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We study the image of a generalized Dedekind sum relating 
to the weight zero Eisenstein series Eχ1,χ2 . We show that the 
image is a lattice of full rank inside a number field determined 
by the characters χ1 and χ2. We also give a generalization of 
Knopp’s identity for the classical Dedekind sum.
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1. Introduction

For coprime integers h, k where k > 0, the classical Dedekind sum is defined as

s(h, k) =
j (mod k)

B1
j

k
B1

hj

k
,

where B1(x) is the first Bernoulli function (also known as the sawtooth function):
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B1(x) =
0, if x ∈ Z

x− x − 1
2 otherwise.

The classical Dedekind sum was first introduced to study the automorphy factor for 
the transformation of the Dedekind η function. It has also appeared outside of number 
theory, where a particularly fascinating example is in the enumeration of lattice points 
in tetrahedra. One can find a very thorough discussion of the Dedekind sum’s properties 
in [RG72].

Many papers have investigated the values taken by the classical Dedekind sum. In 
[Hic77], it is shown that the values are dense in R. There is a standing conjecture of 
Girstmair which would completely determine the values of the normalized Dedekind 
sum 12s(h, k). Specifically,

Conjecture 1.1 ([Gir17]). For a natural number q ≥ 2, and k ∈ Z coprime to q, kq is a 
value of the normalized Dedekind sum if, and only if, the following hold:

1. If 3 q, then k ≡ 0 (mod 3).

2. If 2 q, then k ≡

⎧⎪⎪⎨⎪⎪⎩
2 (mod 4) if q ≡ 3 (mod 4);
0 (mod 8) if q is a square;
0 (mod 4) otherwise.

There are several generalizations of this sum in the literature. In particular we study 
the Dedekind sum associated to the Eisenstein series with two primitive Dirichlet char-
acters discussed in [SVY20], [DG20], [NRY21], and [LBY21]. Both [NRY21] and [LBY21]
study the kernel of these Dedekind sums, which has apparently avoided simple character-
ization. A complementary aspect not covered in these papers is the image of the newform 
sums. In this paper we are able to determine the structure of the image of the newform 
Dedekind sum and the number field in which it lies. In addition, we generalize an identity 
of the classical Dedekind sum and give a brief discussion on the cohomological aspect of 
the newform sums.

We introduce the newform Dedekind sum by its finite sum definition.

Definition 1.2 ([SVY20]). Let χ1, χ2 be primitive Dirichlet characters modulo q1 and q2

(respectively) such that χ1χ2(−1) = 1 and q1, q2 > 1. Let γ = h ∗
k l

∈ Γ0(q1q2) such 

that k ≥ 1. Then

Sχ1,χ2(γ) = Sχ1,χ2(h, k) =
j (mod k) n (mod q1)

χ2(j)χ1(n)B1
j

k
B1

n

q1
+ hj

k
.
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Definition 1.3. Denote by Fχ1,χ2 , the smallest number field in which χ1 and χ2 take 
values.

The newform Dedekind sums exhibit a wealth of properties. One that is both basic 
and highly important is the crossed homomorphism property.

Proposition 1.4 (Crossed Homomorphism Property, [SVY20]). For γ1, γ2 ∈ Γ0(q1q2)

Sχ1,χ2(γ1γ2) = Sχ1,χ2(γ1) + ψ(γ1)Sχ1,χ2(γ2).

We call ψ = χ1χ2 the central character of Sχ1,χ2 .

Remark. This is to say Sχ1,χ2 is an element of the space H1(Γ0(N), Cψ) (see Proposi-
tion 2.7 and Section 4.1 for discussion). When ψ = 1, Sχ1,χ2 ∈ Hom(Γ0(q1q2), C). By 
restriction, we always have Sχ1,χ2 ∈ Hom(Γ1(q1q2), C).

Our primary result is a description of the structure of Sχ1,χ2(Γ1(q1q2)).

Theorem 1.5. The image Sχ1,χ2(Γ1(q1q2)) is a lattice (of full rank) inside Fχ1,χ2 .

The reader may wonder how we can describe the image of the newform Dedekind 
sum, while the classical case still remains open. This is a consequence of the differences 
between SL2(Z) and the congruence subgroup Γ1(N). The former has no non-trivial 
homomorphisms into C, while the latter does with the newform Dedekind sums. We also 
note this deviates from the case of modular forms, where more complication arises when 
restricting focus to congruence subgroups.

