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Distributed Optimization 1n Distribution Systems:
Use Cases, Limitations, and Research Needs

Niloy Patari
Anurag Srivastava

Abstract—Electric distribution grid operations typically rely
on both centralized optimization and local non-optimal control
techniques. As an alternative, distribution system operational prac-
tices can consider distributed optimization techniques that lever-
age communications among various neighboring agents to achieve
optimal operation. With the rapidly increasing integration of dis-
tributed energy resources (DERs), distributed optimization algo-
rithms are growing in importance due to their potential advantages
in scalability, flexibility, privacy, and robustness relative to central-
ized optimization. Implementation of distributed optimization of-
fers multiple challenges and also opportunities. This paper provides
a comprehensive review of the recent advancements in distributed
optimization for electric distribution systems and classifications
using key attributes. Problem formulations and distributed opti-
mization algorithms are provided for example use cases, including
volt/var control, market clearing process, loss minimization, and
conservation voltage reduction. Finally, this paper also presents
future research needs for the applicability of distributed optimiza-
tion algorithms in the distribution system.

Index Terms—Optimal power flow, distributed energy resources,
active distribution systems, distributed optimization.

1. INTRODUCTION

LECTRIC grid operation and control heavily rely on opti-
mal power flow (OPF) techniques to maneuver the system
to economic and reliable operating points [1]. Using extensive
sensing and communication infrastructures, power grid opera-
tors centrally gather all information needed by formulated OPF
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problems, solve these problems, and send dispatch control to the
generators and control devices. Rapidly increasing integration of
distributed energy resources (DERs) motivate the application of
advanced optimization tools for distribution systems. However,
applying OPF solution techniques to distribution systems is
challenging for many reasons. Some of these challenges include
the huge number of controllable resources, flexible control due
to inverter-based resources (IBR), the inapplicability of the DC
power flow approximation, limited communication and sensing
infrastructures, and privacy concerns with control devices and
resources ownership.

Existing centralized schemes for operating and controlling
distribution systems span two operational layers: (a) the physi-
cal layer, where control agents like tap-changing transformers,
switched capacitors, reclosers, circuit breakers, etc. are respon-
sible for managing the state of the distribution system, (b) the
cyber layer, which can be classified into two more sublayers-
(i) control and management sublayer where the Advanced Dis-
tribution Management System (ADMS) runs an optimization
tool and is responsible for making control decisions of power
system operations throughout the day, (ii) communication sub-
layer where commands and measurements are relayed between
the physical layer and the control/management sublayer (i.e.,
the ADMS). Along with these centralized schemes, utilities
often use purely local feedback based control strategies in power
grids. However, these schemes generate non-optimal solutions
since they are solely based on local measurements. Stability
is also an issue for purely local feedback based schemes as
they are unable to consistently regulate the voltage/frequency
throughout the system [2]. Complementing this framework, dis-
tributed algorithms involving communication and coordination
among various agents/control nodes provide the opportunity for
optimal control and operation of active distribution grids. In
this context, “active” distribution grids refer to the evolving
distribution systems that allow for power flow from prosumer
to distribution network and eventually to transmission network,
enabling participation in grid services [3]. Advantages of dis-
tributed algorithms include [4]:

¢ With the inclusion of DERs, the number of physical control

devices israpidly growing. Hence, the ADMS is challenged
by the need to communicate with and manage the oper-
ation of all deployed control agents that are associated
with the new DERs. Additionally, centralized schemes
will have mathematical challenges in solving large-scale
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multi-variate multi-period problems due to complexities
associated with inverter-based DERs. Relative to central-
ized approaches, distributed algorithms have potential scal-
ability advantages for addressing this challenge.

e Distributed algorithms are based on decomposition of the
original centralized problem into smaller subproblems hav-
ing coordination and communication with only limited
numbers of neighboring control agents. The decomposed
subproblems enable fast parallel computations [5], [6].

® Distributed algorithms have potential advantages in data
privacy given different ownership of DERs at the edge,
since the communication sublayer only involves neighbor-
ing agents rather than centralized communication with the
ADMS.

e Centralized approaches are prone to single-point cyber
failures. Distributed algorithms have potential advantages
in robustness that can help improve the reliability and
resiliency of active distribution systems.

e Since each agent only needs to communicate with its
neighbors, distributed algorithms are naturally capable of
adapting to changing conditions such as modifications to
the network topology and communication infrastructure.
Moreover, unlike centralized schemes, no single agent
requires full knowledge of all network parameters while
computing optimal setpoints.

Relevant works in recent literature on distributed optimiza-
tion for problems in distributed systems include [4], [6]-[9].
References [6], [7] focused on voltage control in microgrids and
distribution systems using decentralized, local, and distributed
control schemes. Voltage control in smart grids considering both
transmission and distribution grids is reviewed in [8]. Refer-
ences [4], [9] are both broader surveys of distributed approaches.

The major contributions of this work are listed as-

e Taxonomy: A comprehensive taxonomy of distributed
algorithms in distribution power grids, classified based not
only on algorithm and application types, but also based
on data exchange mechanism, implementation type, com-
munication type, and the underlying type of power system
model.

* Model Relaxations and Approximations: Necessary re-
laxations and approximations utilized in a distributed op-
timization formulation are discussed in detail.

® Solution and Use Cases: Two disparate use cases are
presented, one of which employs a primal-dual method
while another employs a dual-ascent method that solves
the underlying OPF in a distributed manner.

e Research Needs: An in-depth discussion on the research
needs for implementation of distributed approaches in the
real field is carried out.

This paper has the following major differences relative to the
work in [4] and [9] as follows - (i) domain of application, which
is focused on distribution grid and its uniqueness, (ii) model
formulations, approximations and relaxations for AC OPF, and
(iii) taxonomy of solution algorithms and two representative use
cases that demonstrate two very common approaches.

