2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP) | 979-8-3503-0037-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICSE-SEIP58684.2023.00011

2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

A Model-based, Quality Attribute-guided
Architecture Re-Design Process at Google

Qin Jia
Google LLC
ginjia@google.com

Abstract—Communicating and justifying design decisions are
difficult, especially when the architecture design has to evolve.
In this paper, we report our experiences of using formal but
lightweight design models to communicate, justify, and ana-
lyze the quality trade-offs of an architecture revision plan for
Monarch, a large-scale legacy system from Google. We started
from a few critical user scenarios and their associated quality
attribute scenarios, which makes these models lightweight and
concise, expressing high-level abstractions only. We also separated
static views from dynamic views so that each diagram can be
precise and suitable for analyzing different types of quality
attributes respectively. The combination of scenarios, quality
attributes, and lightweight modeling was well accepted by the
team as an effective way to analyze and communicate the trade-
offs. A few days after we presented and shared this process,
two new projects within the Monarch team adopted component
and sequence diagrams in their design documents, and two other
product areas within Google started to learn and to adopt the
process as well. Our experience indicates that these architecture
modeling and analysis techniques can be integrated into software
development process to communicate and assess features, quality
attributes, or design decisions continuously and iteratively.

Index Terms—software architecture, software modeling, qual-
ity attribute

I. INTRODUCTION

Software architecture modeling techniques, such as Unified
Modeling Languages (UML) [1], quality attribute (QA) anal-
ysis, trade-off analysis [2], have been researched and taught in
classrooms for decades. In practice, however, these techniques
are seldom applied, as reported in recent surveys [3]-[6].
Most interviewed developers do not use formal models in
practice, and consider that creating a “big picture view” of
a large-scale system is difficult, costly, and not feasible [3],
[4]. While it has been recognized that software projects could
benefit from formal models if they can be applied within
a limited context [3], [6], there is no guidance on how to
leverage these models, especially when architecture changes
are proposed and needed to be analyzed and justified for large-
scale legacy systems. This is exactly the challenges faced by
Monarch [7]—a large-scale in-memory database and one of
the largest infrastructure software systems within Google.

To accommodate the rapid growth of users and workloads,
the tech leads (TLs) of Monarch proposed to redesign the
system to adopt a more modularized architecture. Given
the potentially significant impact, the TLs encountered the
challenges of convincing the team that the new design was

Work licensed under Creative Commons Attribution 4.0 License.

https://creativecommons.org/licenses/by/4.0/

Yuanfang Cai
Drexel University
yuanfang.cai@drexel.edu

Onur C. Cakmak
Google LLC
onurcc @google.com

worthwhile: due to the increased number of servers, the team
was concerned about the potential degradation of several
key qualities, especially performance, but could not precisely
estimate the severity of the impact and the trade-offs among
maintainability, performance, availability, etc..

In this paper, we report our experiences of combining multi-
ple lightweight models, which are abstract enough to model the
specific scenarios only, and using these models to efficiently
analyze and communicate trade-offs among multiple quality
attributes for the proposed re-architecting plan of Monarch in
a rigorous and precise way. We first identified a few critical
user scenarios and associated quality attributes that will be
affected by the proposed re-design of the architecture, such
as latency and availability. We further modeled each attribute
using a quality attribute scenario (QAS), in which the concrete
components (binaries) involved, responses expected, and the
target measures of these responses were specified. After that,
we modeled the static structure among these components
using UML component diagrams, and modeled their run-
time behaviors using UML sequence diagrams so that the
Remote Procedure Call (RPC) routes needed to accomplish
these scenarios can be visualized.

We modeled the current architecture and proposed new
architecture using both component and sequence diagrams
respectively. These models made it clear that in order to realize
the same user scenario, how many new components will be
added/changed, how the RPCs route through these components
in the current design, and how the routes will change in the
proposed new design. The paths of the RPCs in these sequence
diagrams provided the concrete visualization for the team to
assess how latency and availability will be affected in the
proposed new design. The component diagrams made it clear
how existing components will be decoupled to simplify the
APIs and improve maintainability.

After quantifying the target measures in QAS, and modeling
RPC routes in both designs, we were able to tell exactly how
many more components and binary instances will be added
on the RPC paths in the new design. Comparing with the
actual performance data, the team recognized that even though
the new design will increase query latency to some extent,
the system can still meet performance service level objectives
(SLO) [8]. On the other hand, the new design will greatly
improve availability and maintainability, which are currently
at risk and hindering the evolution of the overall system.

2832-7659/23/$31.00 ©2023 IEEE 61
DOI 10.1109/ICSE-SEIP58684.2023.0001 1
Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

The team highly commended the scenario-based lightweight
modeling and trade-off analysis techniques. The comments
we received indicated that the UML component and sequence
diagrams are effective ways to illustrate static and run-time
structures of the system. The process was recommended
to other Monarch projects and other product teams within
Google. A few days after we presented and shared this process,
two new projects within the Monarch team adopted component
and sequence diagrams in their design documents, and two
other product areas within Google started to learn and tried
to adopt the modeling process. To summarize, there are two
critical steps ensuring the success of this process:

First, specifying concrete scenarios makes models concise.
Since a QAS lists the specific components involved in these
scenarios, we were able to create lightweight models with
these components only. It is critical that we limited the models
to high-level abstractions, expressing architecture use cases
only, to avoid unnecessary complexity of modeling the overall
design [3], [4], [6].

Second, separating static and run-time views makes models
precise. It has been long recognized that software architecture
always has multiple structures [2], [9]: static module struc-
tures, run-time component-connector structures, and allocation
structures. No single diagram can precisely capture all the
structures. In practice, however, commonly used box-and-line
style diagrams usually do not distinguish static or run-time
views, and ambiguity is inevitable.

These two steps made it possible for us to create precise
and self-explanatory diagrams, so that the whole team, in-
cluding senior and junior developers, as well as managers,
could understand the existing and newly proposed design
without extensive prior knowledge on software modeling. This
inspiring experience indicates that it is possible to integrate
partial, lightweight modeling, quality attribute analysis, and
trade-off analysis into software development processes, rather
than creating a complex full picture at the beginning of a
project. Since this process starts from user scenarios, it can be
applied whenever a new feature is added, or a quality attribute
needs to be evaluated.

According to Google’s policy, we cannot report the actual
measures from Monarch. Although the concrete QA numbers
reported in this paper are for illustration purposes, their relative
values are based on the actual data and estimation.

II. CHALLENGES TO MONARCH

A. Background

Monarch [7], one of most widely used infrastructure soft-
ware systems in Google, is used to monitor the availability,
correctness, performance, load, and other aspects of applica-
tions and systems. For more than a decade, almost all Google
global user-facing services (e.g., Youtube, GMail and Google
Maps) and backend infrastructure for such services, including
Colossus [10], Spanner [11], F1 [12] and Borg [13], have
been replying on the reliable monitoring service provided by
Monarch. Every second, the system accepts terabytes of time

62

series data into memory and serves millions of queries. To en-
sure performance and availability, Monarch has a regionalized
architecture. Global query and configuration planes integrate
the regions into a unified system.

