graph under G(n, p) is of the order exp(—O(n*(p — q)?)); it follows that under
G(n,p) we have

(2) Pr(73(G) < E3(G) — t%) > exp(—Q(n*t%)).

Under G(n, m), large deficits in the triangle density are much rarer than they are in G(n, p).
At the scale of constant-order deficits, this was noticed in [0, 7], where it is proved that for
t =0(1) and G(n, m) with m = ©(n?),

(3) Pr(73(G) < Er(GQ) — *) = exp(—0O(n*t?)).

(They also found the exact leading-order term in the exponent when m = %(Z) + o(n?) and
bounded the leading-order coefficient for all other values of m.) The same argument also
works for odd k& > 3. At the other end of the scale, a recent result of Goldschmidt et al. [1]
showed that for n=3/2 < t* < n~! the lower tail has a different behavior:

(4) Pr(7.(G) < Enp(G) — t*) = exp(—O(n’t?")).

(Again, they also found the exact leading-order term in the exponent.) Since t* < ©(n=3/2)
is within the range of the Central Limit Theorem this leaves open the case of n™! < t* < 1.

k
Noting that the two exponential rates (namely n?t? and n3t?*) cross over at t* = O(n™ 2¢-1),
it is natural to guess that for all odd k,

exp(—O(n3t?F)) if th < n” 20T

(5) Prin(E) = BrlG) =) = {exp<—@<n2t2>> it < <

In the case k = 3, we prove the second of these two cases; the first remains a conjecture. For
k > 5, (5) turns out to be false: the boundary between the two regimes turns out to occur
when t* is of the order n~'. This is perhaps surprising because it implies that a deviation
of order n™17¢ has probability exp(—©(n'"29)) but a deviation of order n~'*¢ has the much
smaller probability exp(—n?=2/k=0(),

We also prove some structural results on graphs with 74(G) < E7,(G) — t* in our range of
t*: conditioned on this cycle-count deviation, with high probability such a graph has a very
negative eigenvalue, and also has a small subgraph with substantially smaller edge density.
These structural results provide a plausible explanation for the importance of the threshold
between the two regimes: it is the threshold at which a single large negative eigenvalue of
the adjacency matrix becomes responsible for almost all of the k-cycle deficit.
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2. CONTEXT AND REFERENCES

We are concerned with random graphs G(n, m), the uniform distribution on graphs on n
nodes with m edges. For a graph G and an integer k > 3, define T;(G) to be the number of
injective maps ¢ : {1,...,k} — V(G) for which {¢(1),#(2)},{¢(2),0(3)},....{o(k), (1)}
are all edges of G; we say that Tj(G) is the number of k-cycles in G. The k-cycle density is
(G) = ﬁTk(G) € [0, 1]. Results on the probability of deviations of subgraph density from

k
the mean fall into three classes by size: small deviations, on the order of the standard devi-
ation, large deviations, on the order of the mean, and moderate deviations, of intermediate
size.

Our main results concern the moderate regime of deviations of cycle density in G(n,m),
in which we prove, among other things, that deviations near but below the large class are
qualitatively different from deviations near but above the small class. We know of no other
results of this sort, for G(n,m) or the G(n,p) random graph model, in which edges appear
independently.

For small deviations there is a long history under the name Central Limit Theorem. There
are also many papers on moderate and large deviations of subgraph counts. As background,
more specifically for results discussed here, we suggest the following: [, 9, 10, 11, 12, 13, 14,
15, 16] and references within them for a broader view. As our results are strongly colored
by large deviations we note in particular [17].

For convenience we note some common asymptotics notation. We use f = o(g) or f < g
to mean lim |f(n)|/g(n) = 0, f = O(g) to mean limsup f(n)/g(n) < oo, f = Q(g) to mean
liminf f(n)/g(n) > 0, f = w(g) or f > g to mean lim |f|/g = co, and f = ©(g) to mean
both f = O(g) and f = Q(g). The phrase “with high probability” means “with probability
converging to 1 as n — 00,” and we also make use of probabilistic asymptotic notation:
“f = O(g) with high probability” means that for every ¢ > 0 there exists C' > 0 with
limsupPr(f > Cg) < ¢; “f = o(g) with high probability” means that for every ¢ > 0,
|f|/g < e with high probability; and analogously for {2 and w.

We are studying the k-cycle density of G(n,m) for ¢t — 0 (but not too quickly) and for
odd k (for even k, it is not possible for 7;,(G) to be significantly smaller than p*). The case
0 < t* < Q(n=%?) is within the range of the Central Limit Theorem and it is covered by
Janson’s more general work on subgraph statistics [18]. The range n=%? < t* < n7! is
studied by [1]; they showed that in this regime

t2kn3

(6) Pr(7,(G) < E7,(G) — t*) = exp (— (1+ 0(1))) :
where 02 = Var(7,(G))/n?, which is of constant order. They also show an upper bound for
larger ¢: for ™! < tF < 1,

(7) Pr(7,(G) < E7,(G) — t*) = exp (—Q(tan)) :

We show that this upper bound is mostly not tight. In particular, for k-cycles with k > 5 we
show that the correct exponent is t?n? for all n™! < t¥ < 1. For triangles, we show the same
exponent but only in the range n=3/* < 3 < 1; we conjecture that this is the best possible
range, and that the bound (6) is sharp for triangles in the range n~' < 3 < n=%4. In the

case p > %, we also derive more detailed results (see Theorem 1): we identify the leading

2
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constant in the exponent and we prove some results on the graph structure conditioned on
having few cycles.

2.1. Related work on random graphs. Besides the work of [1], there is related work on
large deviation principles (LDPs) for more general statistics, and LDPs for sparser graphs,
notably in [19, 9]. In particular, [19] is the only existing work we know of in which the condi-
tional structure of subgraph-density-constrained random graphs is established. Specifically,
they show that for sparse random graphs conditioned on having more than the expected
number of cliques, the random graph has either a “clique” structure in which there is a
collection of vertices has higher-than-expected edge density or a “hub” structure in which
there is a partition of the vertices with a higher-than-expected edge density between the two
parts. In contrast, our results show that for dense random graphs with fewer cycles than
expected, there is a collection of vertices with lower-than-expected edge density.

Moderate deviations in triangle count (i.e. the case k = 3) in G(n, m) can be seen from a
different vantage based on [20]. That paper follows a series of works [0, 7, 24, 22, 23,25, 26] on
the asymptotics of ‘constrained’ random graphs, in particular the asymptotics of G(n,m,t),
the uniform distribution on graphs on n nodes constrained to have m edges and ¢ triangles. A
large deviation principle, using optimization over graphons, a variant of the seminal work [27]
by Chatterjee and Varadhan on large deviations in G(n, p), was used to prove various features
of phase transitions between asymptotic ‘phases’, phases illustrated by the entropy-optimal
graphons. (See also [28].) But in [20] numerical evidence showed that the transitions could be
clearly seen in finite systems, using constrained graphs with as few as 30 vertices. From this
perspective moderate deviations in triangle count can be understood as finite size effects
in a phase transition. Asymptotically, entropy goes through a sharp ridge as the edge
density /triangle density pair (g, 7) passes through (e, &) (Thms. 1.1,1.2 in [7]), and moderate
deviations quantify how the sharp ridge rounds off at finite node number, somewhat as an
ice cube freezing in water has rounded edges. The focus thus shifts to the infinite system,
where emergent phases are meaningful, away from G(n,m,t) or G(n, m).

2.2. Related work on random matrices. Since we are studying the spectrum of the
adjacency matrix, our methods mainly come from random matrix theory. Specifically, we
are interested in large deviations of eigenvalues of the random adjacency matrices coming
from our random graphs. The study of large deviations of eigenvalues is an active topic,
but the results we aim for are somewhat atypical. Traditionally, “large deviations” refers to
deviations on the order of the mean, so large deviations results for random matrices typically
consider the event that the largest eigenvalue of a symmetric n x n matrix with i.i.d. mean-
zero, variance-o? entries is of order ay/n for a > 20; this is because the typical value of the
largest eigenvalue is of order 20+/n. However, because an eigenvalue of order n” contributes
n*8 to the k-cycle count, and because we are interested in cycle-count deviation of orders
larger than n*/2, we are necessarily interested in much larger eigenvalues.

Another difference in our work is that we consider several large eigenvalues simultaneously.
This is because we need to consider the possibility that the cycle count is affected by several
atypically large eigenvalues instead of just one.

In related works,
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e Guionnet and Husson [29] showed an LDP for the largest eigenvalue for a family of
random matrices that includes Rademacher matrices, which is essentially the case
that we consider when p = %

o Augeri [30] showed an LDP for the largest eigenvalue for random matrices whose
entries have heavier-than-Gaussian tails.

e Battacharya and Ganguly [31] showed an LDP for the largest two eigenvalues of a
sparse Erdos-Rényi graph. The methods we use for our eigenvalue LDPs are related
to their methods for the second-largest eigenvalue. In order to make the connection
to cycle counts, however, we need to handle the entire spectrum.

e Augeri, Guionnet, and Husson [32] showed an LDP for the largest eigenvalue for most
random matrices with subgaussian elements. These are essentially the same random
matrices that we consider, with the main difference being that they are looking at

eigenvalues of size ©(y/n).

3. CYCLE COUNTS

Our general setting is: we let A be the adjacency matrix of a G(n, m) graph, where n — oo
and m = p(3) + O(1), for some p € R that is fixed as n — co. We denote by 74(A) the
k-cycle density of A, and we order the eigenvalues A\;(A) > --- > \,(A) in non-increasing
order.

We prove two theorems governing asymptotic behavior as n — oco. We define the critical
exponent
k(2 — k)}
2k — 2
and we assume that n=% < t* < 1; this is equivalent to n=%/* < > <« 1 for k = 3, and
n~' < t* < 1 for k > 5. Our first theorem is a strong result for % <p<l.

(8) ¢, = min{1,

Theorem 1. ]f% <p<1landn > <t <1 then

In =2
(9) Pr (m,(A) < p* —t*) = exp <_2(Tp2p)t2n2 + 0(t2n2)> ,
nl=p
with the convention that 11_5p =2 when p = % Moreover, conditioned on 7,(A) < p* — t*,
with high probability we have
(10) A (A) = —tn(1 — o(1))

and A\,—1(A) > —o(tn).

The second result, for 0 < p < %, is weaker.
Theorem 2. [f0 < p < % and n~% < t* < 1 then Pr (Tk(G) < pk— tk) 18 bounded above
by

lnﬁ 2,2 2. 2
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and bounded below by

(12) exp (—ﬁt%ﬂ + 0(t2n2)) |

k

Moreover, conditioned on Ty(A) < pk — t*, with high probability we have

(13) A (A) = —Q(tn).

