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Abstract

In the Max-k-Diameter problem, we are given a set of points in a metric space, and the goal is to
partition the input points into k parts such that the maximum pairwise distance between points in the
same part of the partition is minimized.

The approximability of the Max-k-Diameter problem was studied in the eighties, culminating in the
work of Feder and Greene [STOC’88], wherein they showed it is NP-hard to approximate within a factor
better than 2 in the ℓ1 and ℓ∞ metrics, and NP-hard to approximate within a factor better than 1.969
in the Euclidean metric. This complements the celebrated 2 factor polynomial time approximation
algorithm for the problem in general metrics (Gonzalez [TCS’85]; Hochbaum and Shmoys [JACM’86]).

Over the last couple of decades, there has been increased interest from the algorithmic community to
study the approximability of various clustering objectives when the number of clusters is fixed. In this
setting, the framework of coresets has yielded PTAS for most popular clustering objectives, including
k-means, k-median, k-center, k-minsum, and so on.

In this paper, rather surprisingly, we prove that even when k = 3, the Max-k-Diameter problem is
NP-hard to approximate within a factor of 1.5 in the ℓ1-metric (and Hamming metric) and NP-hard to
approximate within a factor of 1.304 in the Euclidean metric.

Our main conceptual contribution is the introduction of a novel framework called cloud systems
which embed hypergraphs into ℓp-metric spaces such that the chromatic number of the hypergraph is
related to the quality of the Max-k-Diameter clustering of the embedded pointset. Our main technical
contributions are the constructions of nontrivial cloud systems in the Euclidean and ℓ1-metrics using
extremal geometric structures.
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1 Introduction

The Max-k-Diameter problem is the task of optimizing a classic clustering objective, where given a set of
points in a metric space, we are required to partition the points into k parts so as to minimize the maximum
pairwise distance between points in the same part of the partition (see Section 3 for a formal definition).
This clustering objective was actively studied in the eighties under the lens of approximation. One of the
main advantages of Max-k-Diameter over other clustering objectives such as k-center, k-means, and k-median
is that Max-k-Diameter is not center-based, and thus one does not have to worry about the quality of centers
in the applications of this clustering objective.

By the early 1980s, the Max-k-Diameter problem was known to be NP-complete even in the Euclidean
plane (implicit in [FPT81]). Thus, the attention of the community turned towards understanding its
approximability in various metric spaces. There were a series of works all providing 2-approximation to the
Max-k-Diameter problem in general metrics with improved polynomial runtimes [HS85, HS86, Gon85, FG88].
Hochbaum and Shmoys [HS86] showed that this factor cannot be improved (assuming NP 6=P) for general
metrics. Thus, the focus shifted to ℓp-metrics.

Gonzalez [Gon85] showed that the Max-k-Diameter problem in the Euclidean metric is NP-hard to
approximate to a factor of 1.732. This was improved by Feder and Greene [FG88] who showed that the
Max-k-Diameter problem in the Euclidean metric is NP-hard to approximate to a factor of 1.969. Moreover,
they showed that the Max-k-Diameter problem is NP-hard to approximate within a factor better than 2 in
both the ℓ1 and ℓ∞ metrics. More importantly, all the results of Feder and Greene hold when the input is
in two dimensions.

At first glance, it looks like we have hit a road block in understanding the approximability of the Max-
k-Diameter problem. On the one hand, we have completely understood its approximability in the general
metrics, ℓ1, and ℓ∞ metrics (even in the plane!). On the other hand, the small gap in our knowledge about
the Euclidean Max-k-Diameter problem is much like other Euclidean clustering problems (such as Euclidean
k-center [FG88, Men88]), which have been open for decades with no real tools of attack to bridge the gap in
approximability.

Over the last two-and-a-half decades, a lot of effort has been invested by the algorithmic community
to understand the approximability of popular clustering objectives when the number of clusters is fixed (in
ℓp-metrics). In fact, a powerful paradigm has emerged to provide polynomial time approximation schemes
(PTAS) for all these problems: Coresets [Fel20, CSS21]. In the literature, when k is fixed, a PTAS is already
known for k-center [BHI02], k-means [KSS10, Che09], k-median [KSS10, Che09], k-minsum [FKKR03], and
other popular clustering objectives.

Does Max-k-Diameter in ℓp-metrics admit a PTAS when k is fixed?

We remark here that for the closely related Sum-k-Diameter problem where we are required to partition
the input points into k parts so as to minimize the sum of the diameter of parts, there is an exact polynomial
time algorithm in general metrics when k is fixed [BS15].

Returning to the Max-k-Diameter problem, an argument by Megiddo [Meg90] proves that Max-3-Diameter
is NP-hard to approximate to a factor better than 2 in the ℓ∞-metric by a reduction from the 3-coloring
problem. Thus, we explore the question in the Euclidean metric and the ℓ1-metric.

What is the complexity/approximability of Max-k-Diameter
in the ℓ1-metric and the ℓ2-metric when k is fixed?

1.1 Our Results. The main contributions of this paper are strong hardness of approximation results for
Max-k-Diameter in the Euclidean metric and the ℓ1-metric, even when k = 3. Our results are surprising, as it
is unclear a priori why Max-3-Diameter does not admit a PTAS much like the aforementioned other clustering
objectives. Note that it has been observed in the literature (for example [Meg90]) that Max-k-Diameter can
be reduced to the k-coloring problem; since 2-coloring is in P, we have that Max-k-Diameter is in P when
k = 2.
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First, we present our result for the ℓ1-metric.

Theorem 1.1. (formalized in Theorem 5.1) For every ε > 0 and k ≥ 3, approximating Max-k-Diameter
in the ℓ1-metric (and the Hamming metric) to a factor 1.5− ε is NP-hard.

To the best of our knowledge, there is no known polynomial time algorithm that achieves a factor less
than 2 for even Max-3-Diameter in the ℓ1-metric. Actually, we prove the above NP-hardness for the Max-
3-Diameter problem, and the hardness of approximation continues to hold for the Max-k-Diameter problem
when k > 3, simply because we can reduce a hard instance of the Max-3-Diameter problem to a hard instance
of the Max-k-Diameter problem by adding k − 3 many outliers to the input instance.

Additionally, since the above result also holds in the Hamming metric, it implies that the Max-3-
Diameter problem in the Euclidean metric is NP-hard to approximate to a factor better than

√
1.5 ≈ 1.224,

using the exact same construction. Interestingly, there is a better than 2-approximation algorithm for the
Max-3-Diameter in the ℓ2-metric. As a straightforward consequence of the PTAS in [BHI02] for the k-center
problem, there exists an efficient (

√
2 + ε)-approximation algorithm for the Max-k-Diameter problem in the

Euclidean metric (for any ε > 0 and constant k ∈ N).
That said, we are able to exploit the structure of the Euclidean metric to improve on the

√
1.5-factor

NP-hardness and prove the following:

Theorem 1.2. (formalized in Theorem 6.1) For every k ≥ 3, approximating Max-k-Diameter in the
ℓ2-metric to a factor 1.304 is NP-hard.

This result is particularly noteworthy, since the Euclidean metric is near-isometrically embeddable into
all ℓp-metrics, and so hardness within a factor of 1.304 extends to all the ℓp-metrics.

The result in Theorem 1.2 is surprising on two counts. First, in the literature we do not know how
to exploit Euclidean metric structure to obtain higher hardness of approximation factors for sum clustering
objectives (such as k-means, k-median, k-minsum) better than the ones that can be derived from the Hamming
metric hard instances [CK19, CKL22]. Even in the max clustering objectives (such as k-center and Max-k-
Diameter), planar geometry is exploited to obtain strong hardness of approximation results [FG88, Men88],
and Theorem 1.2, to the best of our knowledge, is the first time where high-dimensional Euclidean geometry
is utilized to present strong hardness of approximation results.1 Second, whenever there are nontrivial
approximation algorithms for a computational problem in a specific metric space, it is notoriously hard to
improve hardness of approximation results in that metric space for that problem.

Lastly, it is worth noting that our hardness results continue to hold even when the input pointset (of
size n) is restricted to O(log n) dimensions. In the Euclidean metric, this follows from applying the Johnson-
Lindenstrauss lemma [JL84]; in the Hamming metric, it follows from our proof (where we can replace the
Hadamard codes used in the proof in this paper by small-biased sets [NN90], consequently bringing the
dimension down to Θ(log n)). Finally, we remark that when the number of dimensions is bounded by a
constant, the Max-3-Diameter problem is in P.

The state-of-the-art hardness bounds and approximation algorithms for the Max-k-Diameter problem,
for constant k ≥ 3, is summarized in Table 1.

