Information and Software Technology 164 (2023) 107322

Contents lists available at ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Check for

Software design analysis and technical debt management based on design o
rule theory

Yuanfang Cai **, Rick Kazman "

a Department of Computer Science, Drexel University, United States of America
b Department of Information Technology Management, University of Hawaii, United States of America

ARTICLE INFO ABSTRACT

In this paper we reflect on our decade-long journey of creating, evolving, and evaluating a number of software
design concepts and technical debt management technologies. These include: a novel maintainability metric,
a new model for representing design information, a suite of design anti-patterns, and a formalized model of
design debt. All of these concepts are rooted in options theory, and they all share the objective of helping a
software project team quantify and visualize major design principles, and address the very real maintainability
challenges faced by their organizations in practice. The evolution of our research has been propelled by our
continuous interactions with industrial collaborators. For each concept, technology, and supporting tool, we
embarked on an ambitious program of empirical validation—in “the lab”, with industry partners, and with
open source projects. We reflect on the successes of this research and on areas where significant challenges
remain. In particular, we observe that improved software design education, both for students and professional
developers, is the prerequisite for our research and technology to be widely adopted. During this journey, we
also observed a number of gaps: between what we offer in research and what practitioners need, between
management and development, and between debt detection and debt reduction. Addressing these challenges
motivates our research moving forward.

Keywords:

Software architecture
Software design
Design debt
Automated analysis
Industrial case studies

1. Introduction and could be used to guide specific improvements in their software

design, saving costs and reducing risk in the long run.

In this paper we describe a journey down a long and winding
road. This journey was motivated by our attempts to help software
developers and managers understand the root causes of, the costs,
and the consequences of a pernicious form of technical debt, called
design debt. Along this road we created a series of theoretical and
technical innovations — theories and tools — to help identify, measure,
and (hopefully) fix design debt, based on Baldwin and Clark’s design
rule theory [1]. Different from technical debt smells and measures
defined at the code level [2], we focus on design structure problems
that are often the root causes of lower level problems manifested in
code [3,4]. Baldwin and Clark’s theory provides a foundation upon
which to analyze and quantify well-known design principles, making
these previously informal design principles operable. This journey was
propelled by a mix of empirical studies and action research, with
follow-up semi-structured interviews. Our goal was to provide con-
vincing, quantitative evidence to both developers and managers of the
projects we interacted with that their design debt was real, and that
it could be precisely measured and monitored. We wanted to convince
these projects that the information provided by our tools was actionable

* Corresponding author.
E-mail address: yuanfang.cai@drexel.edu (Y. Cai).

https://doi.org/10.1016/j.infsof.2023.107322

We also reflect on the remaining challenges in this research area,
which will direct our future journey, and these are considerable. In
particular, we have learned that the most fundamental obstacle to the
broad adoption of our research and the resulting technology is the
lack of widespread understanding of basic design concepts and design
principles. For this reason we make a call to action for the software
engineering community: to improve software design education for both
students and software practitioners.

The field of software design has produced important innovations
for the past five decades, reaching back to the foundational work of
Parnas and others [5]. The ideas of abstraction and information hiding
and their many manifestations — in the SOLID principles, in design
patterns, in frameworks and software architectures — have changed
how the software community thinks about, talks about, and envisions
software systems. However, while this journey has resulted in substan-
tial numbers of ideas, papers and reports, and while it has influenced
many designs in the real world, it has produced little in the way of
objective, repeatable, empirically-grounded tools for design and design

Received 16 November 2022; Received in revised form 22 August 2023; Accepted 24 August 2023

Available online 30 August 2023
0950-5849/© 2023 Elsevier B.V. All rights reserved.

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:yuanfang.cai@drexel.edu
https://doi.org/10.1016/j.infsof.2023.107322
https://doi.org/10.1016/j.infsof.2023.107322
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107322&domain=pdf

Y. Cai and R. Kazman

analysis. Design and design analysis are still, fifty years after Parnas’s
early publications, more of an art than a science. Good designers tend
to be old designers, the ones with decades of hard-won experience. For
this reason, there has been a gradual increase in technical debt and,
in particular, design debt, in the world-wide software community [6].
These problems are precisely what have driven our research and tool
development.

Over the past decade we have embarked on a journey of exploring,
evolving, and evaluating a series of innovative design concepts, tech-
nologies, and tools to manage software design and technical debt. We
were driven by a passion to understand the nature of complex software
designs, to visualize their structures, and to quantify their value. We
are fortunate in that shortly after the publication of each of our main
research innovations there were industrial practitioners who became
interested and initiated a collaboration. In our research journey we
proposed eight major new design concepts and technologies, evaluated
them by carrying out action research in more than a dozen companies.
Based on this experience we published five industrial case studies
with five different commercial organizations spanning manufacturing,
electronics, software services, healthcare, and other domains.

The new design concepts that we proposed build on top of one
another, based on the experiences and lessons learned from our ex-
tensive industrial collaborations. In other words, it is the continuous
evaluation of these ideas in “the lab”, working with industry partners,
and with open source projects, that has propelled their evolution. This
process also drove the development of our first research tool, Titan [7],
and its later evolution into DV8 [8]. Armed with these tools we were
able to explore their application to software design education. The
publications resulting from this line of research have accumulated
over 1,000 scholarly citations over the past decade. Upon reflection,
however, we realize that there is still a long way ahead for these
ideas and technologies to be widely adopted and to benefit software
development in practice.

Our research was motivated by Baldwin and Clark’s design rule
theory [1]. In our very first paper [9] we opened up the possibility of
using their theory to visualize design structure, to interpret Parnas’s
research on information hiding in design [5], and quantify the eco-
nomic value of information hiding. To bring this theory to practice, we
first proposed the Design Rule Hierarchy (DRH)—a way of clustering a
design structure to manifest the key design decisions of independent
modules and design rules. After that, we merged information extracted
from design structure and revision history, and published a new way
to detect an important architectural flaw, which we called Modularity
Violation. Soon after this idea was published in 2011, we worked with
a real-world industrial partner to determine the consequences of this
flaw in their projects. This set the tone for much of the research that
we have pursued since, as we will show. We developed a new options-
theory based metric, Decoupling Level (DL) [10], a new design model,
called design rule space [3,11], a suite of design anti-patterns (which we
also referred to as architecture flaws and hotspot patterns) [12,13], and
the tooling to automatically detect them. We developed a number of
technologies to determine the overall design complexity of a code base,
to detect the technical debt caused by problematic design structures,
and to guide project leaders in their decision-making surrounding
design debt. We explored various ways to visualize this information,
and to report on our results, all the while hoping to “close the gap”
between developers and management.

This gap has been one of our significant challenges. Typically a
developer knows, or at least feels, when their project’s design is degrad-
ing, when there is enormous and ever-growing technical debt, when
their productivity is dropping. But most developers have a problem
determining exactly how and why this is happening, and have even
less insight into how to fix it. So it is nearly impossible for them to
make the business case with management that the code base should be
thoroughly analyzed and refactored. The developers do not have the
necessary data and cannot provide convincing evidence that, should

Information and Software Technology 164 (2023) 107322

they be allowed to refactor, things will improve. For this reasons,
most projects plod along, growing increasingly debt-laden. And nothing
changes, so nothing improves. Our technologies, especially the return-
on-investment calculation [14], help address and alleviate this conflict
to some extent, but major challenges remain.

2. Related work

Our work has been motivated by the gaps we observed between
software research and practice on technical debt detection and man-
agement. As we will elaborate, we have come to believe that the
only way to fundamentally change the culture surrounding design and
architecture debt is through improved software design education.

2.1. What is offered vs. what is needed

In parallel to our journey of identifying and managing design
debt, various definitions and detection techniques of code smells [2,
15-18,18,19,19,20], design smells [21,22,22-24], and architecture
smells [25-27] have been proposed to identify suboptimal structures
or relations that may lead to technical debt. Fowler [28]’s definition
of “code smells”, e.g., god class, spaghetti code, code clones and
feature envy have been very influential. Garcia et al. [29] proposed
a suite of architecture smells based on the concept of components and
connectors. Fontana et al. [26,27] also defined a set of architecture
smells, such as hublike structure and cyclical components. Commercial
and research tools such as SonarQube [30], Designite [31], Struc-
turel101 [32], Lattix [33], and Arcan [34] are available to detect some
smells and anti-patterns. Although most of these definitions are also
based on the violation of design principles, their definitions are all
different, and so are the symptoms that they can detect [35].

Similar to our work, researchers have evaluated these code smells
and architecture smells using both open source and industrial projects.
For example, Palomba et al. [36] investigated the co-occurrence of
code smells in 395 releases of 30 open source Java systems. Jo-
hannes et al. [37] studied code smells in 15 applications. Prevalence of
smells in specific contexts or domains, such as code smells in Android
code [38], in SQL code [39], and in machine learning code [40] have
also been reported. Researchers also conducted various industrial stud-
ies to test the applicability’s of these definitions and associated tools.
Several books [41], [42] have introduced techniques for analyzing and
managing technical debt. Ernst et al. [43] surveyed 1,831 software
engineers and architects, and revealed that architectural decisions are
the major source of technical debt. Sas et al. [44] recently investigated
the evolution and impact of architecture smells in an industrial project.
Martini et al. [45] reported the relation between architecture smells
and architectural-level technical debt (ATD) with an industrial part-
ner. Arcelli et al. [46] reported a similar study, but with a different
industrial partner and more types of architecture smells.

The problem is, how to determine which of these symptoms are real
technical debt? All the companies we collaborated with have adopted
one or two of these tools to assess the quality of their source code,
which often report a large number of problematic instances, making
it hard to determine which ones are most important and worth fixing,
and developers [47] tends to ignore the reported issues. Even though
most of these symptoms are real problems, it is usually not feasible to
fix all of them. Multiple studies claim that architectural issues are the
major source of technical debt [3,43,48], but it is still not clear fixing
which high-level problems will have the greatest return on investment.
These problems were all raised during our collaboration with industrial
partners, when we realize how deep the gap is between software design
research and practice.

Another prominent example of this gap is software metrics, which
have been studied for decades in our research community. McCabe
Cyclomatic complexity [49] and Halstead metrics [50] are the most
well-known ones to measure program complexity. C&K metrics [51], LK

Y. Cai and R. Kazman

Metrics [52], and MOOD Metrics [53] are also widely studied to mea-
sure object-oriented programs. In the software research community,
these metrics are often used for bug prediction and localization [54-
571, while our industrial collaborators are searching for metrics that
can accurately monitor architecture decay, compare different projects
and guide architecture improvement.

Our observation is that developers are often well aware of the
existence and location of their problems. Once we received a comment
“We do not need a tool to tell us these classes are error-prone, we fix them
every day!” The real difficulty is to determine the scope and severity
the problems, and convince both development and management that
the problem is worth fixing. Our research in the past decade has
been driven by the need to bridge this gap. Our fundamental idea
is to integrate revision history into design debt detection [11,12,58],
quantify the maintenance costs of each anti-pattern [13], design a
metric suitable for comparison and monitoring [10,59], and enable
quantitative return-on-investment (ROI) analysis [60].

2.2. Tools and metrics do not remove design debt

After our industrial collaborators adopted our tools and identified
design debt, we were often asked “How to fix these problems?”” Conver-
sations like this have tended to cover general software design topics,
such as design principles [5,61] and design patterns [62], and it is
clear that current software design education is inadequate, as many
software engineering educators have noted already [63-67]. Even when
development teams decided to refactor and remove the detected design
debt, it was challenging to assess whether the refactoring strategy was
appropriate. And it was also challenging to determine if this refactoring
was successful. Removing design debt effectively, just like creating a
good design, requires highly qualified designers, and they can only be
raised through proper software design education.