Together, these theorems show that Pr(7;,(A) < pF —t*) = exp(—O(t*n?)) forall 0 < p < 1
and n™ < tF < 1.

In the case p > %, we also give a graph-theoretic characterization of the conditioned graph:
given that 7,(A) < p* —t* the graph contains a lower-density subgraph of about tn/(2p—1)
vertices. In what follows, for V;,V, C V), let

EVi,Vo)= D Luwmlenoy

v1€VI,v2€Vs

count the edges between V; and V5, while double-counting those edges with both endpoints
in Vi N Vs,

Theorem 3. ]f% < p <1 and n™MCkE1) <« t < 1 then conditioned on 7,(G) < p* — t*,
with high probability there ezists a subset U C V(G) of size |U| = (14 0(1))tn/(2p — 1) such
that for every Vi, Vo C V(G),

E(WV1, Va) = p[Wi[[Va| = (2p = D)[Vi 0 U|[Va N U[ + oftn|Vi U Vo).

In particular, setting V3 = Vo = U shows that the subgraph induced by U has edge density
about 1 — p. More generally, Theorem 3 implies that G has no other non-trivial structure at
the scale of tn or more vertices.

3.1. Centering the matrix. The main point of this section is that when considering the
lower tail for cycle counts in G(n, m) graphs, it suffices to look at eigenvalues of the centered
adjacency matrix. This might sound obvious, but there are two subtleties:

(1) It is important that we are looking at the lower tail, because the upper tail proba-
bilities are controlled by perturbations to the largest eigenvector; this is exactly the
eigenvector that gets destroyed when we center the adjacency matrix, so the eigen-
values of the centered adjacency matrix don’t give much information about the upper
tail probabilities.

(2) It is important that we are looking at G(n, m) and not G(n, p), because — as discussed
in the introduction — in G(n, p) the entropically favorable way to reduce the k-cycle
count is to reduce the number of edges; again, this primarily affects the largest
eigenvector and so is not related to the centered adjacency matrix.

Lemma 4. Let A be the adjacency matriz of a graph with n vertices and m = p(g) edges,

and let d; be the degree of vertex i. Let A= A—pl+pl. Foranyk > 3, there exists € > 0
such that if || Aoy < en then

(14) tr[A¥] = tr[AF] — p"n® — (1 — O(e))kn"~3 Z(di — pn)? +O(n* )



MODERATE DEVIATIONS IN CYCLE COUNT 7

Proof. Let B = A + p1 and consider tr[B*]. (The extra contribution of pI in A makes a
lower-order contribution and we will handle it later.) Consider the various terms in the
expansion (121 + p1)¥ according to how many copies of A they contain: there is a A* term
and a p*n*~!1 term (which has trace p*n*), and every other term is a product involving at
least one occurence of 1 and at least one occurrence of A. Note that 141 = 0, and so all
the terms that have exactly one occurrence of A vanish; and of the terms containing exactly
two occurrences of A, the only non-vanishing ones are of the form A21,_, (up to cyclic
permutation). There are k of these terms, and so after taking the trace, they contribute

(15) ktr[ P15 = kn 8 e[ A1) = knf 3 AL = kn* ) (d; — pn)?

to tr[B*].

Next, consider the terms containing more than two occurrences of A. Since 1A1 = 0, the
only non-vanishing contributions take the form

tr ﬁ 17 Al
i=1

for some ¢; > 2, and Y, ¢; > 3. Since 17 = n/~'1, the term displayed above can be re-written
(setting j = > ji =k — > {;) as

ni e [ 1A% = [ 17 A
i=1 i=1

Since each £; > 2, if || A|op < en then [17A%1 op| A1|? < i72nli2| A1) < elinhitt,
Now we consider two cases: if ¢; = 2 for all ¢ then m > 2 (because ) ,¢; > 3). In this
case, we use the bound~\1TA£i1 < eliptitl < e2pfitt for 4 > 2 and the bound [17A%1
ei=2nti=2| A1]2 < n%~2|A1]? for i = 1, to obtain

tr H 17: A%

i=1

(The k — 3 exponent on n comes from the fact that j —m + 6, —2+ > ", (6; +1) =
Jj+>.,4i—3=k—3.) On the other hand, if there is some ¢ with ¢; > 3 then without loss
of generality i = 1; we apply the bound [17A%1] < “infit! < n%*! for i > 2 and the bound
1T A%1| < 2n%72| A1]? < en®i~2| A1]? for i = 1, to obtain

i=1

(16) < 2nF 3 A1

(17) < enF 3| A1)%.

Now compare (15) to (16) and (17): out of all the terms in the expansion of tr[(A + p1)*]
that contain between 1 and k — 1 copies of A, the terms containing two adjacent copies of
A (i.e. the terms we compute in (15) dominate). Since the total number of terms in the
expansion is 2%, we see that if € is sufficiently small in terms of & then

tr[B*] = tr[A¥] + pFn* 4+ (1 — O(€))kn*—3 Z(di — pn)?
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Finally, to get the claim in terms of A = B — pI, note that A* = Z?:o (’;) B(—p)?. We

apply our previous result to each B? term, noting that for j > 1 each term contributes only
O(nk=1). O

Combining Lemma 4 with the observation that Etr[A*] = p*n* + O(n*~1) when A is the
adjacency matrix of a G(n, m) graph, we arrive at the following consequence:

Corollary 5. Let A be the adjacency matriz of a G(n,m) graph and let A= A —EA. For
any t > 0 and all sufficiently small € > 0 depending on k,

(18)  Pr(tr[A*] < Etr[AF] — t*) < Pr(tr[AF] < —tF + O(n* 1)) + Pr(||Al|op > €n)

4. LARGE DEVIATIONS FOR EIGENVALUES OF RANDOM MATRICES

In this section and beyond, we let A denote a generic random matrix and we estimate
the most positive eigenvalues of A. Since we are looking at lower tails, the most important
such matrix to keep in mind is minus the centered adjacency matrix, previously denoted A
or A —EA. This is the same as plus the centered adjacency matrix of a random graph with
edge density ¢ = 1 — p. The proof of Theorem 1 (p > %) thus relies on results for ¢ < %,
while the proof of Theorem 2 (p < %) relies on results for ¢ > %

Definition 6. For a random variable &, its cumulant-generating function is
(19) Ae(s) = InEexp(sé)
whenever the expectation exists; when the expectation does not exist, we set A¢(s) = +00.

Definition 7. The random variable £ is subgaussian if there exists a constant C' such that
A¢(t) < Ct* for every t € R.

Note that according to our definition, a subgaussian random variable has mean zero (since
if A¢(t) is finite on a neighborhood of 0 then A¢(0) = 0 and A¢(0) = EE, and so if E¢ is
non-zero then one cannot have A¢(t) < C't? on a neighborhood of 0). Note also that if E§ = 0
and ||€||cc < oo then & is subgaussian.

Definition 8. For a function f : R — R, its Legendre transform is the function f*: R —
R U {+oc} defined by
(20) [ (y) = sup{zy — f(2)}

zeR
Some basic properties of the Legendre transform include:

o If f < g then f*> g*.
o If f is convex then f** = f.
o If f(x) = ca? then f*(z) =

2

4c”

Our goal in this note is to establish large deviations principles for extreme eigenvalues and
singular values of random matrices. We will consider a symmetric n X n random matrix A,
(or sometimes just A) having i.i.d. upper-diagonal entries and zero diagonal entries. The
letter £ will always denote a random variable that is distributed as an upper-diagonal element
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of A, and we will always assume that £ is subgaussian. We write \;(A) for the eigenvalues of
A (in non-increasing order) and o;(A) for the singular values of A (in non-increasing order).

For the definition of a large deviations principle (LDP), we refer to [37, Chapter 27].
Theorem 9. Let & be a subgaussian random variable. For any integer k > 1 and any
sequence m,, satisfying \/n < m, < n, the sequence

1
(21) —(Ul(An)u ey Uk(A”)>
satisfies an LDP with speed m? and good rate function I : Ri — [0, 00) given by
Ai(s
inf g( )
2 seR g2

|z

(22) I(x) =

Ai(s
If we assume in addition that the function s — ig) achieves its infimum at some s > 0,
then the sequence

(23) (A, Ml(A)

mpy
satisfies an LDP with speed m? and the same good rate function I as above.
If A, is the centered adjacency matrix of G(n,q) then it is covered by Theorem 9, where

¢ is the random variable taking the values —¢ and 1 — ¢ with probabilities 1 — ¢ and ¢
respectively. In this case, we have

1—qg—
(24 N9 = Dla+5,0) = g+ 92 (1= 9) -,
with the understanding that Az(s) = +oco whenever ¢ + s ¢ (0,1). It is not hard to check —
Af(s)

and we will do it in Section 5.5 — that 552 achieves its infimum at some s > 0 if and only
if ¢ < l.

In the case that —— ( ) saturates its infimum only at negative s (corresponding to ¢ > = in

the Bernoulli example) we are not able to show an LDP for the eigenvalues. Note, however
that >, 07(A) > >, A?(A4) and so our LDP for singular values provides an upper bound: it
implies, for example, that

2 A(s)
(25) —lnPr /Z)\Q ) > mut | < —oinf —-—+o(1)

On the other hand, we can also easily show the lower bound

[ 2. Ai(s)
— 2 —inf 2 _
(26) ln Pr Z A2 (Ap) > mpt | > 5 lgg > o(1),

. Ai(s . . . . .
but the assumption that % saturates its infimum only at negative s implies that these

bounds are non-matching.




10 JOE NEEMAN, CHARLES RADIN, AND LORENZO SADUN

There are natural examples (including the Bernoulli example mentioned above) where
s72A{(s) is increasing for s > 0. In this case,

1 1
: —2 A * 1 —2 A% AR\ _
(27) inf s7°Ag(s) = lim s™"Ag(s) = 5(4¢)"(0) SEE
and so our lower bound (for simplicity, focusing only on the case k = 1) becomes
(28) L Pr (A > mt) > — o (1)
m? nPr (A (4,) > myt) > IEE? o(1).

When £ has a Gaussian distribution, this turns out to be sharp, but we show that it is not
sharp in general.

