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Abstract: This paper develops a Distributed Energy Management System (EMS) to optimally
allocate electric and thermal power production in a polygenerative microgrid. The EMS problem
is formulated as a multiperiod convex optimization problem and solved using AL-SODU, a
new distributed algorithm based on the augmented Lagrangian method with second order dual
updates. The proposed AL-SODU algorithm significantly outperforms state of the art algorithms
employing first order dual updates, with 15-times speedup in convergence speed. A case study
of the EMS based on AL-SODU is conducted on the Smart Polygeneration Microgrid (SPM)
located on the Savona Campus of University of Genova (Italy). The EMS determines the optimal
schedules for electric and thermal power plants every 15-minutes. This real time scheduling of
the microgrid is enabled by the AlI-SODU algorithm, which solves the scheduling problem in

1.86s.
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1. INTRODUCTION AND STATE OF THE ART

Microgrids (MG) can provide flexibility services for the
distribution power grid at a small scale level by manag-
ing multiple generators/loads in a limited geographical
area. In order to exploit the full potential of the MG
infrastructures, Energy Management Systems (EMS) are
needed. These EMS generally include an optimization-
based dispatch algorithm within a system architecture that
communicates with supervision tools (like SCADA) and
in-field power plants (Delfino et al., 2019b; Touma et al.,
2021; Zhou et al., 2021). For this specific reason, in the
last decade, several research groups have developed new
tools, models, methods, and technologies (see (Sen and
Kumar, 2018) and references therein). The emergence of
smart buildings, storage, and renewable generation intro-
duce rapidly changing demand and generation patterns,
for which new decision making paradigms are needed.
These include real-time electricity markets at the distri-
bution level, i.e. retail prices that are updated every 5
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minutes (Haider et al., 2020). To solve such a market
and dispatch resources every 5 minutes, new optimiza-
tion algorithms that are fast and accommodate resource
operating constraints are needed. Several papers propose
distributed and decentralized methods for the optimal
operation of MGs. However, very few of them deal with
multiple kinds of demand (such as electric and thermal
loads in polygeneration MGs) and local controllers which
are managed by different owner/managers, which are typ-
ical of sustainable districts and medium/large MGs that
serve real loads (Ding et al., 2020). This work proposes a
distributed EMS to optimally allocate electric and ther-
mal power production in a polygenerative MG, where
resources have different ownership boundaries. To solve the
EMS problem, a distributed algorithm is proposed. This
algorithm, called AL-SODU, is based on an augmented
Lagrangian method and uses second-order dual updates to
significantly improve convergence speed. The EMS based
in AL-SODU determines the optimal resource dispatch
every 15-minutes over a whole day of operation. The EMS
has been tested on a real case study of the Savona Campus
Smart Polygeneration Microgrid (SPM) (Bracco et al.,
2016) located at the University of Genoa (Italy), repre-
sentative of a small district MG. The EMS optimization
problem is based on a multi-agent framework, where each
agent represents a resource in the MG (ex. power plant
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or storage system) and participates in a MG market to
minimize costs and achieve electrical and thermal power
balance. The distributed AL-SODU algorithm leverages
local computing resources with minimal information ex-
change across agents to determine the optimal dispatch.

The survey paper (Sen and Kumar, 2018) provides a com-
prehensive review of EMS design for MGs. The decision-
making approaches can be classified into two main cate-
gories: centralized and distributed. In a centralized archi-
tecture, the EMS needs to collect information from each
resource, solve a centralized optimization problem, and
send back the optimal dispatch of each resource (Delfino
et al., 2019b), (Stluka et al., 2011). Centralized architec-
tures are usually implemented when the area of the MG
is limited, given the high communication and computa-
tional burden. In a distributed architecture, resources use
local computing equipment to make their own dispatch
decisions, with communication with neighboring agents
or a central controller (Xin et al., 2014). A distributed
approach has lower computational and communication
burden (as compared to centralized approaches), and when
designed well, can be robust to failure modes (unlike cen-
tralized approaches which have a single point of failure).
A review on distributed control in MGs is reported in
(Yazdanian and Mehrizi-Sani, 2014), and highlights some
of the main techniques used for decision making (MPC,
consensus, agent-based) in the different control levels of
primary, secondary, and tertiary.

