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Abstract— Convex optimization with equality and inequality
constraints is a ubiquitous problem in several optimization and
control problems in large-scale systems. Recently there has
been a lot of interest in establishing accelerated convergence
of the loss function. A class of high-order tuners was recently
proposed in an effort to lead to accelerated convergence for
the case when no constraints are present. In this paper, we
propose a new high-order tuner that can accommodate the
presence of equality constraints. In order to accommodate the
underlying box constraints, time-varying gains are introduced
in the high-order tuner which leverage convexity and ensure
anytime feasibility of the constraints. Numerical examples are
provided to support the theoretical derivations.

I. INTRODUCTION

A class of algorithms referred to as High Order Tuners
(HT) was proposed for parameter estimation involved in dy-
namic systems [1]. These iterative algorithms utilize second-
order information of the system, enabling faster convergence
in discrete time parameter estimation. This property of HT is
motivated by Nesterov’s algorithm [2], [3]. Additionally, HT
has been proven to show stable performance in the presence
of time-varying regressors [1] and for adaptive control in
the presence of delays and high relative degrees [4], [5].
To further leverage the accelerated convergence of HT in
machine learning as well as adaptive control problems,
discrete-time version of these algorithms for unconstrained
convex optimization was proposed in [6], which demon-
strated theoretical guarantees pertaining to convergence and
stability.

Accelerated algorithms have been extended to equality-
constrained convex optimization problems in [7], [8], [9].
Accelerated HT was extended to a class of constrained
convex optimization problems, with a dual objective of de-
constructing the loss landscapes of constrained optimization
problems and applying HT with theoretical guarantees of
stable performance in [10]. Several works in the past [11]
have utilized the variable reduction approach to transform a
constrained convex optimization problem to an unconstrained
optimization problem in a reduced dimension feasible solu-
tion space. However, this transformation does not guarantee
convexity of the unconstrained optimization problem. In this
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paper, we present conditions on equality constraints under
which the transformed problem is convex.

We first focus on optimization problems with equality
constraints and elucidate the conditions under which HT
can be deployed with theoretical guarantees pertaining to
convergence and stability, using a variable reduction based
technique. We then extend these results to optimization with
equality constraints and box inequality constraints. Since the
guarantees of convexity are only valid within the feasible re-
gion, it makes the task of solving hard inequality constraints
challenging. To preserve theoretical guarantees pertaining
to convergence, it is imperative to constrain the decision
variable within a compact set within which the resulting loss
function is convex. We show that the same HT proposed
in [1], [6] and [10] can be used to guarantee feasibility and
convergence to the optimal solution even in the presence
of equality and box constraints. We present two numerical
example problems in the paper to validate the approach.

The organization of the paper is as follows. Section II
describes the broader category of constrained optimization
problems and presents theorems pertaining to the perfor-
mance of High Order Tuner (Algorithm 1) in solving them.
In Section III, we present a specific category of constrained
optimization problems where the loss function is not convex
everywhere, but over known compact sets. We outline a novel
formulation based on High Order Tuner with time-varying
gains (Algorithm 2) to solve such problems. In Section 1V,
we look at a scalar example that validates the implementation
of Algorithm 2 to a constrained convex optimization prob-
lem and demonstrates the accelerated convergence of High
Order Tuner. The paper concludes with a summary of main
contributions and future directions of research in Section V.

Notation

We employ the following notations throughout the paper.
For a vector x € R", with 1 < i < j < n, x;; denotes
the subvector with elements from the i-th entry of = to the
j-th entry. For a vector-valued function p : R™ — R", p
is convex (respectively, concave) on R™ implies that scalar
function p; : R™ — R is convex (respectively, concave) on
R™ for all ¢ € {1,...,n}. We use the shorthand notation
PSD to denote a symmetric positive semidefinite matrix. For
two sets A and B, A x B denotes their cartesian product.
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II. CONVEX OPTIMIZATION FOR A CLASS OF
NONCONVEX PROBLEMS

Consider the optimization problem

min f(z)
s.t. h(xz) =0,

here z € R" is the decision variable, f : R" — R, h :
R™ — R"™™ are continuously differentiable convex func-
tions. Without loss of generality, we assume that problem (1)
is not overdetermined, i.e., m < n. There are two key aspects
to solving a constrained optimization problem given by (1);
namely, feasibility and optimality. To ensure that the solution
is feasible, we first address how to solve equality constraints
using variable reduction technique employed in [10].