1.2 Related Works. In this subsection, we mention a few related works to provide better context for
our results. We consider the following clustering objectives: Max-k-Diameter, k-means, k-median, k-center,
k-minsum, Sum-k-Diameter, and Sum-k-Radii, and also restrict our attention below only to the setting where
the number of clusters is fixed. We contrast the clustering objectives mentioned above in two different ways:

1Even in inapproximability results of other geometric optimization problems such as Euclidean Travelling Salesman Problem
[Tre00] or (discrete) Euclidean Steiner Tree problem [FGK24], the structure of high-dimensional Euclidean spaces hinders (more
than helps) in proving anything better than what can be inferred from the Hamming metric for those problems.
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Metric NP-Hardness
Approximation Factor

Polynomial Time
Approximation Factor

ℓ∞
2− ε 2

[Meg90] [Gon85]

ℓ0/ℓ1
1.5− ε 2

[This Paper] [Gon85]

ℓ2
1.304 1.415

[This Paper] [BHI02]

Table 1: State-of-the-art Approximability Results for Max-3-Diameter

Center Based vs. Non-Center Based Objectives. While Max-k-Diameter, Sum-k-Diameter, and
k-minsum are not center based objectives, the rest of the aforementioned clustering objectives are all center
based objectives. This distinction means that center based objectives even in the general metric can be
solved exactly in polynomial time in the discrete setting, i.e., when the k centers have to be picked from
a set of candidate centers given as input. However, in the continuous setting, where the centers can be
selected from anywhere in the metric space, this is no longer true, for example see [CKL21] (resp. [Meg90])
wherein they prove NP-hardness of approximation results for the k-means and k-median (resp. k-center) in
the continuous setting in the ℓ∞-metric. That said, even for the k-means, k-median, and k-center problems
in ℓ1 and ℓ2-metrics, it is possible to show that the problems can be reduced from the continuous setting to
the discrete setting with just a 1+ε factor loss in the cost for any ε > 0 [Mat00, CSS21]. On the other hand,
the Sum-k-Radii problem even in the continuous setting admits a QPTAS [GKK+10] in general metrics.

Min-Sum vs. Min-Max Objectives. From a combinatorial optimization viewpoint, the clustering
objectives Max-k-Diameter and k-center are “min-max” objectives whereas the rest are all “min-sum”
objectives. This classification is particularly relevant since hardness of approximation results for the “min-
sum” clustering objectives (such as [CK19, CKL21, CKL22]) rely on the PCP theorem [AS98, ALM+98,
Din07] and other technically heavy PCP-literature tools such as [Raz98, Kho02], whereas the hardness of
approximation results for the “min-max” objectives (such as [FG88, Men88, Meg90]) follow from vanilla
NP-hardness of classical problems. This is indeed the case for the results in this paper as well, although we
have had to develop sophisticated embedding tools to translate the combinatorial hardness to the geometric
Max-k-Diameter problem.

1.3 Organization of the Paper. The organization of the paper is as follows. In Section 2, we provide an
overview of the proofs of our main results. In Section 3, we overview some definitions and notations related
to the clustering and coloring problems considered throughout the paper. In Section 4, we present the central
reduction of the paper using the r-cloud system. In Sections 5 and 6, we present specific constructions of
r-cloud systems in the ℓ1-metric and the ℓ2-metric, respectively. In Section 7, we outline barriers to proving
better hardness of approximation. Finally, in Section 8 we mention a couple of open problem stemming from
this work.

2 Proof Overview

Clustering and coloring. There is a natural connection between the geometric problem of Max-k-
Diameter and the graph theoretic problem of k-coloring. Namely, there is a simple reduction from Max-k-
Diameter to k-coloring where given a pointset P , we can construct a graph GP where points in P correspond
to vertices in GP and edges are drawn between vertices if the distance between their corresponding points
exceeds a threshold β > 0. Then, GP is k-colorable if and only if P can be partitioned into k clusters, each
of which has diameter at most β.
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A simple approach. The above reduction from Max-k-Diameter to k-coloring also motivates a simple
approach for reducing k-coloring to the approximation version of Max-k-Diameter. Let G be a graph, and
suppose we can embed the vertices of G as a set of points PG in a metric space, such that the following
property holds: if two vertices are adjacent in G, the distance between their corresponding points in PG is at
least rβ (for some r > 1), and if the two vertices are nonadjacent, the distance between their corresponding
points in PG is at most β. Then, if G is k-colorable, there is a clustering of PG with diameter at most β.
However, if G is not k-colorable, then any k-clustering of PG has diameter at least rβ (i.e., any partition of
PG into k clusters contains at least one cluster of diameter at least rβ). Therefore, approximating Max-k-
Diameter within a factor strictly less than r is at least as hard as determining if G is k-colorable.

We formalize this technique as follows. For a metric space (X, dist), a graph G = (V,E), and an
approximation ratio r > 1, we say that an r-embedding of G is a map φ : V → X such that, for some β > 0,

1. if (u, v) /∈ E then dist(φ(u), φ(v)) ≤ β, and

2. if (u, v) ∈ E then dist(φ(u), φ(v)) ≥ rβ.

We refer to β as the short distance of the r-embedding. The first property guarantees that if G is k-colorable,
then the optimal k-clustering diameter of φ(V ) is at most β. The second property guarantees that if φ(V )
has a k-clustering with diameter less than rβ, then G is k-colorable.

In particular, if G is a family of graphs on which k-coloring is NP-hard, and φ is an efficiently computable
r-embedding of G, then it is NP-hard to approximate Max-k-Diameter within a factor better than r. We now
present a proof-of-concept hardness of approximation result using this r-embedding framework.

Warm up in the ℓ∞-metric. We describe a simple 2-embedding of general graphs into the ℓ∞-
metric. Let G = (V,E) be a graph with E = {e1, . . . , em}. Let G̃ = (V, Ẽ) be a directed graph with
Ẽ = {ẽ1, . . . , ẽm}, where each edge ẽi is an arbitrary orientation of ei. Define a mapping φ : V → Rm via
φ(u) = (au,1, . . . , au,m) ∈ Rm given by:

au,i =


1 if ẽi = (u, v) for some v ∈ V

−1 if ẽi = (v, u) for some v ∈ V

0 if u /∈ ei

.

It can be checked that φ is a 2-embedding in the ℓ∞-metric. Thus, Max-k-Diameter is hard to
approximate within a factor of 2 in the ℓ∞-metric for any k ≥ 3, proving that the 2-approximation algorithm
is optimal in this setting, due to the NP-hardness of 3-coloring.

We can further extend the above NP-hardness to ℓp-metrics in the following way. It is known that
3-coloring remains NP-hard even when restricted to 4-regular graphs [GJS76]. When φ is considered in the
ℓp-metric, it is an r-embedding of 4-regular graphs for

r =

(
2p + 6

8

)1/p

.

Thus, Max-k-Diameter (for k ≥ 3) is hard to approximate within a factor of
√
5/4 in the ℓ2-metric.

However, in the ℓ1-metric, this approach does not give any nontrivial hardness, suggesting a need for different
techniques.

Trevisan’s embedding in the ℓ1-metric. Trevisan utilized Hadamard codes to prove inapproxima-
bility results for geometric problems [Tre00]. Recall that for m a power of 2, a Hadamard code is a set of m
elements in {0, 1}m whose pairwise ℓ1 distances are all m/2. We outline a direct application of Trevisan’s
embedding to obtain a nontrivial hardness of approximation result for Max-3-Diameter in the ℓ1-metric. In
particular, we construct a general 5/4-embedding of graphs which are 4-regular and 4-edge-colorable. It can
be shown that 3-coloring is NP-hard on this family of graphs.

On an input graph G = (V,E), let m be a power of 2 that is at least |V |. Since G is 4-regular and 4-edge
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colorable, we can decompose E as the disjoint union of matchings M1,M2,M3,M4 ⊆ E. Then, we embed
each v ∈ V as the concatenation φ(v) = (av,1, av,2, av,3, av,4) ∈ {0, 1}4m, where the strings av,i ∈ {0, 1}m
satisfy the following properties for each i ∈ [4]:

1. If (u, v) ∈ Mi, then au,i = av,i and thus
∥∥au,i − av,i

∥∥
1
= m.

2. If (u, v) /∈ Mi, then
∥∥au,i − av,i

∥∥
1
= m/2.

One can construct such an embedding by choosing each av,i to be either a Hadamard codeword or
the complement of a Hadamard codeword. If (u, v) ∈ E, then

∥∥φ(u)− φ(v)
∥∥
1

= 5m
2 , and otherwise,∥∥φ(u)− φ(v)

∥∥
1
= 2m. Therefore, φ is a 5/4-embedding of G, proving that Max-k-Diameter is hard to

approximate within a factor of 5/4 in the ℓ1-metric for any k ≥ 3.
As shown by these preliminary results, the r-embedding framework is a straightforward way to prove

hardness of approximation results for Max-k-Diameter. However, it turns out that using this framework is
restrictive, as it forces a one-to-one correspondence between vertices and points, and it forbids distances
in the range (β, rβ). We can relax both of these restrictions using a different reduction from k-coloring to
Max-k-Diameter. This novel framework, which we call an r-cloud system, allows us to obtain significantly
better inapproximability results in the ℓ1-metric and the ℓ2-metric.

The r-cloud system. We now explain the intuition behind the r-cloud system for reductions from
coloring to Max-k-Diameter. In the previous discussion, we reduced from the problem of k-coloring on
graphs. For the r-cloud construction, a more natural problem to consider is panchromatic k-coloring on k-
uniform hypergraphs.2 A simple padding argument shows that this problem is at least as hard as k-coloring
on graphs (see Remark 3.2). Next, we explain the definition of r-cloud system as a natural framework for
reducing this problem to the Max-k-Diameter problem. The formal definition and proof of the reduction are
given in Section 4.

