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Multi-item revenue-optimal mechanisms are known to be extremely complex, often offering
buyers randomized lotteries of goods. In the standard buy-one model, it is known that optimal
mechanisms can yield revenue infinitely higher than that of any “simple" mechanism—the ones
with size polynomial in the number of items—even with just two items and a single buyer [Briest
et al. 2015; Hart and Nisan 2017].

We introduce a new parameterized class of mechanisms, buy-𝑘 mechanisms, which smoothly
interpolate between the classical buy-one mechanisms and the recently studied buy-many
mechanisms [Chawla et al. 2022, 2019, 2020a,b]. Buy-𝑘 mechanisms allow the buyer to buy up
to 𝑘 many menu options. We show that restricting the seller to the class of buy-𝑛 incentive-
compatible mechanisms suffices to overcome the bizarre, infinite revenue properties of the
buy-one model. Our main result is that the revenue gap with respect to bundling, an extremely
simplemechanism, is bounded by𝑂 (𝑛2) for any arbitrarily correlated distributionD over𝑛 items
for the case of an additive buyer. Our techniques also allow us to prove similar upper bounds
for arbitrary monotone valuations, albeit with an exponential factor in the approximation.

On the negative side, we show that allowing the buyer to purchase a small number of menu
options does not suffice to guarantee sub-exponential approximations, even when we weaken
the benchmark to the optimal buy-𝑘 deterministic mechanism. If an additive buyer is only
allowed to buy 𝑘 = Θ(𝑛1/2−𝜀 ) many menu options, the gap between the revenue-optimal
deterministic buy-𝑘 mechanism and bundling may be exponential in 𝑛. In particular, this implies
that no “simple" mechanism can obtain a sub-exponential approximation in this regime. As a
complementary result, we show that when 𝑘 ≥

√
𝑛, bundling recovers a poly(𝑛) fraction of the

optimal deterministic buy-𝑘 mechanism’s revenue.
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1 INTRODUCTION
How should a revenue-maximizing seller price an item for sale when facing a buyer
with a private value for the item? If the seller knows the distribution of values, seminal
work of Myerson [Myerson 1981] showed that it is optimal for the seller to offer the
item at a take-it-or-leave-it price. The answer to this question becomes unclear for
the case of multiple, even just two, items.
Optimal multi-item auctions are known to be complex objects, offering no dis-

cernible mathematical structure and often exhibiting “intuition-defying" properties
(see [Daskalakis 2015] for an excellent survey). A particularly egregious one is that
there exist correlated distributions over just two items such that the revenue-optimal
mechanism is infinitely better than any “simple" mechanism, ruling out the possibility
of good worst-case approximations [Hart and Nisan 2013, 2017].1 The bizarre aspect
of these pathological distributions is that the optimal revenue is unbounded, but any
finite-sized mechanism can get at most finite revenue. One possible explanation for
this bizarre phenomenon is that the seller is unrestricted in their choice of mechanism:
they only need to guard against the buyer’s deviations towards any single other alloca-
tion. This allows the seller to utilize mechanisms where the buyer can only purchase
a single mechanism entry. These buy-one mechanisms can be heavily tailored to the
buyer’s distribution, often offering comparable allocations for widely different prices.
Consider the following example.

Example 1. A buyer walks into a coffee shop. They are equally likely to have one of

three valuations over a cup of coffee and a bagel: either the buyer has value $2 for the cup

of coffee and $0 for the bagel, $0 for the cup of coffee and $4 for the bagel, or $4 for the

cup of coffee and $6 for the bagel (and $10 for the combination of a cup of coffee and a

bagel). The optimal mechanism in this example is as follows: the seller will offer the cup

of coffee at $2, the bagel at $4 and the combination of a cup of coffee and a bagel at $8.

In this example, the optimal mechanism is buy-one incentive-compatible. The buyer
with non-zero valuations for both items (weakly) prefers buying the combination at
$8 to buying exactly one of the items separately. The mechanism, however, is not
buy-many incentive-compatible: when the buyer has non-zero value for both items,
they would prefer to visit the coffee shop twice and buy the items separately for
a combined price of $6. This achieves the same allocation at a cheaper price. This
example highlights two problems with the classical buy-one model. The first is that
no high-valued customer would pay $8 for the combination of coffee and a bagel.
They would buy one item, queue in line again, and buy the other. This in turn creates
the second problem: the revenue of the optimal buy-one mechanism overshoots the
1By “simple" mechanisms, we mean mechanisms of size polynomial in the number of items.
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real-world revenue the seller would experience. The buy-one mechanism would net
the seller an expected revenue of $(2 + 4 + 8)/3 = $4 2

3 . In reality, because no buyer
would pay $8 for the combination of items, the seller would experience expected
revenue $(2 + 4 + 6)/3 = $4.

While this example is simple, the pathological constructions of [Hart and Nisan 2017;
Psomas et al. 2022] do significantly wilder things such as offering similar randomized
allocations for astronomically different prices. For instance, a buy-one mechanism
may offer randomized allocation ®𝑞 for price 𝑝 , and randomized allocation ®𝑞+®𝜀 for price
4𝑝 . Just like in Example 1, a buyer would prefer to buy the cheaper option two, three
or even four times rather than the carefully tailored, more expensive option. However,
if they are forced to buy exactly one option, these pathological constructions ensure
high-valued buyers will marginally prefer buying one copy of the expensive item to
buying one copy of the cheaper one. Thus part of the reason why positive results in
multi-item auctions (especially for correlated items) are rare is because the “optimal"
buy-one mechanism is unrealistic and not implementable in a world were buyers may,
reasonably, interact with the seller multiple times. It is this lack of consideration on
the seller’s choice of mechanism that allows for “infinite" revenue auctions.

One natural way to overcome this problem is to allow the buyer to purchase multiple
menu entries. Buy-many mechanisms, introduced more than ten years ago in [Briest
et al. 2010, 2015], are mechanisms where the buyer may purchase any multi-set of
menu entries, including sets of unbounded size. This significantly restricts the seller’s
choice of mechanism: buy-manymechanisms are always buy-one incentive compatible
but the converse is not true. A simple way to see this is that the prices in (deterministic)
buy-many mechanisms are always sub-additive, meaning that for any two disjoint sets
of items 𝑆,𝑇 , 𝑝 (𝑆) + 𝑝 (𝑇 ) ≥ 𝑝 (𝑆 ∪𝑇 ). Buy-one mechanisms, like that of Example 1,
need not satisfy this property, making them less appealing for real-world applications.

The work of [Briest et al. 2010, 2015] already exhibits how buy-many mechanisms
overcome the revenue gap problem: they showed that a popular benchmark, known
as item-pricing, could recover an 𝑂 (log𝑛) factor of the revenue attained by the op-
timal buy-many mechanism for the case of a single, unit-demand buyer. This was
later extended to arbitrary valuations by [Chawla et al. 2019], while preserving the
approximation factor. Key to these results is that by sufficiently restricting the seller’s
choice of mechanisms, the optimal revenue drops from unbounded in the buy-one
case to finite in the buy-many case, allowing for simple mechanisms like item-pricing
to approximate the optimal buy-many revenue.

One question left unaddressed by these works is how much we need to restrict the
seller’s choice of mechanisms so that the optimal revenue is finite. While in Example 1
it was reasonable to assume the buyer would purchase a single item, re-queue and
purchase the other item, it would not be reasonable to assume the buyer would be
willing to re-queue any number of times. At some point, the buyer will get tired. This
means the buyer’s threat of interacting with the mechanism any number of times is
not a credible threat to the seller. Alternatively, we can think of buy-many mechanisms
as giving too much power to the buyer just like buy-one mechanisms give too much
power to the seller.
In order to answer the question outlined we need a more fine-grained family of

mechanisms that smoothly interpolates between buy-one and buy-many mechanisms.
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For this purpose we introduce buy-𝑘 mechanisms, a parametric family of mechanisms
where the buyer is allowed to purchase any multi-set of at most 𝑘 menu entries non-
adaptively.2 We say a mechanism is buy-𝑘 incentive-compatible if the buyer always
prefers to buy a single menu entry rather than any multi-set of up to 𝑘 menu entries.
Let B𝑘 (D) be the set of buy-𝑘 incentive-compatible mechanisms for a distribution D
over 𝑛 items, and let Buy𝑘Rev(D) = maxM∈B𝑘 (D) Rev(D,M) be the optimal revenue
attainable by a buy-𝑘 incentive-compatible mechanism. A simple observation, stated
below and whose proof we defer to later in the paper, shows that as 𝑘 increases, the
revenue of the seller weakly decreases.

Observation 1.

Buy1Rev(D) ≥ Buy2Rev(D) ≥ · · · ≥ BuyManyRev(D) ≥ BRev(D).

We first show that 𝑘 , the number of times the buyer might interact with the
mechanism, can play a role in the seller’s optimal revenue. We prove there exists a
support-size 3, correlated distribution D over two items for which Buy1Rev(D) >
Buy2Rev(D) > Buy3Rev(D) > Buy4Rev(D). This example proves a strict separation
between the class of buy-one and buy-2 mechanisms, and by Observation 1, between
the class of buy-2 mechanisms and buy-many mechanisms. This reinforces the idea
that buy-𝑘 mechanisms interpolate between buy-one and buy-many mechanisms, and
thus merit a study of their own.

Proposition 1. There exists a distribution D over two items such that

Buy1Rev(D) > Buy2Rev(D) > Buy3Rev(D) > Buy4Rev(D).

We conjecture in fact that for the distribution from Proposition 1 the seller’s revenue
strictly decreases as 𝑘 increases. In other words, we conjecture there exists a simple
distribution that can witness separations between the classes of buy-𝑘 and buy-(𝑘 + 1)
mechanisms for all 𝑘 ≥ 1. We discuss this conjecture in Appendix C.

Conjecture 1. There exists a distribution D over two items such that for all 𝑘 ≥ 1,

Buy𝑘Rev(D) > Buy𝑘+1Rev(D).

After proving that the class of buy-𝑘 mechanisms is distinct from the previously
studied classes of buy-one and buy-many mechanisms, the next natural question is
to understand their approximation guarantees with respect to simple mechanisms.
Our measure of simplicity for a mechanism M will be its menu complexity or the
number of menu entries |M| the mechanism offers. Under this lens, broadly speaking,
we think of “simple" mechanisms as those that have polynomial menu complexity
and “complex" mechanisms as those that have super-polynomial menu complexity.
For example, any mechanism which only offers the grand bundle of all items for a
fixed price has menu complexity 1. This family of mechanisms is so important that the
revenue of the optimal grand bundling mechanism, BRev(·) (henceforth bundling),

2In other words, the buyer first chooses any multi-set of up to 𝑘 menu options and only after they commit
any randomized allocations are decided. Our results will hold even if the buyer is allowed to adaptively
choose the menu entries. See Appendix A for a more detailed discussion.
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is often a benchmark of interest.3 Therefore, our main question of interest is the
following.

Question 1. Given integers 𝑛, 𝑘 , when does 𝑓 (𝑛, 𝑘) · BRev(D) ≥ Buy𝑘Rev(D) hold
for all distributions D over 𝑛 items, for some function 𝑓 (𝑛, 𝑘)?

1.1 Our Contributions
Our main result shows that restricting the seller to the class of buy-𝑛 incentive-
compatible mechanisms suffices to get around pathological constructions for two or
more items (like e.g., [Hart and Nisan 2017; Psomas et al. 2022]). These works show
that there are distributions over just two items for which no “simple" mechanism
could approximate the revenue of the optimal buy-one mechanism, or in the language
of Open Question 1, that no such function 𝑓 (𝑛, 1) exists for 𝑛 ≥ 2. We show that when
facing a single, additive buyer, the revenue from optimally pricing the bundle of items,
BRev(D), recovers a polynomial fraction of the optimal buy-𝑛 revenue.

Theorem 1. For any distribution D over 𝑛 items for a single, additive buyer, it holds

that

𝑂 (𝑛2) · BRev(D) ≥ Buy𝑛Rev(D).

The proof of 1 relies on the identification of a measure, MenuGap𝑘 (·, ·), whose
formal definition we defer to Section 2. This quantity is the generalization to buy-𝑘
mechanisms of MenuGap(·, ·) introduced by previous work for buy-one mechanisms
(see [Hart and Nisan 2017; Psomas et al. 2022]). In those works, MenuGap(·, ·) was
used to construct distributions whose optimal revenue was hard to approximate. In
contrast, our work is the first to show that this framework can be used to prove
approximation guarantees instead. In fact, our techniques can be extended to also
show similar results for the case of arbitrary monotone valuation functions, 4 (albeit
with a significant loss in the approximation factor).

