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Abstract— Convex optimization with equality and inequality
constraints is a ubiquitous problem in several optimization and
control problems in large-scale systems. Recently there has
been a lot of interest in establishing accelerated convergence
of the loss function. A class of high-order tuners was recently
proposed in an effort to lead to accelerated convergence for
the case when no constraints are present. In this paper, we
propose a new high-order tuner that can accommodate the
presence of equality constraints. In order to accommodate the
underlying box constraints, time-varying gains are introduced
in the high-order tuner which leverage convexity and ensure
anytime feasibility of the constraints. Numerical examples are
provided to support the theoretical derivations.

I. INTRODUCTION

A class of algorithms referred to as High Order Tuners
(HT) was proposed for parameter estimation involved in dy-
namic systems [1]. These iterative algorithms utilize second-
order information of the system, enabling faster convergence
in discrete time parameter estimation. This property of HT is
motivated by Nesterov’s algorithm [2], [3]. Additionally, HT
has been proven to show stable performance in the presence
of time-varying regressors [1] and for adaptive control in
the presence of delays and high relative degrees [4], [5].
To further leverage the accelerated convergence of HT in
machine learning as well as adaptive control problems,
discrete-time version of these algorithms for unconstrained
convex optimization was proposed in [6], which demon-
strated theoretical guarantees pertaining to convergence and
stability.

Accelerated algorithms have been extended to equality-
constrained convex optimization problems in [7], [8], [9].
Accelerated HT was extended to a class of constrained
convex optimization problems, with a dual objective of de-
constructing the loss landscapes of constrained optimization
problems and applying HT with theoretical guarantees of
stable performance in [10]. Several works in the past [11]
have utilized the variable reduction approach to transform a
constrained convex optimization problem to an unconstrained
optimization problem in a reduced dimension feasible solu-
tion space. However, this transformation does not guarantee
convexity of the unconstrained optimization problem. In this
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paper, we present conditions on equality constraints under
which the transformed problem is convex.

We first focus on optimization problems with equality
constraints and elucidate the conditions under which HT
can be deployed with theoretical guarantees pertaining to
convergence and stability, using a variable reduction based
technique. We then extend these results to optimization with
equality constraints and box inequality constraints. Since the
guarantees of convexity are only valid within the feasible re-
gion, it makes the task of solving hard inequality constraints
challenging. To preserve theoretical guarantees pertaining
to convergence, it is imperative to constrain the decision
variable within a compact set within which the resulting loss
function is convex. We show that the same HT proposed
in [1], [6] and [10] can be used to guarantee feasibility and
convergence to the optimal solution even in the presence
of equality and box constraints. We present two numerical
example problems in the paper to validate the approach.

The organization of the paper is as follows. Section II
describes the broader category of constrained optimization
problems and presents theorems pertaining to the perfor-
mance of High Order Tuner (Algorithm 1) in solving them.
In Section III, we present a specific category of constrained
optimization problems where the loss function is not convex
everywhere, but over known compact sets. We outline a novel
formulation based on High Order Tuner with time-varying
gains (Algorithm 2) to solve such problems. In Section IV,
we look at a scalar example that validates the implementation
of Algorithm 2 to a constrained convex optimization prob-
lem and demonstrates the accelerated convergence of High
Order Tuner. The paper concludes with a summary of main
contributions and future directions of research in Section V.

Notation

We employ the following notations throughout the paper.
For a vector x ∈ Rn, with 1 ≤ i < j ≤ n, xi:j denotes
the subvector with elements from the i-th entry of x to the
j-th entry. For a vector-valued function p : Rm → Rn, p
is convex (respectively, concave) on Rm implies that scalar
function pi : Rm → R is convex (respectively, concave) on
Rm for all i ∈ {1, . . . , n}. We use the shorthand notation
PSD to denote a symmetric positive semidefinite matrix. For
two sets A and B, A×B denotes their cartesian product.
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II. CONVEX OPTIMIZATION FOR A CLASS OF

NONCONVEX PROBLEMS

Consider the optimization problem

min f(x)

s.t. h(x) = 0,
(1)

here x ∈ Rn is the decision variable, f : Rn → R, h :
Rn → Rn−m are continuously differentiable convex func-
tions. Without loss of generality, we assume that problem (1)
is not overdetermined, i.e., m ≤ n. There are two key aspects
to solving a constrained optimization problem given by (1);
namely, feasibility and optimality. To ensure that the solution
is feasible, we first address how to solve equality constraints
using variable reduction technique employed in [10].