Currently, software design education may include teaching object-
oriented design, model-based design methodologies, design patterns,
design principles, and use-case analysis [68-73]. However, as Hu has
pointed out [63], there are no widely accepted learning materials or
pedagogy for software design. It is challenging to teach most of these
abstract concepts and principles. Students who do not have experience
with the challenges of maintaining a large-scale system are unlikely to
fully internalize the benefits of patterns, or the importance of making
a software system better modularized.

We have also been teaching software design and architecture courses
for decades, and we realize that there is no broadly accepted, effective
way for us to visualize or quantitatively assess: what a good design
should look like, whether and to what extent proper design principles
are followed, or which design patterns should be applied to address the
identified anti-patterns. Over the past decade we have been trying to
leverage our research results and tools to answer these questions, and
to improve software design education.

3. On the path of software design and technical debt research

Upon reflection, our research in the past decade follows the process
as depicted in Fig. 1. The first step is to identify common problems
in existing software design research and practice. Second, we derive a
suite of new concepts and metrics, based on Baldwin and Clark’s option
theory [1], to address these problems. The third step is the creation
of supporting tools so that we can evaluate these new concepts and
technologies at scale using open source projects. After that, we conduct
industrial collaborators and collect feedback from practitioners, which
helps to validate our hypotheses and which helps to create still more
new concepts and tools. In this process, we have published a number of
research papers, tool papers, industrial experience papers, as indicated
in Fig. 2.

Information and Software Technology 164 (2023) 107322

- ~
/ \

/ Step 2: New \
Concept
Development

Step 3: \
[Supporting \

\
(Step 1: Problem | Tool |
Identification I Development /

/Step 4: Industrlal\\
Case Study & |

Feedback
\ Collection
N P

=~ -

Fig. 1. Research design process.

3.1. Problem identification

As a community of research and practice, our understanding of
and ability to manage software design is still immature. Starting from
Parnas’s seminal paper on Information Hiding [5], software engineering
pioneers have proposed a number of key concepts to help reason about
software design. The most influential ones include the SOLID design
principles [61] and design patterns [62]. Although design principles
and patterns are widely recognized, their application mostly depends
on the experiences of individual designers and programmers. Designers
still cannot say, with confidence, if their designs are applied properly,
nor can they quantify the benefits of their design decisions. To visual-
ize and reason about software design, numerous research approaches
have been proposed to support software modeling, such as the unified
modeling language (UML) [74,75] and various architecture descrip-
tion languages (ADLs) [76-78]. In practice however, almost none of
these modeling approaches are regularly applied in real-world software
projects [79-81].

In part this is because it is difficult for practitioners to make the
link between design principles, patterns, modeling techniques and their
actual code. So these concepts remain abstract and disconnected from
the concerns of everyday programmers. There has been much work on
pattern detection [82-86] and architecture recovery [87-90], which
you might think would bridge this gap. But the accuracy of these
approaches is insufficient to make them practical, usable, and cost-
effective [91]. As a result, given all these advances in software design
research, it is still difficult for developers to assess their designs in a
disciplined way. It is difficult enough to visualize the design structure
of a pattern embedded in a complex code base, or the overall system,
let along quantitatively and objectively assess design quality.

Sullivan et al. [9] first introduced Baldwin and Clark’s [1] design
rule theory into software design modeling and quantitative assessment.
This was the first paper that used the design structure matrix (DSM) as
a way to visualize software designs. It also leveraged options theory
to quantity the value of information hiding. They quantified the two
designs described in Parnas’s seminal paper [5], showing that the
information hiding design offered much higher option values. The basic
insight was that the higher the technical potential of a module, the
higher its option value. Here technical potential denotes the likelihood
that a module can be changed and improved to increase its value.
For example, a module might be changed to provide better, faster, or
more robust functions. If a module never needs to be changed, it will
have low technical potential. Thus, the more independent high technical
potential modules there are, the higher the value of the overall system.

This research showed that the key step to creating truly independent
modules is to create abstract and high-quality design rules, e.g., critical
architecture decisions. Design rules in software are typically manifested

Y. Cai and R. Kazman

Titan

Tools % i

|
Hotspot

Design Rule Design Rule Space Pattern

Hierarchy [ASE 2009]

Modularity Violation
[ICSE 2011]

Lr" Lr \,T(\T(

Design concepts:

Design concepts 2009 2011 2013 2014 2015
l l

Industrial Case Studies: Siemens SoftServe

[ICSE SEIP 2013]

[ICSE 2014] [WICSA 2015]

[ICSE SEIP 2015]

Information and Software Technology 164 (2023) 107322

Dv8

R

Decoupling Architecture Feature

Level Debt Decoupling Level Active Hotspot
[ICSE 2016] [ICSE 2016] [IcPC 2018) [ASE 2019]
) 9) 1 =
T T I T
2016 2018 2019 2021
I ! !
ABB Huawei BrightSquid TD Tool Comparison

[ASE 2018] [ECSA 2018] [ICSE SEIP 2019] [ICSE SEIP 2021]

Fig. 2. Publication timeline of major concepts, associated tools, and case studies.

as important abstractions, such as the key interfaces in design pat-
terns, that decouple the other parts of the design. For example, the
Observer interface in an observer pattern decouples a subject from
its concrete observers; the Abstract Factory interface decouples clients
from concrete factories. The importance of these design rules, as well
as their decoupling effects, can be visualized in a DSM model [1,3,9].
Using this representation many well known but previously informal
design principles, such as information hiding [5,9] and the SOLID
principles [2,12,13,61,92,93] can be visualized and quantified. This
combination of options theory and the DSM modeling opened up new
possibilities for modeling and assessing software designs with respect
to these design principles, and formed the foundation for our research
over the next decade.

Sullivan et al.’s paper [9] has, at the time of writing, had an impact,
at least on the academic community: it has been cited numerous times.
But bringing this theory to practice has posed significant challenges. For
example, how do we assess if a module has technical potential, and how
to measure such potential? And a more fundamental problem is, how
do we define a “module”? In his seminal paper [5], Parnas proposed
that “Each task forms a separate, distinct program module.”. In other
words, a module should be an independent task assignment. But how
is an independent task assignment manifested in a complex code base?
Answering these questions is the first step transforming this theory into
something that can be operationalized in real-world software practice.

Starting in 2011, and over the subsequent decade, we proposed a
number of concepts, supported by research tools, to advance our ability
to both visually and quantitatively assess software designs. Some of the
major milestones on this journey are highlighted in Fig. 2. Shortly after
each of the proposed concepts was published, one or more industrial
collaborators observed its potential value and contacted us. Working
with them, we were able to conduct industrial case studies to apply
these concepts in practice, and to publish our experiences.

During this process, and motivated by these conversations and these
results, our insights deepened and our initial research prototype tool,
Titan, was evolved into an industrial grade tool called DV8, with the
support of our collaborators. Next we briefly introduce each of the
fundamental concepts underlying our analysis approach. As we discuss
the concepts we will also present the associated industrial case studies,
and the tool capabilities we developed along the way.

3.2. New concepts in software design

Over the past decade we have proposed a number of new design
concepts with the objective of visualizing and quantitatively assessing
software design. These concepts were based on Baldwin and Clark’s
design rule theory and were modeled using design structure matrices.

Design Rule Hierarchy. In 2009 we proposed a concept that we called
the Design Rule Hierarchy (DRH) [94] to explore one of our early
fundamental questions, how to define true modules. In this hierarchy the
most influential design decisions — design rules such as key abstractions

— are clustered within the top layer of the hierarchy and are supposed
to be kept stable. The elements within subsequent layers depend on
design decisions in higher layers, and the elements within each layer
are clustered into mutually independent modules. The modules in the
bottom layer of a design rule hierarchy are true modules because they
can be changed, added, or removed without impacting the rest of the
system.

Fig. 3 illustrates the concept of a design rule hierarchy. In this
example we show a DSM reverse-engineered from the source code
implementing the Maze Game from Gamma et al.’s canonical design
pattern book [62]. This design applies the abstract factory pattern
so that the two concrete factories, red factory with RedWall.java,
Red Room.java, and Red M azeF actory.java and blue factory with
GreenRoom.java, BrownDoor.java, BlueW all.java, and
BlueM azeFactory.java, can be configured and switched at run-time.
This DSM is clustered using our DRH algorithm, which splits the 16
source files into two layers. The first layer contains seven files that are
most influential, including key abstractions such as MapSite.java, and
the key interface of the abstract factory pattern MazeFatory.java. The
bottom layer contains three true modules decoupled by the design rule
files in the first layer, including the two concrete factory modules, and
the main control module. Our study [94] also demonstrated that devel-
opers working on the same DRH module have more communications
than developers working on mutually independent modules, indicating
that a DRH module is likely to represent an independent task assignment.

Modularity Violation. Given that we have identified a set of modules
clustered into a DRH structure, we still have to the answer the following
the question: why does it matter? Can the definition of modules and
the DRH structure help with design quality assessment and, if so,
how? In 2011, we explored the relation between DRH modules and
file error-proneness and change-proneness. In our publication titled
“Detecting software modularity violations” [58], we reported that files
that belong to different DRH modules, but which changed together
frequently, are more error-prone and change-prone. We called this
phenomenon a modularity violation, as illustrated in Fig. 4. The DSM in
Fig. 4(a) only displays syntactical dependencies among these nine files,
showing that both ProducerImpl.java and ConsumerImpl.java depend
on PulsarApi.java. The other seven files are independent from each
other and from these three files. Their co-change history, as depicted
in Fig. 4(b), however, revealed that these files changed together fre-
quently. For example, in row 9, column 8 of Fig. 4(b), “(0,22)” means
that these two files have no structural dependencies, but were changed
together 22 times, indicating that there are strong implicit assumptions
coupling these files (Fig. 4(b)).

Design Rule Space. During this process we also applied these emerging
ideas, supported by the Titan tool [7] developed by our PhD students,
to the teaching of design patterns. In particular, we observed that
each implemented design pattern actually forms a design rule hierarchy
led by a few key interfaces. If we consider each key interface as a
design rule, its DRH, generated automatically by Titan, could identify

Y. Cai and R. Kazman

Information and Software Technology 164 (2023) 107322

112 |3|4[5[6[7 (8|9 [10[{11[12(13[14]|15]16
maze/MapSite.java - 1
maze/Room.java - 2 | 10
maze/Direction.java - 3
maze/Wall.java-4 | 1 Level O
maze/Maze.java - 5 9
maze/Door.java-6| 3 13
maze/MazeFactory.java - 7 5 3 (3|3 |px Level 1
maze/RedWall.java - 8 1
maze/RedRoom.java - 9 2 M1
maze/RedMazeFactory.java - 10 1 1 112 | 2 [Eo
maze/GreenRoom.java - 11 2
maze/BrownDoor java - 12 2 2
maze/BlueWall.java - 13 1 M2
maze/BlueMazeFactory java - 14 3 1 111 2 | 2 | 2 [Ee
maze/MazeFactoryLoader java - 15 3 15
maze/MazeGameMainjava-16 2 17 19 1 16 5 24 M3 4 16
Fig. 3. Abstract factory pattern in Design Rule Hierarchy (DRH).
: 1(2[3|a|5|6|7[8]69
PerformanceProducer.java-1 1
PulsarApi.java - 2 2
PerformanceConsumer.java - 3 3
LoadSimulationClient java - 4 4
PerformanceClient.java - 5 5
BrokerService.java - 6 6
PerformanceReader.java - 7 7
Producerimpl.java - 8 37 8
Consumerimpl.java - 9 - 9
w
(a) Structurally Independent Modules
; - = sz . - - % - .
PerformanceProducer.java - 1 1 0,3 R 0,2 0,2 0,3 0,4 0,4 0,2
PulsarApijava-2 0,3 2 0,4 0,3
PerformanceConsumer.java -3 10,9 | 0.4 3 0,2 | 0,2 | 0,2 [NEEEEN 0,2 NG
LoadSimulationClient.java -4 0,2 0,2 a 0,1 0,1 0,2
PerformanceClient.java -5 0,2 0,2 0,1 5 0,2
BrokerService.java-6 0,3 0,3 0.2 0,1 6 0,1 0,2 0,1
‘ PerformanceReader.java -7 | 0,4 0,4 0,2 0,2 0,1 Z
Producerimpl.java -8 & 0,4 0,2 0.2 8 -
Consumerimpl.java-9 0,2 0,4 0,1 - 9

(b) Frequent Co-changes among Modules

Fig. 4. Modularity violation: modules appear to isolated but change frequently together.

the participants of the pattern and their relationships [92,93]. We
further tested this idea by analyzing the source code of several open
source projects, and we observed that in all of these projects, there
are typically just a few key interfaces, each leading a specific design
space reflecting one aspect of the design. We thus proposed the idea of
a Design Rule Space (DRSpace) [3], and that a complex software design
could be understood as multiple, overlapping design spaces, each of
which can be modeled as a DRSpace.