Theorem 2. For any distribution D over 𝑛 items, for a single buyer with a monotone

valuation, it holds that

𝑂 (𝑛2 · 2𝑛) · BRev(D) ≥ Buy𝑛Rev(D).
We consider Theorem 2 as a result validating the robustness of the framework we in-

troduce as a proof technique for approximation algorithms for revenue maximization.
The experienced reader will recall that, historically, approximation algorithms for dif-
ferent valuations classes used tools specific to the valuations themselves (e.g., [Chawla
et al. 2007, 2010] for unit demand, [Babaioff et al. 2014; Hart and Nisan 2012; Yao 2015]
for additive valuations and so on). It wasn’t until the work of [Cai et al. 2016] that a
unifying framework was developed to reprove (or even improve) such results. Thus,
we interpret Theorem 2 additionally as proof that the framework we develop is robust
enough to handle general valuation classes and are optimistic that results similar to
Theorem 1 can be proved via our framework for other valuation classes.
3Bundling is arguably one of the simplest mechanisms.
4A valuation 𝑥 function is monotone if 𝑥 (𝑆) ≥ 𝑥 (𝑇 ) whenever𝑇 ⊆ 𝑆 . In other words, getting more items
never decreases the buyer’s value.
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The first piece of the proofs for Theorems 1, 2 is identical. We show that there exists
an appropriate choice of inputs (𝑋,𝑄) such that MenuGap𝑘 (𝑋,𝑄) upper bounds the
ratio between the optimal buy-𝑘 revenue and the revenue achieved by bundling, up
to some 𝑂 (𝑘) factor. We again defer a technical definition of MenuGap𝑘 (·, ·) until
later. For the purposes of this exposition, it suffices to say that given two sequences of
vectors (𝑋,𝑄),MenuGap𝑘 (𝑋,𝑄) captures some geometric property of the input pairs
of sequences. Thus, more precisely, in the first step of the proof we show that for any
distribution D and any buy-𝑘 incentive-compatible mechanismM for D, there exists
a cleverly chosen set of valuations𝑋 in the support of the distributionD together with
their corresponding allocations 𝑄 under M whose “geometric property" witnesses an
upper bound to the revenue revenue that M achieves on D, up to a factor of 𝑂 (𝑘).
In particular, this is also true about the revenue-optimal buy-𝑘 incentive-compatible
mechanism.

The second step of the proof upper boundsMenuGap𝑛 (𝑋,𝑄) itself by 𝑛 for the case
of an additive buyer (resp. by 𝑛 ·2𝑛 for the case of a monotone buyer) for all input pairs
(𝑋,𝑄). It is worth noting that for the case of an additive buyer, this second step is
tight. This implies that our approach of bounding revenue gaps via MenuGap𝑘 (𝑋,𝑄)
cannot give a sublinear approximation. However, this is not a fault of our techniques.
In Appendix B we provide a simple proof that there exist distributions D for which
BRev(D) ≤ Buy𝑘Rev(D)/𝑂 (𝑛) for any 𝑘 . In other words, BRev(D) can not give a
sublinear (in the number of items 𝑛) approximation to Buy𝑘Rev(D), for any 𝑘 .
There are three subtle implications of these results. The first is that for all 𝑛-

dimensional distributions D, Buy𝑛Rev(D) is finite whenever BRev(D) is finite. This
stands in contrast to the buy-one case where even for just 𝑛 = 2 items, there ex-
ist D such that Buy1Rev(D) > ∞ but BRev(D) = 𝑂 (1). The second is that since
Buy𝑘Rev(D) ≥ Buy𝑘′Rev(D) whenever 𝑘 < 𝑘 ′ (due to Observation 1), then Theo-
rems 1, 2 in fact also answer Question 1 for the case when 𝑛 ≤ 𝑘 . Finally, Theorem 1
already offers an answer to the pathological two-item distributions of [Hart and Nisan
2017; Psomas et al. 2022]. Theorem 1 implies that for those distributions bundling
recovers a constant fraction of the optimal buy-2 mechanism.
The next goal is to answer Question 1 for the case when 1 < 𝑘 < 𝑛. We make

progress by proving a strong lower bound for the case 𝑘 ≤ 𝑛1/2−𝜀 . We show that there
exist distributions for which there is an exponential revenue gap when 𝑘 ≤ 𝑛1/2−𝜀 .
This is captured by Theorem 3.

Theorem 3. If 𝑘 ≤ 𝑛1/2−𝜀 for some 𝜀 > 0, then there exists an additive valuation

function D over 𝑛 items such that for a single buyer

Buy𝑘Rev(D)
BRev(D) ≥ exp (Ω(𝑛𝜀))

2𝑛2 .

The experienced reader will observe that Theorem 3 says something strong about the
revenue guarantees that simple mechanisms can obtain. Due to a Corollary from [Hart
and Nisan 2017] which says that bundling always recovers a 1/|M| fraction of the
revenue of any mechanism M, the revenue of any mechanism M of size poly(𝑛)
cannot exceed poly(𝑛) · BRev(D). Thus, Theorem 3 implies that for the instance that
witnesses its proof, no mechanism of size polynomial in the number of items can obtain
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a sub-exponential approximation. The proof of Theorem 3 will, unsurprisingly, borrow
ideas from [Briest et al. 2015; Hart and Nisan 2017]. Interestingly the buy-𝑘 mechanism
used in the lower bound instance will be deterministic, in part because the construction
of the instance itself makes use of discrete combinatorial objects known as cover-free
sets. This implies that the lower bounds hold even for the optimal deterministic buy-𝑘
mechanism (henceforth, Det𝑘Rev(D)), a much weaker benchmark. However, a phase
transition happens for the case when 𝑘 ≥

√
𝑛. Theorem 4 proves that bundling recovers

a poly(𝑛) fraction of the optimal deterministic buy 𝑘 mechanism for 𝑘 ≥
√
𝑛.

Theorem 4. If 𝑘 ≥
√
𝑛, for any distribution D over 𝑛 items for a single, additive buyer

it holds that

BRev(D) ≥ Det𝑘Rev(D)
poly(𝑛) .

To put Theorems 3, 4 in context, [Hart and Nisan 2013] showed that there exist dis-
tributions D for which BRev(D) ≤ 2𝑛

𝑛
DetRev(D), where DetRev(D) is the revenue

of the optimal buy-one deterministic mechanism. Thus, Theorem 3 can be seen as an
extension of this result, proving that even weakening the seller’s benchmark to the
optimal buy-𝑘 deterministic mechanism (for 𝑘 ≤ 𝑛1/2−𝜀 ) does not significantly improve
the worst-case approximation with respect to bundling. However, Theorem 4 shows
that restricting the seller’s to buy-𝑘 mechanisms for 𝑘 ≥

√
𝑛 suffices to overcome the

exponential gap observed in the buy-one case.
While our model and results are written for the case of a non-adaptive buyer, a

simple argument will allow us to translate both our upper bounds (Theorems 1, 2) and
our lower bounds (Theorem 3) to the case of adaptive buyers. We defer this discussion
to Appendix A.

Our Techniques. Themain conceptual contribution of this work is the introduction
of a new class of mechanisms, buy-𝑘 mechanisms, which interpolate between buy-
one and buy-many mechanisms. The main technical contribution of our work is
a novel framework for proving approximation results for multi-item mechanism
design under arbitrary distributions. We generalize measures meant for the buy-one
setting from [Hart and Nisan 2017; Psomas et al. 2022] to the buy-𝑘 setting. Similar
to [Psomas et al. 2022], we prove that this measure upper bounds the revenue gap
between the revenue-optimal mechanism (in some class of mechanisms) and bundling.
Unlike [Psomas et al. 2022], we are able to show a finite upper bound for this measure
in the case of buy-𝑛 mechanisms, yielding a finite approximation result.

1.2 Related Work
Buy-manymechanisms have been proposed more than ten years ago, as early as [Briest
et al. 2010, 2015]. Results from a recent line of work [Chawla et al. 2022, 2019, 2020a,b]
make the case to further the study of buy-many mechanisms. For instance, [Chawla
et al. 2020b] show that buy-manymechanisms satisfy some form of revenuemonotonic-
ity, an intuitive property that does not hold in the case of buy-one mechanisms [Hart
and Reny 2015; Psomas et al. 2019]. In addition, as mentioned earlier in the intro-
duction, [Chawla et al. 2019] show that item-pricing recovers a 𝑂 (log𝑛) factor of
the optimal buy-many revenue. Combining a Corollary from [Hart and Nisan 2017]
with the main result of [Chawla et al. 2019] shows that bundling recovers at least a
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𝑂 (𝑛 log𝑛) fraction of the optimal buy-many revenue. Our results have a worse ap-
proximation factor because the benchmark is stronger (and this is proved formally in
Observation 1). Thus our work deepens the study of buy-many mechanisms by intro-
ducing more fine-grained classes of mechanisms. We believe our results strengthen the
case for the study of not only buy-many mechanisms, but also fine-grained buy-many
mechanisms.

The work of [Chawla et al. 2019] also gave strong lower bounds for the description
complexity, a measure that lower bounds the menu complexity of a mechanism. In
particular, they showed that no mechanism with sub-exponential description complex-
ity could get an 𝑜 (log𝑛) approximation to the optimal buy-many revenue, even for
additive buyers. In follow up work, [Chawla et al. 2020b] extended the lower bound to
the larger class of fractionally sub-additive (or XOS) valuations.
A prolific line of work assumes that the underlying distribution of values D is

a product distribution. Under this assumption, it is known that mechanisms with
low menu complexity can achieve constant-factor approximations to the optimal
revenue for sub-additive valuations (see e.g., [Babaioff et al. 2017, 2014; Cai and Zhao
2017; Chawla et al. 2007, 2010, 2015; Chawla and Miller 2016; Hart and Nisan 2012; Li
and Yao 2013; Rubinstein and Weinberg 2015; Yao 2015], among others), effectively
circumventing the pathological constructions of [Hart and Nisan 2017]. Some recent
results even show strong positive results for arbitrary approximation schemes. For
instance, [Babaioff et al. 2017] show that for any product distribution D, there exists
a mechanism with finite menu complexity that recovers a (1 − 𝜀) approximation to
the optimal revenue when selling to an additive buyer. More recently, [Kothari et al.
2019] give a quasi-polynomial approximation scheme for revenue maximization for a
single, unit-demand buyer interested in 𝑛 independent items. Notwithstanding the
significant contributions of these works, the question of revenue-maximization under
arbitrary distributions remained unaddressed.
Finally, work of [Psomas et al. 2019] provides yet another way to circumvent

the pathological constructions of [Hart and Nisan 2017]. In their work, the authors
borrow ideas from the celebrated smoothed-analysis framework and initiate the study
of beyond worst-case revenue maximization. Their results show that, under some
smoothing models, simple mechanisms can approximate optimal ones.
Organization. In Section 2, we present formal definitions for the objects of our

interest as well as for the relevant benchmarks we use. Section 3 contains the proofs
of our upper bounds in Theorems 1, 2. Section 4 contains the proof of our lower
bound in Theorem 3. We conclude in Section 5 and outline questions for future work.
Appendix A contains the discussion for the case of adaptive buyers. Appendix B
proves that Theorem 1 can not be improved to provide a sub-linear approximation.
Appendix C presents the proof of Proposition 1 and presents a simple candidate
distribution to prove Conjecture 1.

2 PRELIMINARIES AND NOTATION
We consider the case of a single buyer interested in 𝑛 items from a single revenue-
maximizing seller. We assume the buyer is utility-maximizing and risk-neutral. The
buyer draws their valuation 𝑥 from a known, possibly correlated 𝑛-dimensional dis-
tribution D, with support set X = supp(D) and probability density function 𝑓D (·)
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(and the index may be omitted when clear from context). For all our results, we
will assume that the buyer’s valuation over the items is monotone, i.e., whenever
𝑆 ⊆ 𝑇 , 𝑥 (𝑆) ≤ 𝑥 (𝑇 ). For our main result, Theorem 1, we will additionally assume
that the buyer is additive across the items, i.e., for any subset of items 𝑆 ⊆ [𝑛],
𝑥 (𝑆) = ∑

𝑖∈𝑆 𝑥𝑖 . Given a possibly randomized allocation of items ®𝑞 ∈ [0, 1]𝑛 , we use
𝑥 ( ®𝑞) to denote the buyer’s expected value for the realized set of items. For an additive
buyer, 𝑥 ( ®𝑞) = ∑𝑛

𝑖=1 𝑥𝑖 · 𝑞𝑖 . For a monotone buyer, 𝑥 ( ®𝑞) = ∑
𝑆⊆[𝑛] 𝑥 (𝑆) · Pr( ®𝑞, 𝑆), where

Pr( ®𝑞, 𝑆) = ∏
𝑗 ∈𝑆 ®𝑞 𝑗

∏
𝑗∉𝑆 (1− ®𝑞 𝑗 ) is the probability that the buyer gets exactly the items

in set 𝑆 from randomized allocation ®𝑞. Let Λ = {®𝑞1, ®𝑞2, . . . , ®𝑞𝑘 , . . . } be a multi-set of
allocations (of possibly unbounded size). We denote by ®Lot(Λ) ∈ [0, 1]𝑛 (read “lottery")
the expected allocation that results from being allocated every ®𝑞𝑖 ∈ Λ independently
and at once, i.e., for all 𝑗 ∈ [𝑛], ®Lot(Λ) 𝑗 = 1 − ∏

𝑖=1 (1 − 𝑞𝑖 𝑗 ).5
A mechanismM = (𝑝, 𝑞) is defined by a pair of functions 𝑝 : X → R≥0, 𝑞 : X →

[0, 1]𝑛 known as the pricing and allocation functions, respectively. For a fixed integer
𝑘 we say that a mechanismM is buy-𝑘 incentive-compatible if for every valuation
®𝑥 ∈ X it is in the buyer’s best interest to purchase a single option from the mechanism
rather than any combination of up to 𝑘 menu options. In other words, there exists
some (𝑝, ®𝑞) ∈ M such that 𝑥 ( ®𝑞(𝑥)) − 𝑝 (𝑥) ≥ 𝑥 ( ®Lot(Λ)) −∑

𝑖=1 𝑝 ( ®𝑞𝑖 ) for any possible
multi-set of menu options Λ of size at most 𝑘 . Thus, setting 𝑘 = 1 recovers the standard
notion of (buy-one) incentive-compatible mechanisms, and as 𝑘 → ∞ it recovers the
existing definition of buy-many incentive-compatible mechanisms.