Let H = (V,E) be a k-uniform hypergraph and (X, dist) be a metric space. The goal is to produce a
pointset P ⊂ X such that panchromatic k-coloring on H reduces to approximating Max-k-Diameter on P
within a factor of r. We start by associating each vertex v ∈ V with a set Pv ⊂ X, where P :=

⋃
v∈V Pv

and the sets Pv are pairwise disjoint. Note the contrast to the r-embedding framework, in which each vertex
corresponded to only a single point in X. We will also define sets Pe for every edge e ∈ E, which we will
motivate later. In the next couple of paragraphs, we will specify two conditions, proximity and spread, that
we would like P to satisfy in order to achieve the completeness and soundness guarantees for the reduction
from panchromatic k-coloring to Max-k-Diameter.

For the completeness guarantee of the reduction to hold, we must first show that if H is panchromatic
k-colorable then there is a k-clustering of P with low diameter, say at most some threshold β. Given a
k-coloring of H, we create a cluster for each of the k colors, and, for each v ∈ V , we place the entire set
Pv in the cluster corresponding to the color of v. Since vertices in H that are of the same color must be
nonadjacent, and we would like every cluster to have diameter at most β, the proximity condition that P
must satisfy is naturally defined as follows:

(proximity) For every nonadjacent v, v′ ∈ V we have diam(Pv ∪ Pv′) ≤ β.

Note that v and itself are also considered nonadjacent.
Second, for the soundness guarantee of the reduction to hold, we must show that if H is not panchromatic

k-colorable, then every k-clustering of P has large diameter—namely, at least rβ. This can be enforced by
showing that any k-clustering of P with diameter strictly less than rβ corresponds to a panchromatic k-
coloring of H. A natural way of extracting a k-coloring of H from a k-clustering of P is to identify each

2In panchromatic k-coloring, we are given a k-uniform hypergraph, and the task is to color the vertices such that in each
hyperedge, every vertex is assigned a distinct color.
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vertex v ∈ V with a designated point ρ(v) ∈ Pv. Given a k-clustering of P , we create a color for each of the
k clusters, and we assign each v ∈ V the color associated with the cluster of ρ(v). Then, provided that the
clustering has diameter less than rβ, we have the following condition: for each edge e = {v1, . . . , vk} ∈ E, the
points ρ(v1), . . . , ρ(vk) must all be in different clusters. To make the condition easier to verify, we localize it to
each edge. In particular, we associate the edge e with a set Pe ⊂ P that contains the points ρ(v1), . . . , ρ(vk).
Then, the spread condition that P must satisfy is naturally defined as follows:

(spread) For every k-clustering of the set Pe with diameter strictly less than rβ,
the points ρ(v1), . . . , ρ(vk) must all be in different clusters.

We say P is an r-cloud system of H if it satisfies the above defined proximity and spread conditions.
Importantly, neither condition places a restriction on individual distances within the pointset. Indeed, the
final pointset P may contain distances in the range (β, rβ), allowing for more general constructions than the
r-embedding framework.

For convenience, we further constrain the sets Pe without losing reasonable generality. First, it is most
natural for Pe to be disjoint with all Pv for v 6∈ e. To justify this, recall that whether or not an edge e is
properly colored depends only on the colors of its constituent vertices v ∈ e. Equivalently, it is reasonable
to assume Pe ⊆

⋃
v∈e Pv. Now, let τ(e, v) := Pe ∩ Pv. It follows that Pe can be written as

Pe =
⋃
v∈e

Pe ∩ Pv =
⋃
v∈e

τ(e, v).

Similarly, it is reasonable to assume that Pv ⊆
⋃

e∈E, v∈e Pe. Thus, Pv can be written as

Pv =
⋃
e∈E
v∈e

Pe ∩ Pv =
⋃
e∈E
v∈e

τ(e, v).

Then, the entire r-cloud construction is characterized by the sets τ(e, v) over all e ∈ E and v ∈ e. In other
words, an r-cloud system is simply a pair of mappings (ρ, τ) satisfying the proximity and spread conditions.
This is the framing used in Definition 4.2.

Since r-cloud systems can be used to reduce panchromatic k-coloring to approximate Max-k-Diameter,
then by noting that the panchromatic k-coloring problem on k-uniform hypergraphs is NP-hard for k ≥ 3,
we have the following result:

Theorem 2.1. (formalized in Theorem 4.1) For k ≥ 3, suppose there is an efficiently computable r-
cloud system in a metric space (X, dist) for the family of k-uniform hypergraphs. Then, for any ε > 0,
approximating Max-k-Diameter in (X, dist) to a factor r − ε is NP-hard.

In Sections 5 and 6, we construct a 3/2-cloud system in the ℓ1-metric and a 1.304-cloud system in the ℓ2-
metric, both for 3-uniform hypergraphs. This proves that for k ≥ 3, Max-k-Diameter is hard to approximate
within a factor of 3/2 in the ℓ1-metric and 1.304 in the ℓ2-metric.

Constructing a 3/2-cloud system in the ℓ1-metric. Let H = (V,E) be a 3-uniform hypergraph,
and for simplicity let m := |V | be a power of 2. We associate each vertex v ∈ V with a Hadamard codeword
hv ∈ {0, 1}m, and we define ρ(v) = (hv,hv) ∈ {0, 1}2m. For each edge e = {x, y, z}, the set Pe is then
comprised of pairs of hx,hy,hz and their complements. Specifically, τ(e, x) consists of 5 out of the 9 pairs
that can be formed using elements in

{
hx,hy,hz

}
, and τ(e, y), τ(e, z) are constructed symmetrically.

With this construction, it can be shown that the proximity condition holds with β = m. For any vertex
v ∈ V , recall that Pv is the union of τ(e, v) over all e ∈ E that contain v. This means that the only non-
complemented codeword used by any point in Pv is hv, and also that no point in Pv contains the complement
hv. As a result, no two points in Pv can contain complementary codewords. By the distance property of the
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Hadamard code, diam(Pv) ≤ m. In the proof of Lemma 5.1, we slightly extend this argument to show that
also diam(Pv ∪ Pv′) ≤ m for nonadjacent v, v′ ∈ V , which is exactly the proximity condition.

Proving that our construction satisfies the spread condition is more involved. We start by fixing an
edge e = {x, y, z}. Then, we argue through casework that any 3-clustering of P{x,y,z} in which (hx,hx) and
(hy,hy) are clustered together necessarily has diameter at least 3m/2. Since our construction of τ(e, ·) is
symmetric in (x, y, z), the spread property follows.

Constructing a 1.304-cloud system in the ℓ2-metric. Let H = (V,E) be a 3-uniform hypergraph
with m := |V |. We associate each vertex v ∈ V with a standard basis vector ev ∈ Rm, and we define
ρ(v) = ev. For each edge e = {x, y, z}, the set Pe is then constructed on the surface of the unit sphere
in the three dimensional subspace of Rm spanned by

{
ex, ey, ez

}
. Specifically, consider the region on this

sphere where the ex component is nonnegative, the ey and ez components are nonpositive, and all other
components are 0. We define τ(e, x) to be a finite net of points on this region. The sets τ(e, y) and τ(e, z)
are formed symmetrically. An illustration of these regions is shown below in Figure 1.

−ex

−ey

−ez

ex

ey

ez

Figure 1: Spherical regions used to define τ(e, ·) for e = {x, y, z}. Specifically, τ(e, x), τ(e, y), and τ(e, z) are
finite nets of the blue, green, and red regions, respectively.

For this construction, the proximity condition holds with β =
√
2, and our proof is similar to the proof

for the ℓ1-metric. As before, recall that for any vertex v ∈ V , the set Pv is the union of τ(e, v) over all
e ∈ E that contain v. This means that the only coordinate on which a point in Pv may be positive is the
vth coordinate, and also that no point in Pv has a negative vth component. Since Pv consists of unit vectors,
it follows directly that diam(Pv) ≤

√
2. In the proof of Lemma 6.1, we argue that diam(Pv ∪ Pv′) ≤

√
2 for

nonadjacent v, v′ ∈ V , thus proving the proximity condition.
To prove the spread condition, we fix an edge e = {x, y, z}. Then, we show that any 3-clustering of

P{x,y,z} in which ex and ey are clustered together must have diameter greater than 1.304 ·
√
2. Since the

number of 3-clusterings of Pe is large even for small nets τ(e, ·), we verify this property using a computer
search.

We remark that no matter how dense of a net we choose, we cannot improve substantially on the factor
1.304. This is because it is possible to cluster the set P{x,y,z} with diameter at most

√
2 +

√
2 ≈ 1.307 ·

√
2

such that ex and ey are in the same cluster. Geometrically, the length
√
2 +

√
2 is the distance between

ey and the midpoint of the arc between ex and −ey. Our hardness factor of 1.304 was obtained using a
sufficiently dense net for which verifying the spread property was computationally tractable.