We also explored the correlation between DRSpaces and error-
proneness and change-proneness in source files. This study revealed
several interesting results that we published in ICSE 2014 [3], and later
extended into a journal paper [4] published in IEEE Transactions on

Software Engineering. In particular, this study revealed that most error-
prone files in a project can be captured by just a few DRSpaces. Seen
another way, it appeared that the more error-prone and change-prone
a set of files were, the more likely it was that they were architecturally
connected. Another interesting result was that if an influential design
rule is error-prone or change-prone, most of the files within its DRSpace
are also error-prone and change-prone. Thus DRSpaces could provide
some useful insights into software design quality.

Architectural Anti-patterns/Hotspot Patterns. Based on these obser-
vations on the relation between DRSpace, modularity violations, and
file error-prone and change-proneness, we defined and evaluated a

Y. Cai and R. Kazman

Information and Software Technology 164 (2023) 107322

: T 2 3) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
‘ ManagedLedger.java - 1 1 0,2 0,3 0,2 0,2 0,3 18,2 | 5,2 0,2 6,3 0,2 0,2
‘ ManagedLedgerFactorylmpl.java - 2§ ¢ 4 0.8 0,2 | 0.5 | 22 | 0,3 | 0,3 27,8 | 25,3 0,2 0,1 0,1 | 0,1
ManagedLedgerTest java - 3 §275,3§137,3 3 19,9 0,1 02 06 20,5 0,4 0,5 0,2 282,20 58,0 6,1 240,0 0,3 0,1 0,1
ManagedCursorimpl.java - 4 0,8 a 0,2 | 0,9 | 0,4 | 0,8 0,1 [219,28/111,3| 0,1 14,14 0,2 |0,13 | 0,3
Readerimpl.java - 5§ 0,1 5 0,3 0,4 0.3 0,3 0,4 0,3 14,12 0,4
NonPersistentTopic.java - 6§ « 0,2 | 0,2 |02 (03 6 13,12 0,1 0,8 0,42 425 04 7,9 MK 05°2 SIF 001 68 0.0 B0 1 5711 0
BrokerService java - 7 0,5 | 0,6 | 0,9 6,12 7 0,3 12,37 27,21 39,9 | 0,10 | 3,0 | 0,3 0,2 (ehyah | | (1K
OpAddEntry.java - 8 0,4 0,1 0,3 8 0,1 0,1 28,10 13,0 0,1 0,1 0,1
ServiceConfiguration.java - 9 0,3 | 0,4 | 0,8 0,8 0,1 9 0,17 | 0,8 | 0,9 0,5 0,2 0, 10]-0;2 ||to;18
PersistentTopic.java - 10 64 0,3 0,5 18,5 0.4 0,42 38,21 0,1 0,17 10 14,26 26,12 24,0 17,10 0,5 16,4 0,9 0,4 822
Topic.java - 11 0,2 0,1 0,3 0.8 11 0,3 7,10 | 0,2 0,1 0,7 0,1 1,16
'\ ManagedLedgerimpl java - 12 9,8 32,28 0,3 04 0,10 39,10 0,9 0,3 | 12 (90,4 (11,2 | 0,5 | 34,8 0,4 0,5
‘ AsyncCallbacks java - 13 13 151
] PulsarApi.java - 14 0,1 0,4 0,3 0,5 14 0,1
1 TopicReaderTest java - 15 ¢ 13,4 | 0,2 156 0.5 0,2 0,5 0,1 15 4,6 0,3
‘ ManagedCursor.java - 16 0,2 0, 218|052 W0, 188D, 2 0,1 21,1 16
,‘ PersistentTopicTest java - 17 6 L1 0,3 5,1 0,3 0,16 185 38,4 180,22 2,10 7,3 81,0 289, 12 42,0 17 0,8 5,13
| Consumerimpl.java - 18 0; LRI 0N IS 0;:2 0,8 |01 0101|089 |07]|024 146, 20 0,8 18 0,17
‘ ManagedCursorContainerTest java - 19 0,1 0,13 0,1 0,2 0,2 0,4 0,1 0;51"22;'1 32,13 19
‘ ServerCnx.java - 20§ 0.2 0,1 0,1 0,3 0,4 43,12 0,1 0,18 4,22 20,16 4,4 3,0 376,33 0,3 0,17 20

Fig. 5. Unstable interface: influential files that often change with its dependents.

Managed Ledger.java is an unstable interface because 10 other files syntactically depend on it, and it changed frequently with most of the other 19 files in this cluster.

number of design flaws that we called anti-patterns [12]. Each of these
anti-patterns represents a problematic design structure that violates
one or more design principles and leads to high maintenance costs.
Later we further generalized these structures as six types of architecture
anti-patterns[13]:

Unstable interface: influential files that changed often with its
dependents, as illustrated in Fig. 5.

Crossing: files with high fan-in and high fan-out but changed with
all relatives frequently, as illustrated in Fig. 6.

Modularity violation: modules that appear to be isolated but
changed together frequently, as illustrated in Fig. 4.

Clique: files that form strongly connected component.

Package cycle: cyclically dependent folder pairs.

Unhealthy Inheritance: parent class depends on subclasses, or the
client of the hierarchy uses both the parent and the children,
detecting the violation of Liskov Substitution Principle [61].

The first three anti-patterns are defined based on both structural
dependencies among files and their co-change history. We have ana-
lyzed dozens of open source and industrial projects, and demonstrated
that files involved in these anti-patterns are much more error-prone
and change-prone than other files. These anti-patterns also provide
clues on what type of refactoring is needed. For example, to remove
a modularity violation, the designer should identify what caused the
co-changes, e.g., cloned code or implicit assumptions, and remove these
symptoms by modularizing them using more efficient abstractions.

(Compound) Architecture Debt. Anti-patterns and high-
maintenance file structures are naturally connected with the concept
of technical debt [95]: a problematic design structure that keeps
generating extra maintenance costs is a natural analogy of a “debt”.
Accordingly, we further defined a special type of technical debt, which
we called Architectural Technical Debt (ATD), referring to sub-optimal
architectural design decisions in a software system that incur high
maintenance costs—‘‘interest’—over time. To measure such debts, we
formally defined them, and demonstrated how to automatically identify
and quantify them using a novel history coupling probability ma-
trix [96]. In our follow up research, we further aggregated compound
ATDs to capture the complicated relationships among multiple ATD
instances. The point of this was that these compound ATDs should be

the focus of a project’s analysis, if they are seeking effective refactoring
solutions [11].

Decoupling Level. Starting in 2011, we have been collaborating with
a number of corporations who were interested in these technologies.
During our collaboration, the most frequently asked question was: “Is
there a way to measure the design quality of our product?” At this point,
we introduced to our collaborators the numerous software metrics [49,
52,53,97-99] published in our community in the past few decades.
However, in doing so we realized that despite decades of research on
software metrics, we still cannot reliably measure if one design is “more
maintainable” than another. Software managers and architects need
to understand whether their software architecture is “good enough”,
whether it is decaying over time and, if so, by how much. To address
these challenges, we contributed a new architecture maintainability
metric—Decoupling Level (DL) [10]—based on Baldwin and Clark’s
option theory and our own design rule hierarchy clustering. Instead of
measuring how coupled an architecture is, we measure how well the
software can be decoupled into small and independently replaceable
modules. We measured the DL for 108 open source projects and 21
industrial projects, each of which had multiple releases. Our main result
showed that the higher the DL score, the better the architecture. By
“better” we mean: the more likely bugs and changes can be localized
and separated, and the more likely that developers can make changes
independently. The DL metric also opened up the possibility of quanti-
fying canonical design principles of single responsibility and separation
of concerns, aiding cross-project comparisons and architecture decay
monitoring, and establishing design quality benchmarks.

Feature Decoupling Level.

The DL metric itself still could not assess if and to what extent an
architecture is “good enough” to support feature addition and evolution
— one of the most valuable properties of a design — or to determine
if a refactoring effort is successful, such that features can be added
more easily. We thus contributed a concept called the feature space,
and a formal definition of feature dependency, derived from a software
project’s revision history. We captured the dependency relations among
the features of a system in a feature dependency structure matrix (FDSM),
using features as first-class design elements. We also proposed a Feature
Decoupling Level (FDL) metric that could be used to measure the level
of independence among features. Our investigation of 17 open source

Y. Cai and R. Kazman

Information and Software Technology 164 (2023) 107322

{ 1 2 3 4 5 6 7 s ol 11 12 13 14 15 16 17
Consumerimpl java - 1 i 0.2 146,20 63,5 0,22 31,3 0.3 0.1 0,1 0.17 10
ClientConfigurationData.java-2 0,2 2 0,3 0,2 0,2
PulsarApi.java - 3 g 0,2 0,1 0,1
PulsarClientException java - 4 0,2 4 0,1 0,1
TransactionMetaStoreHandler java - 5 40,1 4,0 5 9,1 30,2 0,2
Producerimpljava-6 0,22 0,3 37,15 59,3 6 26,5 0,3 [fso0 0,1 0,3 0,12
Commands.java - 7 1259,11 0,1 1 0,1
BinaryProtoLookupService java-8 0,3 0,2 13,4 73l 0,3 9,0 8 4,3 0,2 0,1 0,4 0,1
ClientCnx java F 9 I
ProxyClientCnx.java - 10 0,1 2,0 3,0 9,4 10 0,1 0,1 0,1
ConnectionPooljava-11 0,1 3,1 0,1 7.0 0,1 0,1 SR 0,2
RawReaderimpl.java - 12 14,17 0,2 12,7 0,1 0,3 3,2 0.2 12 4
BrokerClientintegrationTest java - 13 18,3 0,1 3,0 37,3 13 0,1 0,1 0,1
ProxyTest java - 14 5,0 5,2 0,1 0,1 4,3 0,1 4,1 0,1 14 0,3 0,4
ServerCnx.java-15 0,17 376,33| 2,2 0,2 | 012 1759 0.4 0,1 0,2 0.4 0,1 0,3 15 0,3
ClientCnxTest java - 16 7,0 5,0 3,0 0,1 16
ProxyConnection.java-17 0,1 10,0 41,2 5,0 13,0 0,1 6,4 3,3 2,4 0,4 0,3 17
e

Fig. 6. Crossing: files with high fan-in and high fan-out but change with all relatives frequently.

projects showed that files within each feature space are much more
likely to be changed together [59].

