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1. Introduction

For coprime integers h, k where k > 0, the classical Dedekind sum is defined as
) A E k k )
j (mod k)

where Bj(x) is the first Bernoulli function (also known as the sawtooth function):
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0, ifexeZ
Bi(z) =

z—|z] -1 otherwise.

The classical Dedekind sum was first introduced to study the automorphy factor for
the transformation of the Dedekind 7 function. It has also appeared outside of number
theory, where a particularly fascinating example is in the enumeration of lattice points
in tetrahedra. One can find a very thorough discussion of the Dedekind sum’s properties
in [RGT72].

Many papers have investigated the values taken by the classical Dedekind sum. In
[Hic77], it is shown that the values are dense in R. There is a standing conjecture of
Girstmair which would completely determine the values of the normalized Dedekind
sum 12s(h, k). Specifically,

Conjecture 1.1 ([Gir17]). For a natural number ¢ > 2, and k € Z coprime to q, g is a
value of the normalized Dedekind sum if, and only if, the following hold:

1. If 314, then k=0 (mod 3).
2 (mod 4) if ¢ =3 (mod 4);
2. If 21 q, then k=< 0 (mod 8) if q is a square;

0 (mod 4) otherwise.

There are several generalizations of this sum in the literature. In particular we study
the Dedekind sum associated to the Eisenstein series with two primitive Dirichlet char-
acters discussed in [SVY20], [DG20], [NRY21], and [LBY21]. Both [NRY21] and [LBY21]
study the kernel of these Dedekind sums, which has apparently avoided simple character-
ization. A complementary aspect not covered in these papers is the image of the newform
sums. In this paper we are able to determine the structure of the image of the newform
Dedekind sum and the number field in which it lies. In addition, we generalize an identity
of the classical Dedekind sum and give a brief discussion on the cohomological aspect of
the newform sums.

We introduce the newform Dedekind sum by its finite sum definition.

Definition 1.2 ([SVY20]). Let x1, x2 be primitive Dirichlet characters modulo ¢; and g2
(respectively) such that x1x2(—1) =1 and ¢g1,¢2 > 1. Let v = {Z ﬂ € T'o(q1g2) such
that £ > 1. Then

Sonl) =Sl = 33 e (1) a2+ 5.

j (mod k)n (mod q1)
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Definition 1.3. Denote by F), ,,, the smallest number field in which x; and x» take
values.

The newform Dedekind sums exhibit a wealth of properties. One that is both basic
and highly important is the crossed homomorphism property.

Proposition 1.4 (Crossed Homomorphism Property, [SVY20]). For v1,v2 € To(q1q2)

Syixe (7172) = Sx1.xs (1) + 7/’(’)’1>SX1,X2 (72)-

We call ¢ = x1X2 the central character of Sy, x,-

Remark. This is to say Sy, y, is an element of the space H(I'o(NNV),C¥) (see Proposi-
tion 2.7 and Section 4.1 for discussion). When ¢ = 1, Sy, ,, € Hom(I'o(q1¢2),C). By
restriction, we always have Sy, y, € Hom(I'1(g1¢2),C).

Our primary result is a description of the structure of Sy, y,(I'1(g1¢2)).
Theorem 1.5. The image Sy, ,(T'1(q1g2)) is a lattice (of full rank) inside Fy, y,-

The reader may wonder how we can describe the image of the newform Dedekind
sum, while the classical case still remains open. This is a consequence of the differences
between SLs(Z) and the congruence subgroup I';(N). The former has no non-trivial
homomorphisms into C, while the latter does with the newform Dedekind sums. We also
note this deviates from the case of modular forms, where more complication arises when
restricting focus to congruence subgroups.

The newform sum also satisfies a generalization of an identity due to Knopp [Kno80]:

Proposition 1.6. For h,k,n € Z, k,n > 0,

> > s(ah+bk,dk) =o(n)s(hk), o(n)=> d.
d

ad=n b (mod d)

Knopp proves this by the action of the Hecke operator T}, on log(n). Elementary proofs
exist, such as [Gol80], using only the arithmetic properties of the classical Dedekind sum
and Bi(z). The newform identity incorporates a twist by the central character of Sy, ,.

Theorem 1.7 (Generalized Knopp Identity). For h,k,n € Z, qiq2|k, and n,k > 0

Z ¥(a) Z Sxixz (@h + 0k, dk) = py; .y, (n) Sy, xo (Bs ),
ad=n

b (mod d)
(a,q192)=1

where
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Prrca () = ;Xl (Z)E(d)d.