Barriers to proving hardness. In Section 7, we outline two barriers to showing improved hardness of
approximation for Max-k-Diameter. Recall that one limitation of the r-embedding technique is that it forbids
distances strictly between β and rβ (for some β > 0). Our first barrier result, formalized in Corollary 7.1,
shows that it is not possible to prove hardness above a factor of 5/3 in the ℓ1-metric with the r-embedding
framework, or using any construction of pointsets with such a gap in the set of distances.
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Our next barrier says that if a pointset P in the ℓ2-metric is not contained within a sphere of diameter
∆ ·

√
2, where ∆ is the optimal 3-clustering diameter of P , then there is a polynomial time algorithm to

approximate Max-3-Diameter on P within a factor of
√
2 − ε. So, in a proof of hardness up to a factor of√

2 in the ℓ2-metric, the hard instance must effectively lie within a sphere of diameter ∆ ·
√
2. This has an

interesting graph theoretic consequence: if Max-3-Diameter is hard to approximate within a factor of 2 in
the ℓ1-metric or within a factor of

√
2 in the ℓ2-metric, then the graphs associated with the hard instance

must have unbounded odd girth. This is formalized in Theorems 7.3 and 7.4.

3 Preliminaries

This section contains definitions, remarks, and notation that will be used throughout this paper.

3.1 Diameter Objective

Definition 3.1. (diameter) Given a metric space (X, dist) and a set C ⊂ X, we say the diameter of C is

diam(C) := max
x,y∈C

dist(x, y).

For a collection of subsets C1, . . . , Ck ⊂ X, we say

diam({C1, . . . , Ck}) := max
i∈[k]

x,y∈Ci

dist(x, y)

is the diameter of the collection.

Definition 3.2. (k-clustering) Given a set P , we say that a collection {C1, . . . Ck} is a k-clustering of
P if C1, . . . Ck are pairwise disjoint and C1 ∪ · · · ∪ Ck = P .

Definition 3.3. (Max-k-Diameter clustering problem) Let (X, dist) be a metric space and let k be a
constant. Given as input a finite set P ⊂ X, find a k-clustering {C1, . . . , Ck} of P that minimizes
diam({C1, . . . , Ck}).

Definition 3.4. (r-approximate Max-k-Diameter clustering problem) Let (X, dist) be a metric space
and let k be a constant. Given as input a finite set P ⊂ X, let

∆ := min diam({C1, . . . , Ck}),

where the minimum is taken over all possible k-clusterings of P . Find a k-clustering {C1, . . . , Ck} with
diameter at most r∆.

Remark 3.1. Let P be a pointset with optimal k-clustering diameter ∆, and let p be a point whose distance
to P is more than r∆. Then, r-approximate Max-k-Diameter on P reduces to r-approximate Max-(k + 1)-
Diameter on P ∪ {p}, because any (k + 1)-clustering whose diameter is at most r∆ must have {p} as a
standalone cluster. Thus, if Max-k-Diameter clustering is NP-hard, then Max-(k + 1)-Diameter is NP-hard.
In other words, if Max-3-Diameter is hard to approximate to some factor r, then so is Max-k-Diameter for
any k ≥ 3.

We now restate the definition of r-embedding mentioned in Section 1.

Definition 3.5. (r-embedding) Let G = (V,E) be a graph and (X, dist) a metric space. For r > 1, we
say a map φ : V → X is an r-embedding of G with short distance β > 0 if the following two conditions hold
for every u, v ∈ V :

• (u, v) /∈ E =⇒ dist(φ(u), φ(v)) ≤ β
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• (u, v) ∈ E =⇒ dist(φ(u), φ(v)) ≥ rβ

Definition 3.6. Let k be a constant, r > 1, and P a pointset. Let ∆ be the optimal k-clustering diameter
of P . Define Γk,r(P ) to be the graph in which the points in P are vertices, with edges between any two points
whose distance is greater than r∆.

3.2 Coloring Problems

Definition 3.7. A hypergraph H consists of a set of vertices V and a set of hyperedges E, where each
hyperedge e ∈ E is simply a subset e ⊆ V . We say that a hypergraph H is k-uniform if |e| = k for every
e ∈ E.

We define the following coloring problem on k-uniform hypergraphs.

Definition 3.8. (panchromatic k-coloring problem) Let k be a constant. Given a k-uniform
hypergraph H = (V,E) as input, find an assignment of k colors to the vertices of G such that for every
hyperedge e ∈ E, all vertices in e are given distinct colors. Such an assignment is called a panchromatic
k-coloring.

Remark 3.2. Note that 3-regular graphs can be viewed as 3-uniform 2-regular hypergraphs: edges correspond
to vertices, and triples of edges incident to the same vertex correspond to hyperedges. Since 3-edge coloring
is NP-hard on 3-regular graphs [Hol81], we know that panchromatic 3-coloring is NP-hard on 3-uniform
hypergraphs.

3.3 Hadamard Codes. For a bit string x ∈ {0, 1}m, we denote its bitwise complement by x.

Definition 3.9. (Hadamard code) Let m be a power of 2. There exists a subset of {0, 1}m of size m
such that the Hamming distance between distinct elements is exactly m/2. We call this a Hadamard code
and denote it by Had+

m. We also define Had−
m := {h : h ∈ Had+

m}, which can alternatively be seen as an
affine shift of Had+

m by the vector 1 = (1, 1, . . . , 1) in the vector space Fm
2 . Then, let

H̃adm := Had+
m ∪ Had−

m.

Given hi,hj ∈ H̃adm, we will denote the concatenation of hi and hj by (hi,hj) ∈ {0, 1}2m.

Remark 3.3. The set H̃adm has the following property: for every h ∈ H̃adm, there is exactly one element
in H̃adm that is distance m away from h, namely h. All other elements have distance m/2 to h.

4 The r-cloud System

In this section, we introduce a geometric object that can be used to prove inapproximability results for the
Max-k-Diameter problem.

Definition 4.1. For a hypergraph H = (V,E), let IH ⊂ E × V denote its set of incidences:

IH = {(e, v) : e ∈ E, v ∈ e}.

Definition 4.2. (r-cloud system) Let (X, dist) be a metric space and U ⊆ X be a finite set of points.
Let H = (V,E) be a k-uniform hypergraph. Suppose that (ρ, τ) is a pair of mappings for which ρ : V → U is
injective, and τ : IH → P(U) satisfies ρ(v) ∈ τ(e, v) for all (e, v) ∈ IH. For r > 1, we say that (U, ρ, τ) is
an r-cloud system of H if the following properties hold for some β > 0:
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• (Proximity) For v ∈ V , define
Pv :=

⋃
e∈E

(e,v)∈IH

τ(e, v).

For any nonadjacent v, v′ ∈ V , we have diam(Pv ∪Pv′) ≤ β. Note that we consider v to be nonadjacent
to itself.

• (Spread) For e ∈ E, define
Pe :=

⋃
v∈e

τ(e, v)

Let e = {v1, . . . , vk} ∈ E. For any k-clustering of Pe with diameter strictly less than rβ, the points
ρ(v1), . . . , ρ(vk) ∈ Pe are all in different clusters.

We refer to β as the short distance of (U, ρ, τ). Furthermore, we say that an r-cloud system (U, ρ, τ) is
efficiently computable if there are poly(|V |)-time algorithms to identify U and evaluate ρ and τ .

The existence of an efficiently computable r-cloud system gives a polynomial time reduction from
panchromatic k-coloring to Max-k-Diameter.

Theorem 4.1. Let k ∈ N be a constant and let H = (V,E) be a k-uniform hypergraph. Suppose H has an
efficiently computable r-cloud system (U, ρ, τ) with short distance β, where U ⊆ X for a metric space (X, d).
Let

P :=
⋃

(e,v)∈IH

τ(e, v) =
⋃
v∈V

Pv =
⋃
e∈E

Pe.

Then, there is a polynomial time algorithm which takes as input H and outputs P with the following
guarantees:

• Completeness: If H is panchromatic k-colorable, then there exists a k-clustering of P with diameter
at most β.

• Soundness: If H is not panchromatic k-colorable, then any k-clustering of P has diameter at least
rβ.

Proof. We note that, since |IH| ≤ nk, the pointset P is computable in polynomial time.
We first prove completeness. Let H be panchromatic k-colorable, and let c : V → [k] be a panchromatic

k-coloring of H. We define a k-clustering {C1, . . . , Ck} of P given by

Ci :=
⋃

v : c(v)=i

Pv.

To show that this clustering has diameter at most β, it suffices to show that for any i ∈ [k] and x, y ∈ Ci, we
have d(x, y) ≤ β. This follows from the observation that x ∈ Pv and y ∈ Pv′ for some v, v′ ∈ V , and since
c(v) = c(v′), either v, v′ are nonadjacent or v = v′. Applying the proximity property of Definition 4.2 gives
d(x, y) ≤ diam(Pv ∪ Pv′) ≤ β.

Now, we prove soundness. Suppose {C1, . . . , Ck} is a k-clustering of P with diameter less than rβ.
We construct a k-coloring c : V → [k] as follows: for each v ∈ V , let c(v) = i if ρ(v) ∈ Ci. Now, let
e = {v1, . . . , vk} ∈ E be an arbitrary hyperedge. By the spread property of Definition 4.2, we have that
c(v1), . . . , c(vk) are all distinct, and thus c is panchromatic.

By Remark 3.2, the above theorem gives a framework of proving hardness of approximating Max-k-
Diameter.
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5 Hardness of Approximation in the ℓ1-metric

In this section, we demonstrate the existence of an efficiently computable 3/2-cloud system for any 3-uniform
hypergraph in the ℓ1-metric, hence proving that Max-k-Diameter is NP-hard to approximate within a factor
of 3/2 in the ℓ1-metric.

