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Stress and stretching regulate dispersion in
viscoelastic porous media flows†

Manish Kumar, ‡a Derek M. Walkama,‡bc Arezoo M. Ardekani a and
Jeffrey S. Guasto *b

In this work, we study the role of viscoelastic instability in the mechanical dispersion of fluid flow

through porous media at high Péclet numbers. Using microfluidic experiments and numerical

simulations, we show that viscoelastic instability in flow through a hexagonally ordered (staggered)

medium strongly enhances dispersion transverse to the mean flow direction with increasing

Weissenberg number (Wi). In contrast, preferential flow paths can quench the elastic instability in

disordered media, which has two important consequences for transport: first, the lack of chaotic

velocity fluctuations reduces transverse dispersion relative to unstable flows. Second, the amplification

of flow along preferential paths with increasing Wi causes strongly-correlated stream-wise flow that

enhances longitudinal dispersion. Finally, we illustrate how the observed dispersion phenomena can be

understood through the lens of Lagrangian stretching manifolds, which act as advective transport

barriers and coincide with high stress regions in these viscoelastic porous media flows.

1 Introduction

The flow of viscoelastic fluids through porous media governs
material transport and mixing in a range of geophysical,
biological, and industrial systems.1,2 Bacterial biofilms prolif-
erate in soils and cause infections in bodily tissue,3 and
filtration media are used in food and polymer processing.4

Polymer additives improve the efficacy of hydraulic fracturing
and enhanced oil recovery (EOR),5,6 including the remediation
of oil ganglia.7–11 In the latter case of EOR for example, despite
extensive efforts to observe and understand the impact of
viscoelastic flow, no globally accepted remediation mechanism
via polymer additives has been established.12–15 However, the
onset of unsteady velocity fluctuations in such viscoelastic
porous media flows16–18 appears to play a critical role in
microscale transport,16,19–21 where porous microstructure cou-
ples pore-scale viscoelastic flows22 to sample-scale transport
properties.23 The non-Newtonian rheology of viscoelastic
fluids encodes a memory of the flow history, whose non-
trivial dependence on pore geometry24–27 can result in

viscoelastic instability.16,28–36 A deeper understanding of the
interplay between rheology, flow structure, and dispersion is
paramount to predicting material transport in viscoelastic
porous media flows.

In the absence of inertia, strong elastic stresses cause
viscoelastic flow instabilities in porous media, which are heav-
ily dependent on the flow geometry.34,36 The transition to
chaotic dynamics in viscoelastic flows is characterized by the
Weissenberg number, Wi = t_g, which compares elastic forces to
viscous forces. Here, t is the fluid relaxation time and _g = U/d is
the characteristic shear rate, where U is the average flow speed
and d is the characteristic obstacle diameter. Chaotic velocity
fluctuations at large Wi have been shown to enhance transverse
dispersion in ordered porous media flows16,37 via a ‘‘lane-
changing’’ effect.38 In contrast, markedly weaker dispersion
enhancement has been reported for viscoelastic flows in dis-
ordered media.19–21 Recent experiments have shed new light on
the geometry-dependent transition to chaos and the resulting
flow topologies, which ultimately regulate the dispersion prop-
erties. The critical Weissenberg number, Wicr, is highly sensi-
tive to both the disorder of the medium34 and orientation of
ordered media relative to the flow.36 Preferential flow paths in
disordered media and along lattice directions in periodic
media reduce extensional deformation and stress and ulti-
mately suppress the transition to chaos compared to staggered
obstacle arrangements in ordered systems at the same Wi.34,36

This topological and dynamical shift in the flow field with
geometry must be intrinsically linked to the transport proper-
ties. However, a comprehensive understanding of how
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viscoelastic flow instabilities regulate dispersion in porous
media remains lacking.