Each Monarch zone consists of a collection of clusters
located in a strongly network-connected region. A zone stores
local time series data based on geographical locations, and
responses to the queries on those data. The locality ensures the
high availability and low latency of zonal writes and queries.
Component instances are deployed and replicated across the
clusters to improve reliability. Each node within a cluster
stores data in memory and avoids dependencies among each
other, so that each zone can continuously provide services
during transient outage of other zones, global components, or
storage systems. Monarch’s global components are replicated
in each geographical zone, and can interact with all other
zones. In order to communicate and analyze the architecture
of Monarch, the team created an informal model as depicted
in Figure 1, which shows the components involved in queries.

In response to a query, Monarch reads the time series data
stored in various zones, and conducts various computations
(e.g., aligns, aggregates and joins) on these data. For example,
suppose a user issues a query to get the global queries-per-
second (QPS) data for their services. Monarch reads the RPC
count for each task (i.e., monitored farget) of the service in
different zones and aggregates them into a global QPS.

Once a Monarch user (e.g., a Google engineer, a dashboard,
or an alerting pipeline) issues the query, the process starts from
the Root Mixer, the entry point of the scenario. It first interacts
with a Root Index Server to get the zones that potentially
contain the requested data. After that, the Root Mixer sends
the query to Zone Mixers in the selected zones. Each Zone
Mixer interacts with a Zone Index Server to get a set of relevant
Leaves, which potentially contain data needed for the query. A
Leaf stores the time series data in memory, indexes, processes,
and computes these data as well. The query processing within
each zone contains two passes:

1) Replica Resolution: a Zone Mixer interacts with the
relevant Leaves to get a summary of each relevant target to
choose Leaves with the best data quality to process among
Leaf replicas.

2) Query: these selected Leaves compute (e.g., align, ag-
gregate and join) the time series data as much as they can
and then send the output back to the Zone Mixers for further
processing. The Zone Mixers, in turn, send the processed data
back to the Root Mixer, which conducts final computation and
aggregation, and returns to the end users.

In the meantime, the Leaves are also responsible for re-
ceiving new data points and storing them, as well as reading,
processing, and writing time series data into a long-term
historical data Repository. When a Leaf receives new time
series data, or the time series data are moved between Leaves
(for load-balancing), it also sends the indexing data (i.e.,
indices of the metadata of the time series, such as metric names
and monitored targets) to the Zone Index Server to make sure

Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

Zone 1

Leaf Leaf

—_—— Root Index Server
{ .
— — —P Zone Index Server [Computation

. [Index

[pata

Leaf

Repository

>
Index updates

-+—— — >
Select children

Fig. 1: Box-and-line model of the current architecture

it has the latest information about what data is stored within
Leaves. The Zone Index servers then send the indexing data
back to the Root Index Servers.

B. Challenges of rapid growth

During the past decade, Monarch experienced a rapid
growth: the number and size of the stored time series data,
as well as the queries-per-second (QPS), both experienced
more than 2 times year-to-year growth. The number of Leaves
within a zone increased from hundreds to tens of thousands
over the years, and a query needs to retrieve a lot more
data from more Leaves. The rapid growth greatly challenges
the availability and scalability of Monarch queries. In ad-
dition, since a Leaf takes all the responsibilities of time
series processing, indexing, and storage, failures on any of
these responsibilities cannot be isolated, nor can the code
and resources be decoupled. Therefore the reliability and
maintainability become challenging. The developers complain
that it is getting harder and harder to make changes to the Leaf
component because multiple responsibilities are coupled with
each other. We scanned the Monarch code base, and detected
many anti-patterns [14] within the Leaf component. The sys-
tem needs to be re-architected, in particular, to decouple these
responsibilities, and, most importantly, to increase availability
and maintainabiliy to keep up with the rapid growth.

C. Proposal to handle the challenges

In order to handle the challenges of availability and main-
tainability caused by the rapid growth, the team has proposed
to decouple the overloaded Leaf component into multiple com-
ponents, each responsible for storing, computing and indexing
the data respectively. The tech leads (TLs) have created a
box-and-line style diagram to represent the newly proposed
architecture, as depicted in Figure 2.

63

D. Problems with informal modeling

The informal models depicted in Figure 1 and Figure 2 are
then used to communicate and analyze the architecture revision
proposal but presented a few communication obstacles:

First, the bidirectional arrows linking the components are
ambiguous. For example, these is a solid line linking Root
mixer and Zone Mixer, indicating that there is a query relation
between them. But it’s not clear which component starts the
interaction, and which one responds next. The two separate
passes, Replica Resolution and Query, can not be modeled
either. The sequences of RPCs are critical for performance and
latency analysis, but cannot be modeled in these diagrams.

Second, the semantic of each box is not clear: does a Leaf
box represent a static Leaf component, or an instance of the
same component deployed in multiple servers?

Third, the diagram of the proposed new architecture (Fig-
ure 2) appears to be more complicated than the one modeling
the current architecture (Figure 1): two new components were
added outside of the Leaf components, and many boxes were
created within a Leaf. It is unclear if each box represents a
new binary, or a module within the same binary.

Given that these diagrams are not sufficient to analyze trade-
offs, there were concerns among team members that the new
architecture would negatively impact performance and latency.
In fact, it was not clear what the trade-offs among availability,
maintainability, and latency were between the existing design
and proposed new design. Without a more systematic way
to conduct relatively rigorous and quantitative analysis, the
team was not able to make this significant decision based on
intuition and experiences only.

At this point, we recognized that one problem with the
informal diagrams in Figure 1 and Figure 2 is that they mix
static structures among these components and the run-time
RPC passing sequences, where the canonical UML component
and sequence diagrams could be used. In addition, these
different dimensions of quality attributes can be modeled
and analyzed rigorously using quality attributes scenarios [2].

Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

Root Index Server
A

Zone 1

Leaf Index Server

Target

MetricName H Leaves

[computation
[T index
[pata

Zone Index Server

- - >
Replica Resolution

-+
Query

Leaf Index Server | | Tt >
Index updates
-— —

Select Children

Y

4

Leaf

Target
ke

N

Leaf

Metric Key

Series

Metric Key
Series

Fig. 2: Box-and-line model of the proposed architecture

In order to avoid creating overly complicated diagrams, we
decided to start from just a few critical user scenarios. Next
we elaborate each step of the process.