The newform sum also satisfies a generalization of an identity due to Knopp [Kno80]:

Proposition 1.6. For h, k, n ∈ Z, k, n > 0,

ad=n b (mod d)

s(ah + bk, dk) = σ(n)s(h, k), σ(n) =
d|n

d.

Knopp proves this by the action of the Hecke operator Tn on log(η). Elementary proofs 
exist, such as [Gol80], using only the arithmetic properties of the classical Dedekind sum 
and B1(x). The newform identity incorporates a twist by the central character of Sχ1,χ2 .

Theorem 1.7 (Generalized Knopp Identity). For h, k, n ∈ Z, q1q2|k, and n, k > 0

ad=n
(a,q1q2)=1

ψ(a)
b (mod d)

Sχ1,χ2(ah + bk, dk) = ρχ1,χ2(n)Sχ1,χ2(h, k),

where
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ρχ1,χ2(n) =
d|n

χ1
n

d
χ2(d)d.

This identity is not only beautiful, but will also allow us to deduce the following:

Proposition 1.8. The newform Dedekind sums defined in 1.2 are linearly independent in 
Hom(Γ1(q1q2), C).

Corollary 1.9. Let F be the smallest field over Q in which the newform Dedekind sum 
Sχ1,χ2 takes values. Then F = Fχ1,χ2 .

The acquainted reader will see that Theorem 1.7 and Proposition 1.8 are consequences 
of the Eichler-Shimura isomorphism. We do not make use of the Eichler-Shimura isomor-
phism in this paper to minimize prerequisite knowledge and due to the apparent lack of 
accessible discussion of the Eisenstein part in the literature.

2. Theorem 1.7 and corollaries

2.1. Preliminaries

Our proof of the identity comes from the action of the Hecke operators on the newform 
Dedekind sums (which we will now call Dedekind sums for brevity) and the weight zero 
Eisenstein series from which they are derived.

Definition 2.1. Let χ1, χ2 be primitive Dirichlet characters modulo q1 and q2 (respec-
tively) such that χ1χ2(−1) = 1. The completed weight zero newform Eisenstien series is 
defined as

E∗
χ1,χ2

(z, s) = (q2/π)s

τ(χ2)
Γ(s)L(2s, χ1χ2)Eχ1,χ2(z, s),

where τ(χ) is the Gauss sum of a character χ, Γ(s) is the gamma function, L(s, χ) is 
a Dirichlet L-function with character χ, and Eχ1,χ2(z, s) is the weight zero newform 
Eisenstein series:

Eχ1,χ2(z, s) = 1
2

(c,d)=1

(q2y)sχ1(c)χ2(d)
|cq2z + d|2s , Re(s) > 1.

The completed series has a Fourier expansion (see [You19]):

2√y
n=0

λχ1,χ2(n, s) exp(2πinx)Ks− 1
2
(2π|n|y).

Here, Kν is the K-Bessel function and
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λχ1,χ2(n, s) = χ2(sgn(n))
ad=|n|

χ1(a)χ2(b)
b

a

s− 1
2

.

Importantly, E∗
χ1χ2

(z, s) is an automorphic form on the congruence subgroup Γ0(q1q2)
with central character ψ = χ1χ2. At s = 1 we have the decomposition

E∗
χ1χ2

(z, 1) = fχ1,χ2(z) + χ2(−1)fχ1,χ2
(z),

where

fχ1,χ2 =
∞

n=1

λχ1,χ2(n, 1)√
n

exp(2πinz).

The original definition of the Dedekind sum is as follows:

Definition 2.2 ([SVY20]). Let χ1, χ2 be primitive Dirichlet characters modulo q1, q2 with 
q1, q2 > 1 and χ1χ2(−1) = 1. Then for γ ∈ Γ0(q1q2) we define Sχ1,χ2(γ) by

Sχ1,χ2(γ, z) = Sχ1,χ2(γ) = τ(χ1)
πi

(fχ1,χ2(γz) − ψ(γ)fχ1,χ2(z)).

Remark. The formula given in Definition 1.2 is deduced as a theorem in [SVY20].

A brief argument in [SVY20] shows fχ1,χ2(γz) − ψ(γ)fχ1,χ2(z) is both holomorphic 
and antiholomorphic, and thus Sχ1,χ2 is independent of z, motivating the notation of 
Definition 2.2. Additionally, Definition 1.2 combined with Proposition 1.4 and the peri-
odicity of fχ1,χ2 show that Sχ1,χ2(γ) is unchanged under translation, and is determined 
by only the left column of γ.