Active Hotspot. At this point, the concepts of design flaws, architec-
tural anti-patterns, and architecture debt had been adopted by several
of our industrial collaborators. However, a large scale software system
typically has dozens of anti-pattern or debt instances, and many of
them overlap with each other since one file can participate in mul-
tiple relationships with other files and hence multiple anti-patterns.
It takes time to pinpoint the exact patterns and files that need to be
refactored and to prioritize refactoring activities. Moreover, certain
anti-patterns, such as unstable interface and crossing, cannot be confi-
dently identified until both co-change and dependency count thresholds
are reached, which takes time. Severe software degradation does not
happen overnight, and it is often too late by the time an anti-pattern
is detected. Software evolves continuously through maintenance tasks
— primarily fixing bugs and adding new features — and architecture
flaws emerge quietly and largely unnoticed until they grow in scope
and significance. At some point the system becomes a challenge to
maintain. Developers are largely unaware of these flaws and their
impacts go unnoticed. To detect these flaws early, we proposed a
concept called Active Hospot [100], files that are changed frequently to
address different issues in a given time range. Using active hotspots, we
can monitor software evolution by tracking the interactions among files
revised to address issues and so we can identify problematic structures
earlier. Our study revealed that there exist just a few dominating active
hotspots per project at any given time. Moreover, these dominating
active hotspots persist over long time periods, and thus deserve special
attention by project personnel.

3.3. Supporting tools

A number of tools have been created that purport to measure
and analyze design complexity. Some of these are commercial tools
and others are academic. In this section we will first describe the
capabilities of our tools DV8 and Titan, as well as their differences.
Then we will discuss how these tools compare to other state-of-the-art
tools for design analysis.

To calculate DL scores, detect anti-patterns, visualize design struc-
tures and anti-patterns, and to be able to conduct large scale analyses,
interventions and evaluations, we created two tools over the past
decade: Titan [7] and DV8 [8]. The creation of these tools greatly
aided our research journey as they enabled automated analyses of
ever-increasing scale.

Titan Tool. Titan was created by Dr. Cai’s Ph.D. students as a re-
search prototype, to support DSM modeling, basic DSM manipulation
operations, DRH clustering, DRSpace extraction, DL calculation, and

modularity violation detection. Different from other DSM-based tools,
such as Lattix [33], Titan separates a DSM into two types of data
models: a dependency matrix and a clustering. Thus, a user could
view their source code using different clustering methods. Titan also
accepts dependency structures extracted from source code and history
co-change information extracted from a project’s revision history. As
the need to support new concepts and new features grew, as well as
the increased number of users we wanted to support, and the ever-
increasing scale of systems we wished to analyze, the limitations of
Titan, in terms of scalability, extensibility, and usability, became more
prominent.

DV8 Tool. Thanks to the support of our industrial collaborators, we
created a new industrial-grade tool, called DV8 [8]. Based on, and
evolved from Titan, DV8 supports anti-pattern detection, active hotspot
detection, and return on investment analysis. It makes it easy to navi-
gate between dependencies in a DSM to the source code from which
the DSM was created. DV8 also includes an important new feature,
we thought, for communicating with project leaders: the creation of
a design debt report that named and quantified the most serious
design debts. DV8 also provides better support for the user to analyze
different types of dependencies separately, and to configure project-
specific thresholds needed to detect anti-patterns. For each detected
anti-pattern and hotpot, DV8 exports a detailed spreadsheet with their
maintenance costs, as calculated from the project’s revision history.

Technical debt tool comparison. We consider DV8 to be a technical
debt detection tool, based on our definition of design debt. In fact,
many technical debt analysis tools have been developed in recent
years — both research tools and industrial products — such as Structure
101 [32], Designite [31], and SonarQube [30]. Each of these tools
purports to identify problematic files, and each tool does this using
their own definitions and measures. To understand the extent to which
these tools agree with each other we conducted an empirical study
analyzing 10 projects using multiple tools, including DV8, Structure
101 [32], Designite [31], SonarQube [30], Archinaut [101], and Suc-
cinct Code Counter (SCC) [102]. We wanted to see if the top-ranked
most problematic files reported by these tools were largely consistent.
Our results [35] showed that: (1) these tools report very different
results even for the simplest and most common measures, such as file
size in lines of code, code complexity, file cycles, and package cycles.
(2) These tools also differ dramatically in terms of the set of prob-
lematic files they identify, since each implements its own definitions
of being “problematic”. Our study also revealed that the code-based
measures these tools offered, other than file size and complexity, do
not even moderately correlate with a file’s change-proneness or error-
proneness. These tools, in the end, provided no more insight than
“big files are bad”, and you do not need an expensive tool to tell

Y. Cai and R. Kazman

Step 1: Data Collection

Code dependency, history,

issue records

Step 2: Automated Analysis

Measurement, flaw detection,

cost calculation

Information and Software Technology 164 (2023) 107322

Step 3: Collect Feedback

Surveys and Interviews

with practitioners

Fig. 7. Research interaction steps.

you that. In contrast, co-change-related measures, such as those DV8
offers, performed better. These measures were positively correlated
with productivity measures such as bugs, changes, and churn. This
study highlighted the need for the community to create benchmarks
and data sets to assess the accuracy of software analysis tools in terms
of commonly used measures.

Different from other tools, like Designite, that are also based on
design concepts and principles (such as no cycles among packages) DV8
and Titan integrate co-change history with syntactical dependency re-
lations, making it more accurate in identifying debts that have already
incurred maintenance penalties. Unlike other tool-supported metrics,
such as cyclomatic complexity, the Decoupling Level metric supported
by DV8 is independent of project size [10]. Another popular tool that
is superficially similar to DV8 is CodeScene [103], which provides
visualizations of the most active code, and identifies hotspots based
on revision history only. By contrast, DV8 combines structure and co-
change information, and detect anti-patterns based on the violation of
design principles.

3.4. Industrial case studies

The development and evolution of these concepts and tools are the
results of our continuous interaction with our industrial collaborators.
We are lucky that, after we presented each of these concepts in con-
ferences, we were contacted each time by industrial practitioners to
initiate collaborative projects. New ideas and concepts grew out of
these practices, often motivated by the limitations of prior technologies.
We have now conducted dozens of analyses of real-world systems over
the years, interacting with over 10 commercial organizations.

The process we engaged in with our industrial collaborators in-
volved three major steps, as shown in Fig. 7. In Step 1 we gained
access to the project’s artifacts — typically code, commits, and issues
— and used those to determine the project’s architecture flaws in Step
2. We then created a report highlighting the set of architectural flaws,
accompanied by data showing the impact of each flaw in terms of
the bugs, changes, and churn that had accumulated around the files
participating in each flaw. This allowed us to quantify the impact, in
terms of lost productivity, accompanying each flaw. This report was
given back to the project’s key stakeholders, typically a project manager
and technical leads (architects and developers). In Step 3 we surveyed
and interviewed those key stakeholders, to try and assess whether the
problems that we had found were indeed causing pain in the project.

Our first industrial collaboration was with Siemens AG, which the
objective of assessing the effectiveness of modularity violation in terms
of identifying design problems. In this study, we identified sets of files
with modularity violations, that is, files that changed frequently to-
gether without being structurally related. Project personnel confirmed
that the identified clusters reflected significant architectural violations,
and important undocumented assumptions. Given this information a
refactoring proposal was made by Siemens developers, accepted by the
project manager, and implemented. Based on this experience, in 2013
we published our first case study titled “Measuring architecture quality
by structure plus history analysis” [104].

During this study, we had to evolve the Titan tool to support the
detection of modularity violations, other newly defined anti-patterns,
and the extraction of design rule spaces. In 2015 we performed a case
study with Softserve, an IT outsourcing company [14]. In this study
we analyzed one of Softserve’s systems, detecting its architectural anti-
patterns as a special type of technical debt—design debt—and built an
economic model of the costs and benefits of refactoring. Using this
model we were able to show a 300% return on investment in the first
year alone for the proposed refactorings.

At this time we began additional collaborations with other major
multinational companies to further develop and evaluate these ideas
and gradually transformed Titan—a research prototype—into DV8—a
more fully-featured and more carefully architected industrial-strength
tool. DV8 was architected to be more scalable and extensible, allow-
ing us to analyze larger systems and to extend our analyses to new
programming languages and new kinds of dependencies.

For example, at this point, we began working with ABB Ltd. the
Swedish-Swiss multinational manufacturer of electronics, robotics and
automation technology, and Huawei, a Chinese multinational tech-
nology corporation. In our ABB case study [105] we used DV8 to
measure the DL scores of eight of their projects and detected their
architecture flaws. We also collected development process data from
the project teams as input to DV8, reported the results back to the
practitioners, and followed up with discussions and interviews. Based
on these analyses, six of ABB’s projects decided to do refactorings. The
other two projects were small and received relatively good results from
the analysis. In our study with Huawei [106], the development teams
used DV8 to determine the severity of their technical debt, and used the
identified anti-patterns to guide their refactoring strategy and improve
their architectures.

Finally, we did a longitudinal study with BrightSquid, a provider
of secure communication tools for the healthcare industry [107]. We
analyzed BrightSquid’s secure communication platform over a one
year period (June, 2016-May, 2017). As a result of this analysis we
identified many areas of architecture debt — the “before” state of their
architecture — and recommended a refactoring plan to pay down the
debt. They did the refactoring over a three month period (January,
2018-March, 2018). We then collected data for the “after” state, from
March, 2018 to August 2018. Based on this “after” snapshot, we again
analyzed their architecture. The results were dramatic: after refac-
toring, the numbers of architecture flaws were reduced, and project
productivity measures increased dramatically. The average time needed
to close issues before and after refactoring was reduced by 72%. The
average bug-fixing churn per issue dropped by 2/3: from 102 LOC
before refactoring to 34 LOC after refactoring. The average bug-fixing
duration reduced 30%, dropping from 10 days before to 7 days. Brigh-
squid management and architects had intuitively understood that their
architecture was sub-optimal, but they were unsure if it is worthwhile
to refactor. This analysis quantified the severity of the problem and
guided them in their refactoring.

These case studies, taken together, presented (we believed) com-
pelling evidence of the value of this kind of automated analysis. At
the “push of a button” a system could be analyzed, unlike previous

Y. Cai and R. Kazman

architecture analysis methods, such as the ATAM, which required a
great deal of planning and human labor [108,109]. We presented
analyses backed up by data from the projects themselves, and showed
the tremendous value that could be reaped by investing in refactoring
to remove design flaws.

4. Reflections and challenges to broad adoption

Although we have had a reasonable number of early adopters, and
the evolution of the concepts and tools are all based on continuous
industrial interaction, the actual uptake of the research and the sup-
porting tooling in industry has been scant. These early adoptions were
all initiated by our collaborators, after our conference presentations,
followed by multiple remote or in person meetings. The fact that
these companies are attending software engineering conferences and
the fact that they contacted us proactively to initiate collaborations
suggest that there is an on-going need to seek effective methods to
diagnose, manage, and quantify software architectures. During these
meetings with our industrial collaborators we explained not only the
tools, but also the design principles and rationales behind the metrics
and definitions that we had devised, as well as how to interpret the
results. After these tools were applied in their projects, we followed
up with additional meetings and interviews to get the team’s feedback.
During this process, we realized that there are still profound challenges
to the broad acceptance and adoption of our technologies in industry.
We detail some of these challenges below.

4.1. The need for improved software design education

Whenever we have introduced our technologies to practitioners, we
have always had to start by introducing basic design principles and
terms. We need to teach them about design! After that, our users have
had to study our papers to fully understand how the metrics and anti-
patterns are related to the design principles they were taught, and to
fully grasp the meaning and implications of the report generated from
our tool. We have found that we simply could not assume any solid
understanding of design concepts, even among seasoned programmers.
In addition to the five companies with whom we have published papers,
some of our unpublished collaborations were software design education
only. We offered senior architect training and graduate level software
design courses to several well-known companies including Samsung
and Comcast. Our contacts and our trainees from these companies
were all experienced architects with years of real-world experience in
software design, but the state of knowledge of the development teams
and the average developers who would actually use our tools was
problematic.

