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ABSTRACT

We present HPSpeech, a silent speech interface for commodity head-
phones. HPSpeech utilizes the existing speakers of the headphones
to emit inaudible acoustic signals. The movements of the temporo-
mandibular joint (TM]) during speech modify the reflection pattern
of these signals, which are captured by a microphone positioned
inside the headphones. To evaluate the performance of HPSpeech,
we tested it on two headphones with a total of 18 participants. The
results demonstrated that HPSpeech successfully recognized 8 pop-
ular silent speech commands for controlling the music player with
an accuracy over 90%. While our tests use modified commodity
hardware (both with and without active noise cancellation), our
results show that sensing the movement of the TMJ could be as sim-
ple as a firmware update for ANC headsets which already include
a microphone inside the hear cup. This leaves us to believe that
this technique has great potential for rapid deployment in the near
future. We further discuss the challenges that need to be addressed
before deploying HPSpeech at scale.
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1 INTRODUCTION
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Figure 1: The HPSpeech system. (a) Illustrattion of sensing
principles. HPSpeech uses active acoustic sensing to detect
the movements of the TM]J to decode silent speech. (b) Illus-
tration of the HPSpeech device: two miniature microphones
are installed inside a pair of Bose QC 45 headphones. The
built-in speakers are used. (c) Echo profiles for different ut-
terances.

Headphones are among the most popular wearable devices on the
consumer market. The primary purpose of headphones is to listen to
music or watch videos using a music or video player. There are two
main methods of interacting with headphones to input commands
on these music/video players. The first method requires users to
use their hands to operate the buttons on the headphones or their
phone or laptop. It requires users to divert their attention from their
current task and can be especially challenging when their hands
are busy. The second interaction approach involves using speech
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commands to control the headphones. While speech input provides
a hands-free interaction, it may not always be convenient in certain
settings such as in a quiet library. In comparison to voice-based
speech interaction, a silent speech interface (SSI) recognizes speech
without the need for sound, eliminating the requirement of speaking
out loud. Silent speech allows users to express their interaction
intentions discreetly and in a hands-free manner, without disturbing
the surrounding environment.

Recognizing silent speech has been a challenging task for the
wearable community. Prior work has explored tracking the move-
ments of tongue using magnetic sensors [1,2,7,8, 16, 17, 26] or
capactive sensors [18, 19, 23] inside the oral cavity, which is incon-
venient for many users. Recent work also explored placing sensors
on the skin around head to capture articulator movements during
speech. For instance, researchers explored using ultrasonic imaging
probes under the chin to directly “see” the tongue [5, 6, 13, 21, 29, 31]
or using electromyography (EMG) to capture muscle movement-
related electric signals [14, 15, 24, 25, 27, 30]. However, these sensing
systems still require skin-contacting sensors or electrodes, which
may not be comfortable or socially-acceptable. To further improve
the level of comfort and social acceptability, researchers recently
proposed many methods that do not require sensors at obvious
locations, such as behind the ear [28], inside the ear canal [12], us-
ing existing form factors such as earphones/headphones [3], neck-
laces [20, 32], VR-headset [34] or glassframes [33]. However, they
still require customized hardware or significant modification to
existing form factors, which may not be immediately deployable on
the commodity devices. The most recent work, EarCommand [12]
use active acoustic sensing to capture the deformation inside ear
canal to recognize silent speech. However, this approach does not
apply to over-the-ears headphones which do not place speaker and
microphones into ear canal. Despite the fact that many headphones
are already equipped with a rich set of acoustic sensors (speakers
and microphones), silent speech recognition on headphones has not
been explored, partly due to the difficulty to capture enough useful
information. To the best of our knowledge, HPSpeech is the first
work to implement SSI by utilizing the acoustic sensors that are
already embedded into many off-the-shelf headphones (especially
with active noise cancellation).