The organization of the paper is as follows. Section II for-
mulates the OPF problem in both centralized and distributed
settings and discusses various power flow approximations and
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relaxations used for distribution system analyses. Section III sur-
veys different distributed algorithms applied for optimal control
in distribution grids and discusses comparisons among them.
Section IV discusses several use cases for distributed optimiza-
tion algorithms. Section V presents an overview of research
needs for field implementations of distributed algorithms in
active distribution systems.

II. AC OPTIMAL POWER FLOW PROBLEMS FOR ACTIVE
DISTRIBUTION SYSTEMS

Accurately modeling distribution systems requires AC power
flow formulations which consist of nonlinear equations involv-
ing complex bus voltages, line power flows, and bus power
injections. OPF problems which include the nonlinear AC power
flow equations and power system operational bounds in their
constraints are known as ACOPF problems. While OPF prob-
lems are not the only problems in the distribution grid that can be
solved with distributed optimization, a large subset of problems
does rely on the OPF solution. At a high level, the methods
reviewed in this paper are generalizable to these types of prob-
lems. But these problems also have their own unique features in
facilitating and/or challenging the distributed algorithm design,
which is however beyond the scope of this review. This section
formulates ACOPF problems in both centralized and distributed
settings and describes variants of ACOPF problems that have
been proposed for distributed applications.

A. Centralized ACOPF Problems

The centralized ACOPF problem optimizes an objective func-
tion while satisfying steady-state power flow equations and
operational constraints. The power flow equations are typically
represented via either the Bus Injection Model [4], [10] or the
Branch Flow Model (also called the DistFlow Model) [11]-
[13]. In either representation, power flow equations introduce
non-convexities in ACOPF problems. The power flow equations
for multiphase systems are further complicated by inter-phase
coupling [14], [15]. Along with equalities corresponding to
the power flow equations, ACOPF problems include voltage
limits (typically +5% of the nominal voltage [16]), generator
bounds, thermal limits on line flows, and constraints associated
with legacy devices such as tap-changing transformers and line
capacitors. Power injections from DERs are often limited by the
apparent power ratings of their interfacing converters. Line flows
are limited by ampacity of distribution lines. Legacy devices
are slow-acting in nature since they are geared by mechanical
actuators and switches.

In centralized settings, the ADMS collects measurements
from the entire system and solves an ACOPF problem. The
centralized ACOPF problem contains both state variables (e.g.,
voltage phasors, power flows) and control variables (e.g., set-
points for legacy devices and DER outputs). Denote the set of
all problem variables as x. The centralized ACOPF problem
aims to minimize operational costs (la) subject to the power
flow equations (1b) and operational limits (1c):

(la)

min f(z)
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(1b)
(Io)

B. Distributed ACOPF Problems

Distributed OPF approaches involve two steps:

® Decomposition: The original centralized optimization
problem is decomposed into several subproblems. Hence,
the centralized problem’s objective and constraint func-
tions are decomposed into subproblem-specific objective
functions and constraint functions.

® Coordination: Each agent solves its subproblem and co-

ordinates with its neighboring agents to share variables
of mutual interest. Ultimately, the overall distributed op-
timization problem is solved when each agent optimizes
its own subproblem while reaching consensus regarding
values for the shared variables.

To formulate the distributed ACOPF problem, we decompose
the centralized ACOPF problem (1) into k£ subproblems, each
of which has an agent that controls the corresponding devices
such as inverter-based DERs or legacy components like voltage
regulators and shunt capacitors. The set of subproblems is K =
{1,...,k}.

The subproblem j € K associated with each agent j depends
on a subset of the variables x that is denoted as x;. Each agent
performs calculations using a local copy of these variables,
which is indicated as 7 ;. The objective, equality constraints, and
inequality constraints in the subproblem for agent j are denoted
as f;j(z;), G;(%;), and H;(Z;), respectively. The distributed

ACOPF is formulated as:
min Z fi (&) (2a)
jeEK
subjectto G;(&;) =0 jeK (2b)
H;(Z;) < hy jekK (2
Ala =0 (2d)

where the j! agent solves the corresponding optimization
problem defined by objective function (2a), power flow con-
straints (2b), and operational limits (2c), all of which are func-
tions of agent j’s local copy of the variables, Z ;. This is visually
represented in Fig. 1.

The constraint in (2d) represents a consensus or coordination
constraint among neighboring agents. Optimization problems
are usually not trivially decomposable, meaning that there are
dependencies among different agents, such as a cost function
or constraint that depends on variables that are shared with a
different agent. With the matrix A constructed appropriately,
constraints of the form (2d) address this dependency. Each
agent sends information regarding its shared variables to its
neighboring agents to reach consensus. The shared variables
are often called “coupling” variables. A representation of the
distribution and coupling is shown in Fig. 2.
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Fig. 2. A representation of the atomization and coupling from the distributed
formulation over multiple agents.

Distributed optimization approaches apply various methods
to simplify the coordination constraint (2d) into subproblem-
specific formulations such that (2) can be solved in a distributed
fashion. Examples of such decomposition-coordination based
distributed approaches are the Alternating Direction of Method
of Multipliers (ADMM) [17]-[20], and Proximal Atomic Co-
ordination (PAC) [21]. The coupling variable information may
include physical states (voltages, branch power flows, etc.) [22],
[23], Lagrange multipliers [24], or functions related to reactive
power and Lagrange multipliers [25]. Distributed approaches
often enforce the coordination constraint (2d) while exploiting
network sparsity. Such examples of network-sparsity based ap-
proaches are OptDist-VC [25] and DIST-OPT [24], [26]-[28].