In this work, we characterize how changes in the topology
(i.e., structure) of viscoelastic flows regulate anisotropic
dispersion in porous media, and we elucidate the underlying
mechanisms for geometry-dependent transport. Microfluidic
experiments are complemented by numerical simulations for
quasi-two-dimensional model porous media for both hexagon-
ally ordered (staggered) and disordered arrays of cylindrical
pillars. Our results capture the accepted enhancement of
transverse dispersion via flow instability in ordered flow and
also reveal that the amplification of preferential flow paths
in the disordered media increases longitudinal dispersion
[Fig. 1]. Furthermore, recent theoretical work based on a
Lagrangian analysis of viscoelastic flows demonstrated that
the fluid stretching field closely reflects the polymeric stress
topology.39 We show that transverse and longitudinal disper-
sion can be understood through the structure of the Lagrangian
stretching field, whose manifolds act as barriers to advection
and dynamically guide transport in both steady and unsteady
flows. These results demonstrate a potential mechanism for
tuning anisotropic dispersion, and they illustrate a direct link
between elastic stress and transport in viscoelastic porous
media flows.

2 Methods
2.1 Experimental methods

Following established approaches from previous work,34 micro-
fluidic devices were designed and fabricated with 25 mm long,
4 mm wide, and 50 mm high straight main channels, which
contain arrays of cylindrical pillars (diameter, d = 50 mm) in
both an ordered and a disordered configuration. Photolitho-
graphy masks were generated by first specifying an ordered,
hexagonal array in a staggered orientation relative to the flow
direction (ESI,† Fig. S1),36 which had a lattice constant, a =
120 mm. The disordered geometry was created by randomly
perturbing the pillar locations from the original lattice within a
hexagonal circumradius of a (ESI,† Fig. S1). The porosity of
both the ordered and disordered geometries is E0.84. The
viscoelastic fluid is a solution of high molecular weight poly-
acrylamide (PAA; 18 � 106 MW) at a concentration of 150 ppm
of PAA in a viscous Newtonian solvent (97% aqueous
glycerol).40 The solution was prepared by mixing 1 g of PAA
into 200 mL of DI water using a magnetic stirrer for 1 h. 3 g of
the aqueous PAA solution was mixed with 97 g of glycerol
for 12 h. Finally, the fluid was seeded with 0.5 mm (F8813
FluoroSpheres, Life Technologies) and 1 mm (F13081 Fluoro-
Spheres, Life Technologies) diameter tracer particles for

Fig. 1 Experiments and simulations reveal Eulerian and Lagrangian transport of viscoelastic fluids in porous media. (a) Time-averaged flow fields for
experiments and respective simulations at various Wi for ordered and disordered porous geometries. Flow is left to right. Scale bar, 120 mm. (b)
Experimentally measured particle trajectories with initial position subtracted, Dxi(t̃) = xi(t̃) � xi(0), for dimensionless time, t̃ = tU/l, in the range 0 r t̃ r5.
Scale bar, 60 mm. (c) and (d) Transverse and longitudinal relative displacement distributions, respectively, Dxi(t*) � hDxi(t*)i, corresponding to (b) at
normalized time, t* � t̃ = 5. Color and line type correspond to panel borders in (b).
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simultaneous particle image velocimetry (PIV) and particle
tracking, respectively.

Capillary breakup extensional rheology (CaBER) was used to
characterize the (longest) relaxation time, t, of the PAA solu-
tions [ESI,† Fig. S2(a)],41 which provides a more relevant
measure of the relaxation time for strongly elongational flows
compared to shear rheology.42,43 The PAA solution was
stretched between the ends of two circular cylinders, and the
measured exponential decay rate of the liquid bridge diameter
(3t) gave a relaxation time t = 1.14� 0.1 s (N = 6). The shear-rate
dependence of the viscoelastic fluid was characterized using a
strain controlled rheometer (TA-2000) with a cone and plate
geometry [ESI,† Fig. S2(b)]. The polymer solution was pre-
sheared at a rate of 1 s�1 for 120 s, then each measurement
was held at the respective shear rate for 60 s and measured for
15 s. The PAA solution exhibited a weak shear thinning beha-
vior, which is well fitted by the Carreau–Yasuda model.44 The
measured shear viscosity, Z, was in the range 2 Pa s Z Z Z