We define £(-) as the loss function consisting of the ob-
jective function and an optional term penalizing the violation
of equality constraints in case it is not feasible to solve the
equality constraints:

L(z) = f(x)+ A|h@)]|>, An >0

(D

2

In this paper, we restrict our attention to problems where
L is convex, which holds for many cases where f and
h are convex. To ensure feasibility, we utilize the linear
dependence in the feasible solution space introduced by the
equality constraints, as illustrated in [11]. = is partitioned
into independent and dependent variables; § € R™ and
z € R"™™ respectively

=T 21T, 2=p()

Here p : R™ — R" ™ is a function that maps the
dependence of z on 6, such that h(xz) = 0. We assume that
h is such that given m entries of z, its remaining (n — m)
entries can be computed either in closed form or recursively.
If p(#) can be computed explicitly, we set A\, = 0 in (2).
Otherwise, A, is chosen as a positive real-valued scalar. In
other words, we assume that we have knowledge of the
function p : R™ — R™~™ such that

BT p(6)TT) =0, VoeR™

Using the function p(-) defined as above, we now define a
modified loss function [ : R™ — R as

10) = L([6" p(®)"]"). 3)

The optimization problem in (1) is now reformulated as
an unconstrained minimization problem given by

min (), “)

with # € R™ as the decision variable. We now proceed to de-
lineate conditions under which [ is convex in Proposition II.1.

Proposition I1.1. (Convexity of the modified loss function
for equality-constrained nonconvex programs): Assume that
there exists a convex set Q, € R" such that the functions f
and h are convex on €),,. Let

Q= {0 | 0=21m,T € Qn}- (5
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If L is convex and any of the following conditions is satisfied:
(i) h is linear,

(ii) V L(x) > 0 for all x € Q,, and p is convex on Qyy,,

(iii) V L(xz) <0 for all x € Q,, and p is concave on Qy,,

then 1 is convex on .

Proof. Readers are referred to [10, Proposition IV.2] for
the proof and [12] for details on convexity of composite
functions used in the proof. O

Using Implicit Function theorem, we can establish the
following sufficient conditions on h(-) for which p(-) is
convex or concave. This gives us a readily checkable set of
conditions of convexity of {(-) without needing to determine
the convexity/concavity of function p(-), which may not
always be possible.

Proposition I1.2. (Conditions on h for convexity of p):
Following from Proposition 11.1, assuming f and h are convex
on a given set Q, C R", and h; is twice differentiable
Vi=1,..,n—m, it follows that:

(i) if Vph(z) <0 for x € Qy, then p(0) is convex on Qp,
(ii) if Voh(z) > 0 for x € Q,, then p(0) is concave on Q,
Additionally, if h is linear in z and convex in 6, then condition
(i) follows.

Proof. We prove condition (i), similar arguments can be

extended to prove condition (ii). Noting that
(" p(0)"17) =0, (©)

and applying the chain rule and differentiating (6) along the
manifold z = p(0) twice, for 1 <i<mand1<j<n—-m

we get:
27 52, 2h; Oz N
Phi O 02 8’;% 9%\ _oy @
902 =~ 0z; 00> 0z 00 \ 00
N—— —

I 11 IIr

Since h; is convex on €2, V i € N, it follows:

. 2 . . .. . . .
1 I %9};1 is a positive semi-definite matrix
T
(i) III: % % is a symmetrical dyad, i.e., PSD matrix

multiplied by sz h; > 0, hence III is a PSD matrix.

For (7) to be valid, II has to be a negative semi-definite
matrix, since it is the negated sum of positive-semi definite
matrices. From condition (i) we have 2% < 0 since z =

9z
2
p(6). Thus, %922-’ is PSD. Therefore, is PSD, hence
O

9%p;(0)
p;(0) is convex V8 € Q,,,Vj =1,...,n—m.