C. Nonconvexities in ACOPF Problems

The set of operating points satisfying the power flow equa-
tions (2b) and operational limits (2c) is referred to as the
ACOPF problem’s “feasible space”. However, the power flow
equations and other constraints are nonlinear, meaning that
ACOPF is a nonlinear programming (NLP) problem. The major
non-linearity lies in the power flow connecting two adjacent
buses which is a non-linear function of bus voltages and bus
angles [29]. These non-linear power flow equations and op-
erational constraints make the ACOPF feasible space noncon-
vex [30]-[32]. Moreover, the presence of on-load tap changing
transformers and shunt capacitors introduce binary variables
in the ACOPF problem, thus adding further non-convexities
[15]. Non-convex feasible spaces give rise to the possibility
of local solutions rather than a single global optimum [29] as
well as the potential for disconnected feasible spaces [30]. Since
the ACOPF problem is non-convex, distributed approaches that
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behave like local solvers may converge to a locally optimal point
rather than the global optimum [33], [34]. The ACOPF problem
is NP-Hard in general [35] and for tree networks too [36]. Thus,
solving an ACOPF problem suffers two major problems:
® Nonconvexity of AC feasible space resulting in the possi-
bility of finding a local solution instead of a global solution.
® Problem intractability where solution algorithms cannot
solve the problem in polynomial time.

D. Approximations and Relaxations in Distributed Algorithms

There are two main approaches for addressing the challenges
posed by the non-convexity and NP-hardness of ACOPF prob-
lems: (a) Use an off-the-shelf local solver with an initialization
that is close to the global optimum. A sufficiently close initial-
ization should enable the algorithm to converge to the global
optimum, while a poor initialization may result in failure to
converge or convergence to a local optimum. (b) Use convex
relaxations or approximations of the power flow equations to
convert the centralized non-convex ACOPF problem into a
convex programming problem. Once convex, the problem can
be solved using any off-the-shelf convex programming solver
with polynomial runtime. This can address problems posed by
computational intractability.

Convex relaxations enclose the non-convex AC feasible space
within a convex space. Once the relaxed ACOPF space is
convex, any off-the-shelf convex programming solver can find
the globally optimal point. However, it needs to be verified
that the solution obtained is feasible i.e. it must lie within the
original non-convex ACOPF space. One advantage of using
convex relaxations is that they always provide lower bounds of
the original minimization problem of ACOPFE. To summarize,
convex relaxations applied in distributed algorithms are often
one of two types: (a) Second-Order Cone Programming (SOCP)
relaxations and (b) Semidefinite Programming (SDP) relax-
ations. Many SOCP relaxations replace an equality constraint
associated with line losses in the DistFlow equations with a
less restrictive inequality constraint. These SOCP relaxations
are “exact” (provide the global solution to the original non-
convex ACOPF problem) for radial networks represented via
single-phase balanced power flow constraints which also satisfy
certain nontrivial technical conditions [37]. SDP relaxations are
tighter than certain SOCP relaxations and can have advantages
when considering meshed networks and three-phase unbalanced
network models. SDP relaxations are typically constructed by
reformulating the ACOPF with linear constraints along with
a rank constraint on a matrix whose entries represent voltage
phasor products. The SDP relaxation is formed by replacing this
rank constraint with a weaker positive semidefinite constraint on
this matrix.

Unlike convex relaxations, convex approximations do not
enclose the non-convex ACOPF space. Instead, they use certain
assumptions over the non-linear power flow equations resulting
in a convex problem formulation. Convex approximations may
greatly reduce the computational effort relative to convex relax-
ations. In both cases, solution feasibility must be evaluated..
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One of the most common approximations is the DC power
flow model [38], which assumes (a) lossless lines, (b) voltage
magnitudes are close to unity, (c) reactive power is neglected,
and (d) angle differences between connected buses are small.
Unlike in transmission lines, these assumptions are not valid in
distribution power lines since the line resistance to inductance
(R/X) ratio is appreciably high. Many distributed algorithms,
hence, use other linear approximations in distribution system
applications, such as the Linearized DistFlow approximation
that neglects line losses [11].

III. CLASSIFICATION OF DISTRIBUTED ALGORITHMS

This section classifies distributed algorithms used for opti-
mal operation and control of distribution systems into various
categories. Fig. 3 presents a taxonomy of distributed algorithms
based on their data exchange mechanism, implementation type,
power system model, algorithm type, communication paradigm,
and application type.

We categorize distributed algorithms based on how data is
exchanged with the grid as either (a) static optimization algo-
rithms and (b) dynamic optimization algorithms (also known as
“offline” and “online” algorithms, respectively). In static opti-
mization algorithms, control agents communicate with neigh-
boring agents in each optimization iteration and generate con-
trol setpoints based on their distributed/atomized optimization
problems [10], [17], [19], [21], [39]. Before implementing any
actions in the physical system, a solution is obtained through
multiple communication rounds among agents with computa-
tions performed during each iteration.

In dynamic optimization algorithms, each optimization it-
eration consists of control agents sensing grid variables (e.g.,
voltages, currents, and power flows), communicating with their
neighboring agents, and computing control setpoints based on
each agent’s local optimization problem. In contrast to static
optimization algorithms, these control setpoints are immediately
applied to the physical grid as the DER controller references,
thus directly affecting the power grid [22], [25]-[27], [42],
[44], [45]. The algorithm then operates on the next iteration
based on the grid’s response to the previous iteration followed
by communication and optimization computations. These ap-
proaches can be referred to as ‘feedback based approaches’ since
they require feedback signals from the grid to compute optimal
control setpoints for the next iteration.

Distributed optimization can be implemented with shared
access to a database (e.g., using cloud computing), hence feder-
ated [47], or with data access only available locally (e.g., using
fog computing), hence peer-to-peer (P2P). P2P implementation
truly allows distributed optimization, while preserving privacy
with no centralized database access [48]. At the same time,
federated is easier to implement with access to a centralized
database and large computing facility, while P2P is harder to
implement due to higher requirements on communication and
computation placed on the distributed computing agents.