Response:
Return query results
uccessfully

Stimulus:
Send Query RPCs to
Monarch

Artifacts: '
Monarch servers —

Source:
Monarch users

Response Measure:
299.99% queries

Fig. 3: A quality attribute scenario: Availability

III. CRITICAL USER SCENARIOS AND
QUALITY ATTRIBUTE SCENARIOS

Monarch is a complicated system with dozens of compo-
nents. A complete architecture model, either a static compo-
nent diagram or a run-time sequence diagram, will be overly
complicated. In order to keep the models concise, we decided
to only model a part of the system related to the following
critical user scenario:

QueryTimeSeries: A user sends a query to Monarch, and
the system reads the time series data from various locations,
computes them, and returns to the user successfully with low
latency.

This user scenario combines both functional requirements,
stating what the system must do and how it must behave,
and quality attribute requirements that qualify these functions.
Terminology such as latency, availability is widely used in in-
dustry and used to be called non-functional requirements. Bass
et al. [2] pointed out that since non-functional requirements
usually need to be accomplished through various functions,

e.g., using login functions to ensure security, they should be
called quality attributes to avoid the confusion.

Most functional requirements are not meaningful without
qualifying attributes. Take the QueryTimeSeries scenario for
example. If the system returns query results successfully, but
only responds to the user after a few days, this functional re-
quirement should be considered as failed. To specify qualities
such as “low latency”, the Monarch team defines a number of
Service Level Objectives (SLO) [8] that specify the detailed
measures of query responses. For example, the availability
SLO for QueryTimeSeries is defined as “The system returns
correct responses for > 99.99% of the queries.”

Using these SLOs definitions, we can define a number of
Quality Attribute Scenarios (QAS) [2] associated with the user
scenario. As illustrated in Figure 3, a QAS consists of at least
the following 5 parts':

e Source of Stimulus: an entity, e.g., a Monarch user—a
Google engineer, a dashboard, or an alerting pipeline,
that initiated the stimulus.

e Stimulus: a condition or an event that requires a response
when it arrives at a system, e.g., a query is initiated.

o Artifacts: the artifacts that are stimulated, which would
be a collection of systems, the whole system, or some
components of the system.

e Response: the activity undertaken as the result of the
arrival of the stimulus.

e Response measure: when the response occurs, it should
be measurable or testable.

A QAS starts from a concrete scenario, and allows the
designer to specify (1) the artifacts involved in responding
to an event, and (2) the quantifiable responses of each event.
For example, the artifacts involved in the QueryTimeSeries

TAll the concrete measures in this table are for illustration purposes, not
actual Monarch metrics.

64

Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Target response measures of quality attributes

Quality Attributes

Target Measures

Availability

> 99.99% Monarch queries return successfully.

Maintainability

It takes less than X days to rollout a query change. Queries experience less than Y incidents a month.
It takes less than Z hours to root cause an incident.

Latency

> 99% Monarch queries complete within M seconds

Resource efficiency

Less than 10% additional CPU and memory consumption while running a query

Note: All specific numbers in the table are for illustration purposes.

scenario in the current design are depicted in Figure 1, and
its availability QAS is depicted in Figure 3: once the user
initiated a query, the system should successfully return the
results > 99.99% of the time.

For the Monarch QueryTimeSeries scenario, the TLs iden-
tified 4 quality attributes associated with it: 1) Availability,
2) Maintainability, 3) Latency, and 4) Resource efficiency. All
these QASs share the same source, stimulus, and artifacts, and
only differ in terms of response measures, as summarized in
Table I. In order to analyze these quality attributes, we further
modeled the static and run-time structures of the artifacts
involved in these QAS, and analyzed how they will change
in the proposed new architecture.

IV. MODEL CURRENT ARCHITECTURE

Figure 1 depicts the informal diagram the TLs created
to model the current design, including all the components
involved in the QueryTimeSeries scenario. The diagram has 8
boxes, but only 6 components are involved in the scenario: (1)
Root Mixer, (2) Root Index Server, (3) Zone Mixer, (4) Zone
Index Server, (5) Leaf, and (6) Repository. Both Figure 1 and
2 are ambiguous in that they mix static components (binaries)
with binary instances deployed on multiple servers: these 3-
color Leaf boxes meant to model multiple instances deployed
on multiple servers, not that they are three components, or
there are only three instances.

To address these problems, we created a UML component
diagram, as shown in Figure 4, to model the current de-
sign. The key difference is that Figure 4 uses Provided
Interface and Required Interface to model the
APIs provided and expected by a component, rather than
attempting to model how RPCs are passed among them. It
only contains the component-level static information, i.e., there
is only one box for one component, no matter how many
instances are deployed in the production.

After identifying the components involved in each response,
it becomes straightforward to model how RPCs route through
these components to accomplish the scenario. Figure 5 de-
picts the sequence diagrams modeling the two stages of
the QueryTimeSeries scenario, i.e., Replica Resolution and
Query. Sequence diagram is an effective tool for latency and
availability analysis because it visualizes which and how many
hops there are on the RPC path of each scenario. Figure 5
indicates that, in the current design, there are 12 to 14 RPC
hops needed to accomplish QueryTimeSeries. The longer the
paths, the longer the latency. We also use the subscripts to de-
note multiple instances of the same component. For example,

65

Zone Mixery ., denotes that n instances of Zone Mixer are
involved in the RPC sequences of the scenario. These sequence
diagrams enable us to estimate the total number of RPCs
needed. For example, a Root Mixer queries n Zone Mixer,
so there are n RPCs between the two components.

As we introduced in Section II, the prominent risks of the
current Monarch system is availability and maintainability.
The main problem is that the Leaf component takes multiple
responsibilities. Given the increased coupling among classes
and arbitrary APIs, it takes a longer to make changes to Leaf.
Handling multiple responsibilities on one component risks
the system’s availability given the rapid growth of users and
requests.

V. MODEL PROPOSED NEW ARCHITECTURE

In order to handle the challenges mentioned in Section II,
The TLs proposed to change the architecture of Monarch. The
main idea is to decouple the Leaf component into three com-
ponents, each responsible for data computation, indexing, and
storage respectively. They created a box-and-line style diagram
to model the proposed new architecture as depicted in Figure 2.
This diagram has similar problems of ambiguity, mixing static
component structures with run-time message sequences, and
mixing static components, their run-time instances, and classes
within the components. Using this diagram, it is impossible
to tell how the Replica Resolution and Query passes will be
affected by the new design.

To avoid the ambiguity and illustrate how the newly pro-
posed design will impact qualities, the team created component
(Figure 6) and sequence diagrams (in Figure 7) to model
static and run-time views separately in the new design. As
shown in Figure 6, the Leaf component is decoupled into three
components: Leaf Mixer, new Leaf and Leaf Index Server.

Leaf Index Server is the only component involved in the
Replica Resolution pass because it contains all the data quality
information of targets, and the addresses of Leaves. It stores
the indexes and keys of the time series data and their hosting
Leaves, and provides the keys to the Zone Mixer. Leaf is
simplified and becomes a key-value store of time series data.
Leaf Mixer is responsible for computing (e.g., alignment,
aggregation and join) time series data, and uses the same,
simplified Read API to interact with both Leaf and Repository.