We define L(·) as the loss function consisting of the ob-
jective function and an optional term penalizing the violation
of equality constraints in case it is not feasible to solve the
equality constraints:

L(x) = f(x) + λh∥h(x)∥2, λh ≥ 0 (2)

In this paper, we restrict our attention to problems where
L is convex, which holds for many cases where f and
h are convex. To ensure feasibility, we utilize the linear
dependence in the feasible solution space introduced by the
equality constraints, as illustrated in [11]. x is partitioned
into independent and dependent variables; θ ∈ Rm and
z ∈ Rn−m respectively

x = [θT zT ]T , z = p(θ)

Here p : Rm → Rn−m is a function that maps the
dependence of z on θ, such that h(x) = 0. We assume that
h is such that given m entries of x, its remaining (n −m)
entries can be computed either in closed form or recursively.
If p(θ) can be computed explicitly, we set λh = 0 in (2).
Otherwise, λh is chosen as a positive real-valued scalar. In
other words, we assume that we have knowledge of the
function p : Rm → Rn−m such that

h([θT p(θ)T ]T ) = 0, ∀θ ∈ Rm

Using the function p(·) defined as above, we now define a
modified loss function l : Rm → R as

l(θ) = L([θT p(θ)T ]T ). (3)

The optimization problem in (1) is now reformulated as
an unconstrained minimization problem given by

min l(θ), (4)

with θ ∈ Rm as the decision variable. We now proceed to de-
lineate conditions under which l is convex in Proposition II.1.

Proposition II.1. (Convexity of the modified loss function
for equality-constrained nonconvex programs): Assume that
there exists a convex set Ωn ∈ Rn such that the functions f
and h are convex on Ωn. Let

Ωm = {θ | θ = x1:m, x ∈ Ωn}. (5)

If L is convex and any of the following conditions is satisfied:
(i) h is linear,

(ii) ∇L(x) ≥ 0 for all x ∈ Ωn and p is convex on Ωm,
(iii) ∇L(x) ≤ 0 for all x ∈ Ωn and p is concave on Ωm,
then l is convex on Ωm.

Proof. Readers are referred to [10, Proposition IV.2] for
the proof and [12] for details on convexity of composite
functions used in the proof.

Using Implicit Function theorem, we can establish the
following sufficient conditions on h(·) for which p(·) is
convex or concave. This gives us a readily checkable set of
conditions of convexity of l(·) without needing to determine
the convexity/concavity of function p(·), which may not
always be possible.

Proposition II.2. (Conditions on h for convexity of p):
Following from Proposition II.1, assuming f and h are convex
on a given set Ω̄n ⊆ Rn, and hi is twice differentiable
∀ i = 1, ..., n−m, it follows that:

(i) if ∇ph(x) < 0 for x ∈ Ω̄n then p(θ) is convex on Ωm

(ii) if ∇ph(x) > 0 for x ∈ Ω̄n then p(θ) is concave on Ωm

Additionally, if h is linear in z and convex in θ, then condition
(i) follows.

Proof. We prove condition (i), similar arguments can be
extended to prove condition (ii). Noting that

h([θT p(θ)T ]T ) = 0, (6)

and applying the chain rule and differentiating (6) along the
manifold z = p(θ) twice, for 1 ≤ i ≤ m and 1 ≤ j ≤ n−m
we get:

∂2hi

∂θ2︸ ︷︷ ︸
I

+
∂hi

∂zj

∂2zj
∂θ2︸ ︷︷ ︸

II

+
∂2hi

∂z2j

∂zj
∂θ

(
∂zj
∂θ︸ ︷︷ ︸

III

)T

= 0 (7)

Since hi is convex on Ωn ∀ i ∈ N, it follows:
(i) I: ∂2hi

∂θ2 is a positive semi-definite matrix

(ii) III: ∂zj
∂θ

(
∂zj
∂θ

)T

is a symmetrical dyad, i.e., PSD matrix

multiplied by ∇2
zjhi ≥ 0, hence III is a PSD matrix.