Distributed approaches typically use either branch flow
based [18], [20], [22], [25], [39], [41], [42], [44], [45] or bus
injection based power system models [10], [17], [19], [27], [43].
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Fig. 3. A Taxonomy of distributed approaches.

Since both of these models are non-convex, convex relaxations or
approximations (e.g., SDP and SOCP relaxations, the Linearized
DistFlow approximation) are usually applied to formulate the
problem as a convex optimization problem in order to achieve
both computational tractability and convergence guarantees for
the distributed algorithms.

Distributed approaches can also be classified into two major
types: (a) Optimization approaches and (b) Coordination meth-
ods. Optimization approaches can be classified in turn into two
sub-categories: (a) Primal-dual algorithms, and (b) Dual-ascent
algorithms. Both of these formulations consist of a dual function
formulation with corresponding dual variables associated with
constraints. Maximizing the dual function provides a lower
bound of the primal problem. Dual ascent algorithms typically
solves the dual problem with gradient descent. At each iteration,
with the value of the dual variable fixed, the primal problem
is completely solved. The resulting primal solution is used to
determine the dual variable at the next iteration and so on. The
dual ascent method is a precursor to the dual decomposition,
method of multipliers, ADMM, and PAC. On the other hand, the
primal-dual methods update both the primal and dual variables
at each iteration. Both of these approaches have advantages and
disadvantages, which are explored more in the use cases. A
list of distributed dual methods is presented in Table I. These
distributed algorithms are categorized on the basis of the power
flow model used, convex relaxations or convex approximations
applied, data exchange mechanism, type of coupling or shared
variables among the control agents, and the type of communi-
cation.

Coordination methods are usually implemented through an
average consensus mechanism. In consensus based methods,
the distributed optimization problem is solved directly in its
primal form using communication based coordination. Some
examples of consensus based primal methods are the distributed

Methods

(Average Consensus)

» Minimize DER
generation costs

— Markets

L—» Frequency
regulation

sub-gradient based method [49] and average consensus based
methods [50]. Since our focus is more on optimization based
approaches, a detailed review of coordination methods is not
presented in this paper.

Regarding the communication paradigm, distributed ap-
proaches either use synchronous or asynchronous communica-
tion. In synchronous communication, control agents share cou-
pling variables during every communication round [17]-[21],
[39], [41], [43]. Asynchronous communication results due to
latency in communication channels, loss of data, and noisy
communication channels. Hence, control agents operate on vari-
ables shared in previous iterations in case of latency. When
updated data is not available, control agents do not have any
new inputs for their local optimization algorithms and thereby
revert to inputs from previous iterations. Noisy data may result
in non-optimal or even infeasible control decisions generated in
each optimization iteration. Asynchronous communication may
also resultin non-convergence of various distributed approaches.
Examples of distributed approaches using asynchronous com-
munication are presented in [22], [25]-[27], [42], [44], [45].

Distributed approaches have been considered for many appli-
cations related to the optimal operation of distribution grids, in-
cluding (a) minimizing power losses [10], [17]-[19], [27], [39],
(b) minimizing voltage deviations [22], [41], [42], (c) minimiz-
ing active power curtailment (APC) [44], [51], (d) performing
conservation voltage reduction (CVR) [20], () minimizing DER
generation costs [21], [25], [26], (f) maximizing social welfare,
and (g) regulating the system frequency.

IV. USE CASES

This section describes use cases for Lagrangian dual based
distributed optimization algorithms in distribution power grids.
The different streams of methods used in the literature can be
broadly classified per the taxonomy in Fig. 1. The vast majority
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TABLE I

RELATED WORK ON DISTRIBUTED LAGRANGIAN DUAL BASED OPTIMIZATION ALGORITHMS FOR DISTRIBUTION SYSTEMS

Objective Reference  Power Network Approximations Static Algorithm Coupling Communication
Flow Model /Relaxations /Dynamic Variables
[10] BIM Balanced SDP Static Dual-ascent Lagrangian Robust
rank-1 constraint Method multipliers under failures
Minimize [27] BIM Unbalanced Losses Dynamic Dual Lagrangian Asynchronous
losses approximated decomposition multipliers
[17] BIM Unbalanced SDP Static ADMM Bus voltages Synchronous
rank-1 constraint
[18] BFM Unbalanced SOCP Static ADMM Branch flows Synchronous
voltages
[19] BIM Unbalanced SDP Static ADMM Voltages Synchronous
rank-1 constraint
[39] BFM Balanced Losses Static ADMM Lagrangian Synchronous
ignored Multipliers
[40] BFM Balanced Losses Static ADMM Lagrangian Synchronous
ignored Mulitpliers
Minimize [41] BFM  Unbalanced SDP Static ADMM Bus voltages, Synchronous
voltage rank-1 constraint Branch power
devia- flows
tions [22] BFM Unbalanced Losses Dynamic ADMM Reactive power Asynchronous
Ignored Voltage
[42] BFM Unbalanced Losses Dynamic Partial Primal- Bus voltages Asynchronous
ignored Dual method
Active [43] BIM Balanced SDP Static ADMM Active power Synchronous
Power rank 1 constraint Reactive power
Curtail- [44] BFM Balanced Ignore Dynamic Dual Ascent Lagrangian Robust
ment Losses Method multipliers
CVR [20] BFM Unbalanced Ignore Static ADMM Power flows Synchronous
losses Bus voltages
Minimize [26] BFM Balanced Ignore Dynamic Primal-Dual Reactive power Limited
DER Losses Method communication
genera- [25] BFM Balanced Ignore losses Dynamic Primal-Dual Lagrangian mulitpliers Asynchronous
tion costs Method Reactive power and robust
[21] BFM Balanced SOCP Static Proximal Atomic Branch Flows Synchronous
Coordination Bus Voltages
[45] BFM Balanced Ignore losses Dynamic Dual-ascent Lagrange multipliers Asynchronous
Method
[46] BFM Balanced SOCP Static ADMM Lagrangian Synchronous
Multipliers
TABLE II
DISTINCTIONS BETWEEN THE USE CASES: OPTDIST-VC AND PAC
Solution approach OPT-DIST VC PAC