0.5 Pa s for shear rates in the range 0.01 r _g r10 s�1.
The viscoelastic flow was driven by a pressure controller

(Elveflow OB1) through the microfluidic pillar array channel.
Epifluorescence video microscopy (Nikon Ti-e; 10�, 0.3 NA
objective) captured the motion (100 fps; Andor Zyla) of fluor-
escent tracer particles at the mid-depth of the channel. Time-
resolved velocity fields, u(x,t), were measured using PIV,45 and
Lagrangian statistics were obtained by simultaneous particle
tracking. For the viscoelastic fluid and imaging system used
here, a maximum Wi of Wi o 5 was found to provide reliable
imaging for PIV. These conditions corresponded to a maximum
Reynolds number of Re = rUd/Z0 t 10�4 (density, r; mean flow
speed, U; zero shear viscosity, Z0; see also ESI†), which ensured
that inertial effects were negligible and that the emergence of
flow instability only depended on elastic effects. The Péclet
numbers, Pe = Ud/D(Z), for the experiments were in the range
105 r Pe r 109, where D accounts for the viscosity dependent
Stokes–Einstein diffusion coefficient of the tracers. These large
Pe suggest that transport in experiments was advection domi-
nated, and thus, we assume that tracer diffusion has negligible
impact on measured dispersion.

2.2 Numerical methods

The numerical simulations were performed in a two-
dimensional domain that was designed to exactly match the
region-of-interest in experiments [Fig. 1(a) and ESI,† Fig. S1] via
computer-generated photomasks. The flow of incompressible
polymeric fluid in the interstitial region of the porous geometry
is described by the conservation of mass and momentum as:

r�u = 0, (1)

r
@u

@t
þ u � ru

� �
¼ �rpþr � r; (2)

where u and p are the fluid velocity and pressure fields,
respectively. The total stress tensor r is written as r = rs + rp,
where rs and rp are the solvent and polymeric stress
tensor, respectively. For the Newtonian solvent, rs is given as

rs = Zs(ru + ruT), where Zs is the solvent viscosity. We
chose the FENE-P constitutive equation to calculate the poly-
meric stresses because it captures both elasticity and shear
thinning behaviours as well as finite extensibility of polymeric
chains:46,47

rp þ
t
f
r
r
p ¼

bZp
f

ruþruT
� �

� D

Dt

1

f

� �
trp þ bZpI
h i

; (3)

where Zp is the polymeric contribution to the zero shear
viscosity of the solution, Z0 = Zs + Zp. I is the identity tensor
and D/Dt is the material derivative. The function f is
described as:

f rp
� �

¼
L2 þ t

bZp
tr rp
� �

L2 � 3
; (4)

where b = L2/(L2 � 3), and the parameter L2 = 3R0
2/Re

2 represents
the ratio of the maximum allowable length, R0, to the equili-
brium length, Re, of the polymeric chains.46–48 For the FENE-P
model, a typical range of L2 is 10–1000,21,47,49,50 which reduces
to the Oldroyd-B constitutive model in the limit of L2 -N. The
upper convective time derivative operator r used in eqn (3) is
given by:

r
r
p ¼ Drp

Dt
� rp � ru�ruT � rp: (5)

The numerical simulations were performed using the open-
source framework RheoTool51 integrated with OpenFOAM,52

where the equations were discretized using a finite volume
method and the log-conformation approach was used to calcu-
late the polymeric stress tensor.53,54 The relationship between
the polymeric stress tensor, rp, and the log-conformation
tensor, H, is given as:

rp ¼
Zp
t

f eH � bI
� �

: (6)

The implementation and the validation of the numerical
tool can be found in previous works (ESI,† Fig. S3).51,55 Viscoe-
lastic models often fail to represent the polymeric fluids used in
the industry, especially at high deformation rates,1,43,56 and
there are studies in the literature where the model parameters
have been adjusted to match the experimental observations
even for simpler setups.49,57,58 Therefore, we focus on a quali-
tative comparison between experiments and simulations in the
present study. The dimensionless numbers used in the simula-
tions were: Re = 10�4, 0.1 r Wi r 5, b = Zs/(Zs + Zp) = 0.02, and
L2 = 1000. The flow was driven with a constant inlet velocity of
50 mm s�1 on the left side of the channel with no-slip bound-
aries on the top and bottom walls, and fully developed bound-
ary conditions (i.e., zero-gradient) at the outlet [Fig. 1]. While
the choice to use 2D simulations versus 3D was driven by the
high computational cost, 2D simulations were found to capture
all of the essential features of these viscoelastic flows [Fig. 1]. In
the present study, elastic effects completely dominate over
inertial effects as the elasticity number (El), which measures
the relative importance of elastic and inertial forces, is El B
O(104) c 1. Therefore, the Weissenberg number in the
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simulation has been altered by changing the relaxation time
(t = 0.1–5 s).