Definition 5.1. Let H be a 3-uniform hypergraph, let m ≥ |V | be a power of 2. Identify V = [|V |] ⊆ [m]

so that each vertex v ∈ V corresponds to a distinct codeword hv ∈ H̃adm. Let

U = H̃adm × H̃adm ⊂ {0, 1}2m

We define an injective map ρ : V → U given by ρ(v) = (hv,hv). Moreover, we define τ : IH → P(U) as
follows. For every edge e = {x, y, z}, choose an arbitrary orientation ẽ = (x, y, z). Then, let τ be given by:

τ(e, x) =

{
(hx,hx) ,

(
hx,hz

)
,
(

hy,hx

)
,
(

hy,hz

)
,
(

hz,hz

)}
τ(e, y) =

{(
hy,hy

)
,
(

hy,hx

)
,
(

hz,hy

)
,
(

hz,hx

)
,
(

hx,hx

)}
τ(e, z) =

{
(hz,hz) ,

(
hz,hy

)
,
(

hx,hz

)
,
(

hx,hy

)
,
(

hy,hy

)}

This definition of τ is illustrated in Figure 2.

(hx,hx) (hx,hz) (hz,hz) (hz,hy) (hy,hy)

(hy,hx)
(hy ,hz) (hz ,hx)

(hy,hx)

(hy,hy)

(hx,hy)

(hx,hx)

(hz,hy) (hx,hz)

(hz,hz)

τ(e, x) τ(e, y)

τ(e, z)

Figure 2: Illustration of τ(e, ·) for ẽ = (x, y, z).

To motivate this choice of τ , we introduce the following terminology. First, for a given point
p = (p1, p2) ∈ U , we refer to p1 ∈ H̃adm and p2 ∈ H̃adm as the first and second blocks of p, respectively. For
A ⊆ U , we say a Hadamard codeword hv ∈ Had+

m features positively in A if hv is a block (either the first or
the second) of some point in A. Similarly, we say hv features negatively in A if hv is a block of some point
in A.

Our choice of τ , then, has the following exclusivity property. For any e = {x, y, z} ∈ E, no codeword
in Had+

m features both positively and negatively in τ(e, x): the codeword hx features positively but not
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negatively, while the codewords hy and hz feature negatively but not positively. From just this property, we
can conclude that diam(τ(e, x)) ≤ m/2+m/2 = m, since no two points in τ(e, x) may contain complementary
first blocks or complementary second blocks. Analogous statements hold for τ(e, y) and τ(e, z).

Lemma 5.1. Let H be a 3-uniform hypergraph. Let U, ρ, τ be as in Definition 5.1. Then, (U, ρ, τ) is an
efficiently computable 3/2-cloud system of H with short distance β = m.

Proof. It is clear that ρ and τ can each be evaluated in polynomial time. Moreover, since the Hadamard
code can be computed in polynomial time, the set U can also be computed in polynomial time.

We will first show that (U, ρ, τ) satisfies the proximity condition in Definition 4.2. Let v, v′ ∈ V be
nonadjacent. Then, it suffices to show that for any p, p′ ∈ Pv ∪ Pv′ , we have

∥∥p− p′
∥∥
1
≤ m. Writing p =

(p1, p2) and p′ = (p′1, p
′
2) where p1, p2, p

′
1, p

′
2 ∈ H̃adm, it suffices to show that

∥∥p1 − p′1
∥∥
1
,
∥∥p2 − p′2

∥∥
1
≤ m/2,

or equivalently, that p′1 6= p1 and p′2 6= p2. It is enough, then, to prove that no codeword in Had+
m features

both positively and negatively in Pv ∪ Pv′ .
Observe that we have

Pv ∪ Pv′ =

 ⋃
e∈E

(e,v)∈IH

τ(e, v)

 ∪

 ⋃
e′∈E

(e′,v′)∈IH

τ(e′, v′)


By the exclusivity property of τ , the only codewords featuring positively in Pv∪Pv′ are hv and hv′ . Moreover,
hv does not feature negatively in Pv, as it does not feature negatively in any τ(e, v). We claim that hv cannot
feature negatively in Pv′ either. Otherwise, there must be some e′ ∈ E containing v′ such that hv features
negatively in τ(e′, v′). But then v ∈ e′, contradicting the fact that v, v′ are nonadjacent. Therefore, hv does
not feature negatively in Pv ∪ Pv′ . The same reasoning applies to hv′ , allowing us to conclude that (U, ρ, τ)
satisfies the proximity condition.

Next, we will show that (U, ρ, τ) satisfies the spread condition in Definition 4.2. By symmetry, it suffices
to show that any 3-clustering of P{x,y,z} in which (hx,hx) and (hy,hy) are clustered together necessarily
has diameter at least 3m/2. Let {C1, C2, C3} be a 3-clustering of P{x,y,z} and suppose for contradiction that
(hx,hx), (hy,hy) ∈ C1, where diam(C1) < 3m/2. Then, no point in C1 can contain the codewords hx or hy,
and thus

C1 ⊆ {(hx,hx), (hy,hy), (hz,hz), (hx,hz), (hz,hz), (hz,hy)}.

We divide into two cases. In the first case, (hz,hz) ∈ C1, and so, to ensure diam(C1) < 3m/2, it must be
that

C1 = {(hx,hx), (hy,hy), (hz,hz)}.

Then, (hx,hx), (hy,hy), (hz,hz) ∈ C2 ∪C3. Two of these three points must be in the same cluster; without
loss of generality, say (hx,hx), (hy,hy) ∈ C2. Then, in order to ensure that diam(C2) < 3m/2, we must have
(hy,hx), (hy,hx) ∈ C3. But then diam(C3) ≥

∥∥∥(hy,hx)− (hy,hx)
∥∥∥
1
= 2m.

In the second case, (hz,hz) /∈ C1, so we have

C1 ⊆ {(hx,hx), (hy,hy), (hx,hz), (hz,hz), (hz,hy)}.

We will now show that either C2 or C3 necessarily has diameter ≥ 3m/2. Without loss of generality,
(hz,hz) ∈ C2, which in turn implies (hz,hx), (hy,hz) ∈ C3. But then (hy,hx), (hy,hx) ∈ C2, a contradiction
since diam(C2) ≥

∥∥∥(hy,hx)− (hy,hx)
∥∥∥
1
= 2m. We conclude that any 3-clustering of P{x,y,z} with diameter

< 3m/2 has (hx,hx), (hy,hy), (hz,hz) in different clusters, as desired.

This 3/2-cloud system combined with Theorem 4.1 gives us our first main result.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4719

D
ow

nl
oa

de
d 

06
/2

6/
25

 to
 1

28
.6

.7
5.

21
4 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



Theorem 5.1. (Max-k-Diameter in the ℓ1-metric) Let k ≥ 3 be constant. Given m ∈ N and a pointset
P ⊂ Rm with the ℓ1-metric, it is NP-hard to distinguish between the following two cases:

• Completeness: There exists a k-clustering of P with diameter at most 1.

• Soundness: Any k-clustering of P has diameter at least 3/2.

Proof. By Lemma 5.1, for any 3-uniform hypergraph H = (V,E), there is an efficiently computable 3/2-cloud
system (U, ρ, τ) of H in the ℓ1-metric, where U ⊂ Rm and m is a power of 2. By scaling all points, we can
assume that the short distance of the system is 1. Applying Theorem 4.1 and hardness of panchromatic
k-coloring on k-uniform hypergraphs, it is NP-hard to distinguish between the two cases for k = 3. The
statement follows by Remark 3.1.

Theorem 5.1 also immediately implies an inapproximability result in the ℓ2-metric.

Corollary 5.1. (Max-k-Diameter in the ℓ2-metric) Let k ≥ 3 be constant. Given m ∈ N and a pointset
P ⊂ Rm with the ℓ2-metric, it is NP-hard to distinguish between the following two cases:

• Completeness: There exists a k-clustering of P with diameter at most 1.

• Soundness: Any k-clustering of P has diameter at least
√

3/2.

Proof. Since the distance between any two points in {0, 1}m in the ℓ1-metric is the square of the distance
between these points in the ℓ2-metric, any r-cloud system (U, ρ, τ) where U ⊂ ({0, 1}m, ℓ1) is a

√
r-cloud

system when U is treated as a subset of ({0, 1}m, ℓ2). Applying Theorem 4.1 as above, we obtain the desired
result.

6 Hardness of Approximation in the ℓ2-metric

In this section, we improve upon Corollary 5.1 by treating the ℓ2-metric directly. Indeed, we demonstrate
the existence of a 1.304-cloud system of any 3-uniform hypergraph in the ℓ2-metric, hence proving hardness
of approximation Max-k-Diameter within a factor of 1.304 in this setting.

We first establish the following notation for integer partitions.

Definition 6.1. For κ, t ∈ N, let part(κ, t) = {(α1, . . . , αt) ∈ (N ∪ {0})t :
∑t

i=1 αi = κ}.

Now, we define a net of points on particular regions of the surface of a unit sphere.

Definition 6.2. Let H = (V,E) be a 3-uniform hypergraph, and identify V = [m] so that each vertex v ∈ V
corresponds to a distinct standard basis vector ev ∈ Rm. For κ ∈ N, define

Uκ =


∑

v∈[m] αvev∥∥∥∑v∈[m] αvev

∥∥∥
2

: (|α1|, . . . , |αm|) ∈ part(κ,m)

 .