This identity is not only beautiful, but will also allow us to deduce the following:

Proposition 1.8. The newform Dedekind sums defined in 1.2 are linearly independent in
Hom(T'1(q1g2),C).

Corollary 1.9. Let F be the smallest field over Q in which the newform Dedekind sum
S

Y1,x2 takes values. Then F'=F, ,,.

The acquainted reader will see that Theorem 1.7 and Proposition 1.8 are consequences
of the Eichler-Shimura isomorphism. We do not make use of the Eichler-Shimura isomor-
phism in this paper to minimize prerequisite knowledge and due to the apparent lack of
accessible discussion of the Eisenstein part in the literature.

2. Theorem 1.7 and corollaries
2.1. Preliminaries

Our proof of the identity comes from the action of the Hecke operators on the newform
Dedekind sums (which we will now call Dedekind sums for brevity) and the weight zero
Eisenstein series from which they are derived.

Definition 2.1. Let 1, x2 be primitive Dirichlet characters modulo ¢; and g2 (respec-
tively) such that x1x2(—1) = 1. The completed weight zero newform Eisenstien series is
defined as
(g2/m)*
EY o(2,8) = WF(S)L@S,MM)EM,XQ (2,5),

where 7(x) is the Gauss sum of a character x, I'(s) is the gamma function, L(s, x) is
a Dirichlet L-function with character x, and FE,, ,(z,s) is the weight zero newform
Eisenstein series:

EX17X2 (Z> 5) =

1 Z ((I2y)SX1(C)X2(d)’ Re(s) > 1.

B s+ dP

The completed series has a Fourier expansion (see [Youl9]):

25> Ayuovs (1, 8) exp(2minz) K1 (27 |nly).
n#0

Here, K, is the K-Bessel function and
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Mns(1:8) = xalsn) 3 wilawat) (1)

ad=|n|

Importantly, E z,8) is an automorphic form on the congruence subgroup I'g(g1¢2)

;1 X2 (
with central character ¥ = x1Xxz2. At s = 1 we have the decomposition

E;1X2 (Zv 1) = le,X’z (Z) + X2(71)7ﬁ,@(z)7

where
(oo}
A (n,1) .
Frxane = Z XX 0 exp(2minz).
n=1 \/ﬁ

The original definition of the Dedekind sum is as follows:

Definition 2.2 (/SVY20]). Let x1, x2 be primitive Dirichlet characters modulo g1, g2 with
q1,92 > 1 and x1x2(—1) = L. Then for v € T'y(q1¢2) we define S, ,,(7) by

Stea(1:2) = Sxma (1) = TN (£ (02) — () frsma (2)).

™

Remark. The formula given in Definition 1.2 is deduced as a theorem in [SVY20].

A brief argument in [SVY20] shows fy, v,(72) — ¥ (7) fxi,x. () is both holomorphic
and antiholomorphic, and thus S, , is independent of z, motivating the notation of
Definition 2.2. Additionally, Definition 1.2 combined with Proposition 1.4 and the peri-
odicity of fy, y, show that Sy, y,(7) is unchanged under translation, and is determined
by only the left column of ~.

To define the Hecke operators, we compile some results from [Iwa97]:

Lemma 2.3. For

Ag:{[g Z} tad =n, (a7N)=1,0<b<d},

there exists a correspondence between AN x To(N) and To(N) x AN, Specifically,
a b||h x| |W x||d V
0 d||k 1| |K U||l0 d

) ah + bk . dk

where

(ah + bk, dk)’ (ah + bk, dk)’

We now give the definition of the Hecke operators on H*(I'o(N),C¥).
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Definition 2.4. For n € N and ¢ € H'(I'((N),C?), the Hecke operator T¥ acts on ¢ by

!

mem=7= ¥ v ¥ o[ a0 2})

( at]ivz)n 1 b (mod d)
a,N)=

I /
where [8 Z] and [% d'} are elements of A, and have the same relations to v =

Z ﬂ as in Lemma 2.3. We note the normalization chosen follows the conventions of

[Youl9].

The Hecke operators arise from defining double coset operators on H'(T'o(N),C¥)
(see Section 4.3) and act linearly on H'(T'o(N), C¥). The Hecke operators are more well
known in the context of modular forms and periodic functions on the upper half plane.
We mention that the operator T¥ acts on weight zero periodic functions by

nHE =02 X w3 i(70).