Figure 7 depicts the sequence diagrams modeling how RPCs
in the QueryTimeSeries scenario route through these new
components. It shows that the Replica Resolution will end with
the new Leaf Index Server, rather than Leaf. In the Query pass,
two new hops to Leaf Mixer and Leaf Index Server are added to

Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

Query

Replica Resolution and Que
e i L 5 Read o-
Wb o[™

Time Series Select Leaf Data Summary/ Time series
Time series

Root Mixer

Select Zone

Zone addresses Leaf addresses :

(O—— Provided Interface)—— Required Interface

Data Query
storage :l Computation E] Index data

Root Index Server Zone Index Server

Fig. 4: Current design: scenario-based component diagram

1 2 3 4 3
[Cl;oot Mixer | [Clgoot Index Server | ’_%ne Mixer_1..n |Fz)onelndex Server | |OLeaf_1..m ‘
[

2

1-rpc: Query

2-rpc: Select Zone

3- Selected

Zone_lton

il oo A

4-rpc: Query
5-rpc: Select Leaf
6-Leaf 1..m to query
SRR R AR
7-rpc: Replica Resolution
8-Data Summary on leaf 1..m
ST R M A U N P R

T .

(a) Sequence diagram: the Replica Resolution pass

o

13-Zone computed time;

14-Root computed

Time series response
Bl b dlaidhad untlassl

1 3
’-Cl;oot Mixer | pZOne Mixer_1..n |
5 3t

9-rpc: Query
To selected leaf i to j.

12— eaf computed time
series

(b) Sequence diagram: the Query pass

Fig. 5: Current design: scenario-based sequence diagrams

accomplish the query. The Leaf Mixer component will interact
with the Leaf component and Repository separately, instead of
relying on the Leaf to interact with Repository. As a result,
16 to 18 RPC hops are needed to accomplish this scenario.

VI. QUALITY TRADE-OFF ANALYSIS

Given the component diagrams and sequence diagrams of
the current and proposed new architecture, it becomes easier
to analyze the quality attributes, and how they will change in
the new design. Table II presents the level of importance of
each QA, their risk levels in the current design, and how these
qualities will change in the new design based on the analysis
in this section. A quality attribute with high risk means that
the current system may not always meet the target response
measures as the system scale grows, as listed in Table 1. The
risk level is determined based on how often the corresponding

66

SLO is violated according to the execution data obtained in
real-time. For example, if the system can’t always meet its
availability SLO, it means that its availability is at high risk.

A. Availability

Monarch has to return the results successfully for > 99.99%
of queries, which is the most important quality attribute. We
use both component and sequence diagrams to analyze how
availability will change.

a) Current design: Currently availability is at risk for
two reasons. First, as we discussed in the Section II, Monarch
has experienced 2-5x year-to-year growth over the last several
years. As the number of time series grows, the number of
Leaves in a zone, and the number of Leaves involved in both
Replica Resolution and Query RPCs grow drastically. Even
if a small number of Leaves run into problems, the overall

Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

Replica Resolution

Zone Mixer

O[/e,}

Leaf Index server
Data
Summary Time
series
Keys
Get time
series keys

(O—— Provided Interface
); Required Interface

Query Computation Index data
Data storage Newly added Binary

Fig. 6: Proposed new design: scenario-based component dia-
gram

query availability will be affected. There are usually a certain
(small) number of bad machines in a cluster. As the number of
involved Leaves grows, the chance of reaching a problematic
Leaf (on a bad machine) increases.

We model the availability of the QueryTimeSeries scenario
to be the product of availability of all the instances along the
RPCs path. This is just an approximation to illustrate how
availability changes before and after the architecture change.
In practice, individual node failures can be tolerated with
various mechanisms (like data replication). From the sequence
diagrams depicted in Figure 5, we can observe how many
RPCs and how many component instances are involved. The
availability of a query without touching Repository in the
current architecture can be modeled as:

Acurrent = ATAMAZAZZA;W (1)

where A,., A,;, A, A,; and A; denote the availability of
an instance of Root Mixer, Root Index Server, Zone Mixer,
Zone Index Server, and Leaf respectively. Note that availability
of the stateless components like Root Mixer and Zone Mixer
is close to 100% because the failures could be tolerated by
retries. The failures of Root Index Server and Zone Index
Server are also negligible because the RPCs could be hedged
to multiple instances in multiple clusters. So the major con-
tributor to Acyrrent is AJ". The number of Leaves involved
in Query is a small subset of Leaves involved in Replica
Resolution. Our measurement shows that the ratio of Leaves
involved in Query and Replica Resolution can be as low as
20% in huge zones [7]. So we only use A]" to represent the
availability of the involved Leaf instances.

Second, since all three responsibilities are clustered into one
Leaf component, if one function has a bug, or the node runs
into resource problems due to a spike of requests (including
writes and queries), all the queries on the Leaf are affected.

b) New design: The availability of the new design, as

shown in Figure 7, can be modeled as:
Anew = ATATZAQAZ'L(lr;llAﬁmA{/_iJrl) 2

where the Aj;;, Ay, and Ap represent the availability of an
instance of Leaf Index Server, Leaf Mixer and the new Leaf.

67

Apew is significantly higher than Ay .ene for the following
reasons:

First, A; should be lower than the product of A;;, Ay and
Ay, although it is the combination of the three responsibili-
ties. Because the Leaf Mixer is a stateless component, queries
can utilize retries to tolerate failures. As a result, A;,, is
negligible because it is close to 100%.

Second, m is much larger than m’ because the new Leaf
Index Server only stores the time series key information, so
the data is more dense and the number of instances involved
in the query will reduced.

Third, j —i+ 1 is much smaller than m because the number
of Leaves involved in the Query is much smaller than the
number of Leaves involved in Replica Resolution, i.e., j—i+1
can be as small as 20% of m on average in huge zones.

Moreover, as shown in the component diagram in Figure 6,
since the computation and indexing functions are decoupled
from the storage component, they are isolated from the failures
caused by writing to the in-memory storage. This way the
probability of failures can be significantly lowered. In addition,
the two storage layers, i.e., Leaf and Repository, do not
depend on each other any more. This significantly improves
the availability of queries that only uses one of the storage
layers. Furthermore, the system can also serve partial data to
the query that combines data from both storage layers, and
provides failure isolation between the two storage layers.