The focus of this paper is on tertiary control, i.e the
optimal dispatch of power sources in the MGs over a
daily time horizon, using a distributed architecture. Recent
work on distributed control of polygenerative MGs are
(Mohamed et al., 2020) and (Nudell et al., 2022). The
work in (Mohamed et al., 2020) focuses on smart islands
considering coupling between multi-polygenerative MGs,
but the coupling between power and thermal production
are not modelled. In (Nudell et al., 2022) a transac-
tional framework denoted as Dynamic Market Mechanisms
(DMM) is presented, to determine the optimal schedule
of a polygenerative MG using market prices. The DMM
is a distributed algorithm which can distribute dispatch
resources in a multi agent framework; however, the al-
gorithm is limited to strictly convex cost functions and
exhibits slow convergence to the optimal solution. In this
regard, the AL-SODU algorithm presented in this paper
can handle any convex function (including those that
are non strictly convex), and the SODU feature provides
significant acceleration in convergence. These results are
shown in a case study of the Savona SPM, representative
of a small district MG.

The main contributions of the paper are the following:

e A new EMS for polygenerative MGs based on the
distributed AL-SODU algorithm. The EMS models
coupling between electrical and thermal production.
The EMS is used for real time scheduling of the MG
resources, enabled by the AL-SODU algorithm. Our
results show that AL-SODU outperforms first order
dual update algorithms (converges faster) and can
handle general convex objective functions typical of
power plants in the SPM.
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e The validation of the EMS on the Savona SPM,
representative of a small district MG, thus ensuring
a practical value to the developed methodology.

The organization of this paper is as follows. Section 2
introduces the optimization problem and models of each
component of the MG. Sections 3 and 4 derives the SODU
method and the AL-SODU algorithm for the distributed
EMS respectively. Section 5 presents a case study of the
EMS on the SPM and compares the performance of the
AL-SODU with a first order update algorithm. Section 6
provides conclusions and directions for future work.

2. THE MICROGRID MODELLING

This section describes the mathematical modelling of a
multi-agent MG in which each resource participates in
determining the optimal resource dispatch. Both thermal
and electrical energy resources powering the MG are
included.

2.1 Definition of agent types

The Proposed EMS optimally schedule all thermal and
electric units in the MG over a time horizon T' = {1, ..., K},
defined as the set of the time intervals. The units (or
agents) in the MG are classified as:

S: Storage system (e.g. batteries);

C: Cogenerative plants;

‘H: Thermal plants (e.g. boilers);

B: Smart building units;

P: Market coordinator at the point of common cou-
pling (PCC)

Collectively, the set of all agents is denoted as A £ S U
CUHUBUP . We assume all agents participate in the
market negotiation. We assume that forecasts of electrical
and thermal load are available and a priori known for the
whole optimization interval. We do not model the electrical
or thermal network constraints. This modeling assumption
is valid when the MG covers a small geographic area, such
that losses are negligible. This assumption holds for the
microgid we consider in this paper. We use 27 to denote
the transpose of vector x, and overbar T and underbar z
notation to denote the upper and lower limits of a variable
x.

2.2 Storage systems model (S)

The storage systems are represented by the following
discrete-time first order integrator model:

PS
SOCy, | = S0Cy + CAPA teT (1)
SOCY < SOCY <S0C? teT (2)
PP<P’<PS teT (3)
if SOC? <a

cSOCS +d if SOCS >a

where SOC? is the state variable representing energy
stored in the storage system, P is the active power in-
jected/absorbed by the storage unit, CAP is the storage
capacity, while A is the discretization step. A peculiar
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characteristic of this model is constraint (4) that approxi-
mates the nonlinear behavior of the storage systems during
the charging phase (Delfino et al., 2019a) (a, b, c and d are

D).

2.3 Cogenerative plants model (C)

Cogenerative power plants (i.e. combined heat and power,
microturbines) are able to produce both electric power
Ptc’el and thermal power Ptc’th at the same time. The

optimization model for this agent is given by:

C pC,pe
g%zzl A ZC P, (5)
teT
subject to:
POPe = PO teT (6)
PO =@ PO teT (7)

PtC,el < PtC,el < PtC’,el teT (8)

where PCP¢ is the primary fuel used to feed the co-

generative unit, Ptc’th is the thermal production, and
and [, are conversion parameters that depend on time-
varying external air temperature. The overall goal of the
Cogenerative units is to minimize the overall consumption
of fuel as expressed in (5) that is weighted by the cost C¢
related to taxation policies for the primary fuel regulation
and the COy emission factors .