To define the Hecke operators, we compile some results from [Iwa97]:

Lemma 2.3. For

ΔN
n = a b

0 d
: ad = n, (a,N) = 1, 0 ≤ b < d ,

there exists a correspondence between ΔN
n × Γ0(N) and Γ0(N) × ΔN

n . Specifically,

a b
0 d

h ∗
k l

= h ∗
k l

a b
0 d

where

h = ah + bk

(ah + bk, dk) , k = dk

(ah + bk, dk) .

We now give the definition of the Hecke operators on H1(Γ0(N), Cψ).
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Definition 2.4. For n ∈ N and ϕ ∈ H1(Γ0(N), Cψ), the Hecke operator Tψ
n acts on ϕ by

Tψ
n (ϕ)(γ) = 1√

n
ad=n

(a,N)=1

ψ(a)
b (mod d)

ϕ
a b
0 d

γ
a b
0 d

−1

,

where a b
0 d

and a b
0 d

are elements of ΔN
n , and have the same relations to γ =

h ∗
k l

as in Lemma 2.3. We note the normalization chosen follows the conventions of 

[You19].

The Hecke operators arise from defining double coset operators on H1(Γ0(N), Cψ)
(see Section 4.3) and act linearly on H1(Γ0(N), Cψ). The Hecke operators are more well 
known in the context of modular forms and periodic functions on the upper half plane. 
We mention that the operator Tψ

n acts on weight zero periodic functions by

Tψ
n (f)(z) = 1√

n
ad=n

(a,N)=1

ψ(a)
b (mod d)

f
az + b

d
.

2.2. Proof of Theorem 1.7

The identity will follow from the application of Tψ
n to Sχ1,χ2 . Specifically, we use 

Definition 2.2 and calculate with z = ∞:

Tψ
n Sχ1,χ2(γ) = τ(χ1)√

nπi
ad=n

(a,q1q2)=1

ψ(a)
b (mod d)

fχ1,χ2
a b
0 d

γ
a b
0 d

−1

∞

− ψ(γ )fχ1,χ2(∞)

= τ(χ1)√
nπi

ad=n
(a,q1q2)=1

ψ(a)
b (mod d)

fχ1,χ2
a b
0 d

γ∞ (as fχ1,χ2(∞) = 0).

(1)

We see that (1) is exactly τ(χ1)
πi Tψ

n (fχ1,χ2)(γ∞).
As noted in [You19], the completed weight zero newform Eisenstein series E∗

χ1χ2
(z, s)

is an eigenfunction of the Hecke operators:

Tψ
n (E∗

χ1χ2
)(z, s) = λχ1,χ2(n, s)E∗

χ1χ2
(z, s). (2)

When we apply (2) at s = 1 we can deduce

Tψ
n (fχ1χ2)(z) = λχ1,χ2(n, 1)fχ1χ2(z), (3)
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since the Hecke operators preserve holomorphicity.
Therefore when we combine (1) and (3) we have

τ(χ1)
πi

ad=n
(a,q1q2)=1

ψ(a)
b (mod d)

fχ1,χ2(
a b
0 d

γ∞) = τ(χ1)
πi

Tψ
n (fχ1,χ2)(γ∞)

= τ(χ1)
πi

λχ1,χ2(n, 1)fχ1,χ2(γ∞)

= λχ1,χ2(n, 1)Sχ1,χ2(γ).

Next we need to justify the arguments of Sχ1,χ2 in Theorem 1.7. Note that we can extend 
Definition 1.2 for any h ∈ Z, k ≡ 0 (q1q2), and we have the following proposition from 
[DG20]:

Proposition 2.5. Let h and k be coprime integers with q1q2|k. Then for all positive integers 
α

Sχ1,χ2(αh, αk) = Sχ1,χ2(h, k).

Then for h and k coprime with q1q2|k, we see by Lemma 2.3 that

Tψ
n Sχ1,χ2(h, k) = 1√

n
ad=n

(a,q1q2)=1

ψ(a)
b (mod d)

Sχ1,χ2(h , k ),

and an application of Proposition 2.5 gives Sχ1,χ2(h , k ) = Sχ1,χ2(ah + bk, dk). 
Proposition 2.5 also removes the coprimality condition on h and k. Finally, we see √
nλχ1,χ2(n, 1) = ρχ1,χ2(n), proving the identity.