B. Maintainability

The team measures this attribute from three dimensions as
listed in Table I: 1) the number of days to rollout a change, 2)
the number of incidents allowed within a month on the query
functions, and 3) the number of hours to root cause an incident.
The team believes this attribute is of medium importance but
with a high risk. We use component diagrams to analyze how
the maintainability will change in the new design.

a) Current design: Since multiple responsibilities are
currently aggregated within one component, Leaf, (as shown
in Figure 4), the classes within it also couple with each
other through complicated APIs. This makes it difficult to
understand and harder to implement new features. When
Leaves experience problems in production, it is also very hard
to determine which part is the root-cause, or whether it is
caused by the query scenarios or other activities. Currently
Leaves are involved in 18 out of 20 Monarch performance
dashboards. When there is a problem in Leaves, it’s hard to
root cause the problem based on the dashboards because most
of them will be broken. In addition, problems in data storage
would also make Leaves misbehave, which in turn, affects
the performance of the query, leading to more production
incidents.

b) New design: Decoupling the responsibilities into
different components (as shown in Figure 6) enables the
team to roll out different changes independently and in
parallel, speeding up the code-to-production time. Currently,
the rollout of Zone Mixers is around 30% faster than Leaves.
In the new design, query related features no longer need to

Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4
3 Zone Leaf Index
Root Index Server ;
Root Mixer P Mixer_1.n Zone Index Server S
1-rpc: query
2-rpc: SelectZone
3- Selected
Zone_1ton
e e 4
4-rpc: query 5-1pc:
SelectLeafindexServer
e
6-Leaf Index Server
1..m to query
BOUEAL b RYRRRREREN
7-rpc: Replica Resolution| (
8-Data Summary on leaf{1..m
Bl ial o) Bullet 11 TSRS
3 ik

(a) Sequence diagram: the Replica Resolution pass

1 3
. Zone Leaf Mixer
/Q\ ﬁoot A ’—OMixer_l..n 1.k
L
l‘ 9-rpc: Query
To selected Leaf

Mixer ito k.

<

10-rpc: Read Time
series Keys

11-Time series Keys
on Leafi..j

12-Rpc: Read Time series

Leaf Index
Server 1.m'

(5)

Repository

14-Rpc: Read (optional)

-

17-Zone 16-Leaf computed
18-Root ngP“‘eq Jimeseres e o
Computed time | | J'Me series |
series [
[
d T

5— Raw time series

(b) Sequence diagram: the Query pass

Fig. 7: Proposed new design: scenario-based sequence diagrams

be rolled out with Leaves, so the release time will also be
reduced by 30% approximately. The rollback of one function
won’t affect the other functions anymore. Restricted APIs and
decoupled components make it easy to identify root cause,
and improved failure isolation will reduce the the number of
incidents per month. With the new design, we can split the
18 dashboards into 5 write related dashboards and 13 query
related dashboards, which can be used to pinpoint different
problems more efficiently. It is even possible to shard the site
reliability team into two shards, query and storage, each of
which only responsible for the affected components.

C. Latency

This is another critical quality attribute and SLO: > 99%
of queries must complete within a certain amount of time. We
use sequence diagrams to analyze this attribute.

a) Current design: as depicted in Figure 5, there are 12
to 14 RPC hops needed to accomplish the QueryTimeSeries
scenario. Based on the metrics collected from Monarch, the
latency of queries is currently well below the target, and the
team considers that this attribute is of low risk. In addition,
from the team’s experience, the number of hops on RPC paths

68

is not the major cause of tail latency, which is mainly affected
by data processing time.

b) New design: Figure 7 shows that in the new design, 16
to 18 RPC hops are needed to accomplish the query scenario.
Our experiment revealed that the latency will increase to some
extent, but the system can still meet the target measures
without influencing user experiences. On the other hand,
although the data volume output by Leaves has increased
(because there is no computation including aggregations on
the Leaf anymore), the added layer of k Leaf Mixers splits
the majority of work on current Zone Mixers into k shards,
which will increase the parallelism and mitigate the latency
overhead. In addition, as there are fewer number of Leaves
involved in the query (from m to j — ¢ + 1, i.e., as much
as a 80% reduction), the query tail latency could be further
improved because a query is less likely to be impacted by the
small number of hot-spotted leaves.

D. Resource efficiency

The target is that the query processing should take less than
10% of additional CPU and memory. We use both component
and sequence diagrams to analyze the trade-offs.

Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

a) Current design: the team marked this attribute as “low
risk” because the current resource utilization of the system
hasn’t reached its limit and there are slack resources to use.

b) New design: As shown in Figure 7, the QueryTime-
Series user scenario now has 4 additional RPC hops. Intro-
ducing additional RPCs comes with the overhead of newtork
1/0, CPU time to encode and decode the RPCs, and memory
consumption to buffer those RPCs. Given that the current
system still has some slack resources, it should be able to
handle the additional resource overhead.

Furthermore, the system could utilize the resources better
with the new design. Since the spiky load of query compu-
tation are moved out of data storage, and transferred into a
stateless component, Leaf Mixer, as shown in Figure 6, both
Leaves and Leaf Mixers can operate with higher resources
(specifically memory) utilization because there is no need for
a large headroom. This change does not sacrifice the reliability,
because the storage workload is very stable and the failure of
stateless component can be tolerated by retries.

Table II summarizes these trade-off analyses, indicating
that for the quality attributes that are of medium or high
importance, and at medium or high risk, the new design will
significantly improve them and mitigate the risk. For the other
quality attributes that will be degraded in the new design, they
are either of low importance or low risk. The advantage of the
new design clearly outweighs the current one. Note that none
of the above analyses were possible before the component and
sequence diagrams were created.

VII. FEEDBACK AND IMPACT

We presented the re-architecting plan to the team, using
these scenario-based models to illustrate how key qualities of
the system will change in the new designs. The overall process
was well received. The team found that the canonical UML
component and sequence diagrams are easy to understand, and
acknowledged the advantage of differentiating static view from
run-time views. Below are a few comments:

“I really like how this slide represents how the jobs interact
with each other and what the responsibilities of each compo-
nent are.”

“Loved your presentation,... I also liked that you broke down
the impact using the industry standard terms (availability,
consistency, scalability etc)....

“... I really liked the diagrams you used, particularly the
-0 (provided interface))- (required interface) notation. also,
having legends on the diagrams. super useful.”

The managers of Monarch commented that this process
should be recommended to other Monarch teams, as well as
other Google projects. A few days after we presented and
shared the process, two new projects of Monarch adopted
UML component and sequence diagrams in their design doc-
uments, and two other teams within Google started to learn
and tried to adopt this process to support the refactoring of
their systems.

69

VIII. LESSONS LEARNED

In this section, we summarize the lessons learned from this
experience, that is, how to support trade-off analysis among
multiple quality attributes and justify re-architecting decisions,
by creating lightweight models based on a few critical user
and quality attribute scenarios. The most important lesson is
to limit the models to high-level abstractions, expressing these
scenarios only, and avoiding unnecessary complexity.

Specifying scenarios makes models lightweight, concise, and
relevant. Monarch has dozens of components and binaries, and
we just modeled a small part that is relevant to the query sce-
nario. Each component we modeled provides many APIs, and
we only modeled those that are involved in the scenario, and
have impacts on these quality attributes, just enough to conduct
the trade-off analysis. UML has the reputation of being overly
complicated [3], [15], [16], but our experience indicates that
it is possible to just use a small portion of the overall UML
family, guided by concrete user and quality attribute scenarios.
Only creating high-level models with sufficient abstraction is
the key to make these models useful.