Geometrically, Uκ is a net of rational points on the surface of the unit sphere in Rm centered at 0. We
define an injective map ρ : V → Uκ given by ρ(v) = ev. Next, we define τκ : IH → P(U) as follows. For
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every hyperedge e = {x, y, z}, choose an arbitrary orientation ẽ = (x, y, z). Then, let τκ be given by:

τκ(e, x) =

{
αxex − αyey − αzez∥∥αxex − αyey − αzez

∥∥
2

: (αx, αy, αz) ∈ part(κ, 3)
}

\
{
−ey

}
τκ(e, y) =

{
−αxex + αyey − αzez∥∥−αxex + αyey − αzez

∥∥
2

: (αx, αy, αz) ∈ part(κ, 3)
}

\ {−ez}

τκ(e, z) =

{
−αxex − αyey + αzez∥∥−αxex − αyey + αzez

∥∥
2

: (αx, αy, αz) ∈ part(κ, 3)
}

\ {−ex}

This definition of τκ is illustrated in Figure 3.

τ2(e, x)

τ2(e, y)

τ2(e, z)

−ex

−ey

−ez

ex

ey

ez

Figure 3: Illustration of τκ(e, ·) for ẽ = (x, y, z) and κ = 2. Here, each set τ2(e, ·) contains 5 points on the
surface of a unit sphere. Note the similarity between τ2 and the construction in the ℓ1-metric, as shown in
Figure 2.

This choice of τκ is motivated similarly to the one in Section 5. For A ⊆ U , we say that a coordinate
v ∈ [m] features positively in A if pv > 0 for some p ∈ A. Similarly, v features negatively in A if pv < 0 for
some p ∈ A.

Our choice of τκ, as in Section 5, has the following exclusivity property. For any e = {x, y, z} ∈ E, no
coordinate in [m] features both positively and negatively in τκ(e, x): the coordinate x features positively but
not negatively, while the coordinates y and z feature negatively but not positively. Analogous statements
hold for τκ(e, y) and τκ(e, z).

Lemma 6.1. Let Uκ, ρ, τκ be as in Definition 6.2. Then, for a suitable choice of constant κ, (Uκ, ρ, τκ) is an
efficiently computable 1.304-cloud system with short distance β =

√
2.

Proof. For constant κ ∈ N, it is clear that ρ, τκ, and Uκ can each be computed in polynomial time.
We will first show that (Uκ, ρ, τκ) satisfies the proximity condition in Definition 4.2 for any κ ∈ N. Let

v, v′ ∈ V be nonadjacent. Then, it suffices to show that for any p, p′ ∈ Pv ∪ Pv′ , we have
∥∥p− p′

∥∥
2
≤

√
2.

Since p and p′ are both unit vectors, this is equivalent to proving 〈p, p′〉 ≥ 0, as∥∥p− p′
∥∥
2
=
√
〈p− p′, p− p′〉 =

√
2−

√
2 · 〈p, p′〉.
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It is enough, then, to show that no coordinate features both positively and negatively in Pv ∪ Pv′ , as this
implies that pipi

′ ≥ 0 for each i ∈ [m] and thus 〈p, p′〉 ≥ 0.
Observe that we have

Pv ∪ Pv′ =

 ⋃
e∈E

(e,v)∈IH

τκ(e, v)

 ∪

 ⋃
e′∈E

(e′,v′)∈IH

τκ(e
′, v′)


By the exclusivity property of τκ, the only coordinates featuring positively in Pv∪Pv′ are v and v′. Moreover,
v does not feature negatively in Pv, as it does not feature negatively in any τκ(e, v). We claim that v cannot
feature negatively in Pv′ either. Otherwise, there must be some e′ ∈ E containing v′ such that v features
negatively in τκ(e

′, v′). But then v ∈ e′, contradicting the fact that v, v′ are nonadjacent. Therefore, v does
not feature negatively in Pv ∪Pv′ . The same reasoning applies to v′, allowing us to conclude that (Uκ, ρ, τκ)
satisfies the proximity condition for any κ ∈ N.

We claim that (Uκ, ρ, τκ) satisfies the spread condition in Definition 4.2 for κ = 12. This can be verified
using a computer by confirming that all 3-clusterings of P{x,y,z} ⊂ U12 in which ex and ey are clustered
together have diameter at least 1.304 ·

√
2. The code used to prove the second part of Lemma 6.1 can be

found at https://github.com/cea4608937/hardness-of-diameter.

Applying Theorem 4.1 to this cloud system gives us our main result in the ℓ2-metric.

Theorem 6.1. (Max-k-Diameter in the ℓ2-metric) Let k ≥ 3 be constant. Given m ∈ N and a pointset
P ⊂ Rm with the ℓ2-metric, it is NP-hard to distinguish between the following two cases:

• Completeness: There exists a k-clustering of P with diameter at most 1.

• Soundness: Any k-clustering of P has diameter at least 1.304.

Proof. By Lemma 6.1, for any 3-uniform hypergraph H = (V,E), there is an efficiently computable 1.304-
cloud system (U, ρ, τ) of H in the ℓ2-metric, where U ⊂ Rm for m = |V |. By scaling all points, we can
assume that the short distance of the system is 1. Applying Theorem 4.1 and hardness of panchromatic
k-coloring on k-uniform hypergraphs, it is NP-hard to distinguish between the two cases for k = 3. The
statement follows by Remark 3.1.

Remark 6.1. Fix a hyperedge e = {x, y, z}, and consider the set P{x,y,z} ⊂ Uκ. Note that as κ increases,
P{x,y,z} forms denser nets, allowing us to potentially satisfy the spread condition for larger values of r,
thereby obtain larger hardness factors than 1.304. However, there is not much room for improvement with
this technique. Namely, the hardness factor we obtain will never surpass

√
1 +

√
2/2 ≈ 1.307 because for this

particular construction, the spread property does not hold when r ≥
√

1 +
√
2/2. In particular, we define the

following 3-clustering of P{x,y,z} ⊂ Uκ. Denote the clusters Cx, Cy, Cz, and for p ∈ P{x,y,z}, let p ∈ Cv′ if

v′ = argmin
v∈{x,y,z}

pv,

deciding ties arbitrarily with a single exception: we force that ex, ey ∈ Cz, which is possible since
(ex)z = (ey)z = 0. It can be checked that for any κ ∈ N, the clustering {Cx, Cy, Cz} has diameter at
most

√
2 +

√
2 =

√
2 ·
√
1 +

√
2/2. Since ρ(x) and ρ(y) clustered together, this confirms that the spread

property does not hold.

7 Barriers to Proving Hardness of Max-k-Diameter

In this section, we present two barriers to showing improved hardness of approximation for the Max-k-
Diameter problem.
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7.1 Intermediate Distance Barrier. In this section, we show a barrier to our methods of proving
hardness of Max-k-Diameter in the ℓ1-metric. We show that proving hardness of approximation to a factor
r > 5/3 requires constructing a pointset without large gaps in the set of pairwise distances.

Definition 7.1. Let P ⊂ (X, dist) be a set of points. For a, b ∈ R, we say that P has an (a, b)-gap if there
are no p, p′ ∈ P such that dist(p, p′) ∈ (a, b).

Definition 7.2. Let G and H be graphs. We say that G is H-free if no induced subgraph of G is isomorphic
to H.

It turns out that there is a connection between Max-k-Diameter on pointsets with gaps and coloring
H-free graphs.

Theorem 7.1. Let H be a graph such that H-free k-coloring is in P and H is not r-embeddable. Then,
there is a polynomial time algorithm that takes as input pointsets P with a (β, rβ)-gap and determines if the
optimal 3-clustering of P has diameter at most β.

Proof. Let A be a polynomial time algorithm which, given an H-free graph, determines if a k-coloring
exists. Given a pointset P with an (β, rβ)-gap, construct a graph G = (V,E) where V = P and (p, p′) ∈ E
if dist(p, p′) > β. We observe that the graph G must be H-free, or else the points corresponding to H ⊂ G
would give an r-embedding of H. By running A on G, we determine if a k-coloring of G exists. A coloring
of G directly corresponds to a k-clustering of P with diameter at most β, so this algorithm determines if P
has a k-clustering with diameter at most β, as desired.

In order to apply Theorem 7.1, we must identify a graph H for which H-free k-coloring can be solved
in polynomial time.

Lemma 7.1. [BCM+18] Let P7 denote the path graph on 7 vertices. There exists a polynomial time algorithm
to 3-color P7-free graphs.

Corollary 7.1. For any r > 5/3, there is a polynomial time algorithm that takes as input pointsets P in
the ℓ1-metric with a (β, rβ)-gap and determines if the optimal 3-clustering of P has diameter at most β.

Proof. Using the method in Appendix A, we verify that the graph P7 is not r-embeddable in the ℓ1-metric
for any r > 5/3. Applying Lemma 7.1 and Theorem 7.1 gives the result.

Remark 7.1. Corollary 7.1 can be seen as a barrier to various methods of proving hardness of approximation
results in the ℓ1-metric. First, consider the initial r-embedding approach for proving hardness of Max-k-
Diameter outlined in Section 1. In this approach, we construct an r-embedding φ (with short distance β)
of a hard-to-color graph G, arguing that it is NP-hard to determine if the optimal 3-clustering of φ(G) has
diameter at most β. Importantly, by definition of r-embedding, the pointset φ(G) has a (β, rβ)-gap.