For (7) to be valid, II has to be a negative semi-definite
matrix, since it is the negated sum of positive-semi definite
matrices. From condition (i) we have ∂hi

∂zj
< 0 since z =

p(θ). Thus, ∂2zj
∂θ2 is PSD. Therefore, ∂2pj(θ)

∂θ2 is PSD, hence
pj(θ) is convex ∀θ ∈ Ωm, ∀j = 1, ..., n−m.

Remark 1. Proposition II.2 is one of the main contributions
of this work. The explicit availability of function p(·) in
closed form is not guaranteed always and p is often esti-
mated iteratively in practice, which is also the rationale for
including the penalizing term λh∥h(x)∥2 in the definition of
the loss function L(·). In the absence of information on p,
we can use the chain rule and implicit function theorem to
calculate ∇ph as demonstrated in [10], [11].
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A. Numerical Example

The following example illustrates how the conditions of
Proposition II.1 and Proposition II.2 can be verified. We
consider the problem in (1) where x ∈ R2, h(x) = x1

2 +
(x2 − 4)2 − 1 = 0 and f(x) = log(

∑2
i=1 e

xi) are convex
functions (h : R2 → R, m = 1). With x1 as the independent
variable, we write x = [x1 p(x1)]

T , and use the implicit
function theorem to determine p(x1) explicitly. We therefore
set λh = 0 while formulating the loss function, and hence
L is the same as f . Now we demonstrate the application of
Propostion II.2 to define region Ωn where p(·) is convex or
concave.

Clearly, ∇ph(x) = 2(p(x1) − 4), and it is evident that
∇ph(x) < 0 for x2 < 4 and ∇ph(x) > 0 for x2 > 4 (as
x2 = p(x1)). Using Proposition II.2, we conclude that for
x2 ≤ 4, p(·) is convex and for x2 ≥ 4, p(·) is concave.
Additionally, to ensure that to p(x1) evaluates to a real
number, we must constrain −1 ≤ x1 ≤ 1. Thus, following
Proposition II.2, we construct sets Ω̄1

n and Ω̄2
n as:

Ω̄1
n = {x = [x1 x2]

T | − 1 ≤ x1 ≤ 1, x2 < 4} (8)

Ω̄2
n = {x = [x1 x2]

T | − 1 ≤ x1 ≤ 1, x2 > 4} (9)

Since L(x1, x2) = log(ex1 + ex2) it is evident that:

∇x1
L =

ex1

ex1 + ex2
(10a)

∇x2 L =
ex2

ex1 + ex2
(10b)

Clearly, ∇L(x1, x2) > 0 for all x ∈ R2. From Proposi-
tion II.1, case (ii), we can see that for −1 ≤ x1 ≤ 1 and
x2 ≤ 4, ∇L(x1, x2) > 0 and p(·) is convex. Therefore,
l(x1) is convex in this region. Formally, we define Ωn ≡ Ω̄1

n

as:

Ωn = {x = [x1 x2]
T | − 1 ≤ x1 ≤ 1, x2 ≤ 4} (11)

Within the chosen Ωn, Proposition-II.1 guarantees that l(x1)
is convex. Consequently, Ωm is automatically defined as:

Ωm = {x1 ∈ R | − 1 ≤ x1 ≤ 1} (12)

Indeed, for values of x1 ∈ Ωm there are two cases for p(x1)
using Implicit Function Theorem [13] given as:

p(x1) = 4−
√

1− x1
2 for x2 ≤ 4 (13)

p(x1) = 4 +
√
1− x1

2 for x2 ≥ 4 (14)

As we seek to expand the set Ωn where l(·) is convex, we
note that due to the simple nature of the problem, it is easy
to conclude that l(·) is concave for x2 ≥ 4, hence Ωn for
this problem is equivalent to the one in (11).

