

ABSTRACT | MAY 01 2023

Glucocorticoids redirect naive T cells to the bone marrow in malnourished mice [FREE]

Caroline Pearson; ... et. al

J Immunol (2023) 210 (1_Supplement): 239.07.

https://doi.org/10.4049/jimmunol.210.Supp.239.07

Related Content

Maintenance of the naive T cell population during malnutrition is associated with residency in the bone marrow

J Immunol (May,2023)

Distinct lymph node entry efficiencies for CD8+ and CD4+ T cells are eliminated during malnourishment

J Immunol (May,2019)

Distinct lymph node entry efficiencies for CD8+ and CD4+ T cells are eliminated during malnourishment.

J Immunol (May,2018)

Glucocorticoids redirect naive T cells to the bone marrow in malnourished mice

Caroline Pearson¹, Rithanya Saravanan¹, Marissa Marczak¹, Aja Washington¹, Takesha R Foster¹, Nana Dadzie¹, Jacob Hanes¹, Lindsay Moore¹, Abigail Mister¹, Syreen Goulmamine¹, David Gibson¹, Olivia Adams¹, and Melanie R Gubbels Bupp¹

¹Randolph-Macon College

Glucocorticoids contribute to the daily migration patterns of T cells in well-nourished organisms and are elevated in the malnourished. We examined the effect of malnutrition on T cell migration by comparing the migration patterns of adoptively transferred malnourished and control T cells in the lymphoid organs of malnourished and control recipients. We found that malnourished T cells generally entered lymphoid tissues more efficiently than control T cells, regardless of recipient. Strikingly, the bone marrow of malnourished recipients attracted naïve malnourished T cells, but not control T cells, more efficiently than control bone marrow. In contrast, the spleens of malnourished and control mice attracted similar numbers of naïve T cells. Further experiments revealed that T cells residing in the bone marrow of malnourished mice express higher levels of CCR7 and lower levels of CD11a than control T cells. We also examined the effect of T cell-specific deficiency of the glucocorticoid receptor on T cell migration to the bone marrow in malnourished mice. Indeed, similarly low percentages of glucocorticoid receptor deficient T cells were observed in the bone marrow of malnourished and control mice, indicating that T cell expression of the glucocorticoid receptor is required for T cell migration to the bone marrow. Overall, we have determined that malnutrition modifies both the bone marrow and naïve T cells to promote naïve T cell migration to the bone marrow and that at least the T cell-specific effects are mediated via the glucocorticoid receptor.