Theorem 10. In the setting of Theorem 9, if EE* < 0 and lims_,oo s ?A¢(s) = 0 then there
exists some n > 0 such that for any t > 0,

t2

(29) lim — InPr (Ay(Ay) > mnt) > —(1 — 1) ot

n—00 m%

In particular, the assumptions of Theorem 10 are satisfied for the (centered) Bernoulli
random variable with ¢ > % mentioned above.

For our applications to random graphs, we require a version of Theorem 9 for random
bits chosen without replacement. Specifically, we consider the Erdés-Rényi random graphs
G(n,m), where m is an integer satisfying |m — q(g)| =0(1) (and ¢ € (0,1) is fixed).

Theorem 11. Fiz g € (0,1) and let A, be the centered adjacency matriz of a G(n,m)
random graph with |m—q(5)| = O(1). For any integer k > 1 and any sequence m,, satisfying
Vn <€ m, < n, the sequence

1
(30) —(01(A4n), ..., 0x(A4))

n

satisfies an LDP with speed m2 and good rate function I : RE — [0, 00) given by I(z) =
1—q

22 =1
%- =5 (or I(z) = |z|* when ¢ = 3).

If, in addition, q < % then the sequence
1

also satisfies an LDP with the same speed and rate function.

5. UPPER BOUND

The main observation is that in the regime we are interested in (namely, eigenvalues or
singular values of order w(y/n)), the probability of large eigenvalues can be controlled by a
union bound over the potential eigenvectors; a similar observation was also used in [31].

Let M, be the set of n x n matrices with rank at most £ and Frobenius norm at most 1.
Let M; C M, consist of those matrices that are symmetric and positive semidefinite.
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Lemma 12. For any symmetric matriz A,

& 1/2
(32) (Zmax{O,)\i(A)}2> = sup (A4, M).

MeM;
For any matriz A,

k 1/2
(33) (Zai(Af) = sup (A, M).

i—1 MeMy

Proof. To prove the first claim, assume without loss of generality that \;(A) > 0 (if not,
both sides are zero). Let UDU” = A be an eigen-decomposition of A (where D is diag-
onal and U is orthogonal), and assume without loss of generality that the diagonal ele-
ments of D are ordered as A\(A) > ---A\,(A). Let D be the diagonal matrix with entries
max{0, \;(A)},...,max{0, \y(A)},0,...,0, and define

_UDUT UDU”
- D - 1/2°
1Pl (52t maxfo, (4))2)

. 1/2
Then M € M} and (A, M) = || D||r = (Zle max{0, )\i(A)}2> . This proves one direction
of the first claim.

(34)

For the other direction, take any M € M, , and decompose A as A, — A_, where A, and
A_ are positive semi-definite and the non-zero eigenvalues of A, are the positive eigenvalues
of A. Then
(35)

k k
(A, M) < (A, M) < [JALIRIMI|E < [[Aslle = 4| D Ai(A0)? = | Y max{0, \(A4)}2.
i=1 i=1

This proves the first claim. The proof of the second claim is identical, but uses a singular
value decomposition instead of an eigen-decomposition. 0

Hence, in order to prove the upper bounds in Theorem 9, it suffices to control
(36) Pr| sup (A, M) >tn®|.
MeM

The first step is to replace the supremum with a finite maximum.

5.1. The net argument.

Definition 13. For a subset N of a metric space (X, d), we say that N is an e-net of X if
for every x € X there exists y € N with d(z,y) < e.

Lemma 14. Let N' C My, be an e-net (with respect to || - ||p) for e < 5. Then for any
symmetric matriz A,

1
(37) sup (A, M) < sup (4, N).
MeMy, 1 —2¢ yen
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Proof. Fix M € M, and choose N € N with ||[N — M||r < e. Note that N — M has rank
at most 2k, and hence we can write N — M = eMy + eM; for some My, M; € M. In other
words, we can decompose

(38) M = N + eMy + €M,
with N € N and M,, M; € M. It follows that

(A,N) = (A, M) — (A, My) — (A, My) > (A, M) —2¢ sup (A, M),
M'e M,

and the claim follows. O

We have shown that to approximate the supremum it suffices to take a good enough net.
In order to put this together with a union bound, we need a bound on the size of a good
net. Such a bound can be found in [35, Lemma 3.1].

Lemma 15. There is a constant C' such that for any 0 < € < 1, there is an e-net (with
respect to Frobenius norm) for My, of size at most (Ck/e)¢™.

Applying a union bound over these nets gives the main result of this section: singular
values and eigenvalues of A can be controlled in terms of the deviations of linear functions
of A. The main point here is that (as we will show in the next section) if ¢ > \/n then the
O(nkln %) terms are negligible compared to the other terms.

Proposition 16. Let A be a symmetric n X n random matriz with i.i.d. entries. For any

integer k> 1, any 0 < e < %, and any t > 0,

k
(39) In Pr (Z o(A) > t) < sup InPr((A, M) > (1 —2e)t)+ O(nk lnl).
i=1 MeMy €

Proof. For the first inequality, let N' be an enet for M, according to Lemma 15. By
Lemma 12 and Lemma 14

Pr (iaf(A) > t) =Pr ( sup (A, M) > t)

MeMy

< Pr (5612%(’4’ Ny >(1- 26)15) .

By a union bound,
Pr (maX(A, N) > (1 - 26)15) < Y Pr({(A,N) > (1-2e)t)

NeN
NeN

< V| S Pr((A, M) > (1 —2e)t),

which, by our bound on |N|, completes the proof of the first claim. O

We remark that it is possible to prove a version of Proposition 16 for eigenvalues also,
giving an upper bound on Pr(> ] A\?(A) > ) in terms of

(40) sup Pr((A,M*) >1).

Mtemf
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This can in principle give a better bound on the eigenvalues than for the singular values. The
issue is that we do not know how to exploit the additional information that we are testing
A against a positive semidefinite matrix.

5.2. Hoeffding-type argument. Using a Hoeffding-type argument, we can get a sharp
upper bound on

(41) sup InPr((A, M) >t)
MeMy

for any k£ and any ¢ (in fact, the sharp upper bound turns out not to depend on k).

Lemma 17. If £ is subgaussian then

(42) 4sup Af—(f) = <mf Az—(u))_l < 00.

scR S seR 2

Proof. The fact that sup,.p Aigs) < 00 is the definition of subgaussianity. To show the
claimed identity, let L = sup,cp Ai—gt) and define M (s) = Ls?. Clearly, A¢(s) < M(s) for

all s € R. Tt follows that Af(u) > Mj(u) = %; in other words,

M) | M) _ 1

4 S
(43) u? T u? 4L
for all w. This shows that
Mels) o (M@
ERASVALS )
) e 2 e
For the other direction, suppose that for some L' we have Af(u) > i‘—z, = MV (y) for
every u. Then (since A¢ is convex) Ag(t) = Ag(t) < M) (t) = L't* for every t. The

definition of L ensures that L’ > L, and this shows the other direction of the claim. OJ

Proposition 18. Let & be a random variable with everywhere-finite moment-generating func-
tion, and define

(45) A¢(s) = InEexp(sf)

to be the cumulant-generating function of . Let A be a symmetric random matriz with zero
diagonal, and with upper-diagonal elements distributed independently according to €. Define

0¥ = sup,. A‘i—gs) Then

(46) sup Pr((A, M) >1t) <exp (—%) = exp (—ﬁ inf Az(s)) .

2
M| p<1 8SUp,g =3 2550 s

Proof. Since (A, M) = (A, (M + M7)/2) and since |[|[(M + M7T)/2||r < ||[M]|F, it suffices

to consider only symmetric matrices M. Let m = @ and let &;,...,&, be the upper-

diagonal elements of A, in any order. Let |[M]| < 1 be symmetric, with upper-diagonal
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entries ay, ..., ay,. Then (A, M) =2>"" a;§, and so (for any s > 0)

Pr((A, M) > t) = Pr (Z ai; > t/2)
— Pr (esZaifi > est/2)
S e—St/2Eeszaifi

= exp (Z Ae(sa;) — st/2> :

where the inequality follows from Markov’s inequality. Now, > a? < £[|[M||3 < 3, and so

if we set (* = sup,, Aig’“) then

(47) > Alsa) = Y A(ﬁsif‘)‘z) (300 < 82 Y ¢ < 3213*.

Hence,
2 px
(48) Pr((a ) >0 e (- 3,
and the first claim follows by optimizing over s.
The second claim follows immediately from Lemma 17. U

Putting Proposition 18 together with Proposition 16, we arrive at the following upper
bound for singular values:

Corollary 19. Let A be a symmetric n X n random matriz with i.1.d. upper diagonal entries.
Assuming that the entries are subgaussian and have cumulant-generating function A, let

L = infy g A’;g”. Then for any integer k and any t > 0, if t2L > 2nk then

t2L t’L
G —
(49) <- + 0 (nk: In i )

Proof. We combine Proposition 18 and Proposition 16, setting ¢ = 2% (

2% (which is less than 1
by assumption). This yields an upper bound of

2

2L 27
(50) —%+O<nk+nklntn—k>,
and the nk term can be absorbed in the final term. O

Remark 20. Note that the argument leading to Corollary 19 applies even when the entries
&ij are not identically distributed as long as L < infy Agﬁs) for every i, j, where A;; is the

cumulant-generating function of &;.
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5.3. Lower bound. In this section, we give a lower bound that matches the upper bound
of Corollary 19 whenever \/n < t < n. The starting point is the lower bound of Cramér’s
theorem [37, Theorem 27.3]

Theorem 21. Let & be a mean-zero random variable with everywhere-finite cumulant-generating
function A¢. Let &, ..., &y be independent copies of £&. Then for any t > 0,

1 m
51 — InPr ;i >mt | — —A(t
) Lare (3265 mt) -
as m — oo.
Proposition 22. In the setting of Corollary 19, suppose in addition that the function s —
s72A*(s) achieves its minimum at some finite s € R. Then for any 1 < t < n? and for any
Wi, ..., wx >0, we have

(52) In Pr <Zw oi(A,) > |w|\/> > —% —o(t).

(Here, |w| denotes \/> ,w?.) If s — s‘zA*(s) achieves its minimum at some s > 0, then
for any 1 < t < n? and for any wy, ..., w; > 0, we have

(53) In Pr (sz (Ay) > |w|\f) > —% —o(1).

Choosing arbitrary wy, . . ., wg and applying the Cauchy-Schwarz inequality, Proposition 22
implies the same lower bounds on InPr(}",07(4,) > t) and InPr(>°, M (A,) > t). In

particular, it really is a lower bound that matches the upper bound of Corollary 19.