2.1 Benchmarks of Interest
We now formally define some of the benchmarks that will be used throughout this
paper. For a given (arbitrarily correlated) distribution D, let

• BRev(D) be the revenue of the mechanism which sells the grand bundle for its
optimal price. Namely, BRev(D) = max𝑝 𝑝 · Pr®𝑥∼D (∑𝑥𝑖 ≥ 𝑝),

• Rev(D) be the revenue of the optimal buy-one incentive-compatible mechanism,
• Rev(D,M) be the revenue of mechanism M when the buyer is allowed to buy
up to 1 menu entry fromM,

• Buy𝑘Rev(D) be the revenue of the optimal buy-𝑘 incentive-compatible mecha-
nism,

• Buy𝑘Rev(D,M) be the revenue of (not necessarily buy-𝑘 incentive-compatible)
mechanism M when the buyer is allowed to buy up to 𝑘 menu entries from M,

• BuyManyRev(D) be the revenue of the optimal buy-many incentive-compatible
mechanism.

• Det𝑘Rev(D) be the revenue of the optimal deterministic incentive-compatible
buy-𝑘 mechanism.

Proof of Claim 1. If a mechanism M is buy-𝑘 incentive-compatible for some 𝑘 , it
is also buy-𝑘 ′ incentive-compatible for all 𝑘 ′ ≤ 𝑘 . This follows from the fact that the
buyer can always buy the empty lottery 𝑘 − 𝑘 ′ times and the mechanism must guard
5The careful reader might wonder what would happen if instead of buying all their menu options at once,
the buyer was allowed to do so adaptively (as opposed to the model presented here which is non-adaptive).
We discuss this in Appendix A, but the main takeaway is that our upper bounds also hold for adaptive
buyers.
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against such deviations. Thus, the best buy-𝑘 mechanism can perform no better than
the best buy-(𝑘 − 1) mechanism, proving the claim. The last inequality follows from
the fact that bundling is a buy-many incentive compatible mechanism. □

2.2 Menu Gaps: An Intermediary Measure
We now present the definition of gap𝑘𝑖 (𝑋,𝑄) and MenuGap𝑘 (𝑋,𝑄), the quantities
that will serve as intermediaries in proving Theorems 1, 2.

Definition 1. Let 𝑋 = {𝑥𝑖 }𝑁𝑖=1 be a sequence of monotone valuation functions and

𝑄 = {®𝑞𝑖 }𝑁𝑖=0 ∈ [0, 1]𝑛 be a sequence of vectors with ®𝑞0 = ®0𝑛 . Then

gap𝑘𝑖 (𝑋,𝑄) = min
𝑗1, 𝑗2,..., 𝑗𝑘<𝑖

𝑥𝑖 ( ®𝑞𝑖 ) − 𝑥𝑖 ( ®Lot( ®𝑞 𝑗1 , ®𝑞 𝑗2 , . . . , ®𝑞 𝑗𝑘 )). (1)

Furthermore, define

MenuGap𝑘 (𝑋,𝑄) =
𝑁∑︁
𝑖=1

gap𝑘𝑖 (𝑋,𝑄)/𝑥𝑖 ( [𝑛]), (2)

where 𝑥𝑖 ( [𝑛]) is the valuation of a buyer of type 𝑥𝑖 for the grand bundle of items.

In particular, if 𝑋 = {𝑥𝑖 }𝑁𝑖=1 are additive valuations, then they can be represented as
vectors 𝑋 = {®𝑥𝑖 }𝑁𝑖=1 ∈ R𝑛≥0. One can check that the following definition is a special
case of Definition 1.

Definition 2. Let 𝑋 = {®𝑥𝑖 }𝑁𝑖=1 ∈ R𝑛≥0, 𝑄 = {®𝑞𝑖 }𝑁𝑖=0 ∈ [0, 1]𝑛 be sequences of vectors

with ®𝑞0 = ®0𝑛 . Then

gap𝑘𝑖 (𝑋,𝑄) = min
𝑗1, 𝑗2,..., 𝑗𝑘<𝑖

®𝑥𝑖 · ( ®𝑞𝑖 − ®Lot( ®𝑞 𝑗1 , ®𝑞 𝑗2 , . . . , ®𝑞 𝑗𝑘 )). (3)

Furthermore, define

MenuGap𝑘 (𝑋,𝑄) =
𝑁∑︁
𝑖=1

gap𝑘𝑖 (𝑋,𝑄)/| | ®𝑥𝑖 | |1, (4)

These measures are generalizations of similar notions introduced in [Hart and
Nisan 2017] and further developed by [Psomas et al. 2022]. For the case where 𝑘 = 1,
we exactly recover these earlier definitions. In Definition 1, it is useful to think of
the first sequence of vectors 𝑋 as possible valuation vectors and the sequence of
vectors𝑄 as possible allocation vectors of a mechanism, with the built-in option of not
participating. Thus, one way to interpret Equation 1 is to think of 𝑝𝑖 = gap𝑖

𝑘
(𝑋,𝑄) as

the largest price a seller can post on menu entry (𝑝𝑖 , ®𝑞𝑖 ) so that a buyer with valuation
𝑥𝑖 will prefer that single menu entry to any subset of at most 𝑘 “previous" options for
free.

2.3 Some Useful Properties
We prove a simple, useful property of the ®Lot(Λ) function. Namely, that if Λ =

{ ®𝑞1, ®𝑞2, . . . , ®𝑞𝑘 }, then ®Lot(Λ) dominates the vector consisting of coordinate-wise max
entries of the vectors in Λ.
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Claim 5. If Λ = {®𝑞1, ®𝑞2, . . . , ®𝑞𝑘 }, ®𝑞𝑖 ∈ [0, 1]𝑛 for all 𝑖 , then ®Lot(Λ) 𝑗 ≥ max𝑖∈[𝑘 ]{𝑞𝑖 𝑗 }
for all 𝑗 ∈ [𝑛] .

Proof. Fix 𝑗 ∈ [𝑛]. Assume wlog 𝑞1𝑗 = max𝑖∈𝑘 𝑞𝑖 𝑗 . It is easy to see that (1 − 𝑞1𝑗 ) ·
(1 − ∏𝑘

𝑗=2 (1 − 𝑞𝑖 𝑗 )) ≥ 0 since each term on the left is non-negative. Expanding it we
get that 1 − 𝑞1𝑗 −

∏𝑘
𝑗=1 (1 − 𝑞𝑖 𝑗 ) ≥ 0. Rewriting gives ®Lot(Λ) 𝑗 ≥ 𝑞1𝑗 . □

We also prove a simple, useful property of the MenuGap𝑘 (𝑋,𝑄) function. Namely,
that it is without loss of generality to remove points whose contributions to the sum
are non-positive.

Claim 6. Let 𝑋,𝑄 be sequences as defined in Definition 1, and 𝑋 ′ ⊆ 𝑋,𝑄 ′ ⊆ 𝑄 be the

sub-sequences that result from removing any pair of points ( ®𝑥𝑖 , ®𝑞𝑖 ) whose gap𝑘𝑖 (𝑋,𝑄) ≤ 0.
Then

MenuGap𝑘 (𝑋,𝑄) ≤ MenuGap𝑘 (𝑋 ′, 𝑄 ′).

Proof. Consider the earliest integer 𝑖 such that gap𝑘𝑖 (𝑋,𝑄) ≤ 0. Since it is non-
positive, removing (𝑥𝑖 , ®𝑞𝑖 ) from (𝑋,𝑄) will weakly increase the sum of the gaps up to
𝑖 . Moreover, if ®𝑞𝑖 was helping set the gap for some later (𝑥 𝑗 , ®𝑞 𝑗 ), then gap𝑘𝑗 (𝑋 ′, 𝑄 ′) ≥
gap𝑘𝑗 (𝑋,𝑄) since by removing ®𝑞𝑖 we are reducing the number of earlier points to
compare to. Therefore, removing any point with negative gap can only weakly increase
the menu gap of the resulting subsequence. □

3 BUNDLING APPROXIMATES THE OPTIMAL BUY-N REVENUE
As highlighted in the introduction of the paper, the first part of the proofs of Theo-
rems 1, 2 will be via the surrogate quantity, MenuGap𝑘 (𝑋,𝑄). We will first show that
for any distribution over 𝑛 items D, there exists two sequences of points (𝑋,𝑄) such
that MenuGap𝑘 (𝑋,𝑄) upper bounds the ratio between the revenue-optimal buy-𝑘
mechanism for D and the revenue from bundling, up to a 𝑂 (𝑘) factor:

Lemma 7. For any distribution of monotone valuations D over 𝑛 items and any buy-

𝑘 incentive compatible mechanism M for D, there exists a sequence of valuations

𝑋 = {𝑥𝑖 }𝑖=1 ⊆ X, and a sequence of allocations 𝑄 = {®𝑞𝑖 }𝑖=0 ⊆ M (starting with

®𝑞0 = (0, . . . , 0)) such that

MenuGap𝑘 (𝑋,𝑄) ≥ Buy𝑘Rev(D,M)
9𝑘 · BRev(D) .

Next wewill show that this quantity itself is upper bounded for all pairs of sequences
(𝑋,𝑄). In particular, when the buyer has additive valuations, we show that the quantity
is upper bounded by 𝑛. The proof of Theorem 1 then follows directly.

Lemma 8. For all sequences 𝑋,𝑄 as defined in Definition 2, coming from an additive

valuation function, it holds thatMenuGap𝑛 (𝑋,𝑄) ≤ 𝑛.

Theorem 1. For any distribution D over 𝑛 items for a single, additive buyer, it holds

that

𝑂 (𝑛2) · BRev(D) ≥ Buy𝑛Rev(D).
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Proof of Theorem 1. Follows directly from Lemma 7 by choosing M to be the
revenue-optimal buy-𝑘 incentive-compatible mechanism and Lemma 8 (setting 𝑘 =

𝑛). □

The proof of Theorem 2 is similar, but only a weaker version of Lemma 8 can be
proved:

Theorem 2. For any distribution D over 𝑛 items, for a single buyer with a monotone

valuation, it holds that

𝑂 (𝑛2 · 2𝑛) · BRev(D) ≥ Buy𝑛Rev(D).

Lemma 9. For all sequences 𝑋,𝑄 as defined in Definition 1, coming from a monotone

valuation function, it holds thatMenuGap𝑛 (𝑋,𝑄) ≤ 𝑛 · 2𝑛 .

Proof of Theorem 2. Follows directly from Lemma 7 by choosing M to be the
revenue-optimal buy-𝑘 incentive-compatible mechanism and Lemma 9 (setting 𝑘 =

𝑛). □

Note that in Lemma 7, the number of times the buyer can interact with the mecha-
nism, 𝑘 , may be different than the number of items 𝑛 for sale. However, we are only
able to prove Lemma 9 for the case where 𝑘 ≥ 𝑛. We hope future work can address
the question of what happens when 𝑘 < 𝑛.

3.1 Menu Gap Approximately Upper Bounds Revenue Gap: Proof of
Lemma 7

The proof of Lemma 7 is split into two parts. In the first part, we will take any buy-𝑘
incentive-compatible mechanism forD and massage it down to a sub-menu of interest
whose revenue remains close to the original one. The sub-menu itself may not be buy-𝑘
incentive-compatible. However, the key to approximately preserving the revenue will
be in just removing entries from the original mechanism and not modifying existing
ones. In the second part, we will show how to use an appropriate sub-menu in order
to construct the desired sequence of points. The proof of Lemma 7 is inspired by a
similar construction of [Psomas et al. 2022].

3.1.1 Finding a Sub-menu of Interest. LetM = {(𝑝𝑖 , ®𝑞𝑖 )}𝑖=1 be a buy-𝑘 incentive com-
patible mechanism for distribution D, where (𝑝𝑖 , ®𝑞𝑖 ) denotes the price and expected
allocation of the 𝑖-th option of the menu.

Claim 10. Let M be a buy-𝑘 incentive-compatible mechanism for D, M𝑐 ⊆ M be the

sub-menu of M that only offers options of price at least 𝑐 . Then Buy𝑘Rev(D,M𝑐 ) ≥
Buy𝑘Rev(D,M) − 𝑐 .