Separating static and run-time views makes models pre-
cise. Modeling static structures and run-time RPC sequences
separately turns out to be an effective way to reduce am-
biguity. The “provided interface” and “required
interface” notations are well accepted by the developers
since they merely model the existence of relevant APIs,
rather than their interactions. Sequence diagrams, on the
other hand, visualize RPC sequences using time lines, and
these sequences are critical in terms of analyzing the trade-
offs among availability, latency, and maintainability. Sequence
modeling has been widely used in system designs, such as
embedded systems and real-time systems [17]-[19], but are
still not widely adopted in software design.

Creating self-explanatory diagrams. It is also important to
have non-ambiguous legends and make the diagrams self-
explanatory. We have to accept the fact that not all software
developers are familiar with all the notations in formal models
such as component and sequence diagrams. In order to com-
municate with both developers and management, we have to
make sure that these diagrams are understandable and avoid
using overly complicated notations that cannot be explained
using legends or one or two sentences.

Simplified notations. Although we recommend the team to
adopt component and sequence diagrams, we didn’t follow
standard UML notations strictly. For example, we didn’t use
stereotype or special icons to denote “Component”. Rather,
we just used a box to represent an independently executable,
deployable component. Similarly, in these sequence diagrams,
we also used a simple box to represent an instance of a binary
at run-time, rather than using specialized UML notations. The
assumption is that a box represents a static entity in a static
view, and represents a run-time instance in a dynamic view.
Our rationale is, again, keep the diagrams simple: not to
introduce new notations until it is absolutely necessary.

Supporting customized notations. In these Monarch dia-

Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Risk and trade-off analysis

Current Architecture Proposed New Architecture
Quality Attributes | Importance Risk Tradeoffs Notes
Failure isolation between different responsibilities
Availability High High + Fanout reduction leads to availability increase
Move computation out from stateful components and allow retries
TR . . Code changes to the query, index and storage are now independent
Maintainability Medium High + Simplify t}:ge API of]?eafrt}:) a key-value storge "
Latency High Low - Four more RPC hops are needed to accomplish a query
Resource efficiency Medium Low - Additional RPC processing overhead

grams, we employed simple color coding to denote three types
of responsibilities: computation, index generation, and data
storage. In Figure 1, Figure 4, and Figure 5, it is clear that
the Leaf component is taking all three responsibilities in the
current design. Figure 6 and Figure 7 depict how they will be
decoupled into three different components in the new design.
This color-coding notation is not part of the standard UML,
but is an innovative and effective way to demonstrate how the
system will be refactored and why.

In summary, although we recommend UML modeling,
we also recommend allowing variations, customization, and
extension in term of notations used in diagrams, following
the principles of usefulness, simplicity, and non-ambiguity.
It is critical that the models are concise, precise, relevant to
the tasks the developers are working on, and help developers
address the challenges they are facing. We created these
diagrams using Google Slides and a general graphic creation
application, rather than UML-specific tools. It took us a few
hours in total to create, revise, and refine these diagrams. The
time cost is affordable.

In this study, we only used component and sequence dia-
grams. It is possible that in other situations, a different type
of models will be needed. For example, a C4? context model
can be useful to analyze how the components within a system
interact with infrastructure components or third-party libraries.
UML deployment diagrams can also be useful to demonstrate
how different components should be installed in hardware
devices. Again, we only create these models when needed,
at the proper level of abstraction.

This is the first attempt to support architecture redesign for
a planet-scale legacy system using scenario-based, lightweight
models and multiple QA analysis within Google. The fact that
these models were quickly adopted by other teams indicate
the possibility to apply these techniques to other stages of
a software development process, supporting feature analysis,
quality attribute trade-off analysis, as well as refactoring
decision-making.

In this experience, we have tackled the challenges of cre-
ating abstract and lightweight models that are just enough
to express the scenarios in question, and avoided unneces-
sary complexity and details, which was the key to facilitate
the quick adoption of these basic UML models and related
concepts by multiple Google projects. The experience also
provided an example and guidelines on how to leverage

Zhttps://c4model.com/

70

these models to facilitate design related decision-making. It
is possible that more complicated, and more than one changes
to the architecture are needed in the future. This experience
is the first step for the team to adopt more formal and
sophisticated models to provide quantitatively, automated, and
more accurate predictions, as researchers have proposed in the
domain of performance engineering [20], [20]-[23].

IX. RELATED WORK

Modeling and documenting software architecture have been
proposed and taught in classrooms for a few decades. Unified
Modeling Language (UML) [1] is considered as the de facto
standard of software design modeling techniques. Clements
et al. [9] proposed that software systems should be modeled
using different types of views. Bass et al. [2] also proposed that
software architecture has different types of structures: module,
component-connector, and allocation. C4 is another software
modeling technique gaining popularity recently. It models
software from four levels: Context, Containers, Components
and Code. However, the application of these models are still
limited in practice.

A recent survey [3] of 314 practitioners from 180 IT
companies reveals that although most practitioners recognized
the usefulness of UML in terms of improving system under-
standability and quality, as many as 74.8% of them did not use
UML at all because of some reasons such as lack of knowledge
about modeling, culture of the company, time constraints,
as well as the difficulty of keeping the models updated.
Researchers have conducted various surveys on the application
of UML in practice [3], [15], [16], [24]-[26]. Basically most
practitioners recognize the necessity and benefit of modeling,
but they couldn’t justify the cost of managing the complexity
and evolution. This is consistent with our observations within
Google and other companies we worked with.

Many other architecture description languages (ADL) [27],
such as ACME [28], AADL [29] and Wright [30], have
been proposed, but they face similar challenges for large-scale
industrial projects. Researchers also proposed a number of
architecture review and assessment approaches using various
models [31]-[34]. Our report complements these prior works
with a real experience of combining multiple abstract models
to justify a significant architecture-level revision for an extra
large legacy system within Google.

Service level objectives (SLO) and site reliability engi-
neering (SRE) are widely used terms within Google and
software industry to define important system attributes, such

Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

as performance and reliability. These SLOs form a subset
of quality attributes [2] (used to be called “non-functional
requirements”), a term used in academic research and edu-
cation. SLO and SRE usually rely on testing and continuous
online monitoring to ensure the most important quality of the
running system, and the practitioners have to count on their
intuition and experiences to analyze the trade-offs among these
attributes. Here we integrate user scenarios and lightweight
models to enable rigorous trade-off analysis.