Proof. Fix t and assume that sgs achieves its minimum at s, € R. Actually, we will
assume s, # 0; the case s, = 0 is easily handled by replacing s, with € > 0 everywhere,
and then sending € — 0. Fix wy,...,w; and assume » , w? = ¢; because the statement
of the proposition is homogeneous in w, this is without loss of generahty Now choose the

smallest integers (1, ..., 0 so that {; —1 > 2. We write |¢|? for > ¢?, and note that

102 > 53, w? = &, meaning that 1 < [(]* < n?,

771

Let M be a block-diagonal matrix, whose non-zero entries are all equal to s,, appearing
in blocks of size ¢; x £; for i = 1,... k. (The fact that >, ¢; < v/k|¢| < n implies that these
blocks do indeed fit into an n x n matrix.) Then M has rank k, and the singular values of
M are |s.|¢; fori =1,... k; note that our choices of ¢; ensure that w; < o;(M) < w; + 2|s./.
Moreover, if we set m = >, b (52 (which is also an integer, and counts the number of

non-zero upper-diagonal elements of M) then (A, M) is equal in distribution to 2s.> ;" &.
Hence,

(54) Pr((A, M) > t) = (sgn Z@ 2|S*)

Now, m = ]¢]* — . {;, while on the other hand

t_ iwi 2 _ (g2
(55) —Q_TESZ(Q—D = |¢] —2Z€i+2k.

S*
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Since ), £; > [£] > 1, we have # < m for sufficiently large n. Going back to our probability
estimates, we have

InPr((A, M) >t)=InPr <sgn(s*) Zfi > 2‘2 |>
i=1 *

> InPr (sgn(s*) Z& > m\s*|>
i=1

= —mA*(s,) + o(m)
tA*(s4)
= = 282 - O(t)v
where the second-last equality follows by Cramér’s theorem (applied to the random variables

—¢; in case s, < 0). By von Neumann’s trace inequality (see [36]) and the Cauchy-Schwarz
inequality we have

k k k

k
(56) (A, M) <> oi(A)oi(M) <> oi(A)(w; +25,) < Y oi(Aw; + 25.VE Z o2(A),

i=1 i=1 i=1

and hence
k

(57)  Pr((A,M)>t) <Pr (Z oi(A)w; >t — t2/3> + Pr (Z o2(A) > i;l) :

i=1

By Corollary 19, the second probability is of order exp(—Q(#*/?)), and hence

A (s)
252

k

(58) InPr (Zai(A)wi >t—t2/3> > (1 —o(1))InPr((A, M) > t) >

—o(t).

i=1
Substituting in ¢ = |w|y/t in place of t — t?/3, the extra error term can be absorbed in the
o(t) term.

For the second claim, simply note that if s, > 0 then the matrix M is positive semi-definite.
Denoting A/ (A) = max{0, \;(A)}, we replace (56) by

k k k k
(59) (A, M) < SO AN < SN (A)wi+2s.) < 30 (Awi+2s.Fy | S 02(4),

and the rest of the proof proceeds as before. O

There are a few extra useful facts that we can extract from the proof of Proposition 22,
namely that we have explicit candidates for extremal eigenvectors and singular vectors. We
will state these just for the largest eigenvector, but of course they also hold in other situations.

Corollary 23. Assume that s — s 2A*(s) achieves its minimum at some s, > 0. For
l<t<n,letl = [1+t/s.] and definev € R" by vy, ..., vy = sl and vgyq, -+ v, = 0.
Then |v] <1+ o0(1) and

T t°L 2
(60) InPr(v" Ao >t) > 5 o(t%).
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Corollary 23 is immediate from the proof of Proposition 22, because in the case £ = 1 and
w; = V/t, the M that we constructed in that proof is exactly v/tvv”. When we have extra
quantitative control on the minimization of A*(s)/s, it follows that the leading eigenvector
must actually be close to the v described above. We show this in Section 8, restricted for
simplicity to the Bernoulli setting.

5.4. The LDP. Putting together Corollary 19 and Proposition 22, we complete the proof
of the LDP (Theorem 9). Take a sequence m, satisfying /n < m, < n, and set X =
min(al(An), ...ox(A,)). Let E C R* be any closed set, and let t = inf,ep |2|. If t > 0 then

—(01(An), ..., 0k(Ay)) € E implies that Y 07(A,) > m2t*, and then Corollary 19 implies

k
InPr(X € E) <InPr (Z o2(A,) > mit2>

i=1
2t2L 2 2t2L
S—m" 4O (nmn) = + o(m?2).
2 n 2

(And if ¢ = 0 then the inequality above is trivially true.)

On the other hand, if £ C R* is open, then choose any w € E. Since E is open, there is
some € > 0 so that if (z,w) > |w|?> and |z|*> < |w|*> + € then z € E. Now, Proposition 22
implies that

2 2
(61)  InPr((X,w) > jw|?) =InPr (Z oi(Ap)w; > mn\w|2> > —% — o(m?)

i

On the other hand, Corollary 19 implies that

InPr (| X[* > |w|*+¢€) =InPr (Z o2(A,) > m(Jw|* + ¢)

m?2(|w|? + €) L

I OR o).

In particular, Pr(|X|* > |w|? + €) is dominated by Pr({X,w) > |w|?), implying that

I S—

m?2|w|?L
2
Since this holds for arbitrary w € E, it implies the lower bound in the LDP.

(62) InPr(X € E) >InPr((X,w) > |w]* and | X|* < [w|*+¢€) > — o(m?2).

n

The second part of Theorem 9 follows the exact same argument, only it uses the second
part of Proposition 22.

5.5. The case of G(n,m). We next consider the case of Theorem 11. The first observation
is that ¢ < 1 if and only if A*(s)/s? achieves its minimum at some non-negative s.

Lemma 24. If £ = —q with probability 1 — q and & = 1 — q with probability q then A* (the
convez conjugate of &’s cumulant generating function) satisfies
At(s) In=?

63 inf = 1
(63) R 52 1—2q’
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and the minimum is uniquely attained at s = 1 — 2q.

Proof. We recall that A*(s) = D(q + s,q) where

(64) D(r,q) :rlngjt(l—r) In

(with the convention that D(r,q) = +oo for r ¢ (0,1)). Note that D(r,q) is non-negative,
convex, and has a double-root at r = ¢. Fix ¢ and define

D(r.q) _ A(r—q)
(r—q)? (r—gq)?

(defined by continuity at r = ¢); our task is then to minimize L. We compute

(65) L(r) =

) __(q+r)lng+(2—q—r)ln}%2 . F(r)
o0 Hn= Ty TR

Then

1— 1—
F/(T):hlf—hl U a
q 1—q r 1—r

= =0) (5= o)

In particular, F” has exactly two roots on (0,1): at r = % and at r = ¢ (counting with
multiplicity in case ¢ = 1). It follows that F’ has at most 4 roots on (0,1). On the other

hand, we can easily see that F(q) = F'(q) = F"(q) = F(1 —q) = 0. Hence, F(r) has a
triple-root at r = ¢ and a single root at » = 1 — ¢, and no other roots. Since r = ¢ is only a
triple-root, L'(q) # 0, and it follows that 7 = 1 — ¢ is the only root of L'(r). It follows that
L(r) is minimized at either r = 0, r = 1, or = 1 — ¢. The possible minimum values are
therefore

1 1 In —4
, y:=(1-¢q) %n-, or z :=
l—q q

(67) r:=q %In

We will show that z is the smallest one. By symmetry in ¢ and 1 — ¢, it suffices to show
that z < x for all g. Now,

(68) ¢(1-2q)(z—2)=¢" hl% +(1-2¢)In(1—¢q) = (1—¢)*In(1—q) — ¢*Ing.

Let f(q) = (1 —¢)?*In(1 — ¢) — ¢*Ing, and we need to show that f(q) < 0 for 0 < ¢ < 4
and f(q) > 0 for 3 < ¢ < 1. In fact, since f(q) = —f(1 — ¢), it suffices to show only one of
these. Finally, note that f(0) = f(%) =0, and f"(q) >0for 0 < ¢q < %, and it follows that

f(q)<0for0<q<%. d

Not only does Lemma 24 establish the unique minimizer, it shows that the behavior
is locally quadratic around the minimizer. D(q + s, q) is infinite outside the compact set
s € [—q,1 — ¢|, this also implies a quadratic lower bound on non-minimizers:
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Corollary 25. With the notation of Lemma 24, there is a constant C' = C(q) such that for
every s € R,

Ar(s) _ In T

—(1—2¢))°

To complete the proof of Theorem 11, it is enough to show that the upper bound of
Corollary 19 and the lower bound of Proposition 22 still hold in this setting; then the proof
of the LDP proceeds exactly as in the proof of Theorem 9. Checking Corollary 19 is trivial:
recalling that A, is the centered adjacency matrix of G(n,m) for |m — ¢(3)| = O(1), we let
A, be the centered adjacency matrix of G (n,q). Note that the distribution of A,, is equal to
the distribution of A, conditioned on the event that A, has exactly m positive entries on
the upper diagonal; call this event E. By Stirling’s approximation, Pr(E) = Q(n™!), and it
follows that for any event F',

Pr(A, € F)
Pr(F)

In other words, InPr(A, € F) <InPr(A, € F) + O(Inn), and so Corollary 19 immediately
implies the same upper bound for G(n, m).

(69) Pr(A, € F)=Pr(d, e F | E) < < O(nPr(4, € F)).

For the lower bound, we need to look into the proof of Proposition 22. Recall that
in the proof of Proposition 22, we constructed a matrix M with O(t) = o(n?) non-zero
entries, all of which had the same value. For the G(n,q) adjacency matrix A,, (A,, M)
has a (scaled and translated) binomial distribution; for the G(n,m) adjacency matrix A,,
(A, M) has a (scaled and translated) hypergeometric distribution. Now, if Hy, , denotes a
hypergeometric random variable with population size n, k successes, and r trials; and if B, ,
denotes a binomial random variable with success probability ¢ and r trials; then one easily

shows using Stirling’s approximation that
(70) |InPr(Hyp, = 5) = InPr(Byn, = s)| = O(r*/n).

In the setting of Proposition 22, the number of trials  is the number of non-zero elements
in M, and since r?/n = O(t*/n) = o(t), we have

(71) InPr((A,, M) > t) > InPr((A,, M) > t) — o(t).

With this lower bound, we can follow the rest of the proof of Proposition 22 to complete the
proof of Theorem 11.