Hence, using Ωn as defined in (11), p(·) takes the form
mentioned in (13), and by defining l(·) as the one in (3),
the optimization problem reduces to the following convex
optimization problem which is much simpler to solve:

min log(ex1 + e4−
√

1−x2
1)

s.t. x1 ∈ Ωm

(15)

We now state a HT based Algorithm which guarantees
convergence to optimal solution provided the condition θ ∈
Ωm is satisfied.

B. High Order Tuner

Recently a high-order tuner (HT) was proposed for convex
functions and shown to lead to convergence of a loss func-
tion. Since this paper builds on this HT, we briefly summarize
the underlying HT algorithm presented in [6] in the form of
Algorithm 1.

The normalizing signal Nk is chosen as:

Nk = 1 +Hk, Hk = max{λ : λ ∈ σ(∇2Lk(θ))}

Here σ(∇2Lk(θ)) denotes the spectrum of Hessian Matrix
of the loss function [6].

Algorithm 1 HT Optimizer for equality-constrained noncon-
vex optimization

1: Initial conditions θ0, ν0, gains γ, β
2: for k = 1 to N do
3: Compute ∇l(θ) and let Nk = 1 +Hk

4: ∇qk(θk) =
∇l(θk)
Nk

5: θk = θk − γβ∇qk(θk)
6: θk+1 ← θk − β(θk − νk)
7: Compute ∇l(θk+1) and let

8: ∇qk(θk+1) =
∇l(θk+1)

Nk
9: νk+1 ← νk − γ∇qk(θk+1)

10: end for

In Section II-A we established sufficient conditions for the
convexity of the modified loss function in Proposition II.1
which are easily verifiable. We now state Theorem II.3
that shows the convergence of HT in Algorithm 1 for the
constrained optimization problem in (1).

Theorem II.3. If the objective function f and the equality
constraint h in (1) are convex over a set Ωn, and θ0 ∈ Ωm,
where Ωm is defined in (5), and if the sequence of iterates
{θk} generated by Algorithm 1 satisfy {θk} ∈ Ωm, then
lim
k→∞

l(θk) = l(θ∗), where l(θ∗) = f([θ∗T p(θ∗)T ]T ) is the
optimal value of (1) where γ and β are chosen as 0 < β < 1,
0 < γ < β(2−β)

8+β

Proof. Readers are referred to [6, Theorem 2] for the proof.

C. Satisfaction of Box constraints

Theorem II.3 enables us to leverage Algorithm 1, provided
that θk ∈ Ωm∀k ∈ N, i.e., the parameter remains inside the
set over which l(·) is convex. For the numerical example
outlined in Section II-A, it is clear that we can utilize
Theorem II.3 when x1 ∈ Ω1 where Ω1 = [−1, 1]. It should
however be noted that Theorem II.3 requires that θ ∈ Ωm

for the HT to lead to convergence. In order to constrain the
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parameter to be within the set Ωm, we modify (4) into a
constrained optimization problem given by:

min l(θ)

s.t. θ ∈ Ωm.
(16)

It must be noted that the set Ωm in (16) is a subset of
the feasible solution-space of (1) If the conditions given by
Proposition II.1 are necessary and sufficient, (16) has the
same optimizer θ∗ as that of (4). While it is tempting to
apply a projection procedure for ensuring θ ∈ Ωm, the lack
of convexity guarantees of l(·) for all θ ∈ Rm inhibits us
from proving the stability of Algorithm 1 as we need l(·) to
be convex for all θk, θk, νk ∈ Rm. In the next section, we
delineate a general procedure for ensuring that the constraint
θ ∈ Ωm is always satisfied.

III. CONSTRAINED CONVEX OPTIMIZATION

The starting point of this section is problem (16) where l
is convex. Without loss of generality, we assume Ωm to be a
compact set in Rm. For any such Ωm, it is always possible
to find a bounded interval I = I1 × I2...× Im ⊆ Ωm where
Ii is a bounded interval in R defined as Ii = [θimin, θimax]
for all i = 1, 2, ...,m.