2.4 Thermal plants model (H)

In this work, thermal plants include boilers. The model is
similar to that of the cogeneration unit C described above.
The optimization model for the thermal plant is given by:

: B pB,pe
gyﬁ AZC P, 9)
teT
subject to:
pPPe = PP teT (10)
pBith < pBith < PBIL Lo (1)
B,pe

where PPP¢ is boiler’s thermal production, P; is
boiler’s primary fuel and np is boiler’s efficiency. As re-
gards the objective function of the thermal plants (9) it
concerns the minimization of the operational costs of the
primary fuel.

2.5 Smart building model (B)

The smart building includes three main components: a
geothermal heat pump, thermal storage, and fan coil cir-
cuit. The objective of this agent is to track the thermal
storage operating temperature 7¢, and the comfort tem-
perature T ;, in each room in set H. The thermal behavior
of the bulldlng is simulated through an equivalent RC
circuit model described as follows:
ST 2 RM )2
Jmin, > (LT =T5) + 3 > (T = Thy)
Qni Fi teT teT he H
(12)
subject to:

Tt+1 =TT + (

-y e

heH

)CST’ teT (13)
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HP {{P
¢ =cop ‘€T (14)
(7 - i)
Tt =T + | g + @it + Qi
Ry
(T -T) | a
+ > R g t€Thel (15)
kEKh h
L”thSTgTST, teT (16)
0<PHP <PHP teT (17)
TRM < TEM <TEM  teT heH (18)
QI < efempiep (TP —T)EM), teThe H (19)

Constraint (13) represents the dynamic behavior of the
thermal storage internal temperature 7;°7 by considering
the thermal storage capacity C°7, with thermal flow input

£, and thermal flow output Q;4'. The input Qf” is
expressed in (14) as a function of the active power PHF
and its coefficient of performance COP. The output thtw
is the thermal power extracted by the fan coils circuit for
each room. Constraint (15) defines the dynamic behavior
of the internal room temperatures Th ;" by considering:
the heat flow given from the difference of temperature
between the room and the external environment both
through the wall and the windows, the heat exchange
between adjacent rooms (Rf’RM are thermal resistances
between the room’s internal air and the external air,
whereas Ri’RM is the thermal resistance between two

adjacent roéms), the heat supplied through the fan coil

circuit within each room Qf]t” , and the internal heat gains

Q given by the occupants, the electronic devices and
the solar radiation gain considered as known a priori. The
control variable @4 is the fan coil in each room, upper
bounded in (19) as a function of the room temperature and
the temperature of the storage tank, where /¢ is the fan
coil efficiency, cp™7 is the specific heat capacity of the air,
and m“” is the maximum mass flow rate of the air that
passes through the fan coil. Other constraints represents
bounds on the decision variables.

2.6 Market coordinator at PCC model (P)

The PCC represents the electrical and thermal balance
node of the MG. This agent represents the MG coordinator
and aims to minimize the overall electrical cost, i.e., the
electrical power purchased PtG at the point of exchange
with the medium-voltage grid. It is assumed that the
thermal system in the MG can supply all heating loads,
and does not have to purchase thermal energy from any
external sources. The optimization model for this agent is
given by:

min Ay CIPF (20)
PC,th
¢ teT
subject to:
PN L pS = pG 4 PO L PHP teT (21)
pCith | pBith 5 pDith 4 o p (22)
PE<PE<PC teT (23)
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The overall MG electrical power balance is given in (21),
that is the sum of all the generation/load, and the net
load PN which is the net sum of MG’s non-controllable
power generation and local load. Constraint (22) denotes
the thermal energy balance, with any excess heat output
being dispersed into the atmosphere by the cogeneration
units.