6. PROOF OF THEOREM 10

Next, we consider the case that As—gs) does not achieve its infimum at any s > 0, and we
construct an example showing that taking s — 0 does not yield the sharp bound. The basic
idea is to use the first part of Lemma 12, by producing a positive semi-definite matrix M
and giving a lower bound on the tails of (A, M). The main challenge is to find a good matrix
satisfying the positive definiteness constraint: in Proposition 22 we chose a matrix taking
only one non-zero value, specifically, s, € argmin As—g” The issue, of course, is that if s,
is negative then such matrix cannot be positive semi-definite. Instead, we will construct a
rank-1 matrix taking four different non-zero values.
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Consider a sequence ay, . . ., a, whose non-zero elements take m different values, aby, ..., ab,,
with ab; repeated m; = Sm;(1+ o(1)) times respectively (the addition of the error term just
allows us to deal with the fact that matrices have integer numbers of rows and columns).
We will think of m; and b; as being fixed, while o and  depend on the tail bound that we
want to show, with « being small and 8 being large. Then for any ¢ = >_." | ¢;,

[17:]

(72) Pr <Z a;&; > t) > ﬁPr Z & >ti/(ab;)

J=1

and so Theorem 21 implies that if aﬁfj%bi = O(1) then

(73) In Pr (Z a;&; > t) > —BZmiA* (aﬁf%-b-) —0 (527}%) )

2

Our goal will be to choose the parameters m;, b;, «, 5, and t; to make the right hand side
large. First, we will treat m; and b; as given, and optimize over t;, o, and 3. We will enforce
the constraints >, t; =t and Y, a7 = o8>, m;b} = 2.

Define
b2
B = t2 ZZ mlbl 2
2 (22 mibi\' (b))
~1/2
_ 2 _ 2imibiN(bi)
Oé—2<ﬂzljmlbz> —tz:l—mlblz, and

With these choices, we have

2

(74) 0425 = ma

meaning that

(75) Za? =a’B Zmibf =2

7

and

(76) Y ti=aBd> mbiN(b) =t.

(These turn out to be the optimal choices of «, 3, and ¢, although we do not need to show
this, since any choice will give us a bound.) Plugging these parameters into (73), we obtain

(77) In Pr (Z 06 > t) > _ﬁ ‘ Do mab7 - 0 mi A (A (b)) —o(#?),

2 (32 mibi'(b;))°

where the o(t?) term depends on the parameters m; and b,.
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Next, we will define the parameters m; and b;. Take €,6 > 0, and define

1
my 6—27 by = ¢,
€
m2—2ﬁ, bg——é,
et 5
= — Do — —
m3 567 3 67

and note that it is possible to define a positive semi-definite integral kernel taking the value
b;/2 on a set of measure 2m;, simply by starting with a function taking the values /e and
—3/+/€ on sets of size 1/e and €/§° respectively, and then taking the outer product of that
function with itself. It follows that if € and § are fixed and S is large (and « is arbitrary),
then we can define a rank-1 p.s.d. matrix (M, say) with (1 4 o(1))25m; entries taking the

value ab;/2; note that [|M||% = H2Lap? S m; = 1+ o(1). Since A is a symmetric matrix

with £ on the upper diagonal, this will yield
(78) (A M) =" a&.

where (a;) is a sequence containing (1 4 o(1))5m; copies of ab;.

We will first choose a small § and then choose a smaller e. The error terms in the following
analysis are taking this into account, so for example we may write €26~% = o(e) no matter
how large k is. Our next task is to compute the various expressions in (77), in terms of €
and o. Before doing so, we observe some basic properties of the Legendre transform.

Lemma 26. Assume that f is convex and differentiable and lim,_, o Lf) = 0. Thenlim,_,

0. ’

[ (f'(z))

2

Proof. Fix z and let y = f/(z). By the definition of f*, we can write
(79) [ (y) = sup{zy — f(2)},

and note that the supremum is attained at © = z (because the derivative is zero, and the
expression being supremized is concave). Hence,

(80) f(fi(@) = xf'(z) = f(2).
Convexity of f implies that f’ is non-decreasing, and so f(z) = o(z?) implies that f'(z) =
o(x) as * — oo. Hence, f*(f'(x)) = xf'(x) — f(z) = o(a?). O

Lemma 27. If f is convex with f(0) = f'(0) =0 and f"(0) > 0, and if both f and f* are
C* in a neighborhood of 0, then

62

(81) Fo(f1(€) = 1"(0) 5 + (/)" (0)(/")*(0) + 3f’”(0))§ +0(e")

as € — 0.

Proof. This is nothing but Taylor’s theorem and a computation. Setting g = f*, we compute

(52) Lo7'(©) = ¢ (F() )
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and then
(53) L o) = A (A + (£ 1(6).
and finally

(84) C;legg(f () = g"(F((f"())* + 39" (F ()" () f"(€) + g' (£ (e)) [ (€)-

Our assumptions on f ensure that ¢’(0) = 0, and hence the first-order term vanishes, the
second-order term at € = 0 becomes

(85) g"(0)(f"(0))%,

and the third-order term at ¢ = 0 becomes

(86) 9" (0)(f"(0))* + 3¢"(0) f"(0) S (0).

Finally, note that ¢”(0)f"(0) = 1. O

Note that A satisfies the assumptions on f in Lemmas 26 (because we assumed that
A(s) = o(s*)) and 27 (because every cumulant-generating function defined on a neighborhood
of zero is C* in a neighborhood of zero). Note that A and A* both have a second-order root
at zero. Define

(87) L =A"(0)>0.

Expanding out the parameters in (77), we have

2

(88) Zmsz—1+2 +ﬁ

for the first term in the numerator. The second term in the numerator is

64

Zm,A* N(by)) = (A o A')(e) + ;3(A*OA')(_5)+56(A o N')(62/e).

According to Lemma 26 and our assumptions on A, the last term is o(€?). Applying
Lemma 27 to the other terms, we have
> mAt (N (b)) =

M L——M3+O(e + €6)

€y
6 6

I
( ) M + O( + €d),

wlb« Mlh

(89) M = (A*)"(0)L* + 3A"(0).
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For the denominator in (77), we ignore the ¢ = 3 contribution, giving a lower bound of

) N(e) eN(=9)
= A"(0) + %A’”(O) +O(e) + 2%1\”(0) — eA"(0) + O(ed)

_ E _E " 2
_L<1+25) SA"(0) 4 O(€ + €9).

Putting everything together,
22 mil\' (i) - 30 milT (A (i)
(32, madk'(my))”
(1+2+0(?) (2 (14 %) - L+ O(e? + €))

» 2
(L (1+2%) - EAZ& + O(e + 65))

Ll 4 O+ €d)

T 12— eLA"(0) + O(& + €d)
1 M eA"(0)

2L 62 2I?
1 e(A*)"(0)L
2L 6
and in particular it is possible to choose ¢ and € so that this quantity is at most (1 — n)i
for some n > 0.

+ O(€* + €f)

+ O(® + €)),

Going back to (77) and recalling that the sequence a; can be realized as the elements of a
rank-1 p.s.d. matrix, M say, with [|[M||r = 1+ o(1), we have shown that

2

(90) In Pr(\ (A,) > ) > In Pr((A, M) > ¢||M]|) > —(1 — ”)i_L —o(t?).

Replacing ¢ by m,t and recalling that L = A”(0) = E£? completes the proof of Theorem 10.

7. BACK TO CYCLE COUNTS

We now turn to the proofs of Theorems 1 and 2. The proofs are very similar, so we devote
most of this section to proving Theorem 1 and then indicate what changes must be made to
obtain Theorem 2.

Our eigenvalue LDP (Theorem 9) allows us to control the cycle-count contribution from a
constant number of very extreme eigenvalues, but in order to fully characterize the behavior
of the cycle count, For this, we will use a deviation inequality from [33]:

Theorem 28. Assume that ||€||o < 00, and let f : R — R be a 1-Lipschitz, convez function.
Define X,, = 137" | f(n7V2\;(A,)). Then there is a universal constant C' < oo such that
for any § > n~1,

n?§*
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Having controlled the bulk eigenvalues, we will use Corollary 19 to show that the cycle
count cannot be determined by w(1) largish eigenvalues. Bear in mind that we will be apply-
ing our eigenvalue LDP to EA — A, where A is the adjacency matrix, because Theorem 11
is for the positive eigenvalues of centered matrices and we are interested in the negative
eigenvalues here.

7.1. The contribution of the bulk. We consider two functions f; and f,, where

0 if 2 <0
(92) fi(z) = ¢ 2* if0<z<vVK
kKED2g (k- 1)K*? if 2 > VK

and fy(x) = —fi(—z). Then both f; and f, are kK *~Y/2 Lipschitz functions; also, f; is
convex and f5 is concave.

The following lemma is the main technical result of this section. Essentially, it says that
changing the cycle count using non-extreme eigenvalues carries a substantial entropy cost.

Lemma 29. Let A, be the centered adjacency matriz of a G(n, m) graph. There is a universal
constant C' such that if K > C' then

1 L L . nkt2k
(93) Pri— > M) < —tF—Cno §emg<—9<55;3)>.
iXi(Ap)>—VEKn

Proof. We will prove the claim when A, is the centered adjacency matrix of a G(n, p) graph,
with p = m/(}). The result for G(n,m) follows from the fact that a G(n,m) graph can be
obtained by starting from G(n,p) and conditioning on the (probability Q(1/n)) event that
there are exactly m edges.

Note that
0 ifz<-—VK
(94) fi(z) + fo(r) < {xk ite> VK.
Hence,
(95) D (it f)TPN(A)) <nTHE YT AR (A).
g i:Ai(An)>—VEn

Since — f5 is convex, Theorem 28 applies to both f; and f,, giving
(96)

Pr (% tr[(f1 + f2)(n72A,)] < %E tr[(f1 + fo)(n"Y2A,)] — s) < 2exp(—Q(n?s* /K1)

whenever s = w(K*~Y/2/n). Plugging in (96) gives
(97)

_ 52
Pr Z )\f(An) S nk/2]Etr(f1 + fg)(n 1/2An) — S S 2€Xp <—Q (m)) .
i:\i(An)>—VEn
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It remains to control Etr[(f, + f2)(n"Y/2A,)]; specifically, we want to show that E tr(f; +
f2)(n"Y2A,) is close to n */2E tr(AF). But note that

[ te[(f1+ fo) (712 An) — n 2 AT]]

<n 2N (AT < T o (A 4 s v
i:| A |>VEn

where o1(A,,) is the largest singular value of A,,. Proposition 18 implies that if K is suffi-
ciently large then EHUl(An)|k1{\ol(An)|>\/ﬁ}] < exp(—Q(y/n)). Hence,
(98)

82
Pr > M(A) SEtr(Af) — s —exp(—Q(v/n)) | < 2exp <—Q <W)) .
i5>\i(An)2_\/m

Finally, note that |E tr(AX)| = O(n*~!) and set s = tkn*. O

We remark that the comparison between the exponents in Lemma 29 and the exponents
in our eigenvalue LDP (Theorem 11) determines the range of deviations to which our cycle-
count deviation bounds apply: we get sharp bounds whenever Lemma 29 ensures that the
bulk contribution is smaller than the contribution of the most extreme eigenvalues. To that
end, note that by Theorem 11, a single eigenvalue of order —tn (which contributes t* to
the k-cycle density) carries an entropy cost of order t*n?; on the other hand, Lemma 29
shows that using the bulk eigenvalues to achieve the same t* change in the k-cycle density

k(2—k)
costs t?*n¥ in entropy. These costs cross over when t* =< n~ 2-2 | but on the other hand
applying Lemma 29 in this way also requires that t* > n~!. Therefore, we see that the bulk
contribution is dominated by the extreme eigenvalue contribution whenever

N min{1, 2=k

and the right hand side is n=%/* for k = 3 and n~' for k¥ > 5. This computation determines
our critical exponent ¢, given in (8).