( az]ivz)n 1 b (mod d)
a,N)=

2.2. Proof of Theorem 1.7

The identity will follow from the application of T¥ to Sy1,x2- Specifically, we use
Definition 2.2 and calculate with z = co:

!’

Tgsxm(w:%%[ )IRRLOEDS fxl,m({g Z]V[% ZIITOO>

(a,ztliq:;)Lﬂ b (mod d)
- w(,/)f}ﬂ»@ (OO):|
— }H) Z QZJ(G) Z fX1,X2( |:8 fl] 700) (as le’XQ(OO) _ 0).
nm @ qu:r)L:1 b (mod d)

(1)

We see that (1) is exactly %Tff(thm)('yoo).
As noted in [Youl9], the completed weight zero newform Eisenstein series £ | (z,s)
is an eigenfunction of the Hecke operators:

T#}(E* )(Za S) = )‘Xl,Xz (n’ S)E* (Z’ S) (2)

X1X2 X1X2

When we apply (2) at s =1 we can deduce

T:ib(fxmz)(z) = Arxe (M 1) fraxa (2)5 (3)
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since the Hecke operators preserve holomorphicity.
Therefore when we combine (1) and (3) we have

o > v 3 P[] 7500 =TT )

e
b (mod d)

ad=
(a,q192)=1

5 1
i X1,X2 (nv )le,Xg (700)

= >‘X17X2 (717 1)SX1»X2 (’7)

Next we need to justify the arguments of S, ,, in Theorem 1.7. Note that we can extend
Definition 1.2 for any h € Z,k = 0(q1g2), and we have the following proposition from
[DG20]:

Proposition 2.5. Let h and k be coprime integers with q1qz|k. Then for all positive integers
@

Sy e (@h, ak) = Sy, ., (h, k).

Then for h and k coprime with ¢1¢2|k, we see by Lemma 2.3 that

1
T;LZ}SX17X2 (hvk) = ﬁ Z ¢(a) Z SX17X2 (hlak/)a
ad=n b (mod d)
(a,q192)=1
and an application of Proposition 2.5 gives Sy, .y, (R, k) = Sy, y,(ah + bk,dk).
Proposition 2.5 also removes the coprimality condition on h and k. Finally, we see

\/HAXLXQ (TL, 1) = Pxaixz (n)a pTOVing the identity'

Remark. We have that p,, ,,(n) are the Fourier coefficients of Es ,y,, the holomorphic
newform Eisenstein series of weight 2 (see [DS05]).

2.3. Proof of Proposition 1.8

We start with the case where all sums have the same central character, and show
independence by the Hecke operators.

Lemma 2.6. Let {(xx,X}%)}hoq be a set of distinct ordered pairs of characters modulo
q,q'- Then there exists a positive integer n where py, i (n) # P (n) for some i # j.

Proof. Assume, for the sake of contradiction, that py, v/ (n) = py; x;(n) for all n and all
i and j. Fix 4, j where ¢ # j. Then for any p prime, we have

xi(p) = x;(p) = p[X;(p) — X} (p)]- (4)
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Note that since both the left and right hand sides of (4) are algebraic integers, their
field norms are rational integers. Additionally (4) implies the norm of the left hand
side is divisible by p. Then for each residue class coprime to g¢’ we may use Dirichlet’s
theorem on primes in arithmetic progressions, along with the fact that the difference
of Dirichlet characters can assume finitely many values, to pick sufficiently large primes
in that class which force equality between x; and x;, and x; and xj (we briefly note
the use of Dirichlet’s theorem can be forgone in favor of an extended argument). This
contradicts the distinctness of our original set. O

Again, by way of contradiction, assume {SXxmx; }r—q is a minimal linearly dependent
set of Dedekind sums of central character ¢. By Lemma 2.6, let n be such that p,, \/(n) #

Pxs X (n) for some i and j. We apply /nT¥ to this combination, which by Theorem 1.7
scales each term. After relabeling to make ¢ = 1, we have

0= Sy (e €C—{0})

k=1
= Z Ck pkaXk pX1,X1 Xk,xk Z Ck px;mxk — Px1.x4 (n))SXhX?c’
which gives a smaller linearly dependent set, contradicting minimality.

Independence for newform sums of differing central character is a consequence of the
following:

Proposition 2.7. We have the decomposition of the space of homomorphisms Hom(I'1(N),
C):

Hom(F1 @H 1_‘0 )

where H(T'g(N),C¥) has the group action by Dirichlet character v modulo N :

for z e C.