For both experiments and simulations, the Lagrangian
stretching, S(x,t), is determined from the time resolved flow
field59,60 by using established methods.39,61,62 Briefly, fluid
element positions, x0, at time t = t0 are deformed by a flow
field, u(x,t), and advected to new positions, x, at time, t1 = t0 + l.
The flow map, Fl(x0) = x, is determined as the solution to
dx

dt
¼ uðx; tÞ, and the (right) Cauchy–Green strain tensor is

formed as C(R)
l = rFTlrFl. Finally, the stretching field S(x,t) is

calculated as the square root of the largest eigenvalue of C(R)
l ,

where the corresponding eigenvector gives the principal
stretching direction. For all flows, the stretching history is
determined by backward time integration, and the integration
time was chosen as the fluid relaxation time (l = �t).39 Fl was
found through numerical integration (ODE45, MATLAB) for
initial positions on a regular grid (251 � 351) along with four
auxiliary points each (1 mm separation). rFl was computed
through central differences of the auxiliary points, and
MATLAB was used for the stretching field calculations.

3 Results
3.1 Anisotropic Lagrangian transport in porous media

The stability analysis of viscoelastic flows through the geome-
tries considered in the present study has been performed in
Walkama et al.,34 where the temporal fluctuation of the flow
speed was used to characterize the stability. Flow through
hexagonally ordered (staggered) geometries in both experi-
ments and simulations exhibit a transition to unstable flow at
a critical Weissenberg number, Wicr E 0.5.34 However, the
time-averaged flow fields do not show a strong topological
change with Wi due to the high degree of geometric symmetry
[Fig. 1(a)]. In contrast, disordered geometries stabilize these
flows via the formation of preferential flow paths,63 where
extensional fluid deformations – and consequently polymer
stretching – are reduced.34,36 Time-averaged flow fields through
disordered media in both experiments and simulations display
a topological shift from a Newtonian flow [Fig. 1(a)], where
filaments form as Wi is increased and the flow field becomes
more heterogeneous. As in previous works,34,36 this Eulerian
picture points to a trade-off between stability and channeliza-
tion that is mediated by pore microstructure. However, to gain
deeper insight into the effect of geometry on particle dispersion
in viscoelastic flows, we adopt a Lagrangian description of
transport.

Lagrangian analysis of fluid transport reveals that lateral
and longitudinal tracer displacements are enhanced at high Wi
for the ordered and disordered porous geometries, respectively.
Particle tracking provides tracer particle trajectories in time,
xi(t̃), where i represents an individual particle track. The nor-
malized time, t̃ = tU/l, corresponds to the number of pores
traveled for a given characteristic (mean) flow speed, U, and
stream-wise pore spacing, l = a sin 601. Examination of the net
displacement of the fluid tracers with respect to their initial

positions, Dxi(t̃) = xi(t̃) � xi(0), demonstrates how geometry
influences transport through viscoelasticity [Fig. 1(b)]. Tracers
in the ordered geometry at small Wi tamely oscillate back
and forth, as they weave through the pillar array following
streamlines in the steady flow. Conversely, at Wi = 4 4 Wicr,
tracers exhibit wild lateral excursions accompanied by a mod-
erate enhancement of longitudinal displacement. The former
is consistent with previous observations of ‘‘lane-changing’’,16

which is a consequence of temporal velocity field fluctua-
tions.34 In the disordered geometry, tracers laterally explore a
relatively large swatch of the porous channel by virtue of the
meandering streamlines at low Wi, with little change at higher
Wi [Fig. 1(b)]. While the disordered flow remains steady at Wi =
4 (see also Fig. 3 in34), tracer displacements are appreciably
enhanced in the longitudinal direction.