062

Remark 1. Proposition 1.2 is one of the main contributions
of this work. The explicit availability of function p(-) in
closed form is not guaranteed always and p is often esti-
mated iteratively in practice, which is also the rationale for
including the penalizing term A ||k (x)||? in the definition of
the loss function £(-). In the absence of information on p,
we can use the chain rule and implicit function theorem to
calculate V,h as demonstrated in [10], [11].
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A. Numerical Example

The following example illustrates how the conditions of
Proposition II.1 and Proposition II.2 can be verified. We
consider the problem in (1) where z € R?, h(z) = 2,2 +
(2 —4)?—-1=0and f(z) = log(Z:?:1 e®i) are convex
functions (h : R? = R, m = 1). With x; as the independent
variable, we write x = [, p(x1)]7, and use the implicit
function theorem to determine p(z1) explicitly. We therefore
set A\, = 0 while formulating the loss function, and hence
L is the same as f. Now we demonstrate the application of
Propostion II.2 to define region €2,, where p(-) is convex or
concave.

Clearly, V,h(z) = 2(p(z1) — 4), and it is evident that
Vyh(z) < 0 for 22 < 4 and V,h(xz) > 0 for zo > 4 (as
29 = p(x1)). Using Proposition 1.2, we conclude that for
x9 < 4, p(+) is convex and for xzo > 4, p(-) is concave.
Additionally, to ensure that to p(x;) evaluates to a real
number, we must constrain —1 < x; < 1. Thus, following

Proposition I1.2, we construct sets Q1 and Q2 as:

Q}l:{l‘:[l‘l $2]T|—1§J)1§1,Z‘2<4} (8)
P ={r=[r; ]| -1<21<1L,z3>4} (9

Since L(x1,x2) = log(e® + e*2) it is evident that:

1

€
le L= m (IOa)
er?

Clearly, V £(21,22) > 0 for all z € R®. From Proposi-
tion II.1, case (ii), we can see that for —1 < ;7 < 1 and
xe < 4, VL(x1,z2) > 0 and p(-) is convex. Therefore,
I(21) is convex in this region. Formally, we define Q,, = Q.
as:

Qp={z=[r; 27| 1<z, <125 <4} (11

Within the chosen (2,,, Proposition-II.1 guarantees that (1)

is convex. Consequently, {2, is automatically defined as:
Qn={x1eR|-1<12, <1} (12)

Indeed, for values of x; € €, there are two cases for p(x1)
using Implicit Function Theorem [13] given as:

p(l‘l) 24— \/1—.%‘12 fOI‘ xT9 §4 (13)
p(ml):4—|— \/1—5(}12 fOI‘.’JSQ 24 (14)

As we seek to expand the set €2,, where [(-) is convex, we
note that due to the simple nature of the problem, it is easy
to conclude that I(-) is concave for x5 > 4, hence €2, for
this problem is equivalent to the one in (11).

Hence, using 2, as defined in (11), p(-) takes the form
mentioned in (13), and by defining I(-) as the one in (3),
the optimization problem reduces to the following convex
optimization problem which is much simpler to solve:

min log(e® + e~ V1)

st. z1 € Q,,

15)
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We now state a HT based Algorithm which guarantees
convergence to optimal solution provided the condition 6 €
),,, is satisfied.

B. High Order Tuner

Recently a high-order tuner (HT) was proposed for convex
functions and shown to lead to convergence of a loss func-
tion. Since this paper builds on this HT, we briefly summarize
the underlying HT algorithm presented in [6] in the form of
Algorithm 1.

The normalizing signal N} is chosen as:
Ne =14 Hy, Hp=maz{\: )€ a(V2Ly(0))}

Here o(V?L,(6)) denotes the spectrum of Hessian Matrix
of the loss function [6].

Algorithm 1 HT Optimizer for equality-constrained noncon-
vex optimization

1: Inmitial conditions 0, v, gains v, 3

2: for k=1to N do

3:  Compute VI(0) and let N}, = 1+ H,
4 Vg, (0) = Vi)

: Y [N Nk
50 Ok =0k — Y8V, (k)

o Opy1 <+ 0 — B(0k — vi)

Compute VI(6y1) and let

Vio
8 Vg (0r+1) = %

9 Vg1 4 Vg — qukfakﬂ)
10: end for

In Section II-A we established sufficient conditions for the
convexity of the modified loss function in Proposition II.1
which are easily verifiable. We now state Theorem II.3
that shows the convergence of HT in Algorithm 1 for the
constrained optimization problem in (1).