Using the above arguments, we reformulate the con-
strained optimization in (16) as:

min l(θ)

s.t. θ ∈ I
(17)

where θ∗ is the solution of problem (17). In Section II, we
outlined conditions for which (16) is equivalent to (4), i.e.,
θ∗ is the solution to problem (4) by appropriate selection of
sets Ωn,Ωm. Note that (16) and (17) are equivalent if θ∗ ∈ I .
The conditions under which θ∗ ∈ I have been summarized
in Proposition III.1.

Proposition III.1. For a given compact set I and convex loss
function l(θ) if there exist θ1, θ2 such that l(θ1) = l(θ2), then
θ∗ ∈ I .

Proof. For a scalar case, i.e., Ωm ⊂ R, Rolle’s theorem can
be applied to the function l being continuous and differen-
tiable. For a subset [θ1, θ2] ⊂ I , such that l(θ1) = l(θ2),
by Rolle’s Theorem, there exists a θ̂ ∈ [θ1, θ2] such that
∇l(θ̂) = 0. Since l is differentiable and convex, ∇l(θ̂) =
0 ⇐⇒ θ̂ = θ∗. This can be extended to the general case
where m ≥ 1,Ωm ⊂ Rm, using the vector-version of Rolle’s
theorem, cf. [14].

With the assurance from Proposition III.1 that θ∗ ∈ I ,
we now revise Algoirithm 1 in the form of Algorithm 2 to
guarantee convergence to θ∗ while ensuring feasibility that
θ ∈ I . We prove that θk, νk, θk ∈ I for all k ∈ N through
Proposition III.2 and subsequently provide guarantees of con-
vergence of the iterates {θk}∞k=1 generated by Algorithm 2
to θ∗ using Theorem III.3.

Algorithm 2 HT Optimizer for localized convex optimiza-
tion

1: Initial conditions θ0, ν0, gains γ, β
2: Choose θ0, ν0 ∈ I
3: for k = 1 to N do
4: Compute ∇l(θ) and let Nk = 1 +Hk

5: ∇qk(θk) =
∇l(θk)
Nk

6: θk = θk − γβak∇qk(θk)
7: θk+1 = θk − β(θk − νk)
8: Compute ∇l(θk+1) and let

9: ∇qk(θk+1) =
∇l(θk+1)

Nk
10: νk+1 ← νk − γbk+1∇qk(θk+1)
11: end for

Proposition III.2. Consider Algorithm 2, for a given k ∈ N,
if θk, νk ∈ I , there exist real numbers ak > 0 and bk+1 > 0
such that θk, νk+1 ∈ I . Consequently, for 0 < β ≤ 1, and
θ0, ν0 ∈ I , Algorithm 2 guarantees θk, θk, νk ∈ I for all
values of k ∈ N.

Proof. We first provide conditions for the selection of ak.
For a given θk ∈ Rm and i ∈ N, consider θik ∈ R such

that θik ∈ [θimin, θ
i
max]. There are two possible cases:

(i) θik > θ∗i ⇐⇒ ∇il(θk) > 0

(ii) θik < θ∗i ⇐⇒ ∇il(θk) < 0

For case (ii), using Step-6 of Algorithm 2 we have,

θ
i

k = θik + ak
γβ|∇il(θk)|
Nk

(18)

For ak > 0, θ
i

k > θimin in (18). We need to ensure that
θ
i

k < θimax for all i. Therefore, we must ensure:

θik + ak
γβ|∇il(θk)|
Nk

≤ θimax ∀i. (19)

Inequality (19) would be true if ak ≤ âk, where

âk = min
i∈{1,...,m}

(θimax − θik)Nk

γβ|∇il(θk)|
. (20)

Similarly, for case (i), we get the following inequality criteria
for ak to ensure that θ

i

k > θimin for all i:

ak ≤ ãk = min
i∈{1,...,m}

(θik − θimin)Nk

γβ|∇il(θk)|
(21)

Combining (20) and (21), we have

ak ≤ āk = min{âk, ãk} ∀k. (22)

We now outline conditions for selection of bk+1, which
follows similar approach to selection of ak, i.e., for given
νk ∈ I we prescribe range of bk+1 such that νk+1 ∈ I .
From Step-10 of Algorithm 2, it could be deduced that for
all k, bk+1 must satisfy

bk+1 ≤ b̄k+1 = min{b̂k+1, b̃k+1} (23)
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where

b̂k+1 = min
i∈{1,...,m}

(θimax − νik)Nk

γ|∇il(θk+1)|

b̃k+1 = min
i∈{1,...,m}

(νik − θimin)Nk

γ|∇il(θk+1)|
.