The displacement distributions relative to the mean,
Dxi(t*) � hDxi(t*)i, at a fixed time (t* � t̃ = 5) more clearly show
the anisotropic enhancement of tracer excursions in both the
ordered and disordered systems at high Wi [Fig. 1(c) and (d)].
Here, h�i indicates an ensemble average. The transverse dis-
placement [Fig. 1(c)] exhibits a narrow distribution for low Wi
in the ordered media (blue solid) due to the high Péclet
number, stable flow. At high Wi, the ordered media shows
large displacements in the transverse direction (red solid),
consistent with the onset of the elastic instability. Transverse
disordered flow, on the other hand, is generally unaffected by
increasing Wi and shows little to no change (blue and red
dashed for low and high Wi, respectively). Surprisingly, long-
itudinal displacements [Fig. 1(d)] show the opposite effect as a
function of disorder. Longitudinal displacements in the
ordered system (solid curves) show little change with Wi.
However, the disordered media exhibits a broader tracer dis-
placement distribution for high Wi (dashed red) compared to
low Wi (dashed blue). Thus, tracers disperse by traveling both
significantly faster and slower than the mean flow speed in
disordered media at high Wi.

3.2 Mean squared displacement analysis reveals dispersive
spreading of fluid tracers

The variance of the displacement distributions [Fig. 1(c) and
(d)] defines the advection-free mean squared displacement
(MSD) at time, t̃, which indicate the nature and rate of spread-
ing of the tracer ensemble:

sT
2(t̃) = h(Dyi(t̃) � hDyi(t̃)i)2i, (7)

sL
2(t̃) = h(Dxi(t̃) � hDxi(t̃)i)2i. (8)

The MSD describes the average separation of fluid parcels
from one another in time due to both the mechanical disper-
sion and flow instability in the transverse (sT

2) and longitudinal
(sL

2) directions, respectively. The transverse MSD in the
ordered media exhibits oscillations at low Wi reflective of the
obstacle periodicity, but the MSD saturates due to the sampling
of streamlines with finite amplitude displacements from the
mean flow direction. As Wi increases and the flow becomes
elastically unstable [Fig. 2(a), solid curves], the displacements
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at long times are unbounded and grow superlinearly in
time [Fig. 2(a), inset], which is indicative of superdiffusive
transport (i.e., MSD p ta with 1 o a o 2). However, in the
disordered geometry, all transverse MSDs plateau after E2–3
pore lengths and are only mildly affected by Wi [Fig. 2(a),
dashed curves]. While all transverse MSDs are ballistic at short
times (a E 2) [Fig. 2(a), inset], only MSDs for the transverse,
high Wi ordered flow continue growing superlinearly at long
times due to the elastic instability. Mechanical dispersion in
the flow direction64,65 causes longitudinal MSDs to be
unbounded. While all longitudinal MSDs are superdiffusive
[Fig. 2(b), inset], MSDs for viscoelastic flows grow faster in the
disordered media [Fig. 2(b), dashed curves] compared to
ordered media [Fig. 2(b), solid curves], relative to their respec-
tive Newtonian flows.

3.3 Dispersion tensor for viscoelastic porous media flow

Due to the anisotropic spreading of the tracer ensemble in the
transverse and longitudinal flow directions66 [Fig. 1(b) and (c)],
the transport is parameterized by the dispersion tensor, DT,L.

Furthermore, superdiffusive transport [Fig. 2(a) and (b)] stem-
ming from mechanical dispersion in this high Pe regime
suggests that dispersion coefficients may vary indefinitely in
time, and thus we examine the time-dependent dispersion
tensor:20,67

DT;Lð~tÞ ¼
ð~t
0

CT;L t 0ð Þdt 0: (9)

Here, CT,L(t̃) is the time-dependent velocity autocovariance that
quantifies the temporal correlation of tracer velocity:

CTð~tÞ ¼
1

N

XN
i¼1

uyið~tÞ � uyið~tÞ
� �� �

uyið0Þ � uyið0Þ
� �� �

; (10)

CLð~tÞ ¼
1

N

XN
i¼1

uxið~tÞ � uxið~tÞh ið Þ uxið0Þ � uxið0Þh ið Þ; (11)

where the uyi(t̃) and uxi(t̃) are respectively the transverse
and longitudinal velocity components of particle i, and h�i is
an ensemble average over N particles. The transverse