Remark. We have that ρχ1,χ2(n) are the Fourier coefficients of E2,χ1χ2 , the holomorphic 
newform Eisenstein series of weight 2 (see [DS05]).

2.3. Proof of Proposition 1.8

We start with the case where all sums have the same central character, and show 
independence by the Hecke operators.

Lemma 2.6. Let {(χk, χk)}rk=1 be a set of distinct ordered pairs of characters modulo 
q, q . Then there exists a positive integer n where ρχi,χi

(n) = ρχj ,χj
(n) for some i = j.

Proof. Assume, for the sake of contradiction, that ρχi,χi
(n) = ρχj ,χj

(n) for all n and all 
i and j. Fix i, j where i = j. Then for any p prime, we have

χi(p) − χj(p) = p[χj(p) − χi(p)]. (4)
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Note that since both the left and right hand sides of (4) are algebraic integers, their 
field norms are rational integers. Additionally (4) implies the norm of the left hand 
side is divisible by p. Then for each residue class coprime to qq we may use Dirichlet’s 
theorem on primes in arithmetic progressions, along with the fact that the difference 
of Dirichlet characters can assume finitely many values, to pick sufficiently large primes 
in that class which force equality between χi and χj , and χi and χj (we briefly note 
the use of Dirichlet’s theorem can be forgone in favor of an extended argument). This 
contradicts the distinctness of our original set.

Again, by way of contradiction, assume {Sχk,χk
}rk=1 is a minimal linearly dependent 

set of Dedekind sums of central character ψ. By Lemma 2.6, let n be such that ρχi,χi
(n) =

ρχj ,χj
(n) for some i and j. We apply 

√
nTψ

n to this combination, which by Theorem 1.7
scales each term. After relabeling to make i = 1, we have

0 =
r

k=1

ckSχk,χk
(ck ∈ C − {0})

=
r

k=1

ck(ρχk,χk
(n) − ρχ1,χ1

(n))Sχk,χk
=

r

k=2

ck(ρχk,χk
(n) − ρχ1,χ1

(n))Sχk,χk
,

which gives a smaller linearly dependent set, contradicting minimality.

Independence for newform sums of differing central character is a consequence of the 
following:

Proposition 2.7. We have the decomposition of the space of homomorphisms Hom(Γ1(N),
C):

Hom(Γ1(N),C) =
ψ

H1(Γ0(N),Cψ),

where H1(Γ0(N), Cψ) has the group action by Dirichlet character ψ modulo N :

γz = ψ(γ)z

for z ∈ C.

We defer a proof of Proposition 2.7 to Section 4.2 as it is routine in nature.

2.4. Proof of Corollary 1.9

First we recall the definition of the Galois action defined in [NRY21].
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Definition 2.8. Let K = Q(ζlcm(q1,q2)) be the lcm(q1, q2)th cyclotomic field and σ ∈
Gal(K/Q). Then by Definition 1.2, the action of σ on Sχ1,χ2 by evaluation gives

σSχ1,χ2 = Sχσ
1χ

σ
2 .

Again, let F be the smallest field containing Sχ1,χ2(Γ0(q1q2)). First, we see by def-
inition that F ⊆ Fχ1,χ2 . For the reverse inclusion, pick σ ∈ Gal(K/F ). By the Galois 
action we have the equality

Sχ1,χ2 = Sχσ
1χ

σ
2 .

Using Proposition 1.8, we must have that χ1 = χσ
1 and χ2 = χσ

2 . So Fχ1,χ2 ⊆ F .

Corollary 2.9. Sχ1,χ2 takes rational values if, and only if, χ1 and χ2 are quadratic char-
acters.

3. Proof of Theorem 1.5

We begin with two lemmas, the first being a consequence of Schreier’s Lemma:

Lemma 3.1 ([Ser03]). Every finite index subgroup of a finitely generated group is finitely 
generated.

Lemma 3.2. The image Sχ1,χ2(Γ1(q1q2)) is a free abelian group.

Proof. First note that since Sχ1,χ2 ∈ Hom(Γ1(q1q2), C), we must have that
Sχ1,χ2(Γ1(q1q2)) is a torsion-free group. By Lemma 3.1, since Γ1(q1q2) is a subgroup 
of finite index in SL2(Z), it has a finite generating set. Let {γi}ri=1 be a generating set of 
Γ1(q1q2). Then {Sχ1,χ2(γi)}ri=1 is a generating set for Sχ1,χ2(Γ1(q1q2)). By the structure 
theorem of abelian groups, Sχ1,χ2(Γ1(q1q2)) must be free.