Theorem IL3. If the objective function f and the equality
constraint h in (1) are convex over a set 2, and 0y € Q,,,
where Q,, is defined in (5), and if the sequence of iterates
{0k} generated by Algorithm 1 satisfy {0} € Q, then
klim 1(0x) = 1(0%), where 1(0) = f([0*T  p(0*)T]T) is the
opt?fnal value of (1) where ~y and (3 are chosen as 0 < 8 < 1,

B2—
0<y< 517

Proof. Readers are referred to [6, Theorem 2] for the proof.
O

C. Satisfaction of Box constraints

Theorem II.3 enables us to leverage Algorithm 1, provided
that 0, € Q,,Vk € N, i.e., the parameter remains inside the
set over which [(-) is convex. For the numerical example
outlined in Section II-A, it is clear that we can utilize
Theorem II.3 when z; € 3 where €y = [—1,1]. It should
however be noted that Theorem I1.3 requires that 6§ € €,
for the HT to lead to convergence. In order to constrain the
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parameter to be within the set €),,, we modify (4) into a
constrained optimization problem given by:

min [(0)

16
st. € Q. (16)

It must be noted that the set €2,, in (16) is a subset of
the feasible solution-space of (1) If the conditions given by
Proposition II.1 are necessary and sufficient, (16) has the
same optimizer 6* as that of (4). While it is tempting to
apply a projection procedure for ensuring 6 € €2,,, the lack
of convexity guarantees of [(-) for all & € R™ inhibits us
from proving the stability of Algorithm 1 as we need [(-) to
be convex for all 6, 0r,vr € R™. In the next section, we
delineate a general procedure for ensuring that the constraint
0 € Q,, is always satisfied.

III. CONSTRAINED CONVEX OPTIMIZATION

The starting point of this section is problem (16) where [
is convex. Without loss of generality, we assume €2,, to be a
compact set in R™. For any such ,,, it is always possible
to find a bounded interval I = I X I5... x I,,, C €, where
I; is a bounded interval in R defined as I; = [0? ,.., 0%, ..]
forallt=1,2,...,m.

Using the above arguments, we reformulate the con-
strained optimization in (16) as:

min [(6)

17
st. B el 17

where 6* is the solution of problem (17). In Section II, we
outlined conditions for which (16) is equivalent to (4), i.e.,
0* is the solution to problem (4) by appropriate selection of
sets (2,,, 2,,,. Note that (16) and (17) are equivalent if * € 1.
The conditions under which 8* € I have been summarized
in Proposition III.1.

Proposition II1.1. For a given compact set I and convex loss
function 1(0) if there exist 01, 05 such that 1(01) = 1(02), then
0" €I

Proof. For a scalar case, i.e., €2, C R, Rolle’s theorem can
be applied to the function ! being continuous and differen-
tiable. For a subset [01,602] C I, such that [(61) = [(62),
by Rolle’s Theorem, there exists a 0 € [0y, 0] such that
VI(0) = 0. Since [ is differentiable and convex, VI(§) =
0 <= 6 = 6*. This can be extended to the general case
where m > 1,€,,, C R™, using the vector-version of Rolle’s

theorem, cf. [14]. O

With the assurance from Proposition III.1 that 8* € I,
we now revise Algoirithm 1 in the form of Algorithm 2 to
guarantee convergence to 6* while ensuring feasibility that
6 € I. We prove that 0y, v, 0, € I for all k € N through
Proposition I11.2 and subsequently provide guarantees of con-
vergence of the iterates {6y }7° ; generated by Algorithm 2
to 6* using Theorem IIL.3.
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Algorithm 2 HT Optimizer for localized convex optimiza-
tion
1: Initial conditions 6, v, gains v, g
2: Choose g,y € 1
3: for k=1to N do
4:  Compute VI(#) and let N}, =1+ Hy,
s Va0 = Vi(0k)
Ok = 0 — vBar Vg (0k)
Ok+1 = O — B(Ok — vi)
Compute VI(6y41) and let
_ _ Vi(041)
9 Vgp(Oks1) = TN
10: Vgg1 & Vg — ykaqu(@kH)
11: end for

Proposition IIL.2. Consider Algorithm 2, for a given k € N,
if O, vy, € I, there exist real numbers ay, > 0 and bg11 > 0
such that Oy, vy, € I. Consequently, for 0 < 8 < 1, and
0o, € I, Algorithm 2 guarantees 0y, 05, v, € I for all
values of k € N.