We defer a proof of Proposition 2.7 to Section 4.2 as it is routine in nature.
2.4. Proof of Corollary 1.9

First we recall the definition of the Galois action defined in [NRY21].
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Definition 2.8. Let K = Q((iem(qr,q0)) be the lem(gi, g2)™ cyclotomic field and o €
Gal(K/Q). Then by Definition 1.2, the action of o on Sy, ,, by evaluation gives

TS x2 = SxIxg-

Again, let F' be the smallest field containing Sy, y,(To(q1¢2)). First, we see by def-
inition that F C F,, ,. For the reverse inclusion, pick ¢ € Gal(K/F'). By the Galois
action we have the equality

Sxmcz = Sxi’xg-

Using Proposition 1.8, we must have that x; = x{ and x2 = x5. So Fy, y, € F.

Corollary 2.9. S, ., takes rational values if, and only if, x1 and x2 are quadratic char-
acters.

3. Proof of Theorem 1.5

We begin with two lemmas, the first being a consequence of Schreier’s Lemma:

Lemma 3.1 (/Ser03]). Every finite index subgroup of a finitely generated group is finitely
generated.

Lemma 3.2. The image Sy, ,(T'1(q1¢2)) is a free abelian group.

Proof. First note that since S,,,, € Hom(I'i(qi¢g2),C), we must have that
Sy1.x2(F1(g1g2)) is a torsion-free group. By Lemma 3.1, since I'i1(q1¢2) is a subgroup
of finite index in SLy(Z), it has a finite generating set. Let {;}7_; be a generating set of
I'1(q1g2). Then {Sy, v, (7:)}i—; is a generating set for Sy, ,(I'1(q1¢2)). By the structure
theorem of abelian groups, Sy, .y, (I'1(g1g2)) must be free. O

We next bound the rank of Sy, y,(I'1(¢1¢2)) from both above and below by [F), , :
Q], beginning with the upper bound. Recall that the Dedekind sum takes values in the
number field Fy, y,, which is the fraction field of the ring of algebraic integers Op, .

Using {v;};_; as a generating set of I'1 (¢1¢2), let

a;
d= Hbi7 where SX17X2(’YZ') = E’ ai; b; € OFXLX2'

K2

We then have

X1,x2 "

1
SX17X2 (Fl (Q1Q2)) c EOF

The rank of OF, . over Z is precisely [Fy, , : Q], showing the upper bound.
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T

Next, suppose for contradiction that Sy, ,,(I'1(q1¢g2)) = D, ; wZ, where r <
[Fxixo : Ql =n, oy € Fy, y,. Consider the n distinct Dedekind sums

{SX‘fxg |CT € Gal(FXhXZ/Q)}'

aj
%

Clearly, Sysyg (T'1(q1g2)) = @;_, af Z. We then construct the matrix (o

2 )i; which must

have a nontrivial kernel by its dimension. This contradicts the linear independence of
Dedekind sums, completing the proof.

Remark. This argument carries over without changes to Sy, y,(I'0(gi1g2)) in the case of
xixz = 1.

When y1Yz is not trivial, we use that I'g(q1¢2) >T'1(g1¢2) and Proposition 1.4 to state
that

d
SX17X2 (7) € SX17X2 (Bz) + @aiz7
=1

where v € T'o(q192) and 5; is the coset representative of v in I'g(q1g2)/T'1(q142).

Remark. One method of determining a basis of this lattice can be derived from [TW22],
which outlines a process to compute the image of the generating set of I'1(g1¢2).

4. The cohomological aspect
4.1. Discussion of H*(G, M)

When we say the Dedekind sums satisfy the crossed homomorphism property, we need
to refine what we mean.

Definition 4.1. Let G be a group and M an abelian group on which G acts compatibly
with the additive structure of M. Then we denote by Z(G, M) the space of crossed
homomorphisms. That is, maps ¢ : G — M satisfying:

e(gh) = ¢(g) + ge(h).
We then construct the first cohomology group, H!(G, M), as a quotient of Z1(G, M).
Definition 4.2. We set H'(G, M) = Z'(G,M)/B*(G, M) where B}(G, M) is the sub-

group generated by principal crossed homomorphisms. These are crossed homomor-
phisms ¢ such that

©(g) = gm —m,
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where m € M.

In light of Proposition 2.7, we view the Dedekind sums as elements of H'(I'(q1¢2),C¥),
and not elements of Z!(Ty(q1q2), C¥). In fact, quotienting out by principal crossed ho-
momorphisms is necessary to show Lemma 4.5 and the well-definition of the projections
in Definition 4.3.