Proof. If a buyer with valuation 𝑥 chose a menu entry (𝑝, ®𝑞) from the original
menu M with 𝑝 ≥ 𝑐 , they will purchase the same menu entry inM𝑐 since (𝑝, ®𝑞) was
utility-maximizing and no new menu entries were introduced. If 𝑝 < 𝑐 , it is possible
that the buyer would purchase some other option (𝑝 ′, ®𝑞′) (or combination of options).
Regardless, the loss in revenue from that buyer is bounded by 𝑐 𝑓 (𝑥). Let 𝑆𝑐 be the set
of valuation vectors that preferred a menu entry in M priced at 𝑝 < 𝑐 . Then the total
loss in revenue is at most 𝑐

∑
𝑥 ∈𝑆𝑐 𝑓 (𝑥) ≤ 𝑐 . □
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Claim 11. Let M be a mechanism, and letM1,M2 ⊆ M be sub-menus ofM defined

as follows:

• M1 has all options whose price 𝑝𝑖 ∈ ∪∞
𝑖=0 [𝑐 · (2𝑘)2𝑖 , 𝑐 · (2𝑘)2𝑖+1).

• M2 has all options whose price 𝑝𝑖 ∈ ∪∞
𝑖=0 [𝑐 · (2𝑘)2𝑖+1, 𝑐 · (2𝑘)2𝑖+2).

Then max𝑖=1,2 Buy𝑘Rev(D,M𝑖 ) ≥ Buy𝑘Rev(D,M)/2.

Proof. BecauseM1 ∪M2 = M, observe that
Buy𝑘Rev(D,M) ≤ Buy𝑘Rev(D,M1) + Buy𝑘Rev(D,M2).

This is because any buyer with valuation 𝑥 who purchases an option from M1 when
presented the menuM will buy the same option when only presentedM1. By a simple
averaging argument, the better of the two menus must get revenue at least half of the
revenue of the original menu. □

Lemma 12. There exists a menuM such that

• All prices are at least 𝑐 .

• All prices belong to the set of intervals

⋃∞
𝑖=0 [𝑐 · (2𝑘)2𝑖+𝑎, 𝑐 · (2𝑘)2𝑖+𝑎+1) for an

𝑎 ∈ {0, 1}.
• Buy𝑘Rev(D,M) ≥ Buy𝑘Rev(D)−𝑐

2 .

Proof. Take the initial buy-𝑘 incentive-compatible menu M, apply Claim 10 to
obtain a menu M ′ that satisfies the first bullet point. Take the menu M ′ and ap-
ply Claim 11 to obtain a menu M ′′ that immediately satisfies the first and second
bullet points. Finally, due to the revenue guarantees of Claims 10, 11, we have that
Buy𝑘Rev(D,M ′′) ≥ Buy𝑘Rev(D,M′)

2 ≥ Buy𝑘Rev(D,M)−𝑐
2 . □

3.1.2 Construction of the Sequences 𝑋,𝑄 . In this subsection we will show how to use
the sub-menu found in the previous subsection to construct the sequences (𝑋,𝑄) of
interest who would witness

MenuGap𝑘 (𝑋,𝑄) ≥ 𝑂 (Buy𝑘Rev(D,M)/BRev(D)).
Consider the menu M ′′ from Lemma 12. Let B𝑗 ⊆ M ′′ be the sub-menu that has
all menu entries priced in [𝑐 · (2𝑘)2𝑗+𝑎, 𝑐 · (2𝑘)2𝑗+𝑎+1) for the same 𝑎 ∈ {0, 1} from
Lemma 12. We say a valuation 𝑥 ∈ B𝑗 if the menu option (𝑝 (𝑥), ®𝑞(𝑥)) ∈ B𝑗 . Let 𝑥 𝑗 be
the valuation on B𝑗 such that 𝑥 𝑗 ( [𝑛]) ≤ (1 + 𝛿)𝑥 ( [𝑛])∀𝑥 ∈ B𝑗 . We call valuation 𝑥 𝑗
the representative of bin B𝑗 .

Claim 13. Pr(𝑥 ∈ B𝑗 ) ≤ BRev(D) (1+𝛿)
𝑥 𝑗 ( [𝑛]) .

Proof. Consider the mechanism that sells the grand bundle at price 𝑥 𝑗 ( [𝑛])/(1+𝛿).
Since any valuation on B𝑗 has value at least that much for the grand bundle, the
revenue of this menu is at least Pr(𝑥 ∈ B𝑗 )𝑥 𝑗 ( [𝑛])/(1+𝛿). But this is a grand bundling
menu and is thus its revenue is at most BRev(D). □

Let (𝑋,𝑄) be the sequence defined by the choice of𝑥 𝑗 and their respective allocations
inM, ®𝑞 𝑗 .

Claim 14.
gap𝑘

𝑗
(𝑋,𝑄)

𝑥 𝑗 ( [𝑛]) ≥ 𝑝 𝑗

2·𝑥 𝑗 ( [𝑛]) ≥ Pr(𝑥 ∈B𝑗 )𝑝 𝑗

2·BRev(D) (1+𝛿) .
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Proof. Because the initial mechanism M∗ was buy-𝑘 incentive-compatible, we
know that for any previous set of 𝑘 options ®𝑞 𝑗1 , . . . , ®𝑞 𝑗𝑘 ,

𝑥 𝑗 ( ®𝑞 𝑗 ) − 𝑝 𝑗 ≥ 𝑥 𝑗 ( ®Lot( ®𝑞 𝑗1 , . . . , ®𝑞 𝑗𝑘 )) −
𝑘∑︁
𝑖=1

𝑝 𝑗𝑖 .

We can rewrite this as

gap𝑘𝑗 (𝑋,𝑄)
𝑥 𝑗 ( [𝑛])

≥
𝑝 𝑗 −

∑𝑘
𝑖=1 𝑝 𝑗𝑖

𝑥 𝑗 ( [𝑛])
.

Recall by our choice of points and the fact that 𝑗𝑖 < 𝑗 , 𝑝 𝑗 ≥ 2𝑘 · 𝑝 𝑗𝑖 . Therefore, the
right hand is at least 𝑝 𝑗

2𝑥 𝑗 ( [𝑛]) . The second inequality comes from Claim 13. □

We are now ready to prove Lemma 7.

Proof of Lemma 7. Let us first observe that

Buy𝑘Rev(D,M ′′) =
∑︁
𝑗

∑︁
𝑥 ∈B𝑗

𝑝 (𝑥) 𝑓 (𝑥) ≤
∑︁
𝑗

Pr(𝑥 ∈ B𝑗 )2𝑘𝑝 𝑗 . (5)

Recall that the price any valuations 𝑥 ∈ B𝑗 , its price 𝑝 (𝑥) is no greater than 2𝑘𝑝 𝑗 .
Therefore, the inequality follows. Moreover, from Claim 14 we get that

MenuGap𝑘 (𝑋,𝑄) =
∑︁
𝑗

gap𝑘𝑗 (𝑋,𝑄)
𝑥 𝑗 ( [𝑛])

≥
∑︁
𝑗

Pr(𝑥 ∈ B𝑗 )𝑝 𝑗

2 · BRev(D)(1 + 𝛿) . (6)

Applying Eq. 5 together with Lemma 12 we get that∑︁
𝑗

Pr(𝑥 ∈ B𝑗 )𝑝 𝑗 ≥
Buy𝑘Rev(D,M ′′)

2𝑘 ≥ (Buy𝑘Rev(D,M) − 𝑐)
4𝑘 . (7)

Putting Eqs. 6, 7 we get that

MenuGap𝑘 (𝑋,𝑄) ≥ (Buy𝑘Rev(D,M) − 𝑐)
8𝑘 · BRev(D)(1 + 𝛿) . (8)

Let 𝑐 = Buy𝑘Rev(D,M)/100, 𝛿 = 1/100 in Equation 8. Therefore,

99 · Buy𝑘Rev(D,M)
101 · 8𝑘 · BRev(D) ≥ Buy𝑘Rev(D,M)

9 · 𝑘 · BRev(D) .

□

3.2 Menu Gap is Finite when 𝑘 ≥ 𝑛: Proof of Lemmas 8, 9
The proof of Lemmas 8, 9 will be similar. We will present the proof of Lemma 8 and
defer the proof of Lemma 9 to Appendix D. We introduce some common notation to
both Lemmas before proving each of them individually. Given a sequence of points 𝑄 ,
let𝑄𝑖 be the sequence truncated at the 𝑖-th point, that is to say𝑄𝑖 = {®𝑞0, ®𝑞1, . . . , ®𝑞𝑖 }. Let
®𝑚𝑖 = (max®𝑞𝑖 ∈𝑄𝑖

{®𝑞𝑖,1}, . . . ,max®𝑞𝑖 ∈𝑄𝑖
{®𝑞𝑖,𝑛}) be the 𝑛-dimensional vector whose entries

are the largest coordinates among the points in 𝑄𝑖 .
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3.2.1 Proof Lemma 8. In this subsection we abuse the fact that for additive buyers,
we can think of their valuation function 𝑥 as an 𝑛-dimensional vector ®𝑥 = (𝑥1, . . . , 𝑥𝑛)
and 𝑥 ( ®𝑞) = ®𝑥 · ®𝑞.

Claim 15. For any 𝑖 , gap𝑛𝑖 (𝑋,𝑄)/| |𝑥𝑖 | |1 ≤
∑𝑛

𝑑=1 max{®𝑞𝑖,𝑑 − ®𝑚𝑖−1,𝑑 , 0}.

Proof. Let ®𝑥𝑖 , ®𝑞𝑖 be given. Since gap is defined to be the minimum over all pairs
of previously placed points, we can just upper bound it by witnessing its value with
earlier points. Let 𝑖∗1, 𝑖∗2, . . . , 𝑖∗𝑛 be the indices such that:

• 𝑖∗1, 𝑖
∗
2, . . . , 𝑖

∗
𝑛 < 𝑖,

• ®𝑞𝑖∗
𝑑
,𝑑 = ®𝑚𝑖−1,𝑑∀𝑑 ∈ [𝑛] .

That is to say, {𝑖∗
𝑑
}𝑛
𝑑=1 are the indices of the points that witness that ®𝑚𝑖−1 is indeed the

coordinate-wise max of all points in 𝑄𝑖−1. Then

gap𝑛𝑖 (𝑋,𝑄)/| | ®𝑥𝑖 | |1 ≤
®𝑥𝑖

| | ®𝑥𝑖 | |1
· ( ®𝑞𝑖 − ®Lot( ®𝑞𝑖∗1 , ®𝑞𝑖∗2 , . . . , ®𝑞𝑖∗𝑛 )).

Recall that

®Lot( ®𝑞𝑖∗1 , ®𝑞𝑖∗2 , . . . , ®𝑞𝑖∗𝑛 )𝑑 ≥ max{®𝑞𝑖∗1 , ®𝑞𝑖∗2 , . . . , ®𝑞𝑖∗𝑛 }𝑑 ≥ ®𝑚𝑖−1,𝑑 .

Therefore,

®𝑞𝑖,𝑑 − ®Lot( ®𝑞𝑖∗1 , ®𝑞𝑖∗2 , . . . , ®𝑞𝑖∗𝑛 )𝑑 ≤ ®𝑞𝑖,𝑑 − ®𝑚𝑖−1,𝑑 ,

for all 𝑑 ∈ [𝑛]. Therefore, for any choice of ®𝑥𝑖 , it will be true that

gap𝑛𝑖 (𝑋,𝑄)/| | ®𝑥𝑖 | |1 ≤
®𝑥𝑖

| | ®𝑥𝑖 | |1
· ( ®𝑞𝑖 − ®Lot( ®𝑞𝑖∗1 , ®𝑞𝑖∗2 , . . . , ®𝑞𝑖∗𝑛 ))

=

𝑛∑︁
𝑑=1

®𝑥𝑖,𝑑
| | ®𝑥𝑖 | |1

( ®𝑞𝑖,𝑑 − ®Lot( ®𝑞𝑖∗1 , ®𝑞𝑖∗2 , . . . , ®𝑞𝑖∗𝑛 )𝑑 )

≤
𝑛∑︁

𝑑=1

®𝑥𝑖,𝑑
| | ®𝑥𝑖 | |1

( ®𝑞𝑖,𝑑 − ®𝑚𝑖−1,𝑑 )

≤
𝑛∑︁

𝑑=1
max{0, ®𝑞𝑖,𝑑 − ®𝑚𝑖−1,𝑑 }

This proves the claim (Naturally, ®𝑥𝑖,𝑑 ≤ || ®𝑥𝑖 | |1 for all 𝑑). □
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Proof of Lemma 8. For any pair of sequences (𝑋,𝑄) coming from an additive
valuation function,

MenuGap𝑛 (𝑋,𝑄) =
𝑁∑︁
𝑖=1

gap𝑛𝑖 (𝑋,𝑄)/| |𝑥𝑖 | |1

≤
𝑛∑︁

𝑑=1

𝑁∑︁
𝑖=1

(max{®𝑞𝑖,𝑑 − ®𝑚𝑖−1,𝑑 , 0})

≤
𝑛∑︁

𝑑=1

𝑁∑︁
𝑖=1

(max{ ®𝑚𝑖,𝑑 − ®𝑚𝑖−1,𝑑 , 0})

≤
𝑛∑︁

𝑑=1

𝑁∑︁
𝑖=1

( ®𝑚𝑖,𝑑 − ®𝑚𝑖−1,𝑑 )

≤ 𝑛.