Proof. We first provide conditions for the selection of ag.
For a given 0, € R™ and 7 € N, consider 0}; € R such
that 0§ € [0% .. 0% ..]. There are two possible cases:

() 0. > 0" < V,;l(0) >0
(i) 0; < 6*" < V;l(6) <0
For case (ii), using Step-6 of Algorithm 2 we have,

BVl

9, =00 + (18)

For a;, > 0, Gﬂk > 0.

in (18). We need to ensure that

?Z < 0!, for all i. Therefore, we must ensure:
; Vil(6 ; _
0L + akw <0 Vi (19)

k

Inequality (19) would be true if ar < ag, where

. . (einaz 7 0;@)'/\/]“
ar = min T oe— 1 A (20)
P iefm YBIVil(0y)]

Similarly, for case (i), we get the following inequality criteria

for aj, to ensure that 5; > @t ... for all i:
9t — gt .
i€{1,...,m} 76|V,l(0k)|
Combining (20) and (21), we have
ap < ap = min{dk, dk} Vk. (22)

We now outline conditions for selection of by, which
follows similar approach to selection of ag, i.e., for given
v € I we prescribe range of b4 such that vy € 1.
From Step-10 of Algorithm 2, it could be deduced that for
all k, b1 must satisfy

bry1 < Bk+1 = min{l;k+1, 6k+1} (23)
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where
» . (‘9 Vk)Nk
b = min ~—mer kSR
M e my Y Vil(Opsn)]
B _ (Vk mzn)Nk
k+1 = —= .

min .
i€{1,....m} 7|Vzl(0k+1)\

Note however, that (22), (23) can generate ag,bry1 = 0,

which is undesirable. To compensate for that, we introduce
an additional rule:

—e min (0] —0!,,)=0
ap = 16{1,.'..,m} . (24)
€ 1€{I1r,nn,m}(9 - 9m1n) =0

Here 0 < ¢ < 1 is a very small real number of choice.
Similar update rule can be stated for by to avoid the case
of ag,br+1 = 0. For a given k, by selecting ay, b4 such
that (22), (23), (24) are satisfied, we ensure 0, v, € I. From
Step-7 of Algorithm 2:

B)0y + By,

Hence, 01 is a convex combination of f), and v}, for a given
k and 0 < B < 1. Additionally, set I is compact, hence, if
Or,vi, € I, then 0,1 € I for a given k € N. By choosing
0o, v € I, by induction it can be shown that Proposition I11.2
can be applied iteratively to generate parameters that are
bounded within the compact set 1. O

Os1 = (1— (25)

Proposition III.2 outlines conditions under which all pa-
rameters generated by Algorithm-2 are bounded within set
I, where the convexity of loss function [(-) is guaranteed.
Theorem III.3 formally establishes the convergence of Algo-
rithm 2 to an optimal solution 6*.

Theorem IIL.3. (Convergence of the HT algorithm con-
strained to ensure convexity): For a differentiable Lj,-smooth
convex loss function 1(.), Algorithm 2 with 0 < g < 1,
0<vy< B(Z Bﬁ) and ay,bgy1 satisfying ai, < min{l,ay},
b1 < mln{l bt} and (24), where Gy 1 and by, are
defined in (22) and (23) ensures that V = v ,f [ + L 70”2
is a Lyapunov function. Consequently, the sequence of iter-
ates {0y} generated by Algorithm 2 satisfy {0y} € Q,,, and
lim 1(0r) = 1(0%), where 1(0*) = f([0*T  p(0*)T]T) is the

optimal value of (16).

Proof. This proof follows a similar approach to the proof
of stability of High Order Tuner for convex optimization, as
illustrated in [6, Theorem 2].