We next bound the rank of Sχ1,χ2(Γ1(q1q2)) from both above and below by [Fχ1,χ2 :
Q], beginning with the upper bound. Recall that the Dedekind sum takes values in the 
number field Fχ1,χ2 , which is the fraction field of the ring of algebraic integers OFχ1,χ2

. 
Using {γi}ri=1 as a generating set of Γ1(q1q2), let

d =
i

bi, where Sχ1,χ2(γi) = ai
bi
, ai, bi ∈ OFχ1,χ2

.

We then have

Sχ1,χ2(Γ1(q1q2)) ⊆
1
d
OFχ1,χ2

.

The rank of OFχ1,χ2
over Z is precisely [Fχ1,χ2 : Q], showing the upper bound.
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Next, suppose for contradiction that Sχ1,χ2(Γ1(q1q2)) = r
i=1 αiZ, where r <

[Fχ1,χ2 : Q] = n, αi ∈ Fχ1,χ2 . Consider the n distinct Dedekind sums

{Sχσ
1χ

σ
2 |σ ∈ Gal(Fχ1,χ2/Q)}.

Clearly, Sχσ
1χ

σ
2 (Γ1(q1q2)) = r

i=1 α
σ
i Z. We then construct the matrix (ασj

i )ij which must 
have a nontrivial kernel by its dimension. This contradicts the linear independence of 
Dedekind sums, completing the proof.

Remark. This argument carries over without changes to Sχ1,χ2(Γ0(q1q2)) in the case of 
χ1χ2 = 1.

When χ1χ2 is not trivial, we use that Γ0(q1q2) Γ1(q1q2) and Proposition 1.4 to state 
that

Sχ1,χ2(γ) ∈ Sχ1,χ2(βi) +
d

i=1
αiZ,

where γ ∈ Γ0(q1q2) and βi is the coset representative of γ in Γ0(q1q2)/Γ1(q1q2).

Remark. One method of determining a basis of this lattice can be derived from [TW22], 
which outlines a process to compute the image of the generating set of Γ1(q1q2).

4. The cohomological aspect

4.1. Discussion of H1(G, M)

When we say the Dedekind sums satisfy the crossed homomorphism property, we need 
to refine what we mean.

Definition 4.1. Let G be a group and M an abelian group on which G acts compatibly 
with the additive structure of M . Then we denote by Z1(G, M) the space of crossed 
homomorphisms. That is, maps ϕ : G −→ M satisfying:

ϕ(gh) = ϕ(g) + gϕ(h).

We then construct the first cohomology group, H1(G, M), as a quotient of Z1(G, M).

Definition 4.2. We set H1(G, M) = Z1(G, M)/B1(G, M) where B1(G, M) is the sub-
group generated by principal crossed homomorphisms. These are crossed homomor-
phisms ϕ such that

ϕ(g) = gm−m,
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where m ∈ M .

In light of Proposition 2.7, we view the Dedekind sums as elements of H1(Γ0(q1q2), Cψ), 
and not elements of Z1(Γ0(q1q2), Cψ). In fact, quotienting out by principal crossed ho-
momorphisms is necessary to show Lemma 4.5 and the well-definition of the projections 
in Definition 4.3.

4.2. Proof of Proposition 2.7

We begin by defining the family of projections we use to prove the decomposition.

Definition 4.3. We define the projection πψ : Hom(Γ1(N), C) −→ H1(Γ0(N), Cψ) by

πψ : ϕ → 1
φ(n)

j∈(Z/NZ)×
ψ(βj)ϕ(βjγβ

−1
σγ(j)),

where βj are the right coset representatives of Γ0(N)/Γ1(N), and βσγ(j) is the unique 
coset representative where βjγβ

−1
σγ(j) ∈ Γ1(N) for γ ∈ Γ0(N).

Remark. Well definition of the projections, which are examples of a kind of map called 
co-restriction, is shown in a near identical way to the proof of Lemma 4.5. By direct 
computation we have σγ is a permutation of (Z/NZ)×, and that σγ1γ2(j) = σγ2(σγ1(j)).

We demonstrate that this family gives the desired decomposition in the next three 
lemmas.

Lemma 4.4. We have πψ(Hom(Γ1(N), C)) ⊆ H1(Γ0(N), Cψ).