3. SECOND ORDER DUAL UPDATE (SODU)

A key contribution of this paper is a new distributed
optimization algorithm that is based on Second Order
dual Update (SODU). The use of SODU allows for faster
convergence to the optimal solution, thus allowing MG
dispatch to occur at very fast time scales (e.g. every 5
minutes). To introduce SODU, we first consider a general
convex optimization problem of the form:

min f(x)

x

st Az =1b (24)
where A and b are the constraint matrix and vector,

and f(x) is a general convex objective function. The
corresponding Lagrangian function of (24) is:

L(x,v) = f(z)+v" (Az —b) (25)
where the constraint has been dualized with dual variable
v. The resulting Lagrangian function can be solved as an
unconstrained optimization problem with various iterative
primal-dual and dual-ascent algorithms. Current state of
the art optimization algorithms generally carry out the
dual update as a gradient step of the dual function as:

vir+ 1] =v[r|+p(Ax [Tt + 1] = b) (26)
where p is the step size.

We propose an alternative dual update which employs
Newton’s method to solve the Lagrangian system in (25)
(Bertsekas, 1997):

v+ 1] = v+ [AT(Verf (2 [+ 1) 714

[~ AT (Taaf (@ [r + 1) Val (o [r + 1], v [7])
+Ax [T+ 1] — b]

-1

(27)

To derive the dual update in (27) we consider the nonlinear
system of equations in z and v:

Vf(x)+ Vvl (Az —b) =VL(z,v) =0  (28)
We then apply Newton’s method to solve (28):
V2L (x,v) = —VL (z,v) (29)
Therefore we obtain
Vaof () Az + AAv = =V, L (z,v) (30)
ATAz = —Az +b (31)

By multiplying (30) by A(Vaf (z))", ad using (31) we
have:

—Az+b+ AT (Voo f (z)  AAY

= 7AT(Vsz (x))ilvmﬁ (ZE,I/) (32)
Finally, since the dual update is given by
vir+1] =v[r]+ Av (33)

by solving (32) with respect to Av we obtain (27).
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4. THE AL-SODU ALGORITHM

This section will state the AL-SODU algorithm employed
to solve the optimization problem (1)-(23). The overall
EMS problem can be easily rewritten in the form of (24) by
using positive slack variables z. The resulting optimization
problem will be of the form:

min  f (y)
y,Z

st [A1] [g] b

z2>0 (34)

where y is the vector of decision variables and A is the
constraint matrix of the EMS problem (1)-(23).

4.1 Statement of the algorithm

The AL-SODU primal update is based on an augmented
Lagrangian which uses a proximal term to have a strongly
convex problem:

A =£<m,u>+§nx—x[rm§ (35)

The general form of the AL-SODU algorithm with the dual
update of (27) is stated as follows:

z[r+1] =

) 1 2
angin {1 (2) +7 7] (A =)+ oo = 7).
(36)
vir+1] =v[r]+ [AT(VMEA (z[r+ 1}))‘1A] o

[~ AT (Taaf (@ [r + 1)Vl (@[ + 1], 0 [7])
+Az [r +1] - B (37)

where x = [y Z]T is the whole decision vector including
slack variables and A = [/1 I ] The positivity constraint
in (4) is subsumed in the primal update of (36), where the
slack primal variables z [T 4 1] belongs to the set X, where
X is the positive orthant R*.

4.2 Distributed AL-SODU for EMS

We propose a distributed EMS architecture to solve (1)-
(23) using AL-SODU. In this section, we discuss the
decomposition of the overall problem such that it can be
solved in a distributed way.

The EMS objective function is the sum of the objectives
of each agent, i.e. f(x) =(5)+(9)+(12)+(20). Note that
the objective function at the PCC, (20), can be re-written
as a linear combination of decision variables owned by
the other agents, A\ P. Further, the constraints coupling
the actions of the different agents are located only at the
PCC agent, P, in Eq. (22) and (23). In this way, the
EMS optimization problem of (1)-(23) can be distributed
amongst each agent. Correspondingly, the primal update
of the AL-SODU algorithm can be re-written as:

1
x; [T+ 1] = argmin {21‘?621-951' +qTa; + [z/T [7] (Az — b)L
TEX
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Fig. 1. The AL-SODU algorithm

1
where the agents’ objective functions are written as general
quadratic functions %xiTQixi +q¢Tz; i€ A

Each agent A \ P carries out a parallel update of its
primal variables ; V ¢ € A\ P using (38). Next the
agents communicate their updated primal variables to the
PCC, which as the market coordinator collects the primal
variables and updates the dual variables using (37). The
updated duals are communicated back to each agent to
complete the algorithm iteration. This concept is shown
in Figure 1.