7.2. Many large negative eigenvalues. There is one situation that we still need to handle:
the possibility that there are w(1) eigenvalues smaller than —Q(y/n), and w(1) of these
eigenvalues contribute to the triangle count.

The first observation is that although Corollary 19 is written for a fixed number of sin-

gular values, it can be easily transferred to an inequality for singular values above a certain
threshold.

Corollary 30. With the notation of Corollary 19, if o; = 0;(A) are the singular values of
A then

2L 2
99 In Pr o2 >t S—t——i—O t—an
! 2 K
o;i>VEKn
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Proof. Set k = [t*/(Kn)] and observe that if oy,...,0x > V/Kn then ¥ 02 > 2. Hence,
we either have

(100) S ooty a2

(101)

and we conclude by applying Corollary 19 with our choice of k.

Finally, if A is the centered adjacency matrix of a G(n,m) graph then we use the same
argument that was used to extend Corollary 19 to the G(n,m) case, namely that a G(n,m)
graph can be obtained by conditioning a G(n, q) graph on an event of Q(n~!) probability. [

Corollary 30 for extends to the case of a G(n,m) graph by the same argument that was
used to extend Corollary 19 in the proof of Theorem 11. Namely, a G(n,m) graph can be
obtained by conditioning a G(n,q) graph on an event of (n~!) probability, and the extra
factor n introduced by the conditioning is of smaller order. Applying Corollary 30 to a
centered G(n,q) adjacency matrix for ¢ = m/ (g), and then applying Lemma 24 to get the
explicit expression for L, we obtain the following bound:

Corollary 31. If A is the centered adjacency matriz of a G(n,m) random graph, let p =
m/ () and let

L= .
1—-2p
Let 0; = 0;(A) be the singular values of A. Then for any fived K, if t > \/n

2L 2
(102) In Pr > o>t g—%+0<%ml{)
Ui>\/m

7.3. The upper bound in Theorem 1. Let A be the adjacency matrix of a G(n, m) graph
and recall that 7,(A4) = %ﬁik] +O(1/n). Let A= A —EA; by Corollary 5,
Pr(7,(A) < p* — %) = Pr(tr[AF] < n*p* — nFth 4 O(nF™1))
(103) < Pr(tr[A*] < —n*tF + O(n"71)) + Pr(||Al|op > Q(n)).
Writing out tr[A¥] = 3. A¥(A), choose K = w(1) and € = o(1) such that K*~'/e*/* =

o(n*~?t?*72); this is possible because t* > n~* implies that n*~*¢**~2 >> 1. Applying
Lemma 29 to A gives

. 2/ky2k, k
(104)  Pr|n* Z M(A) < —et® | <exp <—Q (%)) = exp(—w(n?t?)).

Ni>—VKn
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On the other hand, Jensen’s inequality implies that
k/2 k/2

(105) ook Y o < Y 2|

Ni<—VEKn Ni<—VEKn i:0; >V Kn

where \; = M\(A) and 0; = 0;(A). Recall here that L = inf,ep AZ—?’, where A is the
cumulant-generating function of a centered Bernoulli random variable with success proba-
bility p. Lemma 24 (with ¢ = 1 — p) implies that L = R By Corollary 31 (and taking

2p—1
into account the fact that € = o(1) and K = w(1)),

Pr Z )\f(/i) < _(1 — E)tknk < Pr Z 0-2,2 > (1 _ E)l/ktn
i< VEn i:oi>VEn

L
< exp (—§t2n2 + 0(t2n2)) :

Combined with (104), this yields

(106) In Pr (tr[,fx’f] < —tknk> < —LtQ” (1+ o(1)).

Now we apply (103), noting that nft* = w(n*~1), and so n*t* + O(n*~1) = nFtk(1 + o(1)),
to get

Lt*n?

(107) In Pr(7,(A) < p* — t*) < max {— (14 0(1)),InPr(]|Allop > Q(n))} .

By Theorem 11, the second term in the maximum is of order —©(n?) and so the first term
wins.

This completes the proof of the upper bound in Theorem 1 but let us also note two other
facts that we can easily extract from the proof. From (104) we see that only the extremely
negative eigenvalues contribute to the cycle deviation:

Corollary 32. Conditioned on 7;,(A) < pk —t*, D id<—Q(/m) M(A) < —tfn¥(1 — o(1)) with
high probability.

The other piece of information we can extract from our proof is that the vertex degrees of
a cycle-deficient graph are close to constant.

Corollary 33. Conditioned on 1,(A) < p* —t*, if di,...,d, are the vertex degrees of the
graph then with high probability

(108) > (di — pn)® = o(t*n®).

i

Proof. In the proof of the upper bound of Theorem 1, recall that InPr(|| Ao, > Qn)) <
In Pr(71,(A) < p* — t*), and it follows that conditioned on 74(A4) < p* — t* we have ||A|,, =
o(n) with high probability. Since Pr(m,(A4) < p* —t*(1 + €)) < Pr(m(4) < p* — t*), we
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also have 7;,(A) > p* — t*(1 + €) with high conditional probability. But on the event that
|Allop < en and 73, (A) > p* — t*(1 + €), Lemma 4 implies that

k= Z(dz —pn)® < et*n”,
and the claim follows. O

7.4. The lower bound in Theorem 1. The idea here is to partition the adjacency matrix
into blocks, and then consider the event that certain prescribed numbers of edges are present
in each block. By choosing all parameters correctly, we can ensure that this event has the
correct probability, and also that on this event the cycle density will behave as desired.

Recall that L = sup, As—gs) and that s, = 2p — 1 is the maximizing value of s. Let ¢ be
the closest integer to tn/s, and let &, ..., &\ be some ordering of the upper diagonal of A.
2

Let U;; be the collection of ¢ for which & is in the upper-left ¢ x ¢ submatrix; let Uy be
the collection of i for which &; is in the upper-right ¢ x (n — ¢) submatrix; and let Usy be
the remaining indices. Define z by ¢ = zn, and note that z = (1 + O(1/n))t/s.. Now let
Sy = |s«|Un1|] and T, = [2|Uj2|s.], and let Q be the event that

(109) ~ Y-

(110) LY g-1

We claim that InPr(Q2) > —%(1 + 0(1)), and that conditioned on €, 7,,(G) < p* — t*
with non-negligible probability. Together, these imply the lower bound of Theorem 1.

Lemma 34.
t?n?L
2

InPr(Q) > (14 o0(1)).

Proof. Let €1 be the event of (109) and let 5 be the event of (110). These events can be

described simply in terms of hypergeometric random variables. Indeed, »,;; (& +p) is a

hypergeometric random variable with (S) trials, and a population of size (g) containing m

successes; therefore €1 is just the event that this hypergeometric variable takes a particular
value. Conditioned on 2y, ., (& +p) is a hypergeometric random variable with ((n — ()

trials, and a population of size (Z) — (5) containing m — S, successes; the event ()5 is just

the event that this hypergeometric variable takes a particular value.

These hypergeometric probabilities can be computed explicitly; we will make use of the
approximation that comes simply from applying Stirling’s approximation to the explicit
computation (see, e.g., [38, Lemma 2.1.33]): if Z is a hypergeometric random variable with

r trials from a population of size R with aR successes, then for any integer b in the range of
Z,

(1)~ WPHZ=b) = ~D(b/r,a) - - ;/%RD (?:Zg’o‘) o (@)
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where D(q¢+s,q) = (¢+s)In q+8 +(1-=¢—s)In 1;‘1_8 is, as before, the Legendre transform
of a centered Bernoulli Varlable s cumulant generating function.
Applying (111) to Qy, since Inn < £ < n and since D(a + €, ) = O(€?), we have
1

= Pr(h) = —=D(p+s",p) = —L,
U1

and hence

t2n?L

InPr(2;) = —(1 +0(1)) 5

Since €2 = €y N )y, it suffices to show that
Pr(Qy | ) = exp(—o(t*n?)).

Recall that conditioned on €, >, (& + p) is hypergeometric with ©(zn?) trials, a popu-
lation size of ©(n?), and m — O(2?) successes. The event ), is asking for this hypergeometric

variable to deviate from its mean (which is of order ©(zn?)) by a fixed quantity of smaller
order, namely O(z*n?). By (111),

\Ullg\ InPr(Qy | ) = —D(p+0(2),p) + o(2) = —o(2).
Therefore, Pr(Qs | Q1) = exp(—o(22n?)) = exp(—o(t2n2)). -

Next, we show that conditioned on €2, G has fewer cycles. For ease of notation, let us
first describe the conditional distribution of G' given 2 in terms of different parameters. Let
0 = zn for n™%? <« z < 1, and fix 0 < ¢ < p. Consider a random graph G with m = p(g‘)

edges, and let A be its adjacency matrix. Suppose that (p—q) (Z) of these edges are uniformly
distributed on the upper diagonal of the top-left £ x ¢ block of A, (p + %zq)¢(n —¢) + O(1)
are uniformly distributed on the top-right ¢ x (n —¢) block, and (p— (1_2)2q) (";5) +O(1) are

uniformly distributed on the remaining part of the upper-diagonal. The O(1) error terms
ensure that it is possible to satisfy the constraints with integer numbers of edges, and these
error terms are also compatible with the requirement that there are p(g) edges in total.
Finally, note that the distribution of G conditioned on 2 is the same as the distribution we
have described above, for some ¢ within ©(1/¢?) of s,.