In our experience, garnered from years of interaction with multiple
Fortune 500 companies, with small companies, and with open source
projects, the average software developer lacks even the most basic
knowledge about design concepts. They often do not understand what
fan-in and fan-out are and why these matter, nor the benefits of creating
a hierarchical structure of dependencies among modules. They often
are unaware of the problems associated with large code files, and they
almost exclusively use inheritance for code reuse. Design patterns are
often poorly understood and wrongly applied. Once we observed a case
where one object created over 1,000 other objects, forming a huge
and expensive crossing. But the team leader argued that this was a
“factory” pattern. To their understanding, a “factory” pattern means
that an object should “manufacture” multiple objects. We could not
convince the team that this was wrong, because there are online blogs
defining “factory” in this way, even though there is not such a “factory”
pattern in the seminal “Gang of Four” design pattern book [62]. In
another case, there was a file containing numerous other functions, and
the team leader said it was a “composite” pattern, meaning that many
functions are composed together. This is just a list of the most egregious
misunderstandings that we have encountered. In these cases, it was

Information and Software Technology 164 (2023) 107322

impossible for the team to adopt our tool because the “patterns” they
applied will be identified as anti-patterns, and they believed that our
tool was wrong. It is only through intensive interaction, and argumenta-
tion, often augmented by data collection, that these misunderstandings
can be corrected. We have seen, over and over, fundamental failings in
the education of software developers.

Others have noted that teaching design concepts is a challenge,
e.g. [110]. We have attempted to address shortcomings in software
engineering education ourselves, but our results were not encourag-
ing [93]. We recognize that there is no quick fix for this problem.

4.2. The gap between software engineering research and practice

Our industrial collaboration experiences also revealed the surprising
gap between software engineering research and practice. Few devel-
opers, even team leaders, fully understood (or were even aware of)
canonical concepts such as Parnas’ information hiding, software fam-
ilies, or hierarchical structure. Even though the UML was developed
decades ago and has been intensively promoted, box-and-line style
diagrams are still the most popular way for developers to communicate
their “architecture”, if any notation is used at all. In our recent study
at Google, we employed UML component and sequence diagrams to
reason about a significant re-architecting decision [111]. In this pro-
cess, we realized that these basic UML models are still new to most
developers. If these foundational concepts in software research have
not been accepted or adopted after so many decades and numerous
publications and supporting tools, how long and what will it take for
practitioners to learn and widely adopt design rule theory, options
theory, DRH, DRSpace, DSM, and anti-patterns? We cannot be too
hopeful that adoption by “the majority” will happen any time soon.
The question is: what are the major obstacles that prevent the adopt of not
only our technologies, but also of the many foundational design concepts
that have been proposed by the software engineering research community
for decades? The following are the four gaps that we have determined,
based on our experiences.

4.3. The dilemma of software metrics: What we offer and what they need

Through all of our interactions with companies we have heard one
common request: how to quantitatively and continuously measure and
monitor design quality? Our contacts in these companies, who are either
senior architects or researchers, were familiar with various metrics
proposed in our research community, such as Cyclomatic Complex-
ity [49], C&K Metrics [97], or the maintainability scores provided by
commercial tools such as SonarQube. Our communications with our
collaborators revealed that developers are usually not convinced that
(1) these metrics can faithfully reflect the quality of their design: they
cannot be used to compare different projects or monitor the evolution
of one project; (2) they cannot provide guidance on how to improve
their design.

We proposed the DL metric to address some of these problems at
the request our industrial partners. Our early experiments were quite
successful: as reported in [10,112], and [106], DL was able to faithfully
compare the quality of different projects and monitor the evolution of
a project. But this metric was not always useful for all projects from all
companies. For example, in the BrightSquid case study [107], although
the design before refactoring had a significant number of anti-patterns
and suffered from severe technical debt, the DL scores of the “before”
and “after” designs were similar. Our experiences revealed that the DL
scores can be distorted by the programming languages and frameworks
in use. In particular, programs using modern, dynamic languages are
more likely to have higher DL scores than programs written in C
and C++ [113]. In other words, dynamic typing, polymorphism, and
dynamic binding frameworks can cause DL inflation. In these cases,
a high DL score does not necessarily mean that the system is easy

Y. Cai and R. Kazman

to maintain, and those systems often have more modularity violations
caused by cloned code or implicit assumptions.

The final challenge is that DV8 users often expect that once the
development team reduces the instances of anti-patterns, the DL scores
will improve automatically. Some companies even set a target DL and
required all the teams to reach it, or set DL score improvement as part
of the developers’ objectives and key results (OKR). We then explained
that DL and anti-patterns are complementary and are defined based
on different data sources. We advised them not to use DL, or any
other single code-based metric, as the sole maintainability measure
because it is defined on structural dependencies only. Instead, the team
should continuously monitor productivity and quality changes, together
with the reduction of anti-patterns, and variations in DL scores. The
team leaders would still ask: “If so, can DV8 provide concrete refactoring
suggestions to improve DL?” We realized that what the practitioners
really needed was not only a metric but also concrete refactoring
guidance on how to improve that metric. They also needed evidence
that the improved metric score would lead to real improvements in
productivity and quality. Our quest for effective software metrics is not
over yet.

4.4. The challenge of productivity measures

Throughout our research we have been challenged to provide evi-
dence that the anti-patterns that we have identified really matter, and
that better or worse DL scores really do correlate with better or worse
architectures. How would we go about gathering evidence to support
such hypotheses? Clearly we needed to measure project quality and
effort, to see if, for example, the presence of flaws actually matters.

The problem is that few projects capture effort, and even those that
do capture effort admit that the measures that they capture are often
inaccurate (for example, developers make up effort numbers at the end
of the week, for their timesheets, rather than capturing actual effort
in real time). For this reason we have turned to objective measures of
productivity: bugs, changes, and the churn (committed lines of code)
related to the fixing of bugs and the implementation of changes. This
data can be mined from a project’s commit history and issue tracker.

These measures are clearly not perfect proxies for effort. We can all
recall times when a few lines of code required enormous time and effort
(e.g. debugging a complex algorithm) and other times when many lines
of code required little effort (e.g. creating a large but regular switch
statement). And there is no reason to expect that the sizes of commits
are anything but random, following a power law distribution [114]
and so such differences should wash out over time and many commits.
Furthermore, these measures are objective, widely captured by existing
software projects, and clearly related to effort, on average.

And so, while high quality project effort data is virtually impossible
to come by, we feel confident that our proxy measures of effort — bugs,
changes, and churn - give us the insight that we need to analyze design
debt. Furthermore, our interactions with developers and management
have confirmed this assumption over and over.

4.5. The gap between management and development

Despite what we believe to be a compelling body of evidence on the
importance of design, the software industry remains largely indifferent.
In our earlier industrial collaborations, our contacts were either in
management or research positions. Once they introduced our work to
the development team, it was up to the team to execute the tools and
interpret the results. In the end, it is the relationship between manage-
ment and development that determines if the organization will adopt
these technologies, and we have observed three different categories of
context here:

Case 1: Both management and development felt and acknowledged
the maintenance difficulties. In this case, DV8 can be used effectively
to quantity the amount and severity of technical debt, helping the

10

Information and Software Technology 164 (2023) 107322

organization to make informed decisions on refactoring. Most of our
published case studies fall into this category.

Case 2: Management is concerned but the development team is
indifferent. While developers may think about the design of their code
modules, they rarely think more broadly than that, about architec-
tural design. This is not surprising. Developers are, by and large, not
incentivized to create good designs. They are incentivized to pump
out features and fix bugs. When DV8 reported poor DL scores or anti-
patterns such as cliques or package cycles, the developers would argue
that their product had been like that for years, and it should not be
a concern. Even if the data reveals that the problematic structure is
incurring high maintenance costs, developers insisted that it is the right
“pattern” or the architecture is too expensive to refactor, or that the
tool is not accurate.

Case 3: The developers are concerned but the management team
is indifferent. In this case, the developers experienced the difficulty
of maintaining their software, but management had other priorities in
mind. Few companies prioritize or incentive removing technical debt
over creating new features, or maintaining other quality attributes,
such as performance and security. Due to the lack of focus on design
and design quality, and due to widespread ignorance about proper de-
sign principles, it can be difficult to convince managers to allocate the
needed resources to programmers — principally time - for refactoring.
In other words, even if they agree that there is design debt, as long as
new features can be added and the product keeps running, they often
chose to stick with the current design.

Note that these results all stem from case studies. Case study re-
search cannot, by itself, address issues involving populations. And the
nature of the intense collaboration required by case study research
precludes wide-spread population studies. So there is no way for us
to confidently answer the question of how common each of the above
cases is. What we can say is that we have now collaborated with dozens
of projects and over 10 companies spanning small to very large size,
in multiple application domains, operating in very different markets,
and we have not observed fundamental differences in their concerns
relating technical debt and software design.

Note also that there is a potential threat to validity here. In each
case these organizations came to us with their problems, having read
our papers or attended a talk. This introduces a selection bias. But this
selection bias should, if anything, work in our favor. That is to say that
we could expect that this bias means that our partner companies would
be more likely to become adopters than a random company. This has
not, in fact, been the case.

Finally, we observe that people tend to value and optimize what
they measure. To compound this problem people, as a whole, value
short-term gains over long-term ones. This is why we tend to sit on the
couch and eat sweets rather than getting up and exercising. It is part of
human nature. And so, without a change in hearts and minds, perhaps
catalyzed by education, we do not see the gap between management
and development to close any time soon.

The only solution to this problem is education. If developers and
managers are made aware of the negative consequences of their short-
term decisions, they may be motivated to changes such practices. The
widespread use of practices such as code reviews and unit testing,
for example, is evidence that developers practices can and do change
over time, with appropriate incentives. When people can see concrete
benefits from a practice, they are more likely to adopt it. The challenge
with design debt is that the link between cause and effect is less obvious
than the link between code reviews or unit testing and reduced bugs.

4.6. The gap between symptom detection and treatment

Even if DV8 reports a significant potential return on investment
for a refactoring, and a manager is convinced, there remains the final
question: how to refactor? It is often the case that even the most
well-intentioned programmers do not know where to start, and may

Y. Cai and R. Kazman

actually cause more harm than good in their refactorings. Most of our
collaborators have agreed — once shown the data that we harvested
from their projects — with the design debts that our tool has detected.
That is, they agree that these are real debts causing real pain. But the
tool itself does not explain how to fix these problems. More than once
we were asked: “Your tool reported that if refactored successfully, our
productivity will increase by this much. But can your tool tell our developers
how to refactor?”

At this point, we have had to explain that the proper refactoring
strategy, such as which patterns should be applied to remove which
anti-pattern, should be determined based on both domain knowledge
and how the system is expected to evolve in the future. There is,
therefore, yet another a gap: between the design problems that we
detect and existing refactoring tools that a developer might employ to
resolve these problems. For example, no effective tools are available to
remove unstable interfaces. It is still the developer’s responsibility to
decide how to refactor. Again, we are back to dealing with the lack of
software education and awareness: in the end, as Brooks noted [115],
raising good designers is our best hope to create high-quality designs,
or high-quality refactoring strategies.