Fig. 2 Experimental Lagrangian flow statistics inform the effect of geometry on tracer dispersal. (a) and (b) Normalized transverse and longitudinal mean
squared displacement, respectively, as a function of normalized time for ordered (solid) and disordered (dashed) media at various Wi. Insets show the
same data on a log–log scale. (c) and (d) Normalized transverse and longitudinal autocovariance, respectively, as a function of normalized time for
ordered (solid) and disordered (dashed) flow at various Wi numbers. Black curves correspond to Newtonian fluid flow (100% glycerol) at comparable low
Re and high Pe numbers for all plots.
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autocovariance is periodic about zero in the ordered geometry,
but the oscillations lose coherence with the onset of the
instability as Wi increases. However, as the instability drives
lane changing, transverse particle velocities gain a slight net
correlation due to the motion over one or more pores lateral to
the flow. For disordered flow, CT rapidly decays and appears to
have little dependence on Wi [Fig. 2(c)], due to the random
uncorrelated flow paths through the medium. Similar to the
transverse direction, the longitudinal autocovariance for
ordered flow exhibits periodic peaks that lose coherence as
Wi increases [Fig. 2(d)], due to the onset of spatiotemporal
velocity fluctuations. Conversely, CL for disordered flow shows
an increase in the correlation time beyond a Newtonian fluid as
Wi is increased. This increased velocity correlation stems from
the formation of preferential flow paths that transport fluid in
the longitudinal direction,34 which we expect to lead to
increased dispersion.

The time-dependent dispersion tensor serves as a primary
measure of augmented anisotropic transport. Dispersion coef-
ficients (especially longitudinal) naturally increase with mean

flow speed. Therefore, to infer the explicit effect of fluid
elasticity, the time-dependent dispersion coefficients were nor-
malized with the maximum value of dispersion coefficients
obtained for a Newtonian fluid for the same mean flow speed.
In these high Péclet flows, transverse dispersion coefficients in
both experiments [Fig. 3(a)] and simulations [Fig. 3(b)] either
oscillate about zero (ordered) or decay to zero (disordered) for
stable flows (Wi t Wicr). In experiments, the instability only
occurs in the ordered flow [Fig. 3(a), solid curves]. However, in
simulations, some velocity fluctuations in both ordered and
disordered flows cause finite values of DT at long times and
high Wi [Fig. 3(b)]. While both geometries ultimately become
unstable in simulations, this effect is more pronounced in high
Wi ordered flows, indicated by elevated long-time dispersion
[Fig. 3(b)] compared to the disordered flow. In the longitudinal
direction, DL grows approximately linearly for ordered flow at
low Wi, but plateaus at high Wi [Fig. 3(c), solid curves],
indicating an effectively diffusive regime. The linear growth is
due to the constant, non-zero autocovariance in steady flows
through the ordered geometry. Once the flow becomes unstable

Fig. 3 Comparison of dispersion tensor components for experiments and simulations in ordered (solid) and disordered (dashed) media. (a) and
(b) Transverse dispersion coefficients for experiments and simulations, respectively. (c) and (d) Longitudinal dispersion coefficients for experiments and
simulations, respectively. Black curves correspond to Newtonian fluid flow (100% glycerol) at comparable low Re and high Pe numbers for all plots.
Values for all dispersion coefficients are normalized by their respective maximal Newtonian values for ordered and disordered media in the longitudinal
and transverse direction across experiments and simulations (see also ESI,† Fig. S4).
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in experiments (Wi\Wicr), dispersion values increase at small
times but plateau at long times [Fig. 3(c), solid curves] due to
decorrelation observed in CL [Fig. 2(d), solid curves]. This effect
is also seen in simulations [Fig. 3(d), solid curves], but the
dispersion coefficient does not reach a constant value in time.
In simulations, we observe far less diagonal flow due to the
reduced system size compared to experiments. As a result of
this correlated longitudinal motion, DL does not reach a steady
state in simulations. Due to the limited domain size and ability
to track particles over very large distances in experiments, it is
unclear when dispersion in high Wi disordered flow reaches a
steady state [Fig. 3(c), dashed curves]. However, the magnitude
of dispersion is larger than ordered flows at all times for high
Wi. This observation also holds true for simulations [Fig. 3(d),
dashed curves], where DL for disordered media is much larger
than for ordered media and is still growing for long times.
Furthermore, in ordered geometries aligned along the flow
direction,36 we speculate that such highly stable, unidirectional
flows will lead to faster growth of DL compared to the dis-
ordered geometry due to Taylor-like dispersion,68 but this
hypothesis remains to be tested.