Formulation

Leverage the underlying unique features of dis-
tribution systems to create a naturally distributed
problem

Create an “atomized” problem that are solved by
several sub-agents

Power flow model

LinDistFlow model, local measurements from the
system is used as a surrogate for the power
balance constraint

Non-linear DistFlow model

Data exchange Dynamic optimization, optimal reactive power
mechanism and setpoints are directly set as DER power refer-
actuation ences in the next iteration

Static optimization, actuates once the complete
optimization problem is solved

Algorithm used

Primal-dual approach

Dual ascent approach

of the papers using distributed optimization techniques utilize
two methods - primal-dual or dual-ascent. The two use cases
that we will present are based on these two methods.

Section IV-A presents a network-sparsity based primal-
dual algorithm for voltage control in active distribution sys-
tems called OPTDIST-VC. Section IV-B presents a classical

decomposition-coordination based distributed dual algorithm
called PAC, which is based on the dual-ascent approach. The
approaches in Sections IV-A and IV-B have other distinctions
as well, which are based on the nature of the distributed opti-
mization. These are enumerated in Table II. OPTDIST-VC uses
a linearized power flow model called LinDistFlow, while PAC
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uses the nonlinear variant, DistFlow. The detailed linearization
of these problems are not in the scope of this paper and to avoid
repetition, the reader is referred to [23], [25] for further details.

Apart from this key distinction, various solution techniques
can be used to solve the distributed problem. In this specific case,
PAC uses a dual-ascent approach, while OPTDIST-VC utilizes a
primal-dual solver. The algorithms also differ in their actuations
- while PAC actuates once the complete optimization problem
is solved, OPTDIST-VC actuates at the end of every timestep
(which can be chosen based on the distribution system). While
both approaches lead to optimal solutions, there are upsides
and downsides to both approaches. While PAC’s performance
is dependent on the atomization, acceleration constants and
other algorithmic parameters, OPTDIST-VC’s performance is
dependent on the validity of the model’s radiality, availability
of sufficient number of agents, and choosing an appropriate
timestep. These issues are open research problems in the dis-
tributed optimization area.

A. Volt-Var Control

We consider a feedback based voltage control strategy where
distribution feeder voltages are controlled by varying reac-
tive power injections from DERs. At time ¢, we denote the
vector of controllable reactive power injections as q(t) =
[q1(t) q2(t) ... q,(t)]T, where n denotes the number of buses
in the network. Let v, be the substation voltage. The distribution
feeder voltage vector v(t) = [v1(t) va(t) ... v, (t)]T can be
approximated as [25]:

v(q(t))

LPar

= Xq(t) + o™ = v(t)
= Xq"(t) + Rp(t) + v,

(3a)
(3b)

where R and X are the resistance and reactance matrices. vP*"
represents the uncontrollable part of the above equation whereas
reactive power injection vector (¢¢) represents the controllable
part of the equation. Under certain loading conditions, vP%"
remains fixed and ¢¢ can be modified to control feeder bus volt-
age vector v. Additional details on the parameters are provided
in [25]. The vectors of uncontrollable reactive and active power
injections are denoted as q"(t) and p(t), respectively. Given
v(t) from (3a), the algorithm seeks optimal controllable reactive
power injections q(t 4+ 1) for the next time instant (¢ + 1).
The results should satisfy operational constraints on the reactive
power injections and voltage magnitudes:

v(t) < v(t))
q(t) < q(t))

IN

(4a)
(4b)

v(t)
<q(t)
Fig. 4 shows the feedback structure of voltage control problem.

For a particular time ¢, the power flow (3) and operational

constraints (4) can be expressed as (5a) and (5b). The term ¢ is
dropped hereafter for notational brevity.

G(v,q,0™") =
H(v,q)

0 (52)
h (5b)

IN

3475

VP —f Network Model
(5a)
q(t+1) v(t)
Algorithm |«

Fig. 4. Feedback structure of the voltage control problem.

The algorithm drives the network to the optimal point of the
following optimization problem under any loading conditions:

ka ar) + q Xq (6a)

HllIl f(a

subjectto (5a

) (5b)

The cost function (6a) is the sum of the operating costs fj and
£q” X q which is a network-wide cost, d > 0 being a weighting
parameter. d can be set to zero (d = 0) thus ignoring the cost
term %qTX q. The cost %qTX q approximates the network losses
(up to a multiplicative factor and an additive term that does not
depend on q), under the assumption that the R/X ratio of the
network is constant [28, Lemma 2]. This cost is commonly used
in distributed volt-var controller design; see [52], [53].

In order to solve this problem, we next formally introduce
the distributed voltage control algorithm known as “Optimal
Distributed Feedback Voltage Control” (OPTDIST-VC) [25].
For each bus k, we introduce auxiliary variables, G, &k, Ak, A
At each iteration ¢, bus k measures the local voltage v (t),
computes variables Gx(t + 1), qp(t + 1), &p(t+ 1), Ax(t + 1),
and A (t + 1), injects the reactive power g (t + 1), and lastly
shares certain variables to its neighboring buses. A detailed
description of OPTDIST-VC follows.

OPTDIST-VC:

At time ¢, each bus k executes the following four steps:

Step 1 (Measuring): Measure the local voltage vy ().

Step 2 (Calculating): Calculate Gy (t + 1), &, (¢t + 1), A (t +
1), A5 (t + 1) as follows.