We can offer some useful guidance however. The architectural flaws
that DV8 detects are all violations of well-known design principles, such
as the SOLID principles. If we detect a modularity violation, this is a
typically a violation of the single responsibility principle [61]. If we
detect an unhealthy inheritance, this is a violation of Liskov substi-
tutability [116]. And knowing this leads one to an obvious refactoring
strategy. If there is a modularity violation, you need to modularize
the shared responsibility, perhaps placing it in its own class that other
classes can access. If there is an unhealthy inheritance, this is typically
resolved by moving a method from a child class to the parent class.
Thus while the identification of a flaw does not uniquely determine a
refactoring strategy, it does provide clear direction.

4.7. Tool and process challenges

There are a number of other factors that we should enumerate
that may have affected our success in transitioning our research ideas
and tools to industry. First, we are a small research-focused group.
Unlike professional consultants, we have little marketing experience
and no marketing budget. This may have hindered awareness and hence
adoption.

Second, our tool has an old-fashioned looking user interface, based
on Java Swing, and we have certainly paid insufficient attention to
tool usability. Perhaps an easier to use, more intuitive user interface
would have made a difference in adoption. Moreover, the desktop tool
alone is not sufficient to convey the software design knowledge needed
to understand the output of DV8. Currently DV8 outputs a number
of folders and spreadsheets. Our prior collaborations all started with
intensive communications and training. In this training we explained
basic design principles, how these principles, or their violations, can
be represented in DSMs, and how to interpret the DSM of each anti-
pattern. Similar to an MRI or CT scan image that can only be read
and interpreted by trained doctors, the current output of DV8 can only
be understood by architects who are familiar with DSMs and design
principles, which hinders its widespread adoption by developers.

Finally, we rely on third-party reverse engineering tools to extract
facts from a code base, such as Depends' and Understand.? We have
observed that different tools report slightly different results from the
same project. Thus, while we do not see this as a large threat to
validity — these tools are widely used and validated — we do not have
100% confidence in the data that we are extracting from the projects
under study. This could erode confidence in the results that we have
produced.

1 https://github.com/multilang-depends
2 https://scitools.com/

11

Information and Software Technology 164 (2023) 107322
5. Conclusions and the road ahead

Reflecting on our experiences in the past decade, we realize that
the most significant hurdle for “the majority” to adopt our research
outcome is for the majority to better adopt, understand, and apply de-
sign principles and established design strategies. This, in turn, requires
improved software design education, which is a critical need. Thus
we issue a call to action for the software engineering community: for
improved university and professional training in the field of software
design. Another challenge that we have noted is to bridge the gaps
between software research and practice. One way to bridge this gap
is to explore and keep evolving effective software metrics that cater
to the needs of practitioners and their managers. In addition, we need
to speak the right language — the language of practitioners — focusing
on productivity and quality, to foster broad adoption. These reflections
lead to the following four directions for our future research:

(1) Augmenting software design education. In the past decade, we
have applied Titan and DV8 into our own software design courses. In
2011 [92] and 2013 [93], we studied using DSMs to assess the mod-
ularity of student software. We did this by comparing the differences
between the DSM representing the intended design and the DSMs of
the software actually implemented by the students. The results showed
that even though the lab and homework assignments were of small
scale and in most cases detailed designs were given to the students in
the form of UML class diagrams, as many as 74% of the student sub-
missions, although they fulfilled the required functionality, introduced
unexpected dependencies so that the intended modular structure was
undermined. Our study shows that even students who understand the
importance of modularity and have excellent programming skills may
introduce additional harmful dependencies in their implementations,
and it is hard for them to detect the existence of these dependencies on
their own. We need to educate our students to think about technical
debt — how to find it and fix it [42] — and the costs and benefits of
refactoring. After applying DV8 to our own classrooms over the past
few years, the benefits of tool-support in software design education
became evident. It is possible to visualize the traditionally abstract
design concepts and patterns, and we can make them quantifiable
and operable. We plan to create more teaching materials, examples,
and real-world case studies distilled from our industrial collaboration
experiences, and better disseminate this new software design teaching
methodology.

(2) Bridging the gap between software design research and practice.
As we have experienced with our DL metric, given the evolution of
new programming languages, frameworks, and paradigms, software
metrics (and other research outcomes) need to improve and evolve
continuously along with software practice. Otherwise, our research
methods and results will soon become obsolete. Moreover, an effective
metric should not only support cross-project comparison and continu-
ous monitoring, it should also provide improvement guidance. We plan
to further improve DL and develop other complementary measurement
algorithms so that a user of the metric suite can be confident that an
improvement in the metrics will truly lead to better project outcomes.

(3) Productivity and quality focused design debt detection. Our
decade-long set of industrial experiences has revealed that, although
management and developers always have different concerns and speak
different languages, the common language they share is one of pro-
ductivity and quality measures. To enable broader adoption of our
technologies, we should highlight the design problems that directly
impact productivity and quality scores, and quantitatively manifest
their impact, rather than merely telling the team that their designs
violate design principles.

(4) We intend to go back to the companies that adopted Titan and
DV8 and interview them to understand in what ways, if any, their
development culture has changed as a result of these interventions.

Finally, we believe that we would benefit from more cross-
disciplinary collaboration with, among others, the refactoring, software

https://github.com/multilang-depends
https://scitools.com/

Y. Cai and R. Kazman

project management, and software economics research communities.
This will helps us make software design a principled and quantifiable
discipline that can actually guide and benefit design practice in the long
run.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

This research was supported by the United States National Science
Foundation grants 1817267, 1514561, 1140300, 1065242, 1835292,
1823177, and 2213764.

We owe an enormous debt of gratitude to our many students and
collaborators in this research journey: Humberto Cervantes, Hongzhou
Fang, Qiong Feng, Serge Haziyev, Wuxia Jin, Jason Lefever, Ran Mo,
Martin Naedele, Maleknaz Nayebi, Will Snipes, Kevin Sullivan, Sunny
Wong, and Lu Xiao.

References

[1] C.Y. Baldwin, K.B. Clark, Design Rules, Vol. 1: The Power of Modularity, MIT
Press, 2000.

[2] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
Longman Publishing Co., Inc., 1999.

[3] L. Xiao, Y. Cai, R. Kazman, Design rule spaces: A new form of architecture
insight, in: Proc. 36th International Conference on Software Engineering, 2014.

[4] Y. Cai, L. Xiao, R. Kazman, R. Mo, Q. Feng, Design rule spaces: A new model
for representing and analyzing software architecture, IEEE Trans. Softw. Eng.
45 (7) (2019) 657-682.

[5] D.L. Parnas, On the criteria to be used in decomposing systems into modules,
Commun. ACM 15 (12) (1972) 1053-1058.

[6] S. Blumberg, R. Das, J. Lansing, N. Motsch, B. Miinsterma, R. Patenge,
Demystifying digital dark matter: A new standard to tame technical debt,
2022, [Online]. Available: https://www.mckinsey.com/capabilities/mckinsey-
digital/our-insights/demystifying-digital-dark-matter-a-new-standard- to-tame-
technical-debt.

[7] L. Xiao, Y. Cai, R. Kazman, Titan: A toolset that connects software architecture
with quality analysis, in: 22nd ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, 2014.

[8] Y. Cai, R. Kazman, DV8: Automated architecture analysis tool suites, in: 2019
IEEE/ACM International Conference on Technical Debt, TechDebt, 2019, pp.
53-54.

[9] K.J. Sullivan, Y. Cai, B. Hallen, W.G. Griswold, The structure and value of

modularity in design, ACM SIGSOFT Softw. Eng. Notes 26 (5) (2001) 99-108.

R. Mo, Y. Cai, R. Kazman, L. Xiao, Q. Feng, Decoupling level: A new metric for

architectural maintenance complexity, in: Proc. 38rd International Conference

on Software Engineering, 2016.

L. Xiao, R. Kazman, Y. Cai, R. Mo, Q. Feng, Detecting the locations and

predicting the costs of compound architectural debts, IEEE Trans. Softw. Eng.

48 (9) (2022).

R. Mo, Y. Cai, R. Kazman, L. Xiao, Hotspot patterns: The formal definition and

automatic detection of recurring high-maintenance architecture issues, in: Proc.

12th Working IEEE/IFIP International Conference on Software Architecture,

2015.

R. Mo, Y. Cai, L. Xiao, R. Kazman, Q. Feng, Architecture anti-patterns:

Automatically detectable violations of design principles, IEEE Trans. Softw. Eng.

47 (5) (2021).

R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, A. Shapochka,

A case study in locating the architectural roots of technical debt, in: Proc. 37th

International Conference on Software Engineering, 2015.

M. Mantyla, J. Vanhanen, C. Lassenius, A taxonomy and an initial empir-

ical study of bad smells in code, in: International Conference on Software

Maintenance, 2003. ICSM 2003. Proceedings, 2003, pp. 381-384.

W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, A. Ouni, A cooperative

parallel search-based software engineering approach for code-smells detection,

IEEE Trans. Softw. Eng. 40 (9) (2014) 841-861.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

12

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Information and Software Technology 164 (2023) 107322

M. Abbes, F. Khomh, Y.-G. Gueheneuc, G. Antoniol, An empirical study
of the impact of two antipatterns, blob and spaghetti code, on program
comprehension, in: Proc. 15thEuropean Conference on Software Maintenance
and Reengineering, 2011, pp. 181-190.

N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, L. Duchien, A domain analysis
to specify design defects and generate detection algorithms, in: Proc. 11th
International Conference on Fundamental Approaches To Software Engineering,
2008, pp. 276-291.

N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring
opportunities, IEEE Trans. Softw. Eng. 35 (3) (2009) 347-367.

Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, Refactoring support based on
code clone analysis, in: Proc. 5th International Conference on Product Focused
Software Development and Process Improvement, 2004, pp. 220-233.

M. Lippert, S. Roock, Refactoring in Large Software Projects: Performing
Complex Restructurings Successfull, Wiley, 2006.

J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Toward a catalogue of
architectural bad smells, in: Proceedings of the 5th International Conference
on the Quality of Software Architectures: Architectures for Adaptive Software
Systems, 2009, pp. 146-162.

J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Identifying architectural
bad smells, in: Proc. 13th European Conference on Software Maintenance and
Reengineering, 2009, pp. 255-258.

D. Le, N. Medvidovic, Architectural-based speculative analysis to predict bugs
in a software system, in: Proceedings of the 38th International Conference on
Software Engineering Companion, 2016, pp. 807-810.

T. Sharma, P. Mishra, R. Tiwari, Designite - A software design quality
assessment tool, in: 2016 IEEE/ACM 1st International Workshop on Bringing
Architectural Design Thinking Into Developers’ Daily Activities, BRIDGE, 2016,
pp. 1-4.

F.A. Fontana, I. Pigazzini, R. Roveda, M. Zanoni, Automatic detection of
instability architectural smells, in: 2016 IEEE International Conference on
Software Maintenance and Evolution, ICSME, 2016, pp. 433-437.

F.A. Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni, E.D. Nitto, Arcan:
A tool for architectural smells detection, in: 2017 IEEE International Conference
on Software Architecture Workshops, ICSAW, 2017, pp. 282-285.

M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley,
1999.

J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Identifying architectural
bad smells, in: 2009 13th European Conference on Software Maintenance and
Reengineering, IEEE, 2009, pp. 255-258.

S. SonarSource, SonarQube, 2013, Capturado em: http://www.sonarqube.org.
Designite. [Online]. Available: https://www.designite-tools.com/.
Structurel01. [Online]. Available: https://structurel01.com/.

N. Sangal, E. Jordan, V. Sinha, D. Jackson, Using dependency models to manage
complex software architecture, in: Proc. 20th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, 2005, pp.
167-176.

F.A. Fontana, I. Pigazzini, R. Roveda, D.A. Tamburri, M. Zanoni, E.D. Nitto,
Arcan: A tool for architectural smells detection, in: 2017 IEEE Interna-
tional Conference on Software Architecture Workshops, ICSA Workshops 2017,
Gothenburg, Sweden, April 5-7, 2017, IEEE Computer Society, 2017, pp.
282-285, http://dx.doi.org/10.1109/ICSAW.2017.16.