In the domain of software performance engineering, using
UML and other models to analyze and predict software
performance has been studied for more than a decade [20]-
[23], [35]-[40]. In particular, Petriu’s [22] recent work is
most relevant to ours since we share similar purposes of
using multiple models to analyze multiple quality attributes.
Different from Petriu’s work that employs an sophisticated
ecosystem of heterogeneous modeling artifacts to support
multiple features such as consistent co-evolution of the soft-
ware models and cross-model traceability, we reported an
experience of communicating and justifying the redesign of
an extra large system using lightweight, basic UML models
under the specific, realistic scenarios. We created abstract
models just enough to analyze and communicate the trade-
offs. We believe this is the first step towards the adoption
of more sophisticated models. Most other SPE works focus
on abstracting the interaction among software components to
assess performance only, while in this study, we analyzed the
trade-offs among multiple quality attributes, enabled by the
combination of component and sequence models created based
on critical user scenarios.

In the domain of Model-based engineering (MBE), models
are widely used in the design and development of embedded
systems. These models are usually used for the purpose of
simulations, code generation, and documentation [17], [19],
[41]-[43]. In software design, however, formal modeling is
not part of the software development process yet. Most teams
create design documents at the beginning of the project,
usually containing informal diagrams that are not sufficient
to support complicated decision-making or trade-off analysis.
We expect that this positive experience inspires more effective
adoption of software architecting and modeling into daily
development processes.

X. CONCLUSION

In this paper, we report our experiences of using scenario-
based formal models to conduct quality trade-off analy-
sis, communicating and justifying a proposed re-architecting
strategy for Monarch. We first identify a few critical user
scenarios and their associated quality attribute scenarios, in
which the concrete artifacts involved are specified. These
scenarios enabled us to create precise and concise models
with a proper level of abstraction: component diagrams with
only scenarios-related components, and sequence diagrams
only modeling how RPCs route through these components.
We create these models for both the current design and the

71

proposed new design, which made it easy to conduct trade-
off analysis. This process was well-received by the team and
recommended to other teams within Google. Soon after our
presentation, two new projects adopted these diagrams in their
design documents, and two other products within Google
are adopting the process. This experience indicates that it
is possible to integrate formal models and QA analysis into
software development process continuously, communicating
features, assessing quality attributes, or justifying design and
architecture decisions.

XI. ACKNOWLEDGEMENTS

We thank Adam Tart, Ming Chen, Nick Sakharov and many
other Monarch engineers for their contributions to the design.
We would like to thank John Wilkes for the valuable feedback
of the paper. This research was partially supported by the
United States National Sciences Foundation grants 1835292,
1823177, and 2213764.

Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

(1]

(31

(4]

(61

(71

(81

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language
User Guide. The 2nd Edition. Addison-Wesley, 2005.

L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
4th ed. Addison-Wesley, 2021.

E. Junior, K. Farias, and B. Silva, “A survey on the use of UML in the
brazilian industry,” in Proceedings of the XXXV Brazilian Symposium
on Software Engineering, ser. SBES °21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 275-284. [Online].
Available: https://doi.org/10.1145/3474624.3474632

E. Guimaraes, M. Manica, L. Gongales, V. Bischoff, B. da Silva, and
K. Farias, “On the UML use in brazilian industry: A state of the practice
survey,” 07 2018.

H. Storrle, “How are conceptual models used in industrial software
development? a descriptive survey,” in Proceedings of the 2Ist
International Conference on Evaluation and Assessment in Software
Engineering, ser. EASE’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 160-169. [Online]. Available:
https://doi.org/10.1145/3084226.3084256

A. M. Fernandez-Sdez, M. R. Chaudron, and M. Genero, “An
industrial case study on the use of UML in software maintenance
and its perceived benefits and hurdles,” Empirical Softw. Engg.,
vol. 23, no. 6, p. 3281-3345, dec 2018. [Online]. Available:
https://doi.org/10.1007/s10664-018-9599-4

C. Adams, L. Alonso, B. Atkin, J. P. Banning, S. Bhola, R. Buskens,
M. Chen, X. Chen, Y. Chung, Q. Jia, N. Sakharov, G. T. Talbot, A. J.
Tart, and N. Taylor, Eds., Monarch: Google’s Planet-Scale In-Memory
Time Series Database, 2020.

Y. Rastegari and F. Shams, “Optimal decomposition of service level
objectives into policy assertions.” The Scientific World Journal, vol. 2015
(2015): 465074.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Mer-
son, R. Nord, and J. Stafford, Documenting Software Architectures:
Views and Beyond. The 2nd Edition. Addison-Wesley, 2010.

A. Merchant, “Keynote address II: Optimal flash partitioning for storage
workloads in google’s colossus file system.” Broomfield, CO: USENIX
Association, Oct. 2014.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford, “Spanner:
Google’s Globally-Distributed database,” in 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12).
Hollywood, CA: USENIX Association, Oct. 2012, pp. 261-264. [On-
line]. Available: https://www.usenix.org/conference/osdil2/technical-
sessions/presentation/corbett

B. Samwel, J. Cieslewicz, B. Handy, J. Govig, P. Venetis, C. Yang,
K. Peters, J. Shute, D. Tenedorio, H. Apte, F. Weigel, D. G.
Wilhite, J. Yang, J. Xu, J. Li, Z. Yuan, C. Chasseur, Q. Zeng,
I. Rae, A. Biyani, A. Harn, Y. Xia, A. Gubichev, A. El-Helw,
O. Erling, A. Yan, M. Yang, Y. Wei, T. Do, C. Zheng, G. Graefe,
S. Sardashti, A. Aly, D. Agrawal, A. Gupta, and S. Venkataraman, “F1
query: Declarative querying at scale,” 2018, pp. 1835-1848. [Online].
Available: http://www.vldb.org/pvldb/voll1/p1835-samwel.pdf

A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with Borg,”
in Proceedings of the European Conference on Computer Systems
(EuroSys), Bordeaux, France, 2015.

R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Architecture anti-
patterns: Automatically detectable violations of design principles,” IEEE
Transactions on Software Engineering, pp. 1-1, 2019.

M. Petre, “UML in practice,” in 2013 35th International Conference on
Software Engineering (ICSE), 2013, pp. 722-731.

W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical
evaluation of the costs and benefits of UML in software maintenance,”
IEEE Transactions on Software Engineering, vol. 34, no. 3, pp. 407-432,
2008.

G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-
based engineering in the embedded systems domain: An industrial
survey on the state-of-practice,” Softw. Syst. Model., vol. 17, no. 1, p.
91-113, feb 2018. [Online]. Available: https://doi.org/10.1007/s10270-
016-0523-3

72

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

T. Shailesh, A. Nayak, and D. Prasad, “An UML based performance
evaluation of real-time systems using timed petri net,” Computers,
vol. 9, no. 4, 2020. [Online]. Available: https://www.mdpi.com/2073-
431X/9/4/94

J. Trowitzsch, A. Zimmermann, and G. Hommel, “Towards quantitative
analysis of real-time UML using stochastic petri nets.” vol. 2005, 01
2005.

C. U. Smith, Performance engineering of software systems, ser. Software
Engineering Institute series in software engineering. Addison-Wesley,
1990.

