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Abstract: Twin Field QKD (TF-QKD) protocols allow for increased key-rates over long distances 1

when compared to standard QKD protocols. They are even able to surpass the PLOB bound without 2

the need for quantum repeaters. In this work, we revisit a previous TF-QKD protocol and derive a 3

new, simple, proof of security for it. We also look at several variants of the protocol and investigate 4

their performance, showing some interesting behavior due to the asymmetric nature of the protocol. 5
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1. Introduction 7

Quantum key distribution (QKD) allows for two parties to establish a shared secret 8

key that is secure even against computationally unbounded adversaries. This is a task that 9

is impossible to achieve using classical communication alone, unless computational as- 10

sumptions are made on the adversary’s capabilities. However, QKD has several limitations, 11

especially in terms of distance. See [1–3] for a general survey on QKD. 12

In general the key-rate of a QKD system is severely restricted by the total transmittance 13

of the channel between parties. Several strategies can mitigate this, including trusted node 14

networks [4–6] and quantum repeaters [7–9]. Quantum network research, in general, is a 15

rapidly growing topic both for QKD [10] and the more general Quantum Internet [11] (the 16

latter of which can support QKD, but also other applications such as distributed computing 17

[12–14] and distributed quantum sensing [15–18]). However, an interesting third alternative 18

to boosting QKD distances are so-called twin-field QKD (TF-QKD) protocols [19–24] which 19

can even beat the PLOB bound [25]. 20

Proving security of QKD protocols (TF or otherwise) is an important task, and de- 21

veloping novel proof techniques can be vital to advancing the state of the art (in addition 22

to providing an additional proof of security which, itself, is interesting). Since TF-QKD 23

can already be demonstrated experimentally over long distances [26,27] (even up to over 24

800km [28]), it is important to study, rigorously, the underlying security proofs for these 25

systems as they are applicable using today’s technology. Doing so affords researchers 26

more mathematical tools to handle new protocols, and may even lead to improvements in 27

performance under certain conditions as newer techniques may provide more optimistic 28

security results in some cases (or, more formally, more optimistic bounds on the quantum 29

min entropy between the users and an adversary system). 30

In this paper, we re-visit a TF-QKD protocol introduced in [19] and develop an entirely 31

new proof of security using methods of quantum sampling as introduced in [29], and 32

sampling based entropic uncertainty relations [30]. Our proof is fairly simple and can be 33

used potentially for other TF-QKD protocols. In particular, our method might be easily 34

adapted to the sending-not-sending TF protocol [31]. 35

While our new proof does not improve on previously produced key-rates, we feel 36

it is still interesting to develop alternative methods. Indeed, by now numerous proofs of 37

security have been performed for BB84 all leading to the same result; yet different methods 38

can be applied to different protocols later “down the road,” and so developing alternative 39

techniques is an important area of research in quantum cryptography. We also make two 40

small changes to the original protocol (which our new security proof can handle easily) and 41
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show some interesting behavior of these new protocols, including improved performance. 42

We are not aware of these two variants in the current literature, making them a second 43

contribution of this paper. 44

2. Preliminaries 45

We now introduce some notation and other preliminary concepts and technical lemmas 46

that will be important in our work later. Let Ad = {0, 1, · · · , d − 1} be a d-dimensional 47

alphabet. Given a word q ∈ AN
d and a subset t ⊂ {1, · · · , N}, we write qt to denote 48

the substring of q which is indexed by t and q−t to mean the substring indexed by the 49

complement of t. If t is a singleton t = {i}, we often simply write qi to represent the i’th 50

character of q. 51

Given δ > 0 and two real numbers x, y, then we write: 52

x ∼δ y ⇐⇒ |x − y| ≤ δ. (1)

Given a word q ∈ AN
d and a particular character a ∈ Ad, we write #a(q) to mean the 53

number of times a appears in the word q, namely: 54

#a(q) = |{j : qj = a}|. (2)

We use #a,b(q) to mean the number of times a and b appear in q, namely: 55

#a,b(q) = |{j : qj = a or qj = b}|. (3)

Let X be a random variable taking value xi with probability pi. Then H(X) denotes 56

the Shannon entropy of X, namely H(X) = −∑i pi log2 pi. All logarithms in the paper are 57

base two unless otherwise specified. We use h(x) to mean the binary Shannon entropy, 58

defined h(x) = −x log2 x − (1 − x) log2(1 − x). 59

A quantum state or density operator is a Hermitian positive semi-definite operator of 60

unit trace, acting on some Hilbert space H. If ρAE acts on HA ⊗HE, we write ρA to be the 61

quantum state resulting from a partial trace over E, namely ρA = trEρAE. This notation is 62

similar for states acting on additional Hilbert spaces. 63

The Bell basis [32–34] is spanned by states {|φ0〉 , · · · , |φ3〉}, where:

|φ0〉 =
1√
2
(|00〉+ |11〉) = 1√

2
(|++〉+ |−−〉) (4)

|φ1〉 =
1√
2
(|00〉 − |11〉) = 1√

2
(|+−〉+ |−+〉)

|φ2〉 =
1√
2
(|01〉+ |10〉) = 1√

2
(|++〉 − |−−〉)

|φ3〉 =
1√
2
(|01〉 − |10〉) = 1√

2
(|+−〉 − |−+〉)

where, above, |+〉 and |−〉 are the Hadamard basis states, |±〉 = 1√
2
(|0〉 ± |1〉). Given a 64