Assuming that vy, 0, 6, € I, function [(-) is convex for all
these parameters lying within the set I. Applying convexity
and smoothness properties (ref. [6, Section II]) to (-), the
following upper bound is obtained:

1(0r) = UOk) = 1(Uk) — 1(Ok41) + 1(Ors1) — 1(Ok)

L
<VIOk1)T Ok = Oy1) + 519 = x|
+ VI(Ok+1)" (01 — Or)

(26)
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Alg.2

& VU0 (91— 03) + 505~ (1= Dl — B9

27
1(0k) — 1(0r)
T/p Ek 210 2 (28)
S =ViOk41)" (O = 0n) + (L= )10k — Ine]”.
Similarly, we obtain:
1(Ox) = U(9)
_ aiL (29)
< VBT B~ 1)+ EET i)
2N}
Using (28) and (29) we obtain:
VI(Ox11)" (O — )
Ly 2 ) 2
= = (1= B)7110k — Dl (30)
ayL _
- U 90017 < Vi(0)" @ - 00
Using Algorithm 2, [6, Theorem 1] and (30), setting v <
532_5_ B0 < ag,brs1 <1 and defining AV := Viyq — Vi,

it can be shown that

AVy < J\lfk{ = 201 (H(Or41) — 1(67))

brt1 27bk+1
<2Lk ol [N

- <1 - LWB“’“) 2 (00|

N Ni
—[8 — arB(1 — B)*| L0k — vk

2
\/b —
—[ S |V UBrs) | — 2v/2L1 |6, — ukn]

o
~4(V/brgr

b 1) 10k — vi [ VI(Or41)|

—(8+B)110), — vﬂ} <0 (3D
From (31), it can be seen that:
b
AVi € ZEL201(01) ~ 16} SO (3D

Collecting AV}, terms from ¢g to T, and letting T — oo, it

can be seen that [(0;1) — [(0*) € ¢1 N L and therefore

Hmkﬁoo l(9k+1) — l(e*) =0. O
IV. NUMERICAL STUDY

A. An academic example

We consider the same example as before which led to the
following constrained convex optimization problem:

min log(e” + et~ V1-71)

s.it. —1<z2; <1

(33)

The box constraint in (33) is imposed to ensure that the
objective function is always real-valued. While we can
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— HT (Algorithm-1)
— Time-varying HT {Algorithm-2)

-2
-3
—4
0 10 20 30 40
Iteration number, &
Fig. 1. Convergence of € using Algorithm 2 for the problem in (33);

Algorithm 1 fails to converge

— HT (Algorithm-1)
— Time-varying HT (&lgorithm-2}

200 300 400

100
Iteration number, k

Fig. 2. Constraint satisfaction by Algorithm-2, Algorithm-1 generates
iterates that violate the box constraints [-1,2]. Algorithm-2 displays smaller
amplitude oscillations compared to Algorithm-1

choose certain step-sizes that ensure that —1 < z; < 1
for solving (33), there are no guarantees that such a step-
size exists to ensure this constraint. Algorithm 2 solves this
problem with suitable choices of 7, 3, ar and by41 as
specified in Theorem III.3. Figure 1 shows the convergence
of parameter 6 (equivalent to x; in (33)) using Algorithm 2
for a chosen value of -, 3. It should be noted in Figure 1
that Algorithm 1 fails to converge. This illustrates the value
of Theorem III.3, another contribution of this paper.

B. Provably hard problem of Nesterov

We consider a provably hard problem which corresponds
to a strongly convex function (see [6] for details)

1(6) = log (cre® + cre~0) + gue 0% (34

1

Here ¢ and dj, are positive scalars chosen as cy, 5
dj, = 1. This function has a unique minimum at 6* = 0.

In all cases, u = 10~4, the intial value was chosen to be
fp = 2 and the constraints are chosen as #,,;, = —1 and
Omaz = 2. It is clear from Figure 2 that with Algorithm 2, the
parameters converge to the optimal value while being within
[Omin, Omaz). The speed of convergence is faster than that
of Algorithm 1 and Algorithm 2 exhibits lesser oscillations,
which is an attractive property.

and
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V. CONCLUSION AND FUTURE WORK

In this work, we extend the previously conducted study
on using High Order Tuners to solve constrained convex
optimization. We propose a new HT that can accommo-
date the constraints and the non-convexities with guaranteed
convergence. We provide academic examples and numerical
simulations to validate the theorems presented in the paper
pertaining to the accelerated convergence and feasibility
guarantees for High Order Tuner. This work establishes a
framework to explore potential applications of constrained
optimization that would benefit from faster convergence,
such as neural network training which can be reformulated
in some cases as convex optimization problems [15], and
solving Optimal Power Flow (OPF) problems using neural
networks as in [16], [17].
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