J. Lefever, Y. Cai, H. Cervantes, R. Kazman, H. Fang, On the lack of
consensus among technical debt detection tools, in: 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering in
Practice, ICSE-SEIP, 2021, pp. 121-130.

F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, A. De Lucia, A large-
scale empirical study on the lifecycle of code smell co-occurrences, Inf. Softw.
Technol. 99 (2018) 1-10, [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950584918300211.

D. Johannes, F. Khomh, G. Antoniol, A large-scale empirical study of code
smells in JavaScript projects, Softw. Qual. J. 27 (2019) 1271-1314.

S. Goularte Carvalho, M. Aniche, J. Verissimo, R. Durelli, M.A. Gerosa, An
empirical catalog of code smells for the presentation layer of android apps an
empirical catalog of code smells for the presentation layer of android apps,
Empir. Softw. Eng. 24 (2019).

B.A. Muse, M.M. Rahman, C. Nagy, A. Cleve, F. Khomh, G. Antoniol, On the
prevalence, impact, and evolution of SQL code smells in data-intensive systems,
in: Proceedings of the 17th International Conference on Mining Software
Repositories, MSR 20, Association for Computing Machinery, New York, NY,
USA, 2020, pp. 327-338, http://dx.doi.org/10.1145/3379597.3387467.

B. van Oort, L. Cruz, M. Aniche, A. van Deursen, The prevalence of code smells
in machine learning projects, 2021.

1.0. Philippe Kruchten, Managing Technical Debt: Reducing Friction in Software
Development, Addison-Wesley, 2005.

N. Ernst, J. Delange, R. Kazman, Technical Debt in Practice—How to Find It
and Fix It, MIT Press, 2021.

N.A. Ernst, S. Bellomo, 1. Ozkaya, R.L. Nord, I. Gorton, Measure it? Manage
it? Ignore it? Software practitioners and technical debt, in: Proceedings of the
Joint Meeting on Foundations of Software Engineering, 2015, pp. 50-60.

http://refhub.elsevier.com/S0950-5849(23)00177-5/sb1
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb1
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb1
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb2
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb2
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb2
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb3
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb3
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb3
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb4
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb4
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb4
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb4
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb4
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb5
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb5
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb5
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb7
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb7
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb7
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb7
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb7
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb8
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb8
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb8
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb8
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb8
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb9
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb9
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb9
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb10
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb10
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb10
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb10
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb10
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb11
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb11
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb11
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb11
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb11
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb12
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb12
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb12
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb12
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb12
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb12
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb12
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb13
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb13
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb13
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb13
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb13
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb14
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb14
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb14
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb14
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb14
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb15
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb15
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb15
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb15
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb15
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb16
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb16
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb16
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb16
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb16
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb17
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb18
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb18
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb18
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb18
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb18
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb18
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb18
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb19
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb19
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb19
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb20
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb20
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb20
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb20
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb20
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb21
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb21
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb21
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb22
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb23
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb23
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb23
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb23
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb23
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb24
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb24
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb24
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb24
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb24
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb25
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb25
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb25
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb25
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb25
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb25
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb25
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb26
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb26
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb26
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb26
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb26
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb27
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb27
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb27
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb27
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb27
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb28
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb28
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb28
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb29
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb29
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb29
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb29
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb29
http://www.sonarqube.org
https://www.designite-tools.com/
https://structure101.com/
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb33
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb33
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb33
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb33
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb33
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb33
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb33
http://dx.doi.org/10.1109/ICSAW.2017.16
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb35
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb35
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb35
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb35
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb35
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb35
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb35
https://www.sciencedirect.com/science/article/pii/S0950584918300211
https://www.sciencedirect.com/science/article/pii/S0950584918300211
https://www.sciencedirect.com/science/article/pii/S0950584918300211
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb37
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb37
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb37
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb38
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb38
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb38
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb38
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb38
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb38
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb38
http://dx.doi.org/10.1145/3379597.3387467
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb40
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb40
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb40
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb41
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb41
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb41
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb42
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb42
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb42
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb43
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb43
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb43
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb43
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb43

Y. Cai

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

and R. Kazman

D. Sas, P. Avgeriou, U. Uyumaz, On the evolution and impact of architectural
smells—an industrial case study, Empir. Softw. Eng. 27 (4) (2022) 86.

A. Martini, F.A. Fontana, A. Biaggi, R. Roveda, Identifying and prioritizing
architectural debt through architectural smells: a case study in a large software
company, in: Software Architecture: 12th European Conference on Software
Architecture, ECSA 2018, Madrid, Spain, September 24-28, 2018, Proceedings
12, Springer, 2018, pp. 320-335.

F.A. Fontana, F. Locatelli, I. Pigazzini, P. Mereghetti, Speaker, An architectural
smell evaluation in an industrial context, 2020, [Online]. Available: https:
//api.semanticscholar.org/CorpusID:237560358.

A. Yamashita, L. Moonen, Do developers care about code smells? An exploratory
survey, in: 2013 20th Working Conference on Reverse Engineering, WCRE,
2013, pp. 242-251.

R.L. Nord, I. Ozkaya, P. Kruchten, M. Gonzalez-Rojas, In search of a metric
for managing architectural technical debt, in: 2012 Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on Software
Architecture, IEEE, 2012, pp. 91-100.

T.J. McCabe, A complexity measure, IEEE Trans. Softw. Eng. 2 (4) (1976)
308-320.

M.H. Halstead, Elements of Software Science, in: Operating and Programming
Systems Series, Elsevier Science Inc., 1977.

S.R. Chidamber, C.F. Kemerer, A metrics suite for object oriented design, IEEE
Trans. Softw. Eng. 20 (6) (1994) 476-493.

M. Lorenz, J. Kidd, Object-Oriented Software Metrics, Prentice Hall, 1994, p.
146.

F.B. e Abreu, The MOOD metrics set, in: Proc. ECOOP’95 Workshop on Metrics,
1995.

S.C. Misra, Modeling design/coding factors that drive maintainability of
software systems, Softw. Qual. Control 13 (3) (2005) 297-320.

R. Harrison, S.J. Counsell, R.V. Nithi, An investigation into the applicability
and validity of object-oriented design metrics, Empir. Softw. Eng. 3 (3) (1998)
255-273.

W. Li, S. Henry, Object-oriented metrics that predict maintainability, J. Syst.
Softw. 23 (2) (1993) 111-122.

M.P. Ware, F.G. Wilkie, M. Shapcott, The application of product measures
in directing software maintenance activity, J. Softw. Maint. 19 (2) (2007)
133-154.

S. Wong, Y. Cai, M. Kim, M. Dalton, Detecting software modularity violations,
in: Proc. 33rd International Conference on Software Engineering, 2011, pp.
411-420.

R. Mo, Y. Cai, R. Kazman, Q. Feng, Assessing an architecture’s ability to
support feature evolution, in: Proceedings of the 26th International Conference
on Program Comprehension, 2018.

R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, A. Shapochka,
A case study in locating the architectural roots of technical debt, in: Proc. 37th
International Conference on Software Engineering, 2015.

R. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and
Design, Prentice Hall, 2017.

E. Gamma, R. Helm, R.J. andJohn Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

C. Hu, The nature of software design and its teaching: An exposition, ACM
Inroads 4 (2) (2013) 62-72, http://dx.doi.org/10.1145/2465085.2465103.

A. Baker, A. van der Hoek, H. Ossher, M. Petre, Guest editors’ introduction:
Studying professional software design, IEEE Softw. 29 (1) (2011) 28-33.

D.E. Perry, A.L. Wolf, Foundations for the study of software architecture, ACM
SIGSOFT Softw. Eng. Notes 17 (4) (1992) 40-52.

A. Eckerdal, R. McCartney, J.E. Mostrom, M. Ratcliffe, C. Zander, Can grad-
uating students design software systems? ACM SIGCSE Bull. 38 (1) (2006)
403-407.

C. Loftus, L. Thomas, C. Zander, Can graduating students design: revisited,
in: Proceedings of the 42nd ACM Technical Symposium on Computer Science
Education, 2011, pp. 105-110.

D. Mazaitis, The object-oriented paradigm in the undergraduate curriculum: a
survey of implementations and issues, ACM SIGCSE Bull. 25 (3) (1993) 58-64.
P. Prasad, S. Iyer, VeriSIM: A model-based learning pedagogy for fostering
software design evaluation skills in computer science undergraduates, Res.
Pract. Technol. Enhanc. Learn. 17 (1) (2022) 1-35.

V.Y. Sien, An investigation of difficulties experienced by students developing
unified modelling language (UML) class and sequence diagrams, Comput. Sci.
Educ. 21 (4) (2011) 317-342.

S.P. Linder, D.S. Abbott, M.J. Fromberger, An instructional scaffolding approach
to teaching software design, J. Comput. Sci. Coll. 21 (2006) 238-250, [Online].
Available: https://api.semanticscholar.org/CorpusID:59812777.

S. Ramnath, B. Dathan, Evolving an integrated curriculum for object-oriented
analysis and design, in: Technical Symposium on Computer Science Education,
2008, [Online]. Available: https://api.semanticscholar.org/CorpusID:14668986.
I. Warren, Teaching patterns and software design, in: IFAC Symposium
on Advances in Control Education, 2005, [Online]. Available: https://api.
semanticscholar.org/CorpusID:5430485.

G. Booch, J. Rumbaugh, I. Jacobson, Unified Modeling Language User Guide,
second ed., Addison-Wesley, 2005.

13

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Information and Software Technology 164 (2023) 107322

G. Scanniello, C. Gravino, M. Genero, J.A. Cruz-Lemus, G. Tortora, On the
impact of UML analysis models on source-code comprehensibility and modifi-
ability, ACM Trans. Softw. Eng. Methodol. 23 (2) (2014) http://dx.doi.org/10.
1145/2491912.

P.H. Feiler, B. Lewis, S. Vestal, E. Colbert, An overview of the SAE archi-
tecture analysis & design language (AADL) standard: A basis for model-based
architecture-driven embedded systems engineering, in: P. Dissaux, M. Filali-
Amine, P. Michel, F. Vernadat (Eds.), Archit. Descr. Lang., Springer US, Boston,
MA, 2005, pp. 3-15.

D. Garlan, R. Monroe, D. Wile, ACME: An architecture description interchange
language, in: CASCON First Decade High Impact Papers, CASCON ’10, IBM
Corp., USA, 2010, pp. 159-173, http://dx.doi.org/10.1145/1925805.1925814.
N. Medvidovic, R. Taylor, A classification and comparison framework for
software architecture description languages, IEEE Trans. Softw. Eng. 26 (1)
(2000) 70-93, http://dx.doi.org/10.1109/32.825767.

E. Jinior, K. Farias, B. Silva, A survey on the use of UML in the Brazilian
industry, in: Proceedings of the XXXV Brazilian Symposium on Software
Engineering, SBES 21, Association for Computing Machinery, New York, NY,
USA, 2021, pp. 275-284, http://dx.doi.org/10.1145/3474624.3474632.

M. Petre, UML in practice, in: 2013 35th International Conference on Software
Engineering, ICSE, 2013, pp. 722-731.

W.J. Dzidek, E. Arisholm, L.C. Briand, A realistic empirical evaluation of the
costs and benefits of UML in software maintenance, IEEE Trans. Softw. Eng. 34
(3) (2008) 407-432, http://dx.doi.org/10.1109/TSE.2008.15.

B. Bafandeh Mayvan, A. Rasoolzadegan, Z. Ghavidel Yazdi, The state of the art
on design patterns: A systematic mapping of the literature, J. Syst. Softw. 125
(2017) 93-118, [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0164121216302321.