Proof. Let ϕ ∈ Hom(Γ1(N), C)). Then for γ1, γ2 ∈ Γ0(N) we have

πψ(ϕ)(γ1γ2) = 1
φ(N)

j∈(Z/NZ)×
ψ(βj)ϕ(βjγ1γ2β

−1
σγ1γ2 (j))

= 1
φ(N)

j∈(Z/NZ)×
ψ(βj)[ϕ(βjγ1β

−1
σγ1 (j))

+ ψ(βjγ1β
−1
σγ1 (j))ϕ(βσγ1 (j)γsβ

−1
σγ1γ2 (j))]

= 1
φ(N)

j∈(Z/NZ)×
ψ(βj)ϕ(βjγ1β

−1
σγ1 (j))

+ ψ(γ1)
1

φ(N)
j∈(Z/NZ)×

ψ(βσγ1 (j))ϕ(βσγ1 (j)γ2β
−1
σγ2 (σγ1 (j)))

= πψ(ϕ)(γ1) + ψ(γ1)πψ(ϕ)(γ2).
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Lemma 4.5. The projection πψ is the identity on H1(Γ0(N), Cχ) if, and only if, ψ = χ, 
and is the zero map otherwise.

Proof. Let ϕ ∈ H1(Γ0(N), Cχ) and γ ∈ Γ0(N). We have

πψ(ϕ)(γ) = 1
φ(N)

j∈(Z/NZ)×
ψ(βj)ϕ(βjγβ

−1
σγ(d))

= 1
φ(N)

j∈(Z/NZ)×
ψ(βj)[ϕ(βj) + χ(βj)ϕ(γ) + χ(βjγ)ϕ(β−1

σγ(d))]

= 1
φ(N)

j∈(Z/NZ)×
ψ(βj)χ(βj)ϕ(γ)

+ 1
φ(N)

j∈(Z/NZ)×
ψ(βj)[ϕ(βj) + χ(βjγ)ϕ(β−1

σγ(d))]. (5)

Using the orthogonality relations of Dirichlet characters, the first term in (5) equals ϕ(γ)
when ψ = χ and otherwise vanishes. By the substitution βjγ ≡ βσγ(j) (mod Γ1(N)), and 
the fact that χ(β)ϕ(β−1) = −ϕ(β), the second term is equal to the principal crossed 
homomorphism

−ψ(γ) 1
φ(N)

j∈(Z/NZ)×
ψ(βj)ϕ(βj) + 1

φ(N)
j∈(Z/NZ)×

ψ(βj)ϕ(βj)

which vanishes in H1(Γ0(N), Cψ).

Lemma 4.6. The map ψ πψ is the identity on Hom(Γ1(N), C).

Proof. Let ϕ ∈ Hom(Γ1(N), C). Then we have

ψ

πψ(ϕ)(γ) =
ψ

1
φ(N)

j∈(Z/NZ)×
ψ(βj)ϕ(βjγβ

−1
σγ(j))

= 1
φ(N)

j∈(Z/NZ)×
ϕ(βjγβ

−1
σγ(j))

ψ

ψ(βj)

= ϕ(γ).

4.3. Double coset operators

As in the case of modular forms (see [DS05]), a double coset operator can be defined 
from H1(Γ1, M) to H1(Γ2, M) for congruence subgroups Γ1 and Γ2.
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Definition 4.7. For α ∈ GL+
2 (Q), and congruence subgroups Γ1 and Γ2, define the double 

coset operator Γ1αΓ2 on ϕ ∈ H1(Γ1, ∗) by

ϕ|Γ1αΓ2(γ) =
βi

βiϕ(βiγβ
−1
σγ(j)).

Here γ ∈ Γ2, βi are the orbit representatives of Γ1\Γ1αΓ2, βi = det(βi)β−1
i , and βσγ(j)

is the unique orbit representative such that βiγβ
−1
σγ(j) ∈ Γ1.

Observe that this requires a definition for the action of the orbit representatives on 
the common group module M . We conclude with a brief motivation for the definition of 
the Hecke operators acting on H1(Γ0(N), Cψ) with this new context.

The most important specification to make for double coset operators is defining the 
action of the orbit representatives. Action by Dirichlet character ψ on C can be naturally 

extended to the monoid M := γ = a b
c d

∈ M2(Z) : N | c by γz = ψ(γ)z = ψ(d)z. 

From [Iwa97], we have that ΔN
n is a complete set of orbit representatives for Tψ

n , all 
of which lie in M. Their action gives the multiplication by the character ψ given in 
Definition 2.4.
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