4.2. Proof of Proposition 2.7

We begin by defining the family of projections we use to prove the decomposition.

Definition 4.3. We define the projection my, : Hom(I'1(N),C) — HY(To(N),C¥) by

7T¢I(p|—>

Z w(ﬂj) (ﬂj'yﬁz;l(j))>

€(Z/NZ)

L
¢(n) .

where 3; are the right coset representatives of I'o(/V)/I'1(N), and §,_(;) is the unique
coset representative where ﬂjvﬁ;l(j) e I'y(N) for v € Ty(N).

Remark. Well definition of the projections, which are examples of a kind of map called
co-restriction, is shown in a near identical way to the proof of Lemma 4.5. By direct
computation we have o, is a permutation of (Z/NZ)*, and that o.,~,(j) = 0+, (04, (J))-

We demonstrate that this family gives the desired decomposition in the next three
lemmas.

Lemma 4.4. We have m,(Hom(I'1(N),C)) C HY(To(N),C¥).

Proof. Let ¢ € Hom(T'1(N),C)). Then for 71,72 € I'o(IN) we have

m)n1) = S BB)eBmrbs) )

Je(Z/NZ)*

] Yo BB )
JE(Z/NZ)*

<

z\~

o
_|_

(63"71@;11 (J)) (Bg’u(ﬂ)rys@ﬂlm(ﬁ))]

— &

— (B)e(BmB; ] ;)

( ) Jj€(Z/NZ)*

1 _
+ w(Vl)W Z w(ﬁoﬂ (j))‘P(ﬂoq,l (J‘)'YZB;;(C,71 (j)))

Jj€(Z/NZ)*

©
2

=my(p) (1) + P(r)me(p)(12). O
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Lemma 4.5. The projection 7, is the identity on H*(o(N),CX) if, and only if, ¢ = X,
and is the zero map otherwise.

Proof. Let o € H'(T'o(N),CX) and v € T'o(N). We have

‘ —

=S
2

() = 57 ZN (B, (B1B, \ay)

JEZ/NZ)>

‘ —

<
3

‘ =

=% Z D(Bx(B)e(y)

Jje(Z/NZ)*

TS BB X Bre(Br k) (5)
(N) j€(Z/NZ)* !

=
3

<

Using the orthogonality relations of Dirichlet characters, the first term in (5) equals ¢(7)
when ¢ = x and otherwise vanishes. By the substitution 8,7 = 3,_(;) (mod I'y(N)), and
the fact that x(8)e(87!) = —¢(B), the second term is equal to the principal crossed
homomorphism

—¢<v>(@ S W) (Bj>)+@ E(ZN B(8;)0(8)

JE(Z/NZL)* J Z)*
which vanishes in H'(Io(N),C%). O
Lemma 4.6. The map }_,, my is the identity on Hom(I'1(N),C).

Proof. Let ¢ € Hom(T'1(N),C). Then we have

%Ww( Z¢ ) Z w(ﬁj) (ﬁjVﬁ;ﬁl(j))

€(Z/NTZ)*

—_

T B(N) Z Bﬂﬂﬂv(a 21/) Bi)

JE(Z/NZ)*

~—

4.3. Double coset operators

As in the case of modular forms (see [DS05]), a double coset operator can be defined
from H'(I';, M) to H'(T'y, M) for congruence subgroups I'; and I's.



M. Majure / Journal of Number Theory 250 (2023) 35—48 47

Definition 4.7. For a € GLJ (Q), and congruence subgroups I'y and I'y, define the double
coset operator I'yal's on ¢ € Hl(Fl, %) by

Plriar, (1) = Y Bip(BivB, 1 ;)-
5

Here v € T'y, B; are the orbit representatives of I'1\I'yal's, B; = det(B;)B; ", and B (5)
is the unique orbit representative such that ﬂfyﬂ;l( ) € .
¥

Observe that this requires a definition for the action of the orbit representatives on
the common group module M. We conclude with a brief motivation for the definition of
the Hecke operators acting on H!(Tg(N),C?) with this new context.

The most important specification to make for double coset operators is defining the

action of the orbit representatives. Action by Dirichlet character ¢ on C can be naturally
extended to the monoid M := {*y = {Ccl Z] € My(Z): N| c} by vz = ¥ (v)z = ¥(d)z.

From [Iwa97], we have that AY is a complete set of orbit representatives for 7%, all
of which lie in M. Their action gives the multiplication by the character i given in
Definition 2.4.
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