In this paper, we present the design and implementation of HP-
Speech, a silent speech interface for commodity headphones that
can recognize 8 silent speech phrases to control music player. HP-
Speech utilizes the existing speakers of the headphones to emit
inaudible acoustic signals. The movements of the temporomandibu-
lar joint (TM]) during speech alter the reflections of the signal before
it is captured by a microphone positioned inside the headphone.

To understand the performance of HPSpeech, we evaluated it
with 18 participants in total on two commodity headphones: Bose
QC45 and Adesso Xtream G1. With a customized acoustic data
processing and deep learning pipeline, HPSpeech was able to distin-
guish 8 popular silent speech commands to control a music player
with over 90% accuracy, even when the speakers were playing music
through the headphones during the entire study. Because HPSpeech
utilizes the built-in speakers of commodity headphones and only
needs a miniature microphone inside, it has a great potential to be
deployed on millions of headphones in the near future. For instance,
for devices with build-in microphones such as noise-cancelling
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headphones, it might be even possible to deploy HPSpeech with a
firmware update. We further discuss the challenges needed to be
addressed before it can be deployed at scale. The contributions of
the paper are:

e We are the first to demonstrate the feasibility to recognize
silent speech by detecting the TMJ movement using active
acoustic sensing.

e We propose a silent speech interface on commodity head-
phones that could be achieved with minimal or no hardware
modifications.

o We evaluated HPSpeech on multiple commodity headphones
with music playing through the headphones and demon-
strated consistent performance.

2 METHODS

While speaking, either with or without sound, the mandible (the
bone that forms the jaw) moves driven by facial muscles. Such
movement can be detected at any position on the mandible, in-
cluding the upper point - temporomandibular joint (TMJ) which
is close to the ear, as illustrated in Figure 1(a). HPSpeech employs
active acoustic sensing using the built-in speakers on commodity
headphones to sense its movements. Sound waves are emitted by
the speakers towards the ear and its surrounding areas, including
the TMJ. Movements at the TM]J causes deformations on the surface
of the skin, thus resulting in subtle changes in the sound traveling
paths. Such changes can be captured by microphones inside the
headphones and analyzed with methods such as echo profile analy-
sis [22]. With this method, different utterances appear as distinct
patterns on the echo profiles, as illustrated in Figure 1(c).

2.1 Data Processing and Deep Learning

HPSpeech utilizes active acoustic sensing as the sensing method,
following a similar scheme as EarIO [22]. Specifically, HPSpeech
employs 20-24kHz frequency-modulated continuous wave (FMCW)
signals. To simulate the case when the user is using the headphones
to play music, the inaudible signals are mixed into normal music and
played through the built-in headphone speakers simultaneously.

After collecting the echoes from the microphones, we perform
echo profile analysis following the scheme of EarIO [22] to obtain
the echo profiles as the representation of the TMJ movements.
Figure 1(c) presents sample echo profiles we collected for different
silent speech commands.

We then use a customized deep learning pipeline to infer silent
speech. The model contains a ResNet-18 backbone followed by a
fully-connected decoder with Cross-Entropy Loss. An Adam opti-
mizer is used with initial learning rate of 0.0002. The model was
trained for 100 epochs using a single NVIDIA RTX 2080 Ti GPU.
The batch size was set to 5. The data was collected first during the
study and then the evaluation was conducted offline.

2.2 Microphone Positions

In order to examine the impact of microphone position, we con-
ducted a pilot study with three researchers. We purchased a pair
of headphones from the Internet (Razer Kraken [11]), removed
the foam and then installed 8 microphones on the left side that
evenly cover the internal area, as illustrated in Figure 2(a), and then
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Figure 2: Headphones used and microphone positions tested.
Only showing the left side. (a) Razer Kraken. 8 microphones
positions were tested. (b) Bose QC 45. The installed micro-
phone was close to the built-in microphone. (c) Xtream G1.
It does not have built-in microphones inside.

installed the foam back. For the purpose of comparing different
microphone positions, we only used the left side as the mandible is
usually symmetric while speaking.