M. Hong, T. Xie, F. Yang, Jbooret: an automated tool to recover oo design
and source models, in: 25th Annual International Computer Software and
Applications Conference, COMPSAC 2001, IEEE, 2001, pp. 71-76.

Z.-X. Zhang, Q.-H. Li, K.-R. Ben, A new method for design pattern mining,
in: Proceedings of 2004 International Conference on Machine Learning and
Cybernetics (Ieee Cat. No. 04ex826), Vol. 3, IEEE, 2004, pp. 1755-1759.

G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino, M. Risi, Case studies
of visual language based design patterns recovery, in: Conference on Software
Maintenance and Reengineering, CSMR’06, IEEE, 2006, pp. 10-pp.

N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S.T. Halkidis, Design pattern
detection using similarity scoring, IEEE Trans. Softw. Eng. 32 (11) (2006)
896-909.

P. Andritsos, V. Tzerpos, Information-theoretic software clustering, IEEE Trans.
Softw. Eng. 31 (2) (2005) 150-165.

S. Mancoridis, B.S. Mitchell, Y. Chen, E.R. Gansner, Bunch: a clustering tool
for the recovery and maintenance of software system structures, in: Proc. IEEE
Intl. Conf. Software Maintenance, 1999, pp. 50-59.

V. Tzerpos, R.C. Holt, ACCD: an algorithm for comprehension-driven clustering,
in: Proc. Seventh Working Conference on Reverse Engineering, 2000, pp.
258-267.

T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidovi¢, R. Kroeger,
Measuring the impact of code dependencies on software architecture recovery
techniques, IEEE Trans. Softw. Eng. 44 (2) (2018) 159-181.

T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidovic, R.
Kroeger, Comparing software architecture recovery techniques using accurate
dependencies, in: Proc. 37th International Conference on Software Engineering,
2015.

Y. Cai, D. Iannuzzi, S. Wong, Leveraging design structure matrices in software
design education, in: Proc. 24th Conference on Software Engineering Education
and Training, 2011, pp. 179-188.

Y. Cai, R. Kazman, C. Jaspan, J. Aldrich, Introducing tool-supported architecture
review into software design education, in: Proc. 26th Conference on Software
Engineering Education and Training, 2013.

S. Wong, Y. Cai, G. Valetto, G. Simeonov, K. Sethi, Design rule hierarchies
and parallelism in software development tasks, in: Proc. 24th IEEE/ACM
International Conference on Automated Software Engineering, 2009, pp.
197-208.

W. Cunningham, The WyCash portfolio management system, in: Addendum to
Proc. 7th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 1992, pp. 29-30.

L. Xiao, Y. Cai, R. Kazman, R. Mo, Q. Feng, Identifying and quantifying archi-
tectural debts, in: Proc. 38rd International Conference on Software Engineering,
2016.

S. Chidamber, C. Kemerer, A metrics suite for object oriented design, IEEE
Trans. Softw. Eng. 20 (6) (1994) 476-493.

M. O Cinnéide, L. Tratt, M. Harman, S. Counsell, I. Hemati Moghadam,
Experimental assessment of software metrics using automated refactoring, in:
International Symposium on Empirical Software Engineering and Measurement,
ESEM, 2012, pp. 49-58.

N.E. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous and Practical Approach,
second ed., PWS Publishing Co., Boston, MA, USA, 1998.

http://refhub.elsevier.com/S0950-5849(23)00177-5/sb44
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb44
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb44
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb45
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb45
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb45
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb45
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb45
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb45
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb45
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb45
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb45
https://api.semanticscholar.org/CorpusID:237560358
https://api.semanticscholar.org/CorpusID:237560358
https://api.semanticscholar.org/CorpusID:237560358
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb47
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb47
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb47
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb47
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb47
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb48
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb48
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb48
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb48
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb48
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb48
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb48
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb49
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb49
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb49
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb50
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb50
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb50
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb51
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb51
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb51
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb52
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb52
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb52
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb53
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb53
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb53
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb54
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb54
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb54
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb55
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb55
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb55
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb55
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb55
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb56
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb56
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb56
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb57
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb57
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb57
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb57
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb57
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb58
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb58
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb58
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb58
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb58
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb59
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb59
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb59
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb59
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb59
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb60
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb60
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb60
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb60
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb60
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb61
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb61
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb61
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb62
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb62
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb62
http://dx.doi.org/10.1145/2465085.2465103
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb64
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb64
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb64
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb65
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb65
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb65
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb66
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb66
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb66
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb66
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb66
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb67
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb67
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb67
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb67
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb67
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb68
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb68
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb68
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb69
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb69
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb69
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb69
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb69
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb70
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb70
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb70
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb70
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb70
https://api.semanticscholar.org/CorpusID:59812777
https://api.semanticscholar.org/CorpusID:14668986
https://api.semanticscholar.org/CorpusID:5430485
https://api.semanticscholar.org/CorpusID:5430485
https://api.semanticscholar.org/CorpusID:5430485
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb74
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb74
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb74
http://dx.doi.org/10.1145/2491912
http://dx.doi.org/10.1145/2491912
http://dx.doi.org/10.1145/2491912
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb76
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb76
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb76
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb76
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb76
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb76
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb76
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb76
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb76
http://dx.doi.org/10.1145/1925805.1925814
http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.1145/3474624.3474632
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb80
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb80
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb80
http://dx.doi.org/10.1109/TSE.2008.15
https://www.sciencedirect.com/science/article/pii/S0164121216302321
https://www.sciencedirect.com/science/article/pii/S0164121216302321
https://www.sciencedirect.com/science/article/pii/S0164121216302321
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb83
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb83
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb83
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb83
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb83
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb84
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb84
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb84
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb84
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb84
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb85
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb85
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb85
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb85
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb85
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb86
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb86
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb86
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb86
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb86
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb87
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb87
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb87
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb88
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb88
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb88
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb88
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb88
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb89
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb89
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb89
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb89
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb89
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb90
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb90
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb90
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb90
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb90
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb91
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb91
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb91
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb91
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb91
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb91
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb91
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb92
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb92
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb92
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb92
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb92
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb93
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb93
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb93
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb93
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb93
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb94
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb94
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb94
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb94
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb94
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb94
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb94
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb95
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb95
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb95
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb95
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb95
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb96
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb96
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb96
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb96
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb96
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb97
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb97
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb97
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb98
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb98
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb98
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb98
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb98
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb98
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb98
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb99
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb99
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb99

Y. Cai and R. Kazman

[100]

[101]

[102]
[103]
[104]

[105]

[106]

[107]

[108]

Q. Feng, Y. Cai, R. Kazman, D. Cui, T. Liu, H. Fang, Active hotspot: An issue-
oriented model to monitor software evolution and degradation, in: 2019 34th
IEEE/ACM International Conference on Automated Software Engineering, ASE,
2019, pp. 986-997.

H. Cervantes, R. Kazman, Software archinaut - a tool to understand architecture,
identify technical debt hotspots and control its evolution, in: International
Conference on Technical Debt, TechDebt’2020, 2020.

Succinct Code Counter. [Online]. Available: https://github.com/boyter/scc.
CodeScene Inc., CodeScene, 2004, https://codescene.io.

R. Schwanke, L. Xiao, Y. Cai, Measuring architecture quality by structure
plus history analysis, in: Proc. 35rd International Conference on Software
Engineering, 2013, pp. 891-900.

R. Mo, W.S.Y. Cai, S. Ramaswamy, R. Kazman, M. Naedele, Experiences
applying automated architecture analysis tool suites, in: Proceedings of the 33rd
IEEE/ACM International Conference on Automated Software Engineering, 2018.
W. Wu, Y. Cai, R. Kazman, R. Mo, Z. Liu, R. Chen, Y. Ge, W. Liu, J.
Zhang, Software architecture measurement—Experiences from a multinational
company, in: C.E. Cuesta, D. Garlan, J. Pérez (Eds.), Software Architecture,
Springer International Publishing, 2018, pp. 303-319.

M. Nayebi, Y. Cai, R. Kazman, G. Ruhe, Q. Feng, C. Carlson, F. Chew, A
longitudinal study of identifying and paying down architecture debt, in: 2019
IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE-SEIP, 2019.

R. Kazman, M. Barbacci, M. Klein, S.J. Carriere, S. Woods, Experience with per-
forming architecture tradeoff analysis, in: Proceedings of the 21st International
Conference on Software Engineering, 1999, pp. 54-63.

14

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Information and Software Technology 164 (2023) 107322

R. Kazman, L. Bass, Making architecture reviews work in the real world, IEEE
Softw. 19 (1) (2002) 67-73, http://dx.doi.org/10.1109/52.976943.

M. Galster, S. Angelov, What makes teaching software architecture difficult? in:
Proceedings of the 38th International Conference on Software Engineering
Companion, 2016, pp. 356-359.

Q. Jia, Y. Cai, O. Cakmak, A model-based, quality attribute-guided architecture
re-design process at google, in: 2023 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Practice, ICSE-SEIP, 2023.
R. Mo, W. Snipes, Y. Cai, S. Ramaswamy, R. Kazman, M. Naedele, Experiences
applying automated architecture analysis tool suites, in: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, in:
ASE 2018, Association for Computing Machinery, New York, NY, USA, 2018,
pp. 779-789, http://dx.doi.org/10.1145/3238147.3240467.

W. Jin, Y. Cai, R. Kazman, G. Zhang, Q. Zheng, T. Liu, Exploring the
architectural impact of possible dependencies in python software, in: 2020 35th
IEEE/ACM International Conference on Automated Software Engineering, ASE,
2020, pp. 758-770.

O. Arafat, D. Riehle, The commit size distribution of open source software, in:
2009 42nd Hawaii International Conference on System Sciences, 2009, pp. 1-8.
F. Brooks, No silver bullets: Essence and accidents of software engineering,
SIAM J. Comput. 20 (4) (1987) 10-19.

B. Liskov, J. Wing, A behavioral notion of subtyping, ACM Trans. Program.
Lang. Syst. 16 (6) (1994) 1811-1841.

http://refhub.elsevier.com/S0950-5849(23)00177-5/sb100
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb100
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb100
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb100
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb100
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb100
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb100
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb101
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb101
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb101
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb101
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb101
https://github.com/boyter/scc
https://codescene.io
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb104
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb104
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb104
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb104
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb104
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb105
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb105
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb105
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb105
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb105
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb106
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb106
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb106
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb106
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb106
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb106
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb106
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb107
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb107
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb107
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb107
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb107
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb107
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb107
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb108
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb108
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb108
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb108
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb108
http://dx.doi.org/10.1109/52.976943
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb110
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb110
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb110
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb110
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb110
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb111
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb111
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb111
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb111
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb111
http://dx.doi.org/10.1145/3238147.3240467
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb113
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb113
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb113
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb113
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb113
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb113
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb113
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb114
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb114
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb114
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb115
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb115
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb115
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb116
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb116
http://refhub.elsevier.com/S0950-5849(23)00177-5/sb116

	Software design analysis and technical debt management based on design rule theory
	Introduction
	Related Work
	What is offered vs. what is needed
	Tools and metrics do not remove design debt

	On the Path of Software Design and Technical Debt Research
	Problem identification
	New Concepts in Software Design
	Supporting Tools
	Industrial Case Studies

	Reflections and Challenges to Broad Adoption
	The Need for Improved Software Design Education
	The Gap between Software Engineering Research and Practice
	The Dilemma of Software Metrics: What We Offer and What They Need
	The Challenge of Productivity Measures
	The Gap between Management and Development
	The Gap between Symptom Detection and Treatment
	Tool and Process Challenges

	Conclusions and the Road Ahead
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