The first inequality follows from Claim 15. For the second inequality, first note that
for any fixed 𝑑 , by definition ®𝑞𝑖,𝑑 ≤ ®𝑚𝑖,𝑑 , with equality only if ®𝑞𝑖,𝑑 ≥ ®𝑞𝑖′,𝑑 for all 𝑖 ′ < 𝑖 .
But note also that by definition ®𝑚𝑖,𝑑 − ®𝑚𝑖−1,𝑑 ≥ 0. Therefore max{ ®𝑚𝑖,𝑑 − ®𝑚𝑖−1,𝑑 , 0} ≤
®𝑚𝑖,𝑑 − ®𝑚𝑖−1,𝑑 . The last inequality follows from observing that the final sum across each
coordinate telescopes. Since ®𝑞𝑖,𝑑 ≤ 1, the sum is at most 1 per coordinate. □

Observation 16. Setting both sequences (𝑋,𝑄) equal to the standard basis of R𝑛 shows

that Lemma 8 is tight.

4 SMALL 𝑘 DOES NOT SUFFICE: PROOF OF THEOREM 3
In this section we show that if 𝑘 ≤ 𝑛1/2−𝜀 , then there exists a distribution D over 𝑛
items for which there is an exponential gap in 𝑛 (up to poly(𝑛)) between BRev(D)
and Buy𝑘Rev(D), the revenue attained by the optimal buy-𝑘 mechanism.

Theorem 3. If 𝑘 ≤ 𝑛1/2−𝜀 for some 𝜀 > 0, then there exists an additive valuation

function D over 𝑛 items such that for a single buyer

Buy𝑘Rev(D)
BRev(D) ≥ exp (Ω(𝑛𝜀))

2𝑛2 .

The proof of Theorem 3 will be broken down in three steps. Firstly, we will describe
the pair of sequences (𝑋𝐿, 𝑄𝐿) that we use (Subsection 4.1.1). The construction will
make use of a combinatorial Lemma about cover-free sets from [Kautz and Singleton
1964]. Next, we will show that for that instance, MenuGap𝑘 (𝑋𝐿, 𝑄𝐿) ≥ exp(Ω (𝑛𝜀 ))

2𝑛2

when 𝑘 ≤ 𝑛1/2−𝜀 (Lemma 20). In the final step, we will show how to construct a
distribution D such that Buy𝑘Rev(D)/BRev(D) ≥ MenuGap𝑘 (𝑋𝐿, 𝑄𝐿) (Lemma 21).
The proof of Lemma 21 will use ideas from [Hart and Nisan 2017].

Before we delve into the proof of Theorem 3, we analyze its implications for mech-
anisms with polynomial menu size. We invoke the following Corollary from [Hart
and Nisan 2017].

Corollary 17 (Restated from [Hart and Nisan 2017]). Consider any mechanism M
with menu size𝑀 , then for any distribution D ∈ R𝑛
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𝑀 · BRev(D) ≥ Rev(D,M).

This Corollary, combined with Theorem 3 imply the following Corollary.

Corollary 18. Let M be a buy-𝑘 mechanism with menu size𝑀 = poly(𝑛), then there

exists a distribution D ∈ R𝑛 such that for any single, additive buyer

Buy𝑘Rev(D)
Rev(D,M) ≥ exp (Ω(𝑛𝜀))

poly(𝑛) .

In other words, Corollary 18 rules out all polynomial-sized mechanisms M as
candidates for good approximations to Buy𝑘Rev(D) for the case 𝑘 ≤ 𝑛1/2−𝜀 .

4.1 Proof of Theorem 3
Throughout this Subsection we again abuse the fact that for additive valuation func-
tions 𝑥 , we can think of the valuation as an 𝑛-dimensional vector ®𝑥 = (𝑥1, . . . , 𝑥𝑛).

4.1.1 Part 1: Description of the Instance. In order to describe the instance we consider,
we first need to introduce the concept of 𝑘-cover-free families of sets.

Definition 3. A family of sets F is called 𝑘-cover-free if𝐴0 ⊈ 𝐴1 ∪𝐴2 ∪ · · · ∪𝐴𝑘 holds

for all distinct 𝐴0, 𝐴1, . . . , 𝐴𝑘 ∈ F .

We will be interested in constructing the largest possible family of sets that is
𝑘-cover-free. Let 𝑇 (𝑛, 𝑘) denote the maximum cardinality of a 𝑘-cover-free family of
sets F . We use the following bound from [Füredi 1996], attributed there to [Kautz and
Singleton 1964].

Theorem 19. [[Kautz and Singleton 1964]] For all 𝑛, 𝑘 , it holds that

Ω

(
1
𝑘2

)
≤ log(𝑇 (𝑛, 𝑘))

𝑛
.

In other words, there exists a family of sets F𝑘 that is 𝑘-cover-free and |F𝑘 | ≥ 2Ω
(
𝑛

𝑘2

)
.

We will use 𝑘-cover-free sets to construct pairs of sequences that have large menu
gaps. Then, we will take this pair of sequences and show how to obtain a𝑛-dimensional
distribution whose revenue gap is lower bounded by the menu gap of the underlying
pair of sequences. We are now ready to define the instance of interest. Assume 𝑘 ≤
𝑛1/2−𝜀 .

Definition 4. Let F 𝐿
be a 𝑘-cover-free family of sets of maximal size, i.e., such that

|F 𝐿 | = 𝑇 (𝑛, 𝑘) = exp
(
Ω(𝑛/𝑘2)

)
. Set ®𝑥𝐿𝑖 = ®𝑞𝐿𝑖 = ®𝑒𝐴𝑖

∀𝐴𝑖 ∈ F 𝐿
, where by ®𝑒𝑆 we denote

the 𝑛-dimensional indicator vector for set 𝑆 .

Observe that unlike other constructions (e.g., [Hart and Nisan 2017], [Psomas et al.
2022]) the number of points in each pair of sequences is finite. Thus this instance
cannot witness an infinite revenue gap, but we claim it can witness an exponential
revenue gap.
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4.1.2 Part 2: The Instance has Large Menu Gap. In the next step of the proof of
Theorem 3 we will show that the constructed instance has large menu gap.

Claim 20. For the instance described in Definition 4, it holds that

MenuGap𝑘 (𝑋𝐿, 𝑄𝐿) ≥ |F 𝐿 |
𝑛

.

Proof.

gap𝑘𝑖 (𝑋𝐿, 𝑄𝐿) = min
𝑗1, 𝑗2,..., 𝑗𝑘 ≤𝑖

®𝑒𝐴𝑖

|®𝑒𝐴𝑖
| ·

(
®𝑒𝐴𝑖

− ®Lot(®𝑒𝐴 𝑗1
, ®𝑒𝐴 𝑗2

, . . . , ®𝑒𝐴 𝑗𝑘
)
)

≥ min
𝑗1, 𝑗2,..., 𝑗𝑘≠𝑖

®𝑒𝐴𝑖

|®𝑒𝐴𝑖
| ·

(
®𝑒𝐴𝑖

− ®Lot(®𝑒𝐴 𝑗1
, ®𝑒𝐴 𝑗2

, . . . , ®𝑒𝐴 𝑗𝑘
)
)

≥ min
𝑗1, 𝑗2,..., 𝑗𝑘≠𝑖

®𝑒𝐴𝑖

|®𝑒𝐴𝑖
| ·

(
®𝑒𝐴𝑖

− ®𝑒∪𝑘
ℓ=1𝐴 𝑗ℓ

)
≥ min

𝑗1, 𝑗2,..., 𝑗𝑘≠𝑖

|𝐴𝑖 | − |𝐴𝑖 ∩
(
∪𝑘
ℓ=1𝐴 𝑗ℓ

)
|

|𝐴𝑖 |

= min
𝑗1, 𝑗2,..., 𝑗𝑘≠𝑖

|𝐴𝑖 \
(
∪𝑘
ℓ=1𝐴 𝑗ℓ

)
|

|𝐴𝑖 |
≥ 1

𝑛
.

The first inequality observes that the gap only worsens when we allow for all other
points to be used, rather than just those that come before 𝑖 . The second inequality
observes that, since all vectors inside the argument have integral coordinates, the
output is the indicator vector over the union of the inputs. The third inequality
observes that for any two sets 𝑆,𝑇 , ®𝑒𝑆 · ®𝑒𝑇 = |𝑆 ∩𝑇 |. The fourth inequality restates the
previous line. The last inequality uses |𝐴𝑖 | ≤ 𝑛 in the denominator and the fact that
F 𝐿 is 𝑘-cover free, thus 𝐴𝑖 \

(
∪𝑘
ℓ=1𝐴 𝑗ℓ

)
≠ ∅ for any choice of 𝐴 𝑗ℓ in the numerator.

Thus, gap𝑘𝑖 (𝑋𝐿, 𝑄𝐿) ≥ 1/𝑛 for all 𝑖 ∈ F 𝐿 . Therefore, MenuGap𝑘 (𝑋𝐿, 𝑄𝐿) ≥ |F𝐿 |
𝑛

.
□

4.1.3 Part 3: from Sequences to Distributions. We now present the final piece for
the proof of Theorem 3. Lemma 21 states that given a pair of sequences (𝑋,𝑄) of
a certain form, we can find a distribution whose revenue gap is at least as large as
MenuGap𝑘 (𝑋,𝑄). This is a slight generalization of a lemma from [Hart and Nisan
2017]. The experienced reader will notice that our construction uses many similar
ideas. Their work makes no assumptions on the sequences 𝑋,𝑄, but only works for
the case of 𝑘 = 1.

Lemma 21. Let (𝑋,𝑄) be a pair of sequences such that ®𝑥𝑖 ∈ {0, 1}𝑛, ®𝑞𝑖 ∈ {0, 1}𝑛 for all

𝑖 . Moreover, suppose gap𝑘𝑖 (𝑋,𝑄) ≥ 1
𝑛
for all 𝑖 . Then, there exists a distribution D ∈ R𝑛

such that for any integer 𝑘 ,

Buy𝑘Rev(D)
BRev(D) ≥ MenuGap𝑘 (𝑋,𝑄)

2𝑛 .

4.1.4 Part 4: Putting it all together. We are now ready to present the Proof of Theo-
rem 3.
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Proof of Theorem 3. Consider the instance (𝑋𝐿, 𝑄𝐿) fromDefinition 4. ByClaim 20,
the instance satisfies MenuGap𝑘 (𝑋𝐿, 𝑄𝐿) ≥ |F 𝐿 |/𝑛 and has only integral vectors. By
Lemma 21, we can turn (𝑋𝐿, 𝑄𝐿) into a distributionD with Buy𝑘Rev(D)/BRev(D) ≥
MenuGap𝑘 (𝑋𝐿,𝑄𝐿)

2𝑛 . Thus,

Buy𝑘Rev(D)
BRev(D) ≥ |F 𝐿 |

2𝑛2 .

Finally, for 𝑘 ≤ 𝑛1/2−𝜀 , note that |F 𝐿 | = exp(Ω(𝑛𝜀)). Therefore, the right hand side
becomes exp(Ω (𝑛𝜀 ))

2𝑛2 . □

4.2 Deterministic Buy-𝑘 Mechanisms are not Much Better than Bundling
for Large 𝑘

Recall that in the previous section we showed that when 𝑘 ≤ 𝑛1/2−𝜀 , the gap between
the optimal, deterministic buy-𝑘 mechanism and bundling may be exponential in 𝑛.
In this subsection we prove that a phase transition happens when 𝑘 ≥

√
𝑛. Namely,

we show that for this regime bundling recovers a poly(𝑛) fraction of the optimal,
deterministic buy-𝑘 mechanism.

Theorem 4. If 𝑘 ≥
√
𝑛, for any distribution D over 𝑛 items for a single, additive buyer

it holds that

BRev(D) ≥ Det𝑘Rev(D)
poly(𝑛) .

We defer the proof of Theorem 4 to Appendix E, but observe that its proof relies
on a slight strengthening of Theorem 19 from [Kautz and Singleton 1964] to ordered
subsets, which may be of independent interest to readers.

5 CONCLUSION
In this paper we initiate the study of fine-grained buy-many mechanisms. The motiva-
tion for our work stems from a simple observation: there exist distributions for which
the buy-one revenue gap Rev(D)/BRev(D) is unbounded, but for all distributions the
buy-many revenue gap BuyManyRev(D)/BRev(D) is finite. There is a wide worst-
case revenue gap between optimal buy-many and optimal buy-one mechanisms, which
begs the question: how much must we constraint the seller’s choice of mechanism
until the revenue gap becomes finite for all distributions? In order to answer this
question, we introduce the concept of buy-𝑘 mechanisms, those where the buyer can
buy any multi-set of up to 𝑘 many menu choices. We show that buy-𝑛 mechanisms
are not much better than bundling. For all distributions D, the revenue from bundling
recovers a 𝑂 (𝑛2) fraction of the optimal buy-𝑛 revenue when the buyer is additive
and a 𝑂 (2𝑛 · 𝑛2) fraction of the optimal buy-𝑛 revenue when the buyer has an arbi-
trary monotone valuation. Our proof uses a recent framework proposed in [Hart and
Nisan 2017; Psomas et al. 2022] for buy-one mechanisms. While in those works, the
framework has been used to produce examples of inapproximable distributions, our
work shows that it can be used to prove approximation guarantees. Moreover, all our
results hold for the case of an adaptive buyer.
There are numerous questions for future work:
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• We have already outlined one interesting question for future work, to prove or
disprove Conjecture 1. We discuss our candidate instance for Conjecture 1 in
Appendix C.