Next, recall the 3/2-cloud system constructed in Section 5 and the associated pointset P . By the unscaled
version of Theorem 5.1, it is NP-hard to determine if the optimal 3-clustering of P has diameter at most m.
Moreover, every pairwise distance in H̃adm × H̃adm lies in {0,m/2,m, 3m/2, 2m}, implying that P has an
(m, 3m/2)-gap.

Corollary 7.1 implies that any pointset on which Max-k-Diameter cannot be approximated to a (5/3+ ε)
factor must contain intermediate distances, which is not the case in the above two approaches. Note that
the approach in Section 6 does have such intermediate distances, so forming nets of points gives one possible
method of circumventing this barrier.
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7.2 Large Odd Girth Barrier. In this section, we show a better than
√
2-approximation algorithm for

Max-3-Diameter, restricted to pointsets that are not contained within any ball of diameter ∆ ·
√
2, where

∆ denotes the optimal 3-clustering diameter. We then give a graph theoretic implication of this restriction
related to the existence of short odd cycles.

We start by formally describing the (
√
2 + ε)-approximation algorithm for Max-k-Diameter mentioned

in Section 1. The natural setting of this algorithm is the closely related k-center clustering problem, which
we define below.

Definition 7.3. (k-center clustering problem) Let (X, dist) be a metric space and k ∈ N. Given as
input a finite set P ⊂ X, find a k-clustering {A1, . . . , Ak} ⊂ P and a collection of “centers” {a1, . . . , ak}
that minimizes

max
i∈[k], x∈Ai

dist(x, ai).

Theorem 7.2. (follows from [BHI02]) Let ε > 0 and k a constant. In Euclidean space, (
√
2 + ε)-

approximate k-clustering is in P.

Proof. From [BHI02], (1+ ε)-approximation of Euclidean k-center is in P. By Jung’s theorem [DGK63], any
set of points with diameter ∆ is contained in a closed ball with radius r satisfying

r ≤ ∆

√
n

2(n+ 1)
≤ ∆√

2

Let ∆ be the optimal Max-k-Diameter of the given set of points. Applying Jung’s theorem, the optimal
clustering for the k-center objective will have diameter

∆′ = 2r ≤ ∆
√
2

Therefore, (1 + ε)-approximation of k-center immediately gives (
√
2 + ε)-approximation of Max-k-Diameter.

In the case of k = 3, we can modify this algorithm to a better approximation for certain pointsets.

Theorem 7.3. Let ε > 0 be a sufficiently small constant. Then, there exists a polynomial time (
√
2 − ε)-

approximation algorithm for Max-3-Diameter, when restricted to pointsets P not contained in a bounding
sphere with diameter ∆ ·

(√
2 + 50ε1/8

)
, where ∆ is the optimal 3-diameter of P .

The proof of Theorem 7.3 can be found in Appendix B. Importantly, Theorem 7.3 has implications for the
graph Γk,r introduced in Definition 3.6.

Definition 7.4. Given a graph G, the odd girth of G is the length of the smallest odd cycle. If there are no
odd cycles, we say that the odd girth is infinite.

Theorem 7.4. For any g ∈ N, there exists an ε > 0 such that (
√
2− ε)-approximate Max-3-Diameter is in

P, when restricted to pointsets P such that Γk,
√
2−ε(P ) has odd girth at most g.

Proof. By scaling, we may assume without loss of generality that the optimal 3-clustering diameter of P is
1. We will prove that for small enough ε, there is no pointset P contained in a ball of diameter

√
2 + ε such

that the odd girth of Γk,
√
2−ε(P ) is at most g. Then, the statement follows from Theorem 7.3.

So, suppose for contradiction that P is a pointset contained in a ball of diameter
√
2 + ε and the odd

girth of Γk,
√
2−ε(P ) is at most g. We can assume that this ball is centered at the origin. Since the optimal

diameter is 1, all edges in Γk,
√
2−ε(P ) correspond to distances of at least

√
2− ε. Let u, u′ ∈ Γk,

√
2−ε(P ) be

arbitrary adjacent vertices and let p, p′ ∈ P be their corresponding points. Note that
∥∥p− p′

∥∥ ≥
√
2 − ε.
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Since both p and p′ are contained in a sphere of diameter
√
2 + ε centered at the origin, we have that∥∥p+ p′

∥∥
2
≤ 1

2g for small enough ε. Thus, the distance between any two points in P whose corresponding
vertices share a neighbor must be at most 2 · 1

2g = 1
g by the triangle inequality.

By assumption, there must be an odd cycle C in Γk,
√
2−ε(P ) of consisting of at most g vertices. Let

v, v′ ∈ C be adjacent vertices and q, q′ ∈ P be their corresponding points. Note that since the length of the
cycle C is odd, there is an even length path between v and v′ in Γk,

√
2−ε(P ) that has length at most g − 1.

Let q = q0, q1, . . . , qm = q′ ∈ P be every other point along this path, with m ≤ g
2 . For each i, 0 ≤ i ≤ m− 1,

the vertices corresponding to qi and qi+1 share a neighbor, and thus

‖qi − qi+1‖ ≤ 1

g
.

By the triangle inequality, we have ∥∥q − q′
∥∥
2
≤ m · 1

g
≤ 1

2
.

For small enough ε > 0, we have that 1/2 <
√
2 − ε, contradicting the fact that q and q′ correspond to

adjacent vertices.

Remark 7.2. We note that Theorems 7.3 and 7.4 hold only with respect to Max-3-Diameter, and not Max-
k-Diameter for k ≥ 4. This is in contrast to our inapproximability result from Theorem 6.1, which holds for
all k ≥ 3.

8 Open Problems

A couple of open problems immediately stem from this work.

• In this work, we proved strong inapproximability results for Max-k-Diameter (where k is fixed) in
the Euclidean and ℓ1-metrics, but our understanding is far from tight in both these metrics, and it
remains an important open problem to bridge the gap between the NP-hardness and polynomial time
approximability factors. In order to do so, some of the barriers that need to be overcome are detailed
in Section 7. However, an intriguing (intermediate) direction that is worth exploring is if we can obtain
tight hardness of approximation factors for Max-k-Diameter in the Euclidean metric (or ℓ1-metric) when
k is some large constant.

• We believe that the techniques introduced in this paper, in particular the graph embedding to ℓ1-metric
and Euclidean metric, might be useful to prove improved hardness of approximation results for other
geometric problems as well. For example, in [CKL21] the authors gap reduce graph coloring problem
to the continuous k-means problem in high-dimensional ℓ∞-metric, to obtain strong inapproximability
results that are higher than the ones derived from covering problems in [CK19, CKL22]. We wonder if
it is possible to use our embedding schemes to obtain strong hardness of approximation results for the
high dimensional continuous Euclidean k-means problem, improving upon the current state-of-the-art
1.36 NP-hardness factor based on the Johnson Coverage Hypothesis [CKL22].
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A Testing r-embeddability with a Linear Program

It turns out finding the largest ratio r for which a given graph H is r-embeddable into ({0, 1}m, ℓ1) can
be framed as the solution to a linear program. To see this, let H = (V,E) be a graph on n vertices
labeled v1, v2, . . . , vn, and let φ be an r-embedding of H into the space {0, 1}m, with short distance β. For
each w ∈ {0, 1}n, associate a nonnegative integer xw indicating the number of indices i ∈ [m] such that
(φ(vj))i = wj holds for all j ∈ [n]. Then, distances in our embedded space can be written as the following
linear combination: ∥∥φ(va)− φ(vb)

∥∥
0
=

∑
w∈{0,1}n

wa ̸=wb

xw.

Then, for a given short distance parameter β, finding the largest possible embeddability ratio r is equivalent
to solving the following optimization problem over nonnegative integer variables {xw : w ∈ {0, 1}n} and a
rational variable r:

maximize r

subject to



∑
w∈{0,1}n

wa ̸=wb

xw ≥ rβ if (va, vb) ∈ E

∑
w∈{0,1}n

wa ̸=wb

xw ≤ β if (va, vb) /∈ E

We can remove dependence on s by simply setting β = 1 and allowing each xw to take any nonnegative
rational value, obtaining the following linear program:

maximize r

subject to



∑
w∈{0,1}n

wa ̸=wb

xw ≥ r if (va, vb) ∈ E

∑
w∈{0,1}n

wa ̸=wb

xw ≤ 1 if (va, vb) /∈ E

Moreover, since each of our constraints have integer coefficients, the solution vector to this linear program
will be rational. Thus, we can scale each xw to be an integer, thus obtaining an embedding into {0, 1}m that
achieves the optimal ratio r, where m =

∑
w∈{0,1}n

xw ∈ N.