D. C. Petriu, C. M. Woodside, D. B. Petriu, J. Xu, T. Israr, G. Georg,
R. France, J. M. Bieman, S. H. Houmb, and J. Jiirjens, “Performance
analysis of security aspects in UML models,” in Proceedings of the 6th
International Workshop on Software and Performance, ser. WOSP ’07.
New York, NY, USA: Association for Computing Machinery, 2007, p.
91-102. [Online]. Available: https://doi.org/10.1145/1216993.1217010
D. Petriu, “Integrating the analysis of multiple non-functional properties
in model-driven engineering,” Software and Systems Modeling, vol. 20,
12 2021.

C. Canevet, S. Gilmore, J. Hillston, L. Kloul, and P. Stevens, “Analysing
UML 2.0 activity diagrams in the software performance engineering
process,” SIGSOFT Softw. Eng. Notes, vol. 29, no. 1, p. 74-78, jan
2004. [Online]. Available: https://doi.org/10.1145/974043.974055

C. Lange, M. Chaudron, and J. Muskens, “In practice: UML software
architecture and design description,” Software, IEEE, vol. 23, pp. 40 —
46, 04 2006.

M. Ozkaya and F. Erata, “A survey on the practical use of
UML for different software architecture viewpoints,” Information and
Software Technology, vol. 121, p. 106275, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584920300252
G. Scanniello, C. Gravino, M. Genero, J. A. Cruz-Lemus, and
G. Tortora, “On the impact of UML analysis models on source-
code comprehensibility and modifiability,” ACM Trans. Softw.
Eng. Methodol., vol. 23, no. 2, apr 2014. [Online]. Available:
https://doi.org/10.1145/2491912

N. Medvidovic and R. Taylor, “A classification and comparison frame-
work for software architecture description languages,” IEEE Transac-
tions on Software Engineering, vol. 26, no. 1, pp. 70-93, 2000.

D. Garlan, R. Monroe, and D. Wile, “ACME: An architecture
description interchange language,” in CASCON First Decade High
Impact Papers, ser. CASCON ’10. USA: IBM Corp., 2010, p.
159-173. [Online]. Available: https://doi.org/10.1145/1925805.1925814
P. H. Feiler, B. Lewis, S. Vestal, and E. Colbert, “An overview of the
sae architecture analysis & design language (AADL) standard: A basis
for model-based architecture-driven embedded systems engineering,”
in Architecture Description Languages, P. Dissaux, M. Filali-Amine,
P. Michel, and F. Vernadat, Eds. Boston, MA: Springer US, 2005, pp.
3-15.

R. Allen, R. Douence, and D. Garlan, “Specifying and analyzing
dynamic software architectures,” in Proceedings of the 1998 Confer-
ence on Fundamental Approaches to Software Engineering (FASE’98),
Lisbon, Portugal, March 1998, an expanded version of a the paper
”Specifying Dynamism in Software Architectures,” which appeared in
the Proceedings of the Workshop on Foundations of Component-Based
Software Engineering, September 1997.

D. Sobhy, R. Bahsoon, L. Minku, and R. Kazman, “Evaluation
of software architectures under uncertainty: A systematic literature
review,” ACM Trans. Softw. Eng. Methodol., vol. 30, no. 4, aug 2021.
[Online]. Available: https://doi.org/10.1145/3464305

R. C. Soares, V. d. Santos, and E. Y. Nakagawa, “Continuous
evaluation of software architectures: An overview of the state of
the art,” in Proceedings of the 37th ACM/SIGAPP Symposium on
Applied Computing, ser. SAC *22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1425-1431. [Online]. Available:
https://doi.org/10.1145/3477314.3507318

V.-P. Eloranta, U. van Heesch, P. Avgeriou, N. Harrison, and
K. Koskimies, “Lightweight evaluation of software architecture deci-
sions,” in Relating System Quality and Software Architecture, 1. Mistrik,
R. Bahsoon, P. Eeles, R. Roshandel, and M. Stal, Eds. Boston: Morgan
Kaufmann, 2014, pp. 157-179.

P. Clements, P. Gordon, R. Kazman, and M. Klein, Evaluating Software
Architectures: Methods and Case Studies. — Addison-Wesley Profes-
sional; 1st edition, 2001.

Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

[35] C. U. Smith, C. M. Llad6, V. Cortellessa, A. D. Marco, and L. G.
Williams, “From UML models to software performance results: an
SPE process based on XML interchange formats,” in Proceedings of
the Fifth International Workshop on Software and Performance, WOSP
2005, Palma, Illes Balears, Spain, July 12-14, 2005. ACM, 2005, pp.
87-98. [Online]. Available: https://doi.org/10.1145/1071021.1071030

[36] M. Melia, C. M. Lladé, C. U. Smith, and R. Puigjaner, “Experimentation
and output interchange for petri net models,” in Proceedings of the 7th
International Workshop on Software and Performance, WOSP 2008,
Princeton, NJ, USA, June 23-26, 2008, A. Avritzer, E. J. Weyuker, and
C. M. Woodside, Eds. ACM, 2008, pp. 133—138. [Online]. Available:
https://doi.org/10.1145/1383559.1383576

[37] M. Rapp, M. Scheerer, and R. Reussner, “Design-time performability
optimization of runtime adaptation strategies,” in Companion of
the 2022 ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 113-120. [Online]. Available:
https://doi.org/10.1145/3491204.3527471

[38] J. I. Requeno, I. Gascén, and J. Merseguer, “Towards the
performance analysis of Apache Tez applications,” in Companion
of the 2018 ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 147-152. [Online]. Available:
https://doi.org/10.1145/3185768.3186284

[39] T. Altamimi and D. C. Petriu, “Incremental change propagation from
uml software models to lqn performance models,” in Proceedings of
the 27th Annual International Conference on Computer Science and
Software Engineering, ser. CASCON ’17. USA: IBM Corp., 2017, p.
120-131.

[40] C. Li, T. Altamimi, M. Zargar, G. Casale, and D. Petriu, “Tulsa: A
tool for transforming uml to layered queueing networks for performance
analysis of data intensive applications,” 08 2017, pp. 295-299.

[41] B. Anda, K. Hansen, I. Gullesen, and H. K. Thorsen, “Experiences from
introducing UML-based development in a large safety-critical project,”
Empirical Software Engineering, vol. 11, no. 4, pp. 555-581, 2006.

[42] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software
engineering in practice,” Synthesis lectures on software engineering,
vol. 3, no. 1, pp. 1-207, 2017.

[43] J. Hutchinson, J. Whittle, and M. Rouncefield, “Model-driven engineer-
ing practices in industry: Social, organizational and managerial factors
that lead to success or failure,” Science of Computer Programming,
vol. 89, pp. 144-161, 2014.

73

Authorized licensed use limited to: Drexel University. Downloaded on February 28,2024 at 11:32:21 UTC from IEEE Xplore. Restrictions apply.