Following the same procedures as the main study, we evaluated
the performance of each microphone position. Results show that all
positions yielded very similar level of performance, ranging from
93.0% to 94.2%, which indicates that any microphone inside the
headphone could produce satisfactory results. This is especially
promising considering that commodity headphones with active
noise cancellation usually have multiple built-in microphone inside.

2.3 Hardware Implementation

We installed a miniature microphone inside the headphones on
each side, as illustrated in Figure 1(b). We then explored applying
HPSpeech on different sets of headphones. We tested two sets of
headphones during the study as illustrated in Figure 2(b-c): Bose
QC 45 [4], which is one of the most popular noise-cancelling head-
phones, and Adesso Xtream G1 [10], a pair of gaming headphones,
to further demonstrate that HPSpeech can be deployed on other
headphones to provide an SSL

As indicated in Section 2.2, any position would yield similar level
of performance. We placed the microphone close to the location of
the built-in microphone on the Bose QC 45 headphones, as illus-
trated in Figure 2(b). We chose this similar position to ensure that
adopting HPSpeech on commodity headphones is highly feasible.
We could not directly access the built-in microphone of Bose QC
45 due to lack of available APIs.

The built-in speakers and installed microphones were connected
to a Teensy 4.1 micro-controller, which controlled the transmission
and collection of sound waves. The data was first saved to an on-
board micro SD card and then analyzed offline.

3 EVALUATION

We evaluated HPSpeech with a user study of 18 participants in
total on two slightly modified commodity headphones approved by
Cornell’s institutional review board (IRB). For the first part, Bose
QC 45 [4] was used and 10 participants (1 male, 9 female, average
age 21.7, std 1.8) were recruited. For the second part, Adesso Xtream
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G1 [10] was used with 8 participants (2 male, 6 female, average age
27.0, std 9.5).

3.1 Commandset

To explore the practical use cases of HPSpeech, we are particularly
interested in examining how HPSpeech can be used to control music
playing through the headphones. We designed a set of 8 commands
for controlling the music player using silent speech: Previous,
Next, Pause, Resume, Stop, Volume up, Volume down, Play.
These 8 commands cover common needs such as switching songs,
controlling playback and pausing, as well as adjusting the volume.

3.2 Procedures

During the study, participants were instructed to silently utter the
commands. As people tend to speak with smaller mouth movements
when speaking silently, we instructed participants to speak with
exaggerated mouth movements. The level of exaggeration did not
cause visually “abnormal” speech behavior and is presented in the
accompanying video. The study was split into 21 sessions, each
lasting around 2 minutes. Participants were asked to utter each
command 8 times in random order in each session and remount the
device between sessions. To simulate real-world scenarios where
music is playing while the user attempts to utter silent commands
to control it, we selected 21 songs of different genres. During each
session, a random song was mixed with our inaudible signals and
played through the headphones. Active noise cancellation was not
turned on during the study. As suggested by [9] we set the sound
pressure level of our signal to less than 75dB.

After the data were collected, a researcher manually removed
utterances where participants made a mistake or did not finish the
command, which take up 0.86% of all utterances.

3.3 Results

We trained a user-dependent model for each participant. We treated
the first session as practice and used the remainder 20 sessions for
training/testing. We performed 10-fold cross-validation on these 20
sessions, using 18 sessions for training and 2 for testing each time.
We summarize the performance of all participants in Figure 3(a).
Results showed that the average accuracy with Bose QC 45 was
90.3%, std = 8.8%, with confusion matrix in Figure 3(d). Participant
P09 had the worst performance of 67.7%, while performances on
other participants were all over 85%. We examined the case of P09
and noticed that she did not move her mouth much during the study.
Specifically, the jaw movements were very small, thus making it
difficult to capture them with our system. We acknowledge that
this is a limitation of the system.

HPSpeech used both sides of the headphones. Due to issues such
as asymmetric head shape, head movements, etc., using both sides
provided significantly better performance. Using only data on one
side degraded the performance to around 83%.