Note however, that (22), (23) can generate ak, bk+1 = 0,
which is undesirable. To compensate for that, we introduce
an additional rule:

ak =


−ϵ min

i∈{1,...,m}
(θik − θimax) = 0

ϵ min
i∈{1,...,m}

(θik − θimin) = 0
(24)

Here 0 < ϵ < 1 is a very small real number of choice.
Similar update rule can be stated for bk+1 to avoid the case
of ak, bk+1 = 0. For a given k, by selecting ak, bk+1 such
that (22), (23), (24) are satisfied, we ensure θk, νk ∈ I . From
Step-7 of Algorithm 2:

θk+1 = (1− β)θk + βνk (25)

Hence, θk+1 is a convex combination of θk and νk for a given
k and 0 < β ≤ 1. Additionally, set I is compact, hence, if
θk, νk ∈ I , then θk+1 ∈ I for a given k ∈ N. By choosing
θ0, ν0 ∈ I , by induction it can be shown that Proposition III.2
can be applied iteratively to generate parameters that are
bounded within the compact set I.

Proposition III.2 outlines conditions under which all pa-
rameters generated by Algorithm-2 are bounded within set
I , where the convexity of loss function l(·) is guaranteed.
Theorem III.3 formally establishes the convergence of Algo-
rithm 2 to an optimal solution θ∗.

Theorem III.3. (Convergence of the HT algorithm con-
strained to ensure convexity): For a differentiable L̄k-smooth
convex loss function l(.), Algorithm 2 with 0 < β ≤ 1,
0 < γ < β(2−β)

8+β and ak, bk+1 satisfying ak ≤ min{1, āk},
bk+1 ≤ min{1, b̄k+1} and (24), where āk+1 and b̄k+1 are
defined in (22) and (23) ensures that V = ∥ν−θ∗∥2

γ + ∥ν−θ∥2

γ

is a Lyapunov function. Consequently, the sequence of iter-
ates {θk} generated by Algorithm 2 satisfy {θk} ∈ Ωm, and
lim
k→∞

l(θk) = l(θ∗), where l(θ∗) = f([θ∗T p(θ∗)T ]T ) is the
optimal value of (16).

Proof. This proof follows a similar approach to the proof
of stability of High Order Tuner for convex optimization, as
illustrated in [6, Theorem 2].

Assuming that νk, θk, θk ∈ I , function l(·) is convex for all
these parameters lying within the set I . Applying convexity
and smoothness properties (ref. [6, Section II]) to l(·), the
following upper bound is obtained:

l(ϑk)− l(θ̄k) = l(ϑk)− l(θk+1) + l(θk+1)− l(θ̄k)

≤∇l(θk+1)
T (ϑk − θk+1) +

L̄k

2
∥ϑk − θk+1∥2

+∇l(θk+1)
T (θk+1 − θ̄k)

(26)

Alg.2
≤ ∇l(θk+1)

T (ϑk − θ̄k) +
L̄k

2
∥ϑk − (1− β)θ̄k − βϑk)∥2

(27)

l(ϑk)− l(θ̄k)

≤ −∇l(θk+1)
T (θ̄k − ϑk) +

L̄k

2
(1− β)2∥θ̄k − ϑk∥2.