(6b)

Gt +1) = Gult) - a{w) = at) + din(t)

+ > Y] {

ze/\/k
(7a)
STk (&,.(t) + cgi(t)) —
&t+1) = &(t)+8 ch(&c()t o) gk, (7b)
Mt+1) = [A(t) +y(or(t) — o)]T, (7c)
M(E+1) = [A(t) + (o — o)), (7d)

where [-]T denotes projection onto the nonnegative orthant and
the quantities «, /3, 7, and ¢ are positive scalar parameters. For
any by < bo, let STZ?() denote the soft-thresholding function

defined as ST, (y) = max(min(y — by,0),y — b). Ny is the

Authorized licensed use limited to: West Virginia University. Downloaded on February 28,2024 at 14:35:57 UTC from IEEE Xplore. Restrictions apply.

() + ST (60 + caso)]



3476

STy (y)
y—>by ify>by
ST (y)={ y—b ify<b
by by Y 0 otherwise.

Fig. 5. The soft thresholding function.
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Fig. 6. Information flow of OPTDIST-VC.

set of neighbor agents of agent k. (See Fig. 5 for an illustration
of this function.)

Step 3 (Injecting Reactive Power): Set reactive power in-
jection at time ¢t + 1 as

ar(t+1) = [gr(t + DT, ®)

where [- ]qk denotes projection onto the set [g, , Gk].

Step 4 (Communicating): Send values f; (Gx(t + 1)) +
STCq’f (€ (t 4+ 1) 4 ¢gr(t + 1)) to all neighboring buses.

OPTDIST VC is a primal-dual gradient algorithm [54]-[57]
for an augmented Lagrangian [58], in which ¢ () is the pri-
mal variable, & (t),Ax(t),A.(t) are the dual variables and
«, 3, are the algorithm step sizes. Optimization problem (6)
being solved by OPTDIST-VC resembles (2) where iy (t) =
[Gk (), vk (), &k (1), 21 (t), A (t)]T. However, the coordination
constraints among neighbor agents is taken care of by utiliz-
ing network sparsity. As can be observed in (7a), the term
2 ien Ykl £i(Gi(2)) + STEG (&i(£) + cgi(t))] only consists of
calculation of auxiliary variables belonging to set N, where N},
denotes the set of neighbor agents of agent k. Hence, agent k
needs to communicate only with neighbor agents to calculate
de(t +1).

Fig. 6 shows the information exchange between different
buses and between the cyber layer (controller) and physical
layer (network model) under OPTDIST-VC. The only interac-
tion between the cyber layer and the physical layer is through
voltage measurement vy, (t) (Step 1) and reactive power injection
qr(t) (Step 3) as shown in Fig. 6. However, all other steps of
OPTDIST-VC are performed entirely inside the cyber layer,
including calculation of auxilliary variables (Step 2) and com-
munication among neighbor agents (Step 4). We make a few
comments regarding OPTDIST-VC:

® ¢(t) and vi(t) are physical quantities (reactive power

injection and voltage) being exchanged between cyber
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Fig. 7. Convergence charateristics (OPTDIST-VC vs centralized).

layer and physical layer, while (G (t), &k (), Ak (t), Ay (1))
are “digital” variables stored in the controller’s memory.

e Variable () is the desired amount of reactive power to
be injected by physical DER controller at bus k. However,
G (t) may violate the reactive power capacity constraint.
Therefore, we set g (¢) to the projection of §(¢) onto the
capacity constraint.

e The update (7a) for the desired reactive power injection
Gy (t) drives gx(t) towards the superposition of the gra-
dient of f and certain “correction directions,” related to
Ai(t) — Ay (t) and & (t), which directs gy, (t) to satisfy the
constraints. Due to the superposition of the two directions,
Gy (t) will be driven to minimize f and also avoid constraint
violations.

e The variables & (t) and {Ax(t), A (t)} are Lagrange mul-
tipliers associated with violations of the reactive power
limits and voltage limits respectively.

In OPTDIST-VC, for any ¢ > 0, when «, 3, and -y are small
enough and satisfy mild conditions, q(¢) will converge to the
unique optimizer of (6). This is proved in [25]. Fig. 7 shows
convergence characteristics of OPTDIST-VC.

Online dynamic optimization techniques such as OPTDIST-
VC are essentially feedback-based approaches where the non-
linear power system acts as the plant whereas controllers are
designed to operate in a distributed manner, as shown in Fig. 4.
The reactive power setpoints calculated following Steps 1-4 as
presented are then input back to the plant. Hence, if the algorithm
receives voltage measurements at time instant ¢, it facilitates
communication among agents at time instant £ 4 1 and generates
reactive power setpoints at £ + 1 which are then input to the
plant model. In Fig. 6, consider the case for controller located
in the cyber layer corresponding to the physical layer at bus <.
The controller ¢ receives local voltage measurement v; () which
represents Step 1. The reactive power setpoints g;(¢ + 1) are
calculated based on shared variables obtained at time instant ¢.
This represents Step 2 and Step 3. The controller ¢ then shares set
of local variables ¢;(t), f/(G:(t)),&(t) to neighbor controllers
at bus k£ and bus j. It is to be noted that since the reactive
power setpoints of DERs as calculated in Step 2 is to be input
back to the plant at time instant (¢ + 1), it should be within the
capacity constraints of the DER inverter. Hence, the reactive
power setpoints are projected back to the capacity constraint set
as in Step 3 and then the resultant reactive power setpoint is
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input to the system. This avoids infeasible power system operat-
ing points within optimization operations. Almost all dynamic
optimization approaches utilize this projection operator in each
optimization operation when power setpoints are input back to
the power system model [22], [26], [42], [44].

B. Retail Markets Using Distributed Algorithms

The Proximal Atomic Coordination (PAC) Algorithm is a
recently developed distributed optimization algorithm [21], [59]
with enhanced privacy-preserving capabilities. The algorithm
leverages local data and measurements as well as structured
communications between immediate neighbours to recover the
optimal actuation required to minimize a global objective subject
to network constraints. The network is represented as a directed
graph T'p = (B, 7Tp), where j € B represents the nodes and
Tp C T represents the directed edges.