In particular, for a given graph H and parameter r > 1, this gives us a computational way to check
whether or not H is r-embeddable in the Hamming metric. That said, the number of constraints in the
linear program is Ω(2n), meaning this method is only tractable when n = |H| is relatively small.
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B Proof of Theorem 7.3

Proof. Let ε′ = 45ε1/4 and fix a pointset P not contained in any bounding sphere with diameter
√
2+ε′. By

scaling, we can assume that ∆ =
√
2√

2+ε
without loss of generality. Let A ∪B ∪C be an optimal 3-clustering

of P .
We run the algorithm from Theorem 7.2 on the pointset P , with approximation factor

√
2 + ε, hence

obtaining a 3-clustering of P with diameter at most ∆ · (
√
2 + ε) =

√
2. Theorem 2.7 of [BHI02] gives

that all three clusters can be written as the intersection of balls in Rm with the pointset P , with points
contained in multiple balls assigned arbitrarily. Moreover, we desire a stronger property: that the optimal
clusters A,B,C are each contained in one of these balls. Slightly extending their algorithm by returning all
3-clusterings enumerated by the simulation of the “guessing oracle”, we can ensure that one of the returned
3-clusterings achieves a (

√
2 + ε)-approximation factor as well as the desired property. It suffices to run the

following procedure over all of these 3-clusterings. On at least one iteration, the desired approximation will
hold.

Let NA, NB , NC be balls of diameter
√
2 that contain A,B,C, respectively. Let a, b, c be their respective

centers. We now split into two cases which, by a relabeling argument, are exhaustive.

• Case I: NA∩NB , NA∩NC , NB∩NC each have diameter ≤
√
2−ε. In this case, we have the following

algorithm:

1. For each point p ∈ P , initialize a set Sp as follows:

Sp = {X ∈ {A,B,C} : p ∈ NX}

as the set of balls that contain p.

2. For every pair of points p, q ∈ P such that ‖p− q‖2 > ∆, if Sp contains only one element, and Sq

contains that element, remove it from Sq. Repeat this until no such removals are possible.

3. Let

A′ := {p ∈ P : A ∈ Sp, B 6∈ Sp}
B′ := {p ∈ P : B ∈ Sp, C 6∈ Sp}
C ′ := P \ (A′ ∪B′).

Output the 3-clustering {A′, B′, C ′}.

We can show that the following property remains true throughout the iterations of step 2 of the
algorithm: if p is in some optimal cluster X ∈ {A,B,C}, then X ∈ Sp. It is true in the initialization of
Sp in step 1 of the algorithm. We only remove X from Sp if there exists some q such that ‖p− q‖2 > ∆,
and q ∈ X. So, p cannot be in X, because the optimal clustering {A,B,C} has diameter ∆. Thus, if
p ∈ X, then X ∈ Sp.

Let p, q ∈ A′. Note that A ∈ Sp and A ∈ Sq by definition. If Sp = {A} or Sq = {A}, then
‖p− q‖2 ≤ ∆, or A would have been removed. In all other possible cases, C ∈ Sp and C ∈ Sq. So,
p, q ∈ NA ∩NC . Thus, ‖p− q‖2 ≤

√
2− ε.

Similarly, if p, q ∈ B′, then either ‖p− q‖2 ≤ ∆ or p, q ∈ NA ∩ NB . If p, q ∈ C ′, then either
‖p− q‖2 ≤ ∆ ≤

√
2 − ε or p, q ∈ NC ∩ NB . In all cases, ‖p− q‖2 ≤

√
2 − ε, so our 3-clustering has

diameter at most
√
2− ε.

• Case II: NA∩NB has diameter >
√
2−ε. We claim that, in this case, the diameter of NC ∩(NA∪NB)

is at most
√
2− ε. Given that this is true consider the following algorithm:
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1. For each point p ∈ P , initialize

Sp = {X ∈ {A,B,C} : p ∈ NX}

as the set of balls that contain p, as in Case I.

2. For every pair of points p, q ∈ P such that ‖p− q‖2 > ∆, if Sp contains only one element, and Sq

contains that element, remove it from Sq. Repeat this until no such removals are possible, as in
Case I.

3. Let

C ′ := {p ∈ P : C ∈ Sp}.

Find an optimal 2-clustering of P \ C ′, and call the output clusters A′ and B′. Output the
clustering A′, B′, C ′.

Note that for any point p ∈ P \ C ′, we have that C 6∈ Sp. Thus, P \ C ′ ⊆ A ∪ B, so there exists a
2-clustering of P \ C ′ of diameter at most ∆. So, A′ and B′ have diameter at most ∆.

Now, for any p, q ∈ C ′, if Sp = {C} or Sq = {C}, then ‖p− q‖2 ≤ ∆, or C would have been removed.
So, if ‖p− q‖2 > ∆, then both Sp and Sq contain either A or B. In this case, p, q ∈ NC ∩ (NA ∪NB),
so ‖p− q‖2 ≤

√
2− ε. Hence, the clustering {A′, B′, C ′} has diameter at most

√
2− ε.

It remains to verify our claim that NC ∩ (NA ∪NB) has diameter at most
√
2− ε. First, observe that

NA ∪NB are contained within a ball ND whose center d is the midpoint between a and b and whose
radius is α+

√
2

2 , where α := ‖a− b‖2. Since NA∩NB has diameter at least
√
2−ε, by the Pythagorean

Theorem we have:

α ≤ 2

√√√√(√
2

2

)2

−

(√
2− ε

2

)2

=

√
2ε
√
2− ε2.

Now, we apply the fact that P is not contained in a bounding sphere of diameter ∆ · (
√
2 + ε′). If

ε′ ≥ 2ε, we observe that

∆ · (
√
2 + ε′) =

√
2 ·

√
2 + ε′√
2 + ε

=
√
2 +

√
2 · ε′ − ε√

2 + ε
≥

√
2 +

√
2 · ε

′/2√
2

=
√
2 +

ε′

2
.

Hence, it is also true that P is not contained in a bounding sphere of diameter
√
2 + ε′

2 . The same is
true for NC ∪ND, since P ⊂ NC ∪ND, meaning:

√
2 +

ε′

2
≤ diameter(NC ∪ND)

≤ ‖c− d‖2 + radius(NC) + radius(ND)

= ‖c− d‖2 +
√
2

2
+

α+
√
2

2

= ‖c− d‖2 +
α

2
+

√
2.

Hence, ‖c− d‖2 ≥ ε′ − α
2 . Finally, let h denote the diameter of NC ∩ ND; since A ∪ B ⊂ ND and
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C ⊆ NC , it suffices to show that h ≤
√
2− ε. By the Pythagorean Theorem, we have:

h

2
≤

√
radius(ND)2 −

(
‖c− d‖2

2

)2

≤ 1

2
·

√
(α+

√
2)2 −

(
ε′ − α

2

)2

=
1

2
·

√
3α2

4
+ 2α

√
2 +

αε′

2
+ 2− ε′2

4

Hence, it suffices to show that:

(
√
2− ε)2 = 2− 2ε

√
2 + ε2 ≥ 3α2

4
+

(
2
√
2 +

ε′

2

)
· α+ 2− ε′

2

4

From here, we provide a sequence of stronger inequalities, eventually showing that our setting of
ε′ = 60ε1/4 is satisfies the above inequality. First, recall that α ≤

√
2ε
√
2− ε2. Thus, it is sufficient

to have
2− 2ε

√
2 + ε2 ≥ 6ε

√
2− 3ε2

4
+

(
2
√
2 +

ε′

2

)√
2ε
√
2− ε2 + 2− ε′

2

4

Subtracting (2 + 6ε
√
2−3ε2

4 ) from both sides, it is equivalent that

7

4
(ε2 − 2ε

√
2) ≥

(
2
√
2 +

ε′

4

)√
2ε
√
2− ε2 − ε′

2

4

Applying the trivial bound ε2 ≥ 0, it is sufficient that

− 7ε√
2
≥
(
2
√
2 +

ε′

2

)√
2ε
√
2− ε′

2

4

For ε′ ≤ 1, we have
(
2
√
2 + ε′

2

)√
2
√
2 < 6, so it would be sufficient if

− 7ε√
2
≥ 6

√
ε− ε′

2

4
.

Rearranging, we have:
ε′

2 ≥ 24
√
ε+

28ε√
2
.

Finally, for ε ≤ 1 it is true that ε ≤
√
ε, and since 24 + 28√

2
< 45, it is good enough to have

ε′
2 ≥ 45

√
ε

This is satisfied when ε′ = 45ε1/4. Note that our argument relied on ε ≤ 1, ε′ ≤ 1 and ε′ ≥ 2ε all
holding. One can verify that for ε′ = 45ε1/4, all of these bounds are true when ε is sufficiently small.

In both cases, then, we produced an algorithm which outputs a 3-clustering with diameter at most
√
2− ε.

Since the optimal 3-clustering has diameter ∆ =
√
2√

2+ε
, we achieve an approximation ratio of:

√
2− ε

∆
=

(
√
2− ε)(

√
2 + ε)√

2
=

2− ε2√
2

=
√
2− ε2√

2
.
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We have demonstrated a (
√
2− ε2√

2
)-approximation algorithm for pointsets not contained in a bounding

sphere of diameter ∆ ·
(√

2 + 45ε1/4
)

. By a change of variables ε 7→ 21/4
√
ε, this gives a (

√
2 − ε)-

approximation for pointsets not contained in a bounding sphere with diameter

∆ ·
(√

2 + 45
(
21/4

√
ε
)1/4)

= ∆ ·
(√

2 + 45 · 21/16ε1/8
)
.

Since 45·21/16 < 50, this algorithm also holds for pointsets not contained in a bounding sphere with diameter
∆ ·
(√

2 + 50ε1/8
)

, which is what we wanted to show.
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