5. SIMULATION STUDIES

This section presents the validation of the proposed EMS
using experimental data from the SPM at the University
of Genoa. To show the effectiveness of the proposed AL-
SODU algorithm a comparison with a first-order dual
update has been performed.

5.1 Application to the Savona Campus SPM

The SPM is a cogenerative low-voltage MG that has been
operating since February 2014 on the Savona Campus of
University of Genoa. The SPM is funded by the Italian
Ministry of Research, and it is the first MG in Italy at
the Campus scale being inserted in the National Plan for
Research Infrastructures. The SPM has two cogeneration
units (indicated as CHP and CHP2 in the following and
characterized by a rated electrical power of 65 kW);
one NaNiCl2 battery storage system rated at 141 kWh
capacity; one boiler system rated at 1000 kW thermal
power; and a photovoltaic power plant rated at 80 kW peak
power. Note that the PV power plant is a non-dispatchable
unit with no controllable parameters; the output of the
PV unit is included in PNL, the net sum of the MG’s load
n (21). The Campus distribution grid is also connected
to the national distribution grid employing a dedicated
transformer at the PCC. A schematic representation of
the SPM layout is provided in Figure 2. From an ICT
point of view, the SPM is characterized by local controllers
for each plant. As regards other nameplate values of each
component (e.g. efficiencies, coefficient of performances) of
the SPM we refer to (Delfino et al., 2019b).

The EMS developed in this paper has been tested in a
winter scenario (with high thermal load) with the EMS
re-scheduling every 15-minutes for a 24 hours period. The
optimal electric and thermal dispatch schedule is obtained
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by solving the optimization problem (1)-(23) with the AL-
SODU algorithm. The dispatch results are presented in
Figures 3 and 4. The MG is able to supply 85% of electrical
load using local resources, relying heavily on cogerative
units and PV during the day (6am to 7pm). Notably,
the storage unit is able to charge during hours of higher
PV production (1pm to 4pm) and discharge overnight to
limit the amount of power drawn from the external grid.
Further, the CHP microturbines are able to supply the
thermal and electrical loads without exceeding thermal
balance constraints. The total operational costs for this
scenario is 405.48€. The distributed EMS algorithm was
run on MATLAB 2021a, using the YALMIP interface
(Lofberg, 2004). A PC Intel core i7 machine is used, with
a run time of 1.86s. It is noteworthy this very short run
time allows the EMS to have real time dispatch scheduling
and support real time energy prices.

5.2 Comparison of AL-SODU with first order dual update

In order to show the effectiveness of the AL-SODU algo-
rithm we compare it against a variant of the algorithm
which uses the primal update in Eq. (36) and replaces
Eq. (37) with a first order dual update in Eq. (39).

vir+ 1 =vr]+p(Az [t + 1] = b) (39)
Both algorithms have been implemented using the dis-
tributed architecture presented in Fig. 1. The convergence
of both algorithms is given in Figure 5. The plot shows that
the first order update requires almost 60 times the number
of iterations as compared to AL-SODU (180 iterations
versus less than 5) to achieve the same precision. The run
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time for the first order variant is 35.16s, as compared to
AL-SODU which requires only 1.86s. Thus the proposed
AL-SODU is able to effectively combine the benefits of
distributed computations with the speedup afforded by
second order methods.

6. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this paper, a distributed EMS for the daily optimal
operation of polygenerative MGs is proposed. The devel-
oped algorithm is based on a second order dual update
(SODU) approach and can improve the performances of
current first order algorithms that are widely used in
literature. The proposed AL-SODU algorithm is a dual
descent algorithm using a augmented Lagrangian primal
step, and second order Newton method update for the
dual step. The distributed EMS has been tested on a
real case study of the Savona Campus SPM obtaining
fast convergence (approximately 3 iterations taking 1.86s).
The proposed EMS allows for more frequent rescheduling
of the power plants and can incorporate the nowcasting
of non-dispatchable resources. Future developments will
concern the inclusion of new elements of the MG like elec-
tric vehicles, controllable photovoltaic plants, and power-
to-hydrogen modules, and the development of a Model
Predictive Control architecture.
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