

SONY

Experience the Difference

The new FP7000 Spectral Cell Sorter from Sony Biotechnology integrates patented technologies in spectral flow cytometry with our extensive experience in delivering reliable best-in-class sort performance.

[Learn more](#)

- 6 lasers
- 182 detectors
- 3 nozzle sizes
- 6-way sorting
- 25k events per second

FP7000
Spectral Cell Sorter

The Journal of Immunology

ABSTRACT | MAY 01 2023

Maintenance of the naive T cell population during malnutrition is associated with residency in the bone marrow

Takesha R Foster; ... et. al

J Immunol (2023) 210 (1_Supplement): 239.05.

<https://doi.org/10.4049/jimmunol.210.Supp.239.05>

Related Content

Glucocorticoids redirect naive T cells to the bone marrow in malnourished mice

J Immunol (May,2023)

Malnutrition Disrupts T Cell Migration

J Immunol (May,2022)

The Effect of Malnutrition on T-cell Circadian Rhythms

J Immunol (May,2022)

Maintenance of the naïve T cell population during malnutrition is associated with residency in the bone marrow

Takesha R Foster¹, Kwesi A. Dadzie¹, Lindsay Moore¹, Rithanya Saravanan¹, Olivia Adams¹, Aja Washington¹, and Melanie R Gubbels Bupp¹

¹Randolph-Macon College

In mammals, T cell migration is under circadian control, likely to anticipate daily rhythms in infection risk. Glucocorticoids control this process, and malnutrition is associated with increased glucocorticoid levels. Therefore, we evaluated whether malnutrition disrupts the circadian migratory patterns of T cells. Malnutrition did not impact circadian patterns of T cell residency of lymphoid tissues; indicating that fluctuations, rather than specific concentrations, of glucocorticoids are a key circadian signal. Additionally, the total number of CD4+ and CD8+ T cells in the lymph nodes and blood were lower in malnourished as compared to well-nourished mice. However, the percentage and total number of naïve T cells was maintained in the lymph nodes, blood, and spleen of malnourished mice, suggesting preferential preservation of naïve T cells. Interestingly, the percentage and total number of CD4+ and CD8+ T cells in the bone marrow was elevated significantly in mice on a malnourished diet. Additionally, malnourished CD4+ and CD8+ T cells in the bone marrow showed significantly high CCR7 expression and CCL21 expression was increased in malnourished bone marrow compared to control. CCR7 and its chemokine, CCL21, may be responsible for trafficking malnourished T cells to the bone marrow during malnutrition. Overall, these findings suggest that the bone marrow may contribute to naïve T cell preservation during malnutrition.