A general optimization problem (1) subject to equality and
inequality constraints can be decomposed (or atomized) into
J different optimization problems, where a; is the local atomic
decision vector for node j. This is done as per the decomposition
profile discussed in [21], [59], which has local copies of coupling
variables between two neighboring nodes j and ¢, in either x;
and x; or constraint matrices GG; or H;. Additional equality
constraints, termed “coordination constraints,” are introduced to
enforce the copies to coincide with the true value of the coupling
variables at convergence:

Aa =0, 9)

where A represents the adjacency matrix of I'p. The atomized
problem then takes on the form of (2), and can be solved with
the fully distributed PAC algorithm.

The algorithm is based on a distributed linearized variant of
the proximal method of multipliers [60], [61] and is stated below
(see [21], [59] for further details):

aj[t+1] = ar%imn { _: iaﬂ ,afj—[Taj’ 1[7T57|-|]§) } , (10a)
wy [r+ 1] = g [7] + 3Gy [ + 1] (10b)
A [r+ 1] =y [r + 1] + pijlr + 1Gja; [T +1],  (100)
Communicate a; for all j € [K] with neighbors, (10d)
vilr+1] = v ]+ p7 [BI? alr + 1], (10¢)

vi[r+1] = v [+ 1]+ p7,[r +1][B]? a[r +1], (10f)
(10g)

where p > 0 is the common step-size and ;, ¥;[7] > 0 are two
over-relaxation terms with ~y; > 4;[7] > 0. In (10), p are the
dual variables corresponding to equality constraints and v are
the dual variables corresponding to coordination constraints. As
shown in [21], [59], the primal variables a and dual variables x
and v converge to the optimal solution a*, p*, and v*, with rate
o(1/7), where 7 is the number of algorithmic iterations, while
maintaining complete privacy of the dual variables, which can
be interpreted as shadow prices within a market.

Communicate 7; for all j € [K] with neighbors,
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Fig. 8. Convergence characteristics for the PAC algorithm showing. (a) Costs
comparison between centralized OPF and PAC. (b) Distance to feasibility.

The above distributed optimization problem is relevant in a
market with an objective function corresponding to the DER’s
generation costs. In a competitive economic environment, such
as a market involving DERs, the distributed algorithm must also
preserve the privacy of each agents’ information by limiting the
dissemination of any sensitive information and protecting any
sensitive data that is shared. We consider any information about
an agent’s computations that can be used to the competitive
advantage of other agents as sensitive. We have limited the
objectives of rogue agents to the use of sensitive information
to sabotage the global convergence properties of the overall
distributed algorithm, in contrast to other adversarial scenarios.
Thus, sensitive information includes the cost functions f;(x;),
operating constraints, and the dual variables ;:; and v;. Under the
PAC framework, the cost functions, operating constraints, and
dual variables p; (which correspond to market prices) are not
shared between neighbours and are thus kept private. The “pro-
tected” dual variable 7; is communicated between neighbours,
but the “true” value v; cannot be recovered by a rouge agent
due to the use of a time-varying rate 4; [7], which is unique and
private to each atom j. Information regarding the trajectory of v;
may be used to sabotage the overall convergence of PAC through
deliberate manipulations of the coordination constraints.

The main assumptions of this algorithm are that the cost
and constraints are convex but both can be nonlinear. The PAC
algorithm also assumes a radial, balanced three-phase system,
and does not demonstrate the same convergence characteristic
for unbalanced meshed networks. However, in contrast to the
dynamic optimization presented in Section IV-A, this algorithm
does not make any assumptions regarding the sparsity of the
power system topology. Hence, the PAC algorithm can be ex-
tended to study meshed systems, if the coordination constraints
can be appropriately formulated. Also, while performance wors-
ens for unbalanced meshed networks, convergence can still be
obtained if an appropriate time interval is chosen.

A short discussion on the simulation results using the PAC
algorithm is presented below, and further details are provided
in [21], [23], [59]. PAC is used to solve a retail market problem
where the objective function maximizes social welfare. The
algorithm is initialized using a flat start. To show the per-
formance of the distributed optimization algorithm, two plots
are presented in Fig. 8. The first plot shows the cost for the
global atomic variable a[7] at every iteration 7. We compare
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this cost with that of the optimal solution obtained from the
central solver, fIOFFI(x*). The second plot shows how close
each atomic variable a;[7] is to satisfying the local constraints,
Ga;[r] = 0. From Fig. 8, observe that PAC exhibits decaying
oscillatory behavior, with a reasonably accurate result achieved
at around the 250 iteration mark. An algorithm for maximizing
the convergence rate for the PAC algorithm is in [59, Theorem
4.7, 4.8]. The convergence rate depends on multiple factors
including system size, convexity of the problem, atomization of
the problem and so on. Further research is underway to determine
the sensitivity of these parameters on the PAC convergence.

C. Communication Requirements for Distributed Optimization

Distributed optimization techniques depend on the exchange
of data between the various agents. An important aspect of
distributed optimization is the communication network topol-
ogy used to connect the power grid components, both agents
and computation devices. For centralized optimization, the
communication topologies have different Quality of Service
(QoS) requirements as compared to distributed optimization
algorithms. Typically, distributed optimization schemes need
more communication infrastructure due to the higher number
of agents [62]. However, QoS requirements can vary, and may
even be less stringent than centralized optimization depending
on how the distributed optimization is set up [63]. Also, the
synchronous/asynchronous nature of the optimization algorithm
is another important consideration. For synchronous optimiza-
tion algorithms, the communication becomes more important,
as the iteration cannot converge without data from all distributed
nodes. For asynchronous schemes, this constraint can be relaxed
as a solution can potentially be found even if data is not available
simultaneously.