(28)

Similarly, we obtain:

l(θ̄k)− l(ϑk)

≤ ∇l(θk)T (θ̄k − ϑk) +
a2kL̄kγ

2β2

2N 2
k

∥∇l(θk)∥2.
(29)

Using (28) and (29) we obtain:

∇l(θk+1)
T (θ̄k − ϑk)

− L̄k

2
(1− β)2∥θ̄k − ϑk∥2

− a2kL̄kγ
2β2

2N 2
k

∥∇l(θk)∥2 ≤ ∇l(θk)T (θ̄k − ϑk)

(30)

Using Algorithm 2, [6, Theorem 1] and (30), setting γ <
β(2−β)
8+β , 0 < ak, bk+1 ≤ 1 and defining ∆Vk := Vk+1 − Vk,

it can be shown that

∆Vk ≤
1

Nk

{
− 2bk+1(l(θk+1)− l(θ∗))

−

(
bk+1

2L̄k
−

2γb2k+1

Nk

)
∥∇l(θk+1)∥2

−

(
1− L̄kγβak

Nk

)
γβ2a2k
Nk

∥∇l(θk)∥2

−[β − akβ(1− β)2]L̄k∥θk − νk∥2

−

[√
bk+1√
2L̄k

∥∇l(θk+1)∥ − 2
√
2L̄k∥θk − νk∥

]2
−4(

√
bk+1 − bk+1)∥θk − νk∥∥∇l(θk+1)∥

−(8 + β)∥θk − νk∥2
}
≤ 0 (31)

From (31), it can be seen that:

∆Vk ≤
bk+1

Nk
{−2(l(θk+1)− l(θ∗)} ≤ 0 (32)

Collecting ∆Vk terms from t0 to T , and letting T → ∞, it
can be seen that l(θk+1) − l(θ∗) ∈ ℓ1 ∩ ℓ∞ and therefore
limk→∞ l(θk+1)− l(θ∗) = 0.

IV. NUMERICAL STUDY

A. An academic example

We consider the same example as before which led to the
following constrained convex optimization problem:

min log(ex1 + e4−
√

1−x2
1)

s.t. − 1 ≤ x1 ≤ 1
(33)

The box constraint in (33) is imposed to ensure that the
objective function is always real-valued. While we can
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Fig. 1. Convergence of θ using Algorithm 2 for the problem in (33);
Algorithm 1 fails to converge

Fig. 2. Constraint satisfaction by Algorithm-2, Algorithm-1 generates
iterates that violate the box constraints [-1,2]. Algorithm-2 displays smaller
amplitude oscillations compared to Algorithm-1

choose certain step-sizes that ensure that −1 ≤ x1 ≤ 1
for solving (33), there are no guarantees that such a step-
size exists to ensure this constraint. Algorithm 2 solves this
problem with suitable choices of γ, β, ak and bk+1 as
specified in Theorem III.3. Figure 1 shows the convergence
of parameter θ (equivalent to x1 in (33)) using Algorithm 2
for a chosen value of γ, β. It should be noted in Figure 1
that Algorithm 1 fails to converge. This illustrates the value
of Theorem III.3, another contribution of this paper.

B. Provably hard problem of Nesterov

We consider a provably hard problem which corresponds
to a strongly convex function (see [6] for details)

l(θ) = log (cke
dkθ + cke

−dkθ) +
µ

2
∥θ − θ0∥2. (34)

Here ck and dk are positive scalars chosen as ck = 1
2 and

dk = 1. This function has a unique minimum at θ∗ = 0.
In all cases, µ = 10−4, the intial value was chosen to be

θ0 = 2 and the constraints are chosen as θmin = −1 and
θmax = 2. It is clear from Figure 2 that with Algorithm 2, the
parameters converge to the optimal value while being within
[θmin, θmax]. The speed of convergence is faster than that
of Algorithm 1 and Algorithm 2 exhibits lesser oscillations,
which is an attractive property.

V. CONCLUSION AND FUTURE WORK

In this work, we extend the previously conducted study
on using High Order Tuners to solve constrained convex
optimization. We propose a new HT that can accommo-
date the constraints and the non-convexities with guaranteed
convergence. We provide academic examples and numerical
simulations to validate the theorems presented in the paper
pertaining to the accelerated convergence and feasibility
guarantees for High Order Tuner. This work establishes a
framework to explore potential applications of constrained
optimization that would benefit from faster convergence,
such as neural network training which can be reformulated
in some cases as convex optimization problems [15], and
solving Optimal Power Flow (OPF) problems using neural
networks as in [16], [17].
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