Lemma 35. For the random graph G described above,
E7.(G) = p* — 2"¢" + o(2")
and

Var(7.(G)) = ( _2)
In particular, if 2*¢* = w(n™1) then 7(G) < p* — 28¢* + o(2%) w.h.p.

Recalling that zF¢* > (1 + o(1))t*n*, Lemma 35 completes the proof of the lower bound
of Theorem 1, after replacing ¢ by (1 — o(1))t.

Proof. To compute the expected number of cycles, let B the the n x n block matrix that
agrees with EA except on the diagonal. That is, B takes the value p — ¢ on the top-left ¢ x ¢
block, the value (p + t25¢) + O(n™?z7") on the top-right £ x (n — £) block, and the value

(p— (1_2)2 q)+0(n~ ) on the bottom (n — ¢) x (n — ¢) block. Then B has rank-2, and it is
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well-approximated by the rank-2 matrix pl — quw”, where w has ones in the first zn entries,
and takes the value —z/(1 — z) in the other entries. More precisely,
1B = (p1 — quuw®)|[r = O(n~'27"2) = o(1),

with the main contribution coming from the ©(zn?) entries of size O(z7'n"2). Since 1
and w are orthogonal, p1 — qww’ has eigenvalues pn and —q|w|?> = —qzn + O(2*n). By
Weyl’s eigenvalue inequalities, B has eigenvalues pn + o(1) and —gzn + o(1). Therefore
tr B¥ = pkn* — ¢k2knk + O(n*=1).

Next, consider tr[(EA)*]. Recalling that EA agrees with B except on the diagonal (because
EA is zero on the diagonal and B is not), we have ||[EA — B, = O(1), and so Weyl’s
eigenvalue inequalities imply that EA has an eigenvalue of pn + O(1), an eigenvalue of
—qzn + O(1), and its remaining eigenvalues are bounded. Therefore, tr[(EA)*] = pFn* —

¢ 2k + O(nF1).
To compare tr[(EA)*] to Ery(G), expand tr[(EA)*] in terms of closed walks of length k:
let T'x be the set of (k+ 1)-tuples vy, ..., v with vgy = v and v; # v;41 for all 7. Then

(112) wlEA)] = Y [[EAN

(V1,050 11) €Dy =1

Let fk~ be the set of (k + 1)-tuples vy, ...vg1 in T'y such that vy, ..., v, are distinct. Then
Ty, — Tx] = O(n*71). Since each summand in (112) is bounded,

alEA) = Y [[EA)wm+ 0@,

I, =1

On the other hand,

(Z) En(G)= Y Pr({v, v} € E(G) for all i).
(V1,5 0k+1) €D
For each i, Pr({v;,vis1} € E(G)) = (EA)y, ., Because the edges are chosen without
replacement these terms are not independent. However, we always have the inequality
Pr({vi,v; + 1} € E(Q) | {v1,v2} € E(G), ..., {vic1,v:} € E(G) < (EA)y, 0,04

Therefore,

(HEn@) s X TIEAwwn = alBA]+ 00 = gt =g shat + 0w

(V1,0 Vp41)ETy =1

This proves the claim about the expectation.

Next, we consider the variance of the cycle density. For an ordered k-tuple S C V(G), let
Ts be the event that the vertices in S form a k-cycle. Note that because the edges are drawn
without replacement, if S; and Sy do not share an edge then Ts, and T, are non-positively
correlated. Therefore,

Var(T(G)) = Z COV(T517TS2) = Z COV(T517TS2)‘

51,52 S1,82:[51NS2[>2
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There are at most n?*~2 elements in the sum, and each is bounded by 1. Therefore,
Var(T(G)) < n*~2% and so Var(7(G)) = O(n~2). O

7.5. The two extreme eigenvalues. In proving the upper bound on Pr(7;,(A4) < p* —t),
we applied the inequality > |a;|¥ < (3, a?)*/? to the collection of most-negative eigenvalues.
In order to understand how these most negative eigenvalues are actually distributed, observe
that in order for the inequality above to be an equality, all but one of the terms in the sum
must be zero. Made quantitative, this observation implies that in order for our probability
upper bound to be tight, the smallest eigenvalue must dominate the others. In what follows,

we write ||a||b for ), [as|P.

Lemma 36. Let aq,... be a sequence of non-negative numbers, in non-increasing order. For
e>0and k>3, if

(113) > af > eal

i>2
then
(114) lal|2 > (1 4 €)*|lal?.
ak —
Proof. 1 Y ,af > ed} then [|af%, = af < 1L Then [allf < [laf%?]al} < (1 +
€)~*k=2/k|q[|F72||al|2, and the claim follows. O

Applying Lemma 36 to the most negative eigenvalues of A allows us to show that the
eigenvalues of A satisfy the claims that Theorem 1 makes for the eigenvalues of A.

Corollary 37. In the setting of Theorem 1, for any € > 0, conditioned on 7,(A) < p* — t*
we have

(115) A(A) < —(1 = e)t*n® and N\E_ | (A) > —et™n®
with high probability.

Proof. Let S = {i : Mi(A) < —Q(y/n)}. By Corollary 32, for any ¢ > 0, conditioned on
7e(A) < pF — t* we have

(116) D> N(A) < —(1 - o)ttt
icS
with high probability. On this event, we either have A% (A) < —(1—d—¢)t*n* or > ies\(n} Mr(A) <

—et*n*. We will show that for some § = Q(e),
(117)

Pr[ > M(A) < —(1—)t*n* and My(A) > —(1 =6 — e)t*n* and Y N(A) < —et*n*
ieS ieS\{n}
is much smaller than Pr(7,(A4) < p* — t*); this will imply the claim.
Indeed, applying Lemma 36 to the sequence of |\;| for i € S, we see that if
(118) > AF(A) < —(1—0)t"n" and Mi(A) > —(1—0—€)t"n" and Y M(A) < —ethn”

i€S i€S\{n}
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then
(119) D ON(A) = (1L+)VF1 = 0)Pn® > (14 Q(e))n”,
S

where the last inequality follows by choosing a sufficiently small 6 = Q(¢). But Corollary 31
implies that

<Z A2(A) > (14 Qe ))t2n2> < exp (—(1 +Q(e))(1 — 0(1))t 7; L)

€S
= o(Pr(1,(A) < p* —tF)),

where the final bound follows from the lower bound of Theorem 1. O

Note that although we have been focussing on the smallest (i.e. negative, with large
magnitude) eigenvalues, this same argument tells us about the largest eigenvalues also:
if \i(A) > /¥ tn, then in order to have >, A\F(A) < —(1 — o(1))t*n* we would need
S L A(A) < —(1— e —o(1))tFn¥, which by the argument above has probability exp(—(1 4
Q(e))Lt*n?/2) = o(Pr(r,(A) < p* — t*)). Therefore, we obtain the following bound on the
largest eigenvalue:

Corollary 38. In the setting of Theorem 1, conditioned on 7(A) < pF — tF, with high
probability A (A) = o(tn).

To complete the proof of Theorem 1, we need to pass from the eigenvalues of A to the
eigenvalues of A; recall that A = A+ p1 — pl. Since pl > 0, we have

(120) An1(A) > Naci(A) = p,

and s0 A\,_1(A) > —o(tn) implies the same for A\,_1(A). For \,, let v be a unit eigenvector
of A with eigenvalue \,(A). By Corollary 33, with high (conditional on 7,(A) < p* — t*)
probability, |A1]? = o(t*n?), where 1 denotes the all-ones vector. On this event, expand
1 in the basis of eigenvectors of A to see that |A1[2> > (Lv)2 A, (A)2. Therefore (1,v)? <

o(t*n® M, (A)2) = o(t*~2n) = o(tn). Now, (A,vvT) < (A, v0T) + p(1,v)2 = A\, (A) + o(tn)
and by considering v as a potential eigenvector of A, it follows that A,(A) < A\,(A) + o(tn).
This completes the proof of Theorem 1.

7.6. Theorem 2. Like Theorem 1, Theorem 2 has three elements: an upper bound on the
probability of a moderate deviation, a lower bound, and a bound on the most negative
eigenvalue of the adjacency matrix.

The upper bound is proved exactly as in the proof of Theorem 1. The singular values

of the eigenvalues are controlled by the rate function involving inf.cg A;—gs), which we have
nli= p

already established to be W Upper bounds on singular values then give upper bounds

on eigenvalues. The entire argument is independent of whether p > % or p < %

The proof of the lower bound in Theorem 2 is similar to that of the lower bound in
Theorem 1, except that we use the \iector v = (%, o \/1;, \},...,—%). For this v,
Cramér’s theorem shows that InPr({A, voT) < —tn) > ti)(l + o(1)), and the rest of

21
the proof proceeds as before.
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For the claim about the eigenvalue, we use Lemma 36: fix n > 0 and K > 0 and consider
the event 2 on which .
> AHA) < it
Xi(A)<—VEn

but A\f(A) > —ﬁtknk . According to Lemma 36, on this event we have

> N(A) = (1+n) e,
Xi(A)<—vVEKn
By Corollary 31 (for a sufficiently slowly growing K = w(1)),

t2n?(1+n)"/* In 72

InPr(Q) < t2n?
which, for sufficiently large 1 (depending on p) implies that
t2n?
InPr(Q) < —-(1+9Q1))——.
(@) < =1+ 20) 50—

It follows from the lower bound in Theorem 2 that Pr(Q | 7, < p* — t*) — 0. Together with
Lemma 29 — which shows that eigenvalues larger than —v/Kn are unlikely to contribute
— this implies that \¥ < —ﬁtknk with high probability given 7, < p* — t*. (The main
difference here compared to the proof of Theorem 1 is that because we lack matching upper
and lower bounds on the log-probabilities, we cannot take n ~ 0.)

8. THE CONDITIONAL STRUCTURE

In our upper bounds on eigenvalue deviation probabilities, we identified a candidate worst-
case eigenvector: specifically, one that takes a certain non-zero value on ©(tn) coordinates
and zero elsewhere. In order to identify the conditional structure of this graph, we need to
show that this candidate eigenvector is essentially the only one: every candidate eigenvector
that has a comparable deviation probability is close to the one we identified.

The first step is to characterize the values that give the worst-case result in our Hoeffding-
type bounds. For the rest of this section, fix p and let A(u) = In(pe“®=) + (1 — p)e~™) be
the cumulant-generating function of a centered, ¢g-biased Bernoulli variable.