The choice of communication scheme often involves a trade-
off between convergence rates and communication costs [64].
Distributed optimization techniques also involve iterative meth-
ods, and hence data needs to be communicated for every itera-
tion and possibly even between iterations (such as in the PAC
algorithm in steps (10d) and (10g)). Appropriately balancing this
trade-off is essential for effective implementations of distributed
optimization algorithms [65]. In the two use cases studied in
Section IV-A and IV-B, this difference becomes evident. For
a dynamic optimization scheme such as OPTDIST-VC (Sec-
tion IV-A), the actuation is applied to the power grid control
components at every time ¢. Conversely, for static optimiza-
tion algorithms such as PAC (Section IV-B), the actuation is
only applied after the algorithm converges. The communica-
tion scheme and infrastructure need to be designed considering
these requirements. However, the communication between the
distributed agents is crucial for both PAC and OPTDIST-VC, and
further research is needed to study the effect of communication
system effects and on system performance.

In addition to the communication scheme, the choice of
communication network topology is an important consideration
for distributed optimization. Studies such as [66], [67] explore
various communication network topologies and their impacts
on power system operational decisions, such as reconfiguration.
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These studies provide simulation-based empirical analyses re-
garding the effect of latency on power system control algorithms.
Similar studies have also been performed for distributed opti-
mization approaches by Guo et al. [68]. These studies explore
the tradeoffs between communication latency, computational
speed, and convergence time for various distributed optimization
algorithms. Berahas et al. [64] propose a new metric to balance
communication and computation requirements for distributed
optimization algorithms, finding the optimal balance for one
algorithm.

In addition to asynchronous methods, software-based meth-
ods adapted from distributed and fault-tolerant computing can
also be applied to address challenges associated with latency.
An example of this type of approach is to use Software De-
fined Networking to reroute packets in the presence of traffic
congestion [69]. Other methods for addressing latency and han-
dling data management requirements for distributed optimiza-
tion algorithms include adopting lightweight protocols that more
quickly transfer information [63] and moving to a cloud-based
infrastructure instead of hierarchical/centralized communica-
tion topologies [70].

V. RESEARCH NEEDS AND PATH FORWARD

As illustrated in Fig. 9, a dynamic optimization based dis-
tributed algorithm operates on two layers: (a) the physical layer
where the power network and power-electronic DER controllers
interface with the physical grid and (b) the cyber layer, where
cyber information is used to compute optimal setpoints that are
fed back to the physical grid. In contrast to centralized optimiza-
tion techniques which require a centralized control layer - the
ADMS as discussed in the introduction, the communication and
computing abilities of the distributed agents are merged into the
cyber layer. The cyber layer has three sublayers of operation:
(1) the measurement sublayer, which consists of sensors which
measure power flows, power injections, and bus voltages from
the grid, (ii) the communication sublayer, where control agents
communicate problem variables (Lagrange multipliers or power
system states) with neighboring agents, and (iii) the computation
sublayer, where optimal active and reactive power setpoints
(pf, q;) are computed using both the shared and local variables.
These setpoints are input to fast-acting DER controllers which
change system states in the physical grid.
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Although distributed algorithms have certain advantages with
respect to both centralized and purely local strategies, distributed
algorithms may encounter errors in all three sublayers, po-
tentially leading to non-optimal or even infeasible solutions.
Possible source of these errors include:

¢ Noisy or incomplete data from sensors in the measurement
layer.

e Failures transmitting data among neighboring agents in the
communication layer.

® Modeling errors or inaccurate choices of algorithm param-
eters in the computation layer.

e Cyberattacks from malicious agents that compromise one
or more of the measurement, communication, and compu-
tation layers.

Future research needs include both the theoretical founda-
tions and practical considerations of implementing distributed
algorithms:

e Practical implementations of distributed algorithms need
to be robust to noise as well as communication and com-
putation failures in order to ensure reliable operation.

¢ Distributed algorithms must be fast enough to cope with
rapid changes in power grid conditions. Many existing al-
gorithms can require thousands of iterations to converge to
acceptable accuracy, suggesting that further improvements
in convergence rates are needed.

¢ Distributed algorithms must be robust to failures and errors
in the measurement layer, the communication layer, and the
computation layer.

¢ Communication requirements should be simple and limited
enough to be implemented via existing communication
channels, such as power line communication [26].

® Methods for appropriately selecting algorithm parameters
require more thorough study.

e The scalability of distributed algorithms needs to be
demonstrated using increasingly large test cases with many
DERs under diverse operational conditions and realistic
communication infrastructures.

e Operation resulting from distributed algorithms should
avoid implementing excessive switching and control ac-
tions. This is particularly important for dynamic distributed
optimization algorithms.

® Theory regarding convergence guarantees withing reason-
able timeframes is needed to provide mathematical rigor.

¢ The computational requirements for supporting federated
or P2P optimization while meeting privacy, communica-
tion, and hardware controller requirements need further
investigation.

® Modeling, analysis, and mitigation techniques for cyber
attacks are needed to ensure acceptable operation of power
systems managed using distributed algorithms.

VI. CONCLUSION

Distributed control algorithms provide multiple complemen-
tary advantages relative to traditional centralized and local
control approaches in terms of computation, communication,
privacy, flexibility, and scalability with increasing DERs at the
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edge. However, distributed control approaches often require
several iterations and communication rounds to reach conver-
gence, which can make them unsuitable for practical implemen-
tations in a federated or P2P manner. Existing work also lack a
thorough analysis of parametric sensitivity towards algorithm
performance and communication requirements for practical
implementation. This paper presents a review of distributed
algorithms found in the literature, a new taxonomy using key
attributes, and a comparison of some use cases. Finally, future
research needs for practical implementation of such distributed
algorithms are also discussed.
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