We have systematically quantified the transport properties
and stability of viscoelastic flows through porous media. These
results show that there is a clear trade-off between rheology-
enhanced transport and geometry that also accompanies the
stabilizing effect of preferential flow paths in the disordered
media. These viscoelastic fluids are composed of elastic poly-
mers suspended in a carrier fluid, which stretch dramatically in
extensional strain compared to shear strain.69,70 Polymer elas-
ticity embeds a memory into the fluid, whereby polymers
continue to stretch and accumulate stress as they move through
both space and time via advection. Flow through the staggered
ordered media becomes chaotic due to extensional stresses at
high Wi, whereas preferential flow paths can alleviate extension
and promote stability in the disordered media.34,36 The topol-
ogy of the polymeric stress field has been known to regulate
flow states in viscoelastic flows.24,26,27,71 Polymeric stress is
thus integral to both enhanced transport and elastic stability in
these systems, but access to the polymeric stress field in
experiments is challenging.72 Recently, a Lagrangian analysis
of fluid deformation was demonstrated to provide direct
insight into the topology of the polymeric stress field from
readily measurable flow field data,39 which is a key to the
comprehensive understanding of the transport in these
systems.

3.4 Lagrangian stretching guides fluid flow

Lagrangian coherent structures (LCS)59 characterize material
lines that organize fluid transport, which have been applied
broadly across scales to understand ocean flow patterns, chao-
tic mixing,60 bacterial transport,62 and complex fluid flows.39

Key to LCS analysis is the concept of the Lagrangian fluid
stretching field, which quantifies the extensional strain history
of fluid elements and is closely linked to the finite-time
Lyapunov exponent (FTLE) field. Manifolds of the stretching
field are curves that correspond to ridges in the stretching field

having a locally large value of S [Fig. 4(b)].59 Such manifolds act
as barriers to advective transport, and recently, were shown to
be highly correlated with the topology of the polymeric stress
field in viscoelastic flows.39 Thus, the Lagrangian stretching
potentially provides a direct link to understand how polymer
stress regulates dispersive transport in viscoelastic porous
media flows.

Lagrangian stretching fields, S(x,t), were calculated directly
from both the experimentally measured and simulated velocity
fields (see Methods).39,59,61,62 The viscoelastic fluid relaxation
time, t, was chosen as a natural integration time over which the
stretching history was computed for all Wi. Stretching fields for
both the ordered and disordered media [Fig. 4(a)] reveal sharp
regions of high stretching (manifolds) that generally emanate
from the hyperbolic flow regions on the downstream sides of
the pillars, including in unsteady flow conditions [Fig. 4(e)].
Striations in S observed downstream of pillars in experiments
are likely due to finite PIV resolution.73 Importantly, simula-
tions also provide the time-dependent stress tensor, r(x,t), and
enable direct comparison with the Lagrangian stretching
[Fig. 4(b)]. In line with recent work,39 the trace of the polymeric
stress tensor [Fig. 4(b)] mirrors the topology of the stretching
manifolds [Fig. 4(a)] for both ordered and disordered flow
simulations. To quantify the correlation between the topologies
of stress and stretching fields, the cross-correlation is defined
as:

FðdxÞ ¼ trðrðxþ dxÞÞ � htrðrÞi½ � � SðxÞ � hSi½ �
htrðrÞihSi ;

where h�i denotes the mean value over all x, and dx is the shifted
position. Large values of F indicate large values for both tr(r)
and S. The strongest correlation occurs for dx = 0 due to the
overlap of the filamentous stretching and stress fields
[Fig. 4(c)], which is indicated by the elongated features of F
for the ordered media in the longitudinal direction. Examining
the magnitude of the cross-correlation in the flow direction (dx)
shows that the strength of F initially increases with Wi before
diminishing at larger Wi [Fig. 4(d)], likely due to the onset of
strong temporal fluctuations.