• We showed that restricting the seller to be buy-𝑛 incentive compatible sufficed
to obtain a𝑂 (2𝑛 · 𝑛2)-approximation via bundling. It would be interesting if the
exponential bound is tight in general.

• It would be interesting to understand the role of 𝑘 in whether or not the rev-
enue gap is finite. Concretely, for a given 𝑛, what is the smallest 𝑘 for which
Buy𝑘Rev(D)/BRev(D) is finite for all D?

• Another interesting avenue would be to explore the power that buy-many or
fine-grained buy-many mechanisms have over product distributions. There is
a long line of work with elegant approximation results for the case of product
distributions, but progress towards polynomial time approximation schemes
has been slow. It is possible that restricting the seller’s choice of mechanism
improves the performance of existing algorithms or allows for the discovery of
more efficient ones.

We hope that our results strengthen the importance of developing a deeper under-
standing of fine-grained buy-many mechanisms.
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A ADAPTIVE BUY-MANY MECHANISMS
In this Appendix, we briefly review another notion of buy-𝑘 mechanisms, which we
refer to as adaptive buy-𝑘 mechanisms. We will define them to be analogues of the
adaptive buy-many mechanisms as defined in [Chawla et al. 2019].
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In the standard definition of buy-𝑘 mechanisms, formalized in section 2, the buyer
may purchase any multi-set of menu options of size up to 𝑘 . In a randomized mecha-
nism, this corresponds to committing to up to 𝑘 options and only after that receiving
their outcome allocations; in other words, the choice of, say, second option, is not a
function of probabilistic outcomes of the lottery for the first option. This is formally
captured in our definition of the function ®Lot(·).

We can naturally also consider a variant of this definition that allows for adaptively
choosing the options to purchase, based on the probabilistic outcomes of the lotteries
for the prior options. In this case, the buyer can commit to a strategy of different
ways of purchasing up to 𝑘 options, while seeing the outcome of each purchased
lottery before purchasing the next option. A strategy can be thought of as a 2𝑛-ary
tree of depth at most 𝑘 where each node identifies what to purchase on the next step
depending on which items of the current purchased lottery “succeeded” or “failed”.
The buyer is then interested in a strategy with maximum expected payoff. Analogous
to [Chawla et al. 2019], we say a mechanismM is adaptive buy-𝑘 incentive-compatible

if for every valuation of the buyer, the strategy with maximum expected payoff consists
of buying a single option (see also Section 2 of [Chawla et al. 2019] for more details
on this definition).
As was observed in [Chawla et al. 2019], it is easy to see that since the set of non-

adaptive buy-𝑘 options are all valid strategies for an adaptive buy-𝑘 mechanism, any
mechanism that is adaptive buy-𝑘 incentive-compatible is also (non-adaptive) buy-𝑘
incentive-compatible (but the reverse direction is not necessarily true). As a corollary
of this, we can immediately extend our bounds in Theorems 1 and 2 to adaptive buy-𝑘
incentive-compatible mechanisms.
Finally recall that the construction of Theorem 3 presented in Section 4 gave a

deterministic mechanism. When a mechanism is deterministic, there is no distinction
between adaptive and non-adaptive strategies because there is no randomness in
the allocation. Therefore, the lower bounds of Theorem 3 also extend to the case of
adaptive buyers.

B BRev(D) CAN NOT GIVE A SUBLINEAR APPROXIMATION TO
Buy𝑘Rev(D)

In this section we show that Theorem 1 can not be improved to a sublinear approxi-
mation factor for any 𝑘 .
Claim 22. There exists a distribution D such that for a single, additive buyer and any 𝑘 ,

BRev(D) ≤ 2 · Buy𝑘Rev(D)
𝑛

.

Proof. Consider the distribution D from Example 15 of [Hart and Nisan 2012].
This distribution satisfies the following property: BRev(D) = 2, SRev(D) = 𝑛, where
SRev(·) is the optimal revenue attained by item-pricing. Observe that item-pricing is
a buy-many incentive-compatible mechanism. Thus, SRev(D) ≤ BuyManyRev(D).
Moreover, from Claim 1 we know that for any 𝑘 , BuyManyRev(D) ≤ Buy𝑘Rev(D).
Therefore,

BRev(D) ≤ 2 · Buy𝑘Rev(D)
𝑛

.
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In particular, this shows that the ratio between BRev(D) and Buy𝑘Rev(D) for additive
buyers is Ω(𝑛), implying that Theorem 1 can not be substantially improved. □

C CANDIDATE DISTRIBUTION FOR A SEPARATION BETWEEN
Buy𝑘Rev(D) AND Buy𝑘+1Rev(D)

In this section we present the instance D that proves Proposition 1 and that we posit
could prove Conjecture 1.
Example 2. Consider the following (correlated) distribution D over two additive items:

Pr(𝑣1 = 𝑎, 𝑣2 = 𝑏) =


1/6 for 𝑎 = 3, 𝑏 = 4
1/6 for 𝑎 = 4, 𝑏 = 3
4/6 for 𝑎 = 5, 𝑏 = 7.

For the following proofs, we introduce some additional notation. Namely, we denote
each 𝑥 𝑗 ∈ supp(D) as “buyer 𝑗” and let 𝑢 𝑗 (Λ) = 𝑥 𝑗 ( ®Lot(Λ)) −∑

𝑖=1 𝑝 ( ®𝑞𝑖 ) be the utility
gained by buyer 𝑗 from purchasing the multi-set of allocations Λ. We also prove the
following useful claim about the utility function.
Claim 23. Let buyer 𝑗 have a valuation of 𝑥 𝑗 . Let Λ be some multi-set of allocations

such that 𝑞𝑖 ∈ Λ with multiplicity𝑚𝑖 ≥ 0. Then, 𝑢 𝑗 (Λ) is concave in𝑚𝑖 .

Proof. We verify that the second derivative of the utility function for buyer 𝑗 with
respect to𝑚𝑖 is non-positive.

𝜕2𝑢 𝑗 (Λ)
𝜕𝑚2

𝑖

=
𝜕2

𝜕𝑚2
𝑖

(
𝑥 𝑗 ( ®Lot(Λ)) −

∑︁
𝑖=1

𝑝 ( ®𝑞𝑖 )
)

=
𝜕2

𝜕𝑚2
𝑖

(∑︁
𝑡=1

𝑥 𝑗𝑡 · (1 − (1 − 𝑞1𝑡 )𝑚1 · ... · (1 − 𝑞𝑖𝑡 )𝑚𝑖 ) −
∑︁
𝑖=1

𝑝 ( ®𝑞𝑖 )
)

=
∑︁
𝑡=1

−𝑥 𝑗𝑡 · ln (1 − 𝑞𝑖𝑡 )2 · (1 − 𝑞1𝑡 )𝑚1 · ... · (1 − 𝑞𝑖𝑡 )𝑚𝑖

≤ 0
since ®𝑞𝑖 ∈ [0, 1] and 𝑥 𝑗 ≥ 0. □

Proof of Proposition 1. The LP formulation presented in [Briest et al. 2015] pro-
vides us with a simple way to compute optimal mechanisms in the buy-one world.
Naturally, for some fixed input distribution, the LP constructs an allocation and pay-
ment function which maximizes expected revenue while maintaining feasibility and
buy-one incentive-compatibility constraints. Through this LP, we can compute the
revenue-optimal buy-one mechanism for the distribution D shown below:

M1 =


((0.2, 0.2), 1.4)
((1, 0), 4)
((1, 1), 11).

This mechanism achieves an expected revenue (subject to truncation) of 8.233. More
generally, the previous program can be altered to compute the optimal buy-𝑘 mecha-
nism for a distribution D, albeit by introducing non-convex constraints to enforce
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buy-𝑘 incentive-compatibility. Despite non-convexity, for 𝑘 = 2, 3, 4, a non-convex
optimizer was able to compute the revenue-optimal buy-𝑘 mechanism. The anno-
tated code samples for computing these optimal mechanisms can be found here. For
each respective value of 𝑘 , the optimizer found the optimal expected revenue to be
[8.135, 8.096, 8.074], allowing us to conclude that Buy1Rev(D) > Buy2Rev(D) >

Buy3Rev(D) > Buy4Rev(D). Thus, we empirically validate Proposition 1. □

We also conjecture that Example 2 is a good candidate for proving Conjecture 1.
Fix some value of 𝑘 ≥ 1 and consider the following mechanism M𝑘 = {𝑡1 =

((𝛼𝑘 , 𝛼𝑘 ), 7𝛼𝑘 ), 𝑡2 = ((1, 0), 4), 𝑡3 = ((1, 1), 11)}, where 𝛼𝑘 is the smallest positive
real root of the 𝑘-degree polynomial 𝑓𝑘 (𝑥) = 12(1 − (1 − 𝑥)𝑘 ) − 7𝑘 · 𝑥 − 1. Intuitively,
the value 𝛼𝑘 has the following property: when buyer 3 purchases 𝑘 copies of 𝑡1, they
receive a utility of 1, which is the same utility gained from purchasing a single copy
of 𝑡3.

Claim 24. The mechanismM𝑘 is buy-𝑘 incentive compatible for the distribution defined

in Example 2, and achieves expected revenue 𝑅𝑘 = 8 + 7/6 · 𝛼𝑘 .

Proof. We first verify that M𝑘 is a buy-𝑘 incentive-compatible mechanism for
the distribution D. By Claim 23 the utility of buyer 𝑗 from purchasing a multi-set of
allocations Λ is concave in the number of identical allocations bought. Consequently,
once we establish that a buyer achieves non-positive utility from purchasing amulti-set
Λ of allocations, we can conclude that purchasing any multi-set Λ′ ⊇ Λ will similarly
yield non-positive utility for the buyer.
We proceed by calculating the utility received by each buyer for each allocation

and showing that each buyer (weakly) maximizes their utility by purchasing a single
ticket. First, consider buyer 1 who achieves 𝑢1 ((𝛼𝑘 , 𝛼𝑘 )) = 0, 𝑢1 ((1, 0)) < 0, and
𝑢1 ((1, 1)) < 0. Second, consider buyer 2 who achieves 𝑢2 ((𝛼𝑘 , 𝛼𝑘 )) = 0, 𝑢2 ((1, 0)) = 0,
and 𝑢2 ((1, 1)) < 0. By Claim 23, both buyer 1 and buyer 2 satisfy the buy-𝑘 incentive-
compatibility constraints since they will always prefer to purchase tickets 𝑡1 and 𝑡2,
respectively, compared to another other multi-set of allocations.

For buyer 3, a slightly more careful analysis is required.We can first check that buyer
3 satisfies buy-one incentive-compatibility constraints since 0 < 𝑢3 ((𝛼𝑘 , 𝛼𝑘 )) ≤ 1,
𝑢3 ((1, 0)) = 1, and 𝑢3 ((1, 1)) = 1. We must additionally check that the higher order
incentive-compatibility constraints also hold since buyer 3 obtains positive utility
from individually buying 𝑡1 and 𝑡2. Notice, 𝑡2 offers a deterministic allocation, so
purchasing multiple copies of this ticket does not yield additional utility. This leaves
two cases to analyze. Specifically, we can easily verify that 𝑢3 ({(𝛼𝑘 , 𝛼𝑘 ), (1, 0)}) = 1
and 𝑢3 ({(𝛼𝑘 , 𝛼𝑘 )1, ..., (𝛼𝑘 , 𝛼𝑘 )𝑘 }) = 1, where the last equality follows directly from the
definition of 𝛼𝑘 . Moreover, since 𝛼𝑘 is the smallest positive root of the polynomial
𝑓𝑘 (𝑥), we know that 𝑢3 ({(𝛼𝑘 , 𝛼𝑘 )1, ..., (𝛼𝑘 , 𝛼𝑘 )𝑖 }) < 1 for 1 ≤ 𝑖 < 𝑘 . By Claim 23, we
can conclude that buyer 3 can achieve a utility of at most 1 by deviating from the
ticket 𝑡3. Thus, buyer 3 satisfies buy-𝑘 incentive-compatibility constraints.
The revenue of 𝑀𝑘 follows from the fact that buyer 𝑗 will purchase ticket 𝑡 𝑗 and

from the density of the valuation classes. In the case where two allocations yield
the same utility for a buyer, we break the tie in favor of the seller. As a result, 𝑅𝑘 =

2/3 · 11 + 1/6 · 4 + 1/6 · 7𝛼 = 8 + 7/6 · 𝛼𝑘 . □
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Claim 25. For all integers 𝑘 ≥ 1, the polynomial 𝑓𝑘 (𝑥) always has a positive, real root
below 1. Moreover, the sequence {𝛼𝑘 }∞𝑘=1, where 𝛼𝑘 is the smallest positive, real root of

𝑓𝑘 (𝑥), is strictly decreasing.