The performance on Xtream G1 was more consistent, averaging
91.6% on 8 participants (std = 4.1%), as illustrated in Figure 3(b).
We performed a one-way ANOVA test on the results from the first
study and the second study. Results did not indicate significant
performance difference (F(1, 16) = 0.146, p = 0.71 > 0.05) between
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Figure 3: Evaluation results. (a) Performance on the 10 participants from the first study with Bose QC 45. (b) Performance on
the 8 participants from the second study with Xtream G1. (c) Performance curve when different amount of training data from

the same user is applied. (d) Confusion matrix.

the two headphones, indicating that HPSpeech can easily adapt to
different headphones.

3.4 Training Effort

We would like to understand the impact of training length from
each user in order to obtain satisfactory performance. We first
trained a leave-one-participant-out (LOPO) model for each user.
This was a user independent model, where new participants did
not need to provide any training data. The average performance of
this model was 46.9%, a lot better than random guess but far from
satisfactory. This indicates that HPSpeech is still a user-dependent
system. We then fine-tuned the LOPO model with different amounts
of data from the same user and generated a performance curve in
Figure 3(c). Results indicate that with only 4 sessions (8 minutes)
of training data from the same user, HPSpeech can already achieve
80.0% accuracy. We discuss possible ways to further reduce training
effort for deployment at scale in Section 4.

3.5 Comfort

After the study, we asked participants to rate the comfort level of
the device from 0 (most uncomfortable) to 5 (most comfortable).
The average comfort rating is 4.47 (std = 0.48), indicating that
HPSpeech is very comfortable to wear during the study. Participants
did mention that they could still hear some sounds in addition to
the music. To address this issue, it is possible to further reduce the
speaker power, or use sensing methods that do not involve sudden
frequency change to reduce or remove frequency leakage.

4 DISCUSSION

We designed HPSpeech with the hope that it can be quickly de-
ployed at scale. HPSpeech utilizes the existing speakers on the
headphones, which significantly reduces hardware modifications.
Theoretically, HPSpeech can also utilize the existing microphones
inside the headphones, which are widely available on commod-
ity noise-cancelling headphones. Unfortunately, we could not find
open APIs that grant access to these microphones.

The system needs to be readily available with minimal amount of
training effort from new users. In Section 3.4, we demonstrate that
HPSpeech can reach 80% accuracy with only 8 minutes of training
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data from new users. This effort can be further reduced. For instance,
EchoSpeech demonstrates that pre-training the model with other
people’s data can improve performance when the same amount of
fine-tuning data is applied [33]. With this approach, it is possible
to first collect a large amount of training data from other users and
pre-train a large base model to further reduce the training effort
from new users or eventually obtain a user-independent system.

Currently, HPSpeech needs to perform calculations offline. With
current technology, it is possible to deploy the data processing
pipelines on a smart phone, as demonstrated in EchoSpeech [33].
With advancement in embedded Al chips, it is even possible to
perform the calculations inside the headphones in the future.

Of course, there are still issues that remain to be addressed before
actually putting HPSpeech to deployment. For instance, due to lack
of access to the built-in microphones, we could not fully implement
the system on noise cancelling headphones. In addition, we did not
test HPSpeech with noise cancellation turned on. We experienced
strong interference between the noise cancellation and our system
in our initial trials. It might be caused by incompatible sampling
rate (HPSpeech uses 50kHz while common microphones usually use
44.1kHz or 48kHz) which causes the noise cancellation microphones
to sample false low-frequency components. We believe that the
noise cancellation system might need to be aware of our signal
for it to work properly. A direct integration with the headphones’
hardware is needed to thoroughly investigate and resolve this issue.

With 90% accuracy, it still means that HPSpeech makes 1 mistake
every about 10 utterances, which could lead to user dissatisfaction.
Further improving the performance could lead to better user ex-
periences. Other issues such as the slight audible noise mentioned
in Section 3.5 also needs to be addressed. In addition, one of the
fundamental limitation is that HPSpeech requires users to speak
with slightly exaggerated mouth movements in order to achieve
reliable performance. We leave these issues for future exploration.
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