. A . L )
Lemma 39. The function u(gu) has a unique maximizer u,, and there is a constant ¢ =

c(p) > 0 such that for every u € R,
A(u) - A(uy)

w7 (w)?

Proof. Let F(u) = % (which is continuously defined and differentiable at zero by taking
limits). Note that A(u) is asymptotic to u(1 — p) as u — oo and asymptotic to —up as
u — —oo. In particular, F'(u) — 0 as u — +o0, and since F' is continuous on R with
F(0) = 0 we see that it achieves a maximum at (possibly more than one) u € R. Let
0 = sup, Au(;”, and suppose that u, achieves the maximum. Then A and u — ¢*u? have
the same tangent at u,. Since A is convex, the function x — 2u,x — 6*(u*)2 touches A from

below at u,, and it follows that A*(20*u,) = £*(u,)?. Or in other words, A*(s,) = (2222 for
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Sy = 20*u,. Now recall from Lemma 17 that 4@* = inf, Ay—) It follows that for every u, at
which A(u)/u? achieves its maximum, there is a s, at which A*(y)/y?* achieves its minimum.

By Lemma 24, A*(y)/y* has a unique minimizer and it follows that A(u)/u? has a unique
maximizer.

To see that A(u)/u? is locally quadratic near wu,, note that A”(u,)(A*)"(s.) = 1. By
Corollary 25, (A*)"(s.) > 5= and it follows that A”(u,) < 2¢* and so F(u) is locally quadratic

near u,. And since F' > 0 at its unique maximizer and F'(u) — 0 at oo, it follows that
F(u) < F(u,) — cmin{1, (v — u,)*} for some ¢ > 0 and all u € R. O

With this extra information on the maximizer of A(u)/u?, we revisit the Hoeffding-type
argument of Proposition 18: in order for a matrix M to get close to the upper bound of
Proposition 18, most of the contribution to || M || must come from entries that are close to
the “ideal value”. Recall that s, = 2p is the
convex conjugate of A. The matrix M that we constructed in Proposition 18 had all of its
entries being either zero or s, /t; the next result shows that this is essentially necessary.

Proposition 40. With £ the centered, p-biased Bernoulli variable as above, let A be the
symmetric random matriz with zero diagonal, and with upper-diagonal elements distributed
independently according to &. For any ||M||lrp <1 andt > 0,

Pr((A, M) > t) < exp <—— G me{az, a; S*/t)Z})) ,
where a; are the upper-diagonal entries of M.

Proof. As in Proposition 18, for any s € R we have
Pr((A, M) > t) < exp (Z A(sa;) — st/2> .
By Lemma 39, Z
Zi: A(sa;) = 22: j(\s(j?);) (sa;)? < s Z; a? — cs? 22: a?min{1, (a;s — u,)*},

Alw)

w2

L —
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unique minimizer of 2 ) Since >o.a? < 5, choosing s = t/(20%) = 2Lt gives

where (* = sup,, and Uy = 25, L is the unique maximizer. (Recalling that s, is the

2
Pr((A, M) > #) < exp (—% — S a2 min1, (ta; — s*)2}> .

To simplify the last term, note that because s, is fixed, z? min{1, (tx—s,)?} = min{z?, 2*(tz—
s.)?} > Q(min{z?, (z/t — 5.)?}), because if (tz — s,)*> < 1 then z* = O(1/t?) and so
22 (tr — 5,)? = O((z — s./t)?). O

Corollary 41. Let A be the adjacency matriz of a G(m,n) random graph with m = p(g) and
p > 1. Forc, defined as in (8) and any n=* < t* < 1, conditioned on 7,(A) < p* — t* the
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following holds with high probability: A:= A—FEA has a unique (up to sign) unit eigenvector
v with eigenvalue \,(A), and it satisfies

> min{ofe?, (v0; = s./(in))*} = o(1).

Proof. Uniqueness of the eigenvector follows from Theorem 1, which implies that the eigen-
value A, (A) = —tn(1 — o(1)) has multiplicity one. Also, Theorem 1 implies that

Ely o<1>>) ,

and in order to show the claim it suffices to show that the probability of having a unit
eigenvector v with eigenvalue —tn(1 — o(1)) and

(121) Z min{v}v?, (v;v; — 8./ (tn))?} > € > 0

Pr(n(4) < — ) e -

is o(Pr(ri(A) < p* —tF)). For € > 0, let V. be the set of unit vectors v satisfying (121).
First, note that for any fixed v € V., Proposition 40 implies that

Pr((A, vv”) < —tn(1 — §)) < exp (—tQZQL(l —0(0) + Q(e))) :

(Proposition 40 was written for matrices with i.i.d. entries, but we can apply it to A by the
standard trick of writing A as a matrix with i.i.d. entries, conditioned on having a certain
number of positive entries. The probability of the event we're conditioning on is Q(1/n),
and that extra factor of n can be absorbed in the exp(—Q(€)t*n) term.)

Now let M; s = {vv” : v € V_}, and by Lemma 15 there is a d-net A/ for M of size at
most (C'/5)¢™ (because we can start with an (§/2)-net of M, and then project each element
of that net onto M ., which gives an d-net of M, ). By Lemma 14 and a union bound, for
any fixed 6 > 0 we have

- t?n2L
' < - — — < — _
Pr (Mér/lvf(l,fA’ M) < —tn(1-9)(1 25)) < exp ( 5 (1—-0(9) —|—Q(e))) ,
because the (C//§)“™ term coming from the union bound can be absorbed in the exp(O(t*n2§))
term. If § is sufficiently small compared to e, the probability bound above is asymptotically
smaller than Pr(7,(A) < p* —t*). Therefore, for every € > 0, conditioned on 7, (A) < p* —¢*,
with high probability the eigenvector of A with eigenvalue A, (A) does not belong to V.. [

We interpret Corollary 41 as saying that for the most-negative eigenvector of A, most of
the (* “mass” of v;v; is concentrated near s,t~*n~'. Our next task is to show that (after
possibly changing the sign of v) v; essentially takes two values: 0 and sv/*¢t~'/2p=Y/2. For
notational convenience, we will adopt a different normalization: consider a vector w with
the property that

(122) Zmin{w?wi, (waw; — 1)*} < elw|?,
.3
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and we will show that (after possibly changing the sign of w) w is close to taking values zero
and 1. To break the sign symmetry, we will assume without loss of generality that

1

(123) » w?< 5\w|2.
w; <0

Lemma 42. If (122) and (123) hold then

(124) > w? < 2efw]?,
w; <0

(125) D (wi = 1)* < VelwP,

(126) > (wi —1)* < 3velwl?, and

3Swi<l
(127) > w < Veluwl
0<w; <3

In particular, if we define w by setting w; € {0, 1}, whichever is closer to w;, then |w —
w[* < 6/e|wl?.

Proof. If w; < 0 and w; > 0 then w;w; < 0 and so wjw? < (w;w; — 1)*. Hence,
Z Z wiw? < Zmin{w?wi, (waw; — 1)*} < ew|™.
w;<0w;>0 2,]

If we define v by 3°,, o wi = y|w|* then 37, _,w} = (1 —7)|w[* and so the equation above
implies that y(1 —v) <e. By (123),1 —~ > % and so v < 2e. This proves (124).

To prove (125), define v by >°, o (wi — 1)* = ylw[>. Now, w;,w; > 1 implies that
(w; — 1)*(w; — 1) < (wyw; — 1)* < wiw? It follows from (122) that
Vlwl|* = Z (w;—1)*(w;—1)* = Z (ww; —1)* < Zmin{w?wi, (wiw; —1)%} < e|lwl|*,

wi,w;>1 wi,w;>1 2,

and it follows that v < y/e.

To prove (126), define y by 301, < (w;i — 1)? =ywl If £ <w,w; <1 then w; + w; >
2w;w; and so 1 — w;w; > (1 —w;)(1 — w;). Therefore,

Vwwlt= > (wi- 1w -17< Y (wwy — 1)
3 <wiw;<1 3 <wiw;<1
Now, if wyw; > 1 then (w;w; —1)* < 9min{w?w?, (w;w; — 1)*}, and so (122) implies that
V¥ w|* < 9efwl*.
To prove (127), define v by > ., <

min{w;w?, (w;w; — 1)*}, and so

Y lwl* = Z wiw? < Zmin{w?wi, (waw; — 1)*} < elw|?,

wi,w;>1 i,J

%wf = wP. I 0 < wj,w; < 35 then wiw? =
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and it follows that v < y/e. O

We finally come to the proof of Theorem 3: let A be the centered adjacency matrix of a
G(n,m) random graph, and let v be a unit eigenvector with minimal eigenvalue; recall from
Corollary 23 that with high probability v is unique, and that w = n'/2t1/2s; "2y satisfies
the condition (122) for some € = o(1); for the rest of the proof, we will be working on this

event. Without loss of generality (changing the sign if necessary) w also satisfies (123), and

so Lemma 42 implies that there is a vector © with o; € {O,n_1/2t_1/2si/2} for all 4, and
|0 —v| = o(1). By Theorem 1 and Corollary 38, it follows that on this event,

(128) A= —tnov” + R, where |R||op = o(tn).

Let U = {i : 9; # 0}. Since |[t;]* = 1+ o(1) and v? € {0,n"'t"'s,}, we must have
|U| = (1 + o(1))nts;t. Now let Vi and V4 be any sets of vertices. Let 1 denote the vector
having (1y); = 1 for i € U, and (1y); = 0 otherwise; and similarly for 1y, and 1y,. Then
HA, (1y, +11,)%2 — (11, — 11,)®?) counts the number of edges between V; and Va. Recalling

that A = A+ p1 — pI, on the event that (128) holds, the number of edges between V; and
V5 is

1 - -
(129)  pIVA|[Val = (1 +0(1)) 7 (tn (D, 1vs + 11)” = (B, 1y = Lia)®) + oltn| 1y + Ly [").

Recall that & = n~/2¢~/251/*1,,. Therefore, if Vi, Vs C U then (7, 1y,) = n~Y/2= 1251213
and similarly for V5. Hence, the number of edges between V; and V5 is

pIVA[IVa| = (1+0(1))%((\V1I +V2])? = (il = [Va])*) +o(|ViUTV2[?) = (1= p)|Vi|[Va| +o(|U]?).

When V; C U¢, we have (0, 1y,) = 0 and so (129) implies that there are p|V;||Va|+o(tn(|V1|+
|V5])) edges between V; and V5. This completes the proof of Theorem 3 in the case that either
Vi,Vo C U or Vi C U°. To obtain the general case, we simply split V; into V;NU and V;NU*®.
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