The concordance between Lagrangian stretching and stress
demonstrated by simulations provides insight into the role of
stress in dispersive transport for viscoelastic flow experiments
in porous media.39 In experiments for ordered media,
enhanced transverse dispersion is driven by elastic instability.
The accompanying mobility of stretching manifolds [Fig. 4(e)] –
which act as barriers to advective transport – effectively guide
the local flow. A time series of stretching fields from ordered
experiments at high Wi shows that stretching manifolds span
the pillar array in the longitudinal direction. Their lateral
fluctuations in the transverse direction illustrate the mecha-
nism of lane-changing16 in enhanced transverse dispersion.
Conversely, stable flows in disordered media at high Wi dis-
allow transverse material flux. In this case, stretching mani-
folds elongate as Wi increases and cut off regions of locally
high pillar density resulting in the formation of stagnation
(dead) zones [Fig. 4(a)].37 However, the stretching manifolds in
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the regions of low pillar density facilitate longitudinal transport
by acting as a conduit through the porous media. Thus, the
particles trapped in the dead zones travel slower than the mean
flow speed, whereas those in conduits travel faster than the
mean flow speed, leading to the enhanced heterogeneity of
spatial flow speed [Fig. 1(d)]. In sum, instability in ordered
media allows stretching manifolds to mobilize, whereas the
stability in disordered media forces the stretching manifolds,
and therefore the stress, to cut off regions of flow that were
previously available at low Wi.

Efforts have been made to investigate viscoelastic instabil-
ities in 3D ordered and disordered porous geometries.35,74

Similar to the 2D ordered geometry, viscoelastic flow through
3D ordered geometry becomes unstable at high Wi.74 For
viscoelastic flow through 3D disordered porous media,35 the
elevated disorder and pore connections are expected to
enhance transport and mixing. The investigation of the for-
mation of dead zones and their effect on longitudinal disper-
sion in 3D geometries would provide useful insight for field
applications such as EOR and groundwater remediation.6,75

The Lagrangian stretching concept which has been used here
as a proxy of polymeric stress field measurement can be
extended to 3D geometry, where the stretching manifolds will

be characterized by the surfaces59 instead of the strands. This
approach could be used to understand particle transport in 3D
porous geometries, but it awaits further exploration.

4 Conclusions

In this work, we quantify dispersion in viscoelastic flow
through porous media and show how it is driven by viscoelastic
instabilities. Flow through hexagonally-ordered (staggered) por-
ous media enhances transverse dispersion, which is especially
prevalent at high Weissenberg numbers. Through a novel
Lagrangian analysis of fluid stretching fields, we illustrate that
this phenomenon is regulated by stretching manifolds that act
as barriers to advective transport and characterize high-stress
regions of the flow. At low Wi, material lines are symmetric,
stable, and situated between obstacles parallel to flow, while at
high Wi, strong lateral fluctuations guide lateral dispersion.
Conversely, high Wi flows in disordered porous media remain
stable, as previously shown, due to the reduction of extension
and the availability of preferential flow paths.34,36 This flow
stability is reflected in stable stretching manifolds that disallow
random transverse flows. Stretching manifolds also enhance

Fig. 4 Lagrangian stretching correlates to stress and illustrates the pathways guiding fluid transport. (a) Stretching fields for both the ordered and
disordered geometries in experiments and simulations at Wi = 3. Scale bar, 100 mm. (b) Stress fields from simulations for corresponding flows in panel (a).
Magenta lines show manifolds of the stretching field, which correspond to ridges of maximal local stretching. (c) Stress-stretch correlation maps for
simulated, ordered flow fields at Wi = 0.5 (left) and Wi = 3 (right). Center corresponds to dx = 0. Scale bar, 50 mm. (d) Stress-stretch correlation for
different shift positions in the longitudinal (x) direction for simulated flow fields at various Wi (dy = 0). (e) Time series of experimental stretching fields
showing a wavering stretching manifold in ordered porous media at Wi = 3. Vector fields indicate the principle stretching direction. Scale bar, 50 mm.
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spatial flow speed heterogeneity by cordoning off slow flow
regions as the stretching manifolds elongate with increasing
Wi. This feature results in dead zones between high-speed
filaments, where flow is carried longitudinally at disparate
respective rates. Thus, these results show that a Lagrangian
examination of fluid stretching is essential to gain insight into
the coupling between fluid transport and stress through
mechanical fluid instability in viscoelastic porous media flows.
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