Proof. The proof follows via an inductive argument using the intermediate value
theorem. First, recognize that 𝑓 is continuous and 𝑓𝑘 (0) = −1 for all 𝑘 ≥ 1. By the
proof of Proposition 1, we have that 𝑓1 (0.2) = 0 < 1. Let us inductively assume that
𝑓𝑘 (𝛼𝑘 ) = 0 and 𝛼𝑘 ≤ 1 for 𝑘 ≥ 1. We wish to show that 𝑓𝑘+1 (𝛼𝑘 ) > 0 as this would
imply that 𝑓𝑘+1 (𝑥) has a root 0 < 𝛼𝑘+1 < 𝛼𝑘 by the intermediate value theorem. To
begin,

𝑓𝑘+1 (𝛼𝑘 ) = −12(1 − (1 − 𝛼𝑘 )𝑘+1) − 7𝛼𝑘 · (𝑘 + 1) − 1

= −12(1 − 𝛼𝑘 )𝑘+1 + 12(1 − 𝛼𝑘 )𝑘 − 7𝛼𝑘
= −12(1 − 𝛼𝑘 )𝑘𝛼𝑘 − 7𝛼𝑘 ,

where the second equality follows from the fact that 𝛼𝑘 is a root of 𝑓𝑘 (𝑥). From
the reduced form above, it suffices to show that 𝛼𝑘 < (1 − ( 7

12 )
1/𝑘 ) to prove that

𝑓𝑘+1 (𝛼𝑘 ) > 0. This can be accomplished by the following algebraic manipulations:
𝑓𝑘 (1 − (7/12)1/𝑘 ) = −12((7/12)1/𝑘 )𝑘 − 7𝑘 · (1 − (7/12)1/𝑘 ) + 11

= −7𝑘 · (1 − (7/12)1/𝑘 ) + 4
> 0.

Since 𝑓𝑘 (1 − (7/12)1/𝑘 ) > 0, by the intermediate value theorem, it follows that 𝛼𝑘 <

(1 − ( 7
12 )

1/𝑘 ). Consequently, we find that 𝑓𝑘+1 (𝛼𝑘 ) > 0, finishing the proof that 0 <

𝛼𝑘+1 < 𝛼𝑘 < 1. □

Note that Claim 25 clearly implies that the sequence {𝑅𝑘 }∞𝑘=1 is also strictly de-
creasing as it is the same sequence as {𝑐𝑘 }∞𝑘=1 but shifted by a constant. Given
Claims 24, 25, all that remains is to show that Buy𝑘Rev(D) = 𝑅𝑘 for all 𝑘 ≥ 2.
Then since Buy1Rev(D) > 𝑅2 and the sequence 𝑅𝑘 is strictly decreasing, we would
have that Buy𝑘Rev(D) > Buy𝑘+1Rev(D) for all 𝑘 , proving Conjecture 1. The principal
obstacle to proving the missing step is find a technique to overcome non-convexity of
the optimization problem. We currently have a candidate mechanism, but the non-
convexity of the constraints hinders our ability to prove it is optimal via some notion
of duality.

D PROOFS MISSING FROM SECTION 3
D.1 Proof of Lemma 9
In this subsection we assume the valuation function is monotone, i.e. 𝑣 (𝑆) ≥ 𝑣 (𝑇 )
whenever 𝑇 ⊆ 𝑆 . We will show that for such valuation classes, MenuGap𝑛 (𝑋,𝑄) ≤
2𝑛 · 𝑛 for all sequences (𝑋,𝑄). To prove this, we’ll make use of the following lemma.
Claim 26. For any monotone valuation 𝑣 and two vectors 𝑝, 𝑞 ∈ [0, 1]𝑛 with 𝑝 ≤ 𝑞

coordinate-wise (i.e., 𝑝𝑖 ≤ 𝑞𝑖 for all 𝑖 ∈ [𝑛]), we have 𝑣 (𝑝) ≤ 𝑣 (𝑞).
Proof. To simplify the proof, observe that we only need to consider the case where

𝑝 and 𝑞 differ in exactly one coordinate (i.e., 𝑝𝑖 = 𝑞𝑖 for 𝑖 ∈ [𝑛 − 1] and 𝑝𝑛 < 𝑞𝑛). We
can then apply this result (up to) 𝑛 times in order to conclude our desired result.
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Since we can partition the powerset of [𝑛] into sets which contain 𝑛 and sets which
don’t contain 𝑛, we can rewrite 𝑣 ( ®𝑝) as:

𝑣 ( ®𝑝) =
∑︁

𝐴⊆[𝑛]
Pr( ®𝑝,𝐴) · 𝑣 (𝐴) =

∑︁
𝐵⊆[𝑛−1]

Pr( ®𝑝, 𝐵 ∪ {𝑛}) · 𝑣 (𝐵 ∪ {𝑛}) +
∑︁

𝐵⊆[𝑛−1]
Pr( ®𝑝, 𝐵) · 𝑣 (𝐵)

(9)

This implies that 𝑣 ( ®𝑞) − 𝑣 ( ®𝑝) = 𝐴 + 𝐵, where 𝐴, 𝐵 are defined as:

𝐴 =
∑︁

𝐵⊆[𝑛−1]
[Pr( ®𝑞, 𝐵 ∪ {𝑛}) − Pr( ®𝑝, 𝐵 ∪ {𝑛})] · 𝑣 (𝐵 ∪ {𝑛}) (10)

𝐵 =
∑︁

𝐵⊆[𝑛−1]
[Pr( ®𝑞, 𝐵) − Pr( ®𝑝, 𝐵)] · 𝑣 (𝐵) (11)

Our goal is to show 𝐴 + 𝐵 ≥ 0. To do this, let’s first find explicit expressions of
[Pr( ®𝑞, 𝐵 ∪ {𝑛}) − Pr( ®𝑝, 𝐵 ∪ {𝑛})] and [Pr( ®𝑞, 𝐵) − Pr( ®𝑝, 𝐵)]. We have:

[Pr( ®𝑞, 𝐵 ∪ {𝑛}) − Pr( ®𝑝, 𝐵 ∪ {𝑛})] = (𝑞𝑛 − 𝑝𝑛)
∏
𝑖∈𝐵

𝑞𝑖 ·
∏

𝑖∉𝐵∪{𝑛}
(1 − 𝑞𝑖 ) (12)

and

[Pr( ®𝑞, 𝐵) − Pr( ®𝑝, 𝐵)] = [(1 − 𝑞𝑛) − (1 − 𝑝𝑛)]
∏
𝑖∈𝐵

𝑞𝑖 ·
∏

𝑖∉𝐵∪{𝑛}
(1 − 𝑞𝑖 ) (13)

by direct calculation (and noting that 𝑝𝑖 = 𝑞𝑖 for all 𝑖 ∈ [𝑛 − 1]). Thus, we observe
that the two probabilities are additive complements of each other. Hence, if we denote
𝑝𝐵 = [Pr( ®𝑞, 𝐵 ∪ {𝑛}) − Pr( ®𝑝, 𝐵 ∪ {𝑛})], we can write

𝑣 ( ®𝑞) − 𝑣 ( ®𝑝) =
∑︁

𝐵⊆[𝑛−1]
𝑝𝐵 · [𝑣 (𝐵 ∪ {𝑛}) − 𝑣 (𝐵)] . (14)

But we know the right hand side is at least 0 since 𝑣 (𝐵 ∪ {𝑛}) ≥ 𝑣 (𝐵) by monotonicity.
Hence, we can conlude 𝑣 ( ®𝑞) − 𝑣 ( ®𝑝) ≥ 0 =⇒ 𝑣 ( ®𝑝) ≤ 𝑣 ( ®𝑞). □

We are now ready to prove Lemma 9.

Proof of Lemma 9. Recall that, for all 𝑖 , we can choose 𝑖∗1, . . . , 𝑖∗𝑛 < 𝑖 such that
®𝑞𝑖∗

𝑑
,𝑑 = ®𝑚𝑖−1,𝑑 for all 𝑑 ∈ [𝑛]. Thus, by monotonicity and Claim 26, we have that

max𝑗1,..., 𝑗𝑛<𝑖 𝑣 ( ®Lot(𝑞 𝑗1 , . . . , 𝑞 𝑗𝑘 )) ≥ 𝑣 ( ®𝑚𝑖−1). Additionally, by definition of ®𝑚𝑖 andmono-
tonicity (combined with Claim 26), we have 𝑣 ( ®𝑞𝑖 ) ≤ 𝑣 ( ®𝑚𝑖 ). Consequently, we can
write

gap𝑘𝑖 (𝑋,𝑄)
𝑣𝑖 ( [𝑛])

= min
𝑗1,..., 𝑗𝑘<𝑖

𝑣𝑖 ( ®𝑞𝑖 ) − 𝑣𝑖 ( ®Lot( ®𝑞 𝑗1 , . . . , ®𝑞 𝑗𝑘 ))
𝑣𝑖 ( [𝑛])

≤ 𝑣𝑖 ( ®𝑚𝑖 ) − 𝑣𝑖 ( ®𝑚𝑖−1)
𝑣𝑖 ( [𝑛])

since 𝑣𝑖 are assumed to be monotone. Writing out the definition of 𝑣𝑖 , we know
𝑣𝑖 ( ®𝑚𝑖 ) − 𝑣𝑖 ( ®𝑚𝑖−1)

𝑣𝑖 ( [𝑛])
=

∑︁
𝐴∈2[𝑛]

𝑣𝑖 (𝐴)
𝑣𝑖 ( [𝑛])

· [Pr( ®𝑚𝑖 , 𝐴) − Pr( ®𝑚𝑖−1, 𝐴)]

≤
∑︁

𝐴∈2[𝑛]

| Pr( ®𝑚𝑖 , 𝐴) − Pr( ®𝑚𝑖−1, 𝐴) |
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since 𝑣𝑖 (𝐴) ≤ 𝑣𝑖 ( [𝑛]) by monotonicity. Combining this with above yields

MenuGap𝑛 (𝑋,𝑄) =
𝑁∑︁
𝑖=1

gap𝑛𝑖 (𝑋,𝑄)
𝑣𝑖 ( [𝑛])

≤
∑︁

𝐴∈2[𝑛]

𝑁∑︁
𝑖=1

| Pr( ®𝑚𝑖 , 𝐴) − Pr( ®𝑚𝑖−1, 𝐴) |

It remains to show
∑𝑁

𝑖=1 | Pr( ®𝑚𝑖 , 𝐴) − Pr( ®𝑚𝑖−1, 𝐴) | ≤ 𝑛 for all 𝐴 ∈ 2[𝑛] . It would then
follow directly that MenuGap𝑛 (𝑋,𝑄) ≤ 2𝑛 · 𝑛. Fix a set 𝐴 and consider each term
| Pr( ®𝑚𝑖 , 𝐴) − Pr( ®𝑚𝑖−1, 𝐴) | individually.
Let ®𝑚𝑖 = ®𝑚 (0) , ®𝑚 (1) , . . . , ®𝑚 (𝑛) = ®𝑚𝑖−1 be a sequence of vectors where ®𝑚 ( 𝑗) matches

®𝑚𝑖 on the first 𝑗 coordinates and matches ®𝑚𝑖−1 on the last 𝑛 − 𝑗 coordinates. By the
triangle inequality,

| Pr( ®𝑚𝑖 , 𝐴) − Pr( ®𝑚𝑖−1, 𝐴) | ≤
𝑛∑︁
𝑗=1

| Pr( ®𝑚 ( 𝑗) , 𝐴) − Pr( ®𝑚 ( 𝑗−1) , 𝐴) |.

But by definition of Pr( ®𝑞, 𝑆), we know

| Pr( ®𝑚 ( 𝑗) , 𝐴)−Pr( ®𝑚 ( 𝑗−1) , 𝐴) | =
�����∏
ℓ∈𝐴

®𝑚 ( 𝑗)
ℓ

∏
ℓ∉𝐴

(1 − ®𝑚 ( 𝑗)
ℓ

) −
∏
ℓ∈𝐴

®𝑚 ( 𝑗)
ℓ

∏
ℓ∉𝐴

(1 − ®𝑚 ( 𝑗)
ℓ

)
����� ≤ ®𝑚𝑖, 𝑗− ®𝑚𝑖−1, 𝑗

since ®𝑚 ( 𝑗) and ®𝑚 ( 𝑗−1) differ only in the 𝑗𝑡ℎ coordinate and the remaining probabilities
are at most one. Hence, combining with the above, we have

| Pr( ®𝑚𝑖 , 𝐴) − Pr( ®𝑚𝑖−1, 𝐴) | ≤
𝑛∑︁
𝑗=1

®𝑚𝑖, 𝑗 − ®𝑚𝑖−1, 𝑗 .

Summing over 𝑖 ∈ [𝑁 ], we see that the sum telescopes:
𝑁∑︁
𝑖=1

| Pr( ®𝑚𝑖 , 𝐴) − Pr( ®𝑚𝑖−1, 𝐴) | ≤
𝑛∑︁
𝑗=1

𝑁∑︁
𝑖=1

®𝑚𝑖, 𝑗 − ®𝑚𝑖−1, 𝑗 ≤
𝑛∑︁
𝑗=1

®𝑚𝑁,𝑗 ≤ 𝑛,

since ®𝑚𝑁,𝑗 ≤ 1 for all 𝑗 ∈ [𝑛]. □

E PROOFS MISSING FROM SECTION 4
E.1 Proof of Lemma 21
Proof of Lemma 21. In order to construct a distribution D we need both a valua-

tion 𝑥 and a density function 𝑓 (ℎ𝑎𝑡𝑥). Let 𝐶𝑖 = (𝑛 + 1)2𝑖 . Then we define distribution
D by setting ®̂𝑥𝑖 = ®𝑥𝑖 ·𝐶𝑖 , 𝑓 ( ®̂𝑥𝑖 ) = 1

𝐶𝑖 . It is clear that this defines a valid distribution, i.e.,
𝑓 ( ®̂𝑥𝑖 ) ≥ 0 and

∑
𝑖 𝑓 ( ®̂𝑥𝑖 ) ≤ 1. Place the rest of the probability mass at a valuation of ®0𝑛 .

We will now show that Buy𝑘Rev(D) ≥ MenuGap𝑘 (𝑋,𝑄) and BRev(D) ≤ 2𝑛.
Consider the menuM which offers allocation ®𝑞𝑖 at price 𝑝𝑖 = gap𝑘𝑖 (𝑋𝐿, 𝑄𝐿) ·𝐶𝑖 . Let
M𝑖 be the sub-menu of M consisting of the first 𝑖 menu entries and the (0, ®0𝑛) entry.
We will first claim thatM is a buy-𝑘 menu.

Claim 27. Any valuation 𝑥𝑖 prefers to purchase the menu entry (𝑝𝑖 , ®𝑞𝑖 ) to any other

combination of 𝑘 menu entries fromM𝑖 .
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Proof. First, observe that if the valuation 𝑥𝑖 purchases at least one copy of (𝑝𝑖 , ®𝑞𝑖 ),
because ®𝑥𝑖 = ®𝑞𝑖 and ®𝑞𝑖 ∈ {0, 1}𝑛 , there is no value in purchasing any other menu entry.
This is because a buyer with valuation 𝑥𝑖 is only interested in the items in the support
of ®𝑞𝑖 , all of which are given to the buyer with probability 1. There is no benefit from
purchasing any other lottery. Thus, any other reasonable deviations involve buying
up to 𝑘 menu entries fromM𝑖−1. The utility from purchasing any such combination
is upper bounded by 𝑥𝑖 · ®Lot( ®𝑞𝑖1 , ®𝑞𝑖2 , . . . , ®𝑞𝑖𝑘 ). The utility from purchasing (𝑝𝑖 , ®𝑞𝑖 ) is
®̂𝑥𝑖 · ®𝑞𝑖 − 𝑝𝑖 . By choice of 𝑝𝑖 , ®̂𝑥𝑖 we get that this is

𝐶𝑖 ®𝑥𝑖 · ®𝑞𝑖 −𝐶𝑖 · gap𝑘𝑖 (𝑋𝐿, 𝑄𝐿) ≥ 𝐶𝑖 ®𝑥𝑖 · ®Lot( ®𝑞𝑖1 , ®𝑞𝑖2 , . . . , ®𝑞𝑖𝑘 ),
where the inequality follows from recalling the definition of gap𝑖

𝑘
(𝑋,𝑄) (and cancelling

the 𝐶𝑖 ). □

The next thingwe need to show is that the valuationwill not prefer to buy any option
onM\M𝑖 . The utility from purchasing the preferred option is at most𝐶𝑖 ·𝑛. The cost
of any further option is at least𝐶𝑖+1 · gap𝑘𝑖+1 (𝑋𝐿, 𝑄𝐿). By assumption, gap𝑘𝑖 (𝑋,𝑄) ≥ 1

𝑛
.

Therefore, the price of any option with 𝑗 > 𝑖 is at least 𝐶𝑖+1/𝑛. By construction, the
price alone for any option (𝑝 𝑗 , ®𝑞 𝑗 ) with 𝑗 > 𝑖 is already greater than the possible
utility the buyer could get. Thus, purchasing such menu entries would give them
non-positive utility. Therefore, a valuation 𝑥𝑖 will purchase exactly one copy of the
menu entry (𝑝𝑖 , ®𝑞𝑖 ). The revenue of mechanism M is

∑
𝑖 𝑓 (𝑥𝑖 )𝑝𝑖 =

∑
𝑖 gap𝑘𝑖 (𝑋,𝑄) =

MenuGap𝑘 (𝑋,𝑄). SinceM is a buy-𝑘 menu, Buy𝑘Rev(D) ≥ Buy𝑘Rev(D,M).
All that remains is to show that the revenue of bundling is at most 2𝑛. Note that the

value a valuation 𝑥𝑖 has for the bundle is at most 𝑛𝐶𝑖 ≤ 𝐶𝑖+1. Thus, any price between
(𝐶𝑖−1 · | ®𝑥𝑖−1 |,𝐶𝑖 · | ®𝑥𝑖 |] will sell to the same set of bidders. Since we want to maximize
revenue, it only makes sense to consider prices 𝑏𝑖 = 𝐶𝑖 · | ®𝑥𝑖 | for all 𝑖 . Consider any such
price 𝑏𝑖 for the bundle. The revenue is 𝑏𝑖 · Pr𝑥 𝑗∼D (𝐶 𝑗 | ®𝑥 𝑗 | ≥ 𝑏𝑖 ) = 𝑏𝑖 · Pr𝑥 𝑗∼D (𝐶 𝑗 ≥
𝐶𝑖 ) = 𝑏𝑖 ·

∑
𝑗≥𝑖 𝑓 (𝑥 𝑗 ) = 𝑏𝑖 · 2𝑛

𝐶𝑖 (2𝑛−1) ≤ 2𝑏𝑖 · 1
𝐶𝑖

≤ 2𝑛. □

E.2 Proof of Theorem 4
In Lemma 7, we have already shown that the ratio between Buy𝑘Rev(D,M) and
BRev(D) is upper bounded by MenuGap𝑘 (𝑋,𝑄) for some sequence of valuations 𝑋
and some sequence of allocations 𝑄 (starting with ®𝑞0 = (0, . . . , 0)). One can observe
that another consequence of that proof is that if we only consider mechanisms M
which are deterministic, then the ratio between DetBuy𝑘Rev(D,M) and BRev(D)
is upper bounded by MenuGap𝑘 (𝑋,𝑄) for some sequence of valuations 𝑋 and some
deterministic sequence of allocations 𝑄 . These deterministic allocations ®𝑞 ∈ 𝑄 are
simply binary vectors. We will show that in this case, MenuGap is upper bounded by
the extremal length of a sequence of 𝑘-cover-free sets.

Lemma 28. For a sequence of additive valuations 𝑋 and deterministic allocations𝑄 , we

have

MenuGap
𝑘 (𝑋,𝑄) ≤ |F 𝑘 |.

Proof. First, observe that gap𝑘𝑖 (𝑋,𝑄) ≤ 1 since ®𝑞𝑖 − ®Lot( ®𝑞 𝑗1 , . . . , ®𝑞 𝑗𝑘 ) is component-
wise less than 1. Consequently, it suffices to show that there are at most |F 𝑘 | positive
terms in the sequence {gap𝑘𝑖 (𝑋,𝑄)}∞𝑖=1 in order to conclude the proof. Since each
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allocation vector is binary, we can view them as indicator vectors of a set. Let ®𝑞𝑖 = ®𝑒𝐴𝑖

for some set 𝐴𝑖 ⊆ [𝑛]. Observe that

gap𝑘𝑖 (𝑋,𝑄) = min
𝑗1,..., 𝑗𝑘<𝑖

𝑥𝑖

∥ ®𝑥𝑖 ∥1
·
(
®𝑞𝑖 − ®Lot( ®𝑞 𝑗1 , . . . , ®𝑞 𝑗𝑘 )

)
= min

𝑗1,..., 𝑗𝑘<𝑖

𝑥𝑖

∥ ®𝑥𝑖 ∥1
·
(
®𝑒𝐴𝑖

− ®Lot(®𝑒𝐴 𝑗1
, . . . , ®𝑒𝐴 𝑗𝑘

)
)

= min
𝑗1,..., 𝑗𝑘<𝑖

𝑥𝑖

∥ ®𝑥𝑖 ∥1
·
(
®𝑒𝐴𝑖

− ®𝑒⋃𝑘
ℓ=1𝐴 𝑗ℓ

)
Thus, if gap𝑘𝑖 (𝑋,𝑄) > 0, we must have at least one positive coordinate in ®𝑒𝐴𝑖

−®𝑒⋃𝑘
ℓ=1𝐴 𝑗ℓ

.
But this is only possible if𝐴𝑖 −

⋃𝑘
ℓ=1𝐴 𝑗ℓ ≠ ∅, just as in 𝑘-cover-free sets. As a corollary,

the number of positive terms in the sequence of gap𝑘𝑖 (𝑋,𝑄) is at most the length of
the longest sequence of 𝑘-cover-free sets, so we are done. □

The next step is to show that no family of 𝑘-cover-free sets can be too large.

Lemma 29. Let F 𝑘
be an ordered sequence of 𝑘-cover-free sets. Then

log |F 𝑘 |
𝑛

≤ 4 log𝑘 +𝑂 (1)
𝑘2

.

Proof. Given the ordered sequence S = 𝑆1, . . . , 𝑆𝑚 of 𝑘-cover-free sets, we can
define the following subsequences based on a parameter 0 < 𝑡 ≤ 𝑛

2 which we will
specify later:

• S𝑡 is the subsequence containing sets 𝑆𝑖 ∈ S which contains some 𝑡-element
subset 𝐴 ⊆ 𝑆𝑖 which isn’t completely contained in any other 𝑆 𝑗 for some 𝑗 < 𝑖 .

• S0 is the subsequence containing sets 𝑆𝑖 ∈ S with |𝑆𝑖 | < 𝑡 .
• S𝐶 is the subsequence containing sets 𝑆𝑖 ∈ S not in S0 or S𝑡 .

Our goal will be to bound the length of S0, S𝑡 , and S𝐶 separately. Since the three
subsequences are disjoint and S𝐶 is the complement of the other sets, the sum of their
lenghts will yield a bound on the length of S. First, observe that S𝑡 is bijective with a
family of (distinct) 𝑡-element sets so we have |S𝑡 | ≤

(
𝑛
𝑡

)
. Similarly, since each set in

S0 has size less than 𝑡 , we have |S0 | ≤ ∑𝑡−1
𝑟=1

(
𝑛
𝑟

)
≤ (𝑡 − 1)

(
𝑛
𝑡

)
. It remains to bound |S𝐶 |.

Let 𝑆 (0) ∈ S and 𝑆 (1) , . . . , 𝑆 (𝑖) ∈ S be such that 𝑆 ( 𝑗) comes before 𝑆 (0) in the sequence
S for each 𝑗 ∈ [𝑖]. We claim that���𝑆 (0)\⋃𝑖

𝑗=1 𝑆
( 𝑗)

��� > 𝑡 (𝑘 − 𝑖). (15)

Suppose inequality (15) is not true. Then 𝑆 (0)\⋃𝑖
𝑗=1 𝑆

( 𝑗) can be written as the union
of 𝑘 − 𝑖 disjoint 𝑡-element subsets 𝐴 (𝑖+1) , . . . , 𝐴 (𝑘) . Since 𝑆 (0) ∉ S𝑡 , we know that all
𝑡-element subsets of 𝑆 (0) must be contained in some set appearing before 𝑆 (0) in the
sequence S. Thus, each 𝐴 ( 𝑗) for 𝑗 = 𝑖 + 1, . . . , 𝑘 is a subset of some 𝑆 ( 𝑗) ∈ S appearing
before 𝑆 (0) in the sequence. But this contradicts that the sequence is 𝑘-cover-free since
𝑆 (0) ⊆ 𝑆 (1) ∪ . . . ∪ 𝑆 (𝑘) . Now consider any family of sets 𝑆 (0) , . . . , 𝑆 (𝑘) ∈ S𝐶 ordered
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such that 𝑆 (𝑖) appears before 𝑆 ( 𝑗) whenever 𝑖 < 𝑗 . Then the inequality (15) implies���⋃𝑘
𝑗=0 𝑆

( 𝑗)
��� = ���𝑆 (0)

��� + ���𝑆 (1)\𝑆 (0)
��� + . . . +

���𝑆 (𝑘)\𝑆 (𝑘−1) ∪ . . . ∪ 𝑆 (0)
���

≥ 𝑘 + 1 + 𝑡 ·
(
𝑘 + 1
2

)
(16)

The expression in (16) exceeds 𝑛 when 𝑡 B ⌈(𝑛 − 𝑘)/
(
𝑘+1
2

)
⌉, which would imply

|S𝐶 | ≤ 𝑘 . In total, we have that the sequence has length at most 𝑘 + 𝑡 ·
(
𝑛
𝑡

)
. By taking

logarithms on both sides and using the inequality
(
𝑛
𝑡

)
≤ 𝑛𝑡/𝑡 ! ≤ (𝑒𝑛/𝑡)𝑡 , we obtain

that log |S |
𝑛

≤ 4 log𝑘+𝑂 (1)
𝑘2 . □

Proof of Theorem 4. Combining Lemmas 28, 29 when 𝑘 = Ω(𝑛1/2), we have
MenuGap𝑘 (𝑋,𝑄) = poly(𝑛). By Lemma 7, the ratio between DetBuy𝑘Rev(D,M) and
BRev(D) is at most poly(𝑛). □

This establishes a phase transition for the ratio since we showed that for 𝑘 ≤ 𝑛1/2−𝜀 ,
the ratio is at least exp(Ω (𝑛2𝜀 ))

𝑛2 . Our results also imply that for 𝑘 ≤ 𝑛1/2−𝜖 , the ratio is
at most 𝑛 · exp(𝑂 (𝑛2𝜖 )). Hence, we characterize the approximation bundling obtains
up to polynomial factors.
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