word i ∈ AN
4 , we write |φi〉 to mean |φi〉 = |φi1〉 ⊗ · · · |φiN

〉. 65

Given a density operator ρA we write H(A)ρ to be the von Neumann entropy of ρA 66

defined to be H(A)ρ = −tr(ρA log2 ρA). The conditional quantum min entropy is defined 67

to be [35]: 68

H∞(A|E)ρ = sup
σE

max
{

λ ∈ R : 2−λ IA ⊗ σE ≥ ρAE

}
, (5)

where A ≥ B is used to indicate that the operator A − B is positive semi-definite. The 69

smooth conditional min entropy, denoted Hǫ
∞(A|E)ρ, is defined to be [35]: 70

Hǫ
∞(A|E)ρ = sup

σAE

H∞(A|E)σ, (6)
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where the supremum is over all density operators σAE such that ||ρAE − σAE|| ≤ ǫ, where 71

||A|| is the trace distance of operator A. 72

Quantum min entropy is a vital quantity in quantum cryptography as it relates directly 73

to the number of uniform random secret bits one may extract from a quantum state [35]. In 74

particular, given ρAE where the A register is classical and the E register is quantum, privacy 75

amplification may be used to extract a uniform secret bit string. Let σKE be the result after 76

applying the privacy amplification process to ρAE. Then, it holds that [35]: 77

∣∣∣∣
∣∣∣∣σKE − I

2ℓ
⊗ σE

∣∣∣∣
∣∣∣∣ ≤ 2−

1
2 (Hǫ

∞(A|E)ρ−ℓ) + 2ǫ = ǫPA. (7)

In particular, after privacy amplification, the resulting output is almost a uniform random 78

ℓ-bit string, independent of Eve’s system. To determine a suitable size for ℓ, one need only 79

measure the min entropy of the state ρAE before privacy amplification. For a given ǫPA, the 80

final key is said to be ǫPA secure. 81

Quantum min entropy has a number of useful properties that we will require later. 82

First, given a state of the form ρAEZ = ∑z pz |z〉 〈z| ⊗ ρ
(z)
AE (i.e., a state classical on Z), it 83

holds that: 84

H∞(A|E)ρ ≥ H∞(A|EZ)ρ ≥ min
z

H∞(A|E)ρ(z) . (8)

The following lemma allows us to bound the entropy in a state after performing a 85

certain type of quantum operation on it, if we know the min entropy in a suitable state that 86

is close in trace distance: 87

Lemma 1. (From [36]): Let ρ and σ be two quantum states and F be some CPTP map that
acts as follows:

F (ρ) = ∑
x

px |x〉 〈x| ⊗ ρ
(x)
AE

F (σ) = ∑
x

qx |x〉 〈x| ⊗ σ
(x)
AE

Then it holds that: 88

Pr
(

H4ǫ+3ǫ1/3

∞ (A|E)ρ(x) − H∞(A|E)σ(x) ≥ 0
)
≥ 1 − 2ǫ1/3, (9)

where the probability is over the outcome x and ǫ ≥ 1
2 ||ρ − σ||. 89

Finally, the following lemma lets us bound the min entropy of a superposition of Bell 90

states (the lemma is found in [37], though its proof uses techniques similar to those in 91

[29,35] for bounding the min entropy of a general superposition state): 92

Lemma 2. (From [37] based on a proof in [29,35]): Let Q ∈ [0, 1/2] and: 93

|ψ〉ABE = ∑
i∈AN

4
1
N #1,3(i)≤Q

αi |φi〉AB |Ei〉 = ∑
i

αi |φi1〉A1B1
|φi2〉A2B2

· · · |φiN
〉

AN BN
|Ei〉 , (10)

where, recall #1,3(i) is the number of times 1 and 3 appear in the string i. Let ρAE be the 94

state resulting from taking |ψ〉, measuring all A particles in the Z basis and then tracing 95

out the B register. Then, it holds that: 96

H∞(A|E)ρ ≥ N(1 − h(Q)). (11)

2.1. Quantum Sampling 97

Our new proof of security will utilize a quantum sampling framework introduced by 98

Bouman and Fehr in [29]. In this section we review some of their work that we will need 99

later. 100
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A classical sampling strategy over AN
d is a triple of algorithms. First, is a process that 101

randomly chooses a subset t ⊂ {1, · · · , N} with probability PT(t). Second, is a guessing 102

function g : A∗
d → R. Third is a target function r : A∗

d → R. The strategy will first choose 103

a random subset and observe qt. Next, a guess is computed g(qt); this guess should be 104

δ-close to the value of the target function, but evaluated on the unobserved portion of the 105

string r(q−t). That is, g(qt) ∼δ r(q−t). 106

Formally, fix δ > 0 and a subset t. Then, define the set of good words to be: 107

Gt = {q ∈ AN
d : g(qt) ∼δ r(q−t)}. (12)

Recall, we write x ∼δ y if and only if |x − y| ≤ δ. A good word is one where the guess 108

is always δ-close to the target for the given subset t. The classical error probability of the 109

sampling strategy is defined simply to be: 110

ǫcl
δ = max

q∈AN
d

Prt(q 6∈ Gt). (13)

From this definition, it holds that for any word q ∈ AN
d , if the sampling strategy is 111

performed on it, the probability that it fails (namely that the guess is not δ-close to the 112

target) is at most ǫcl
δ . 113

The main result from [29] was to extend this to the quantum domain. A classical 114

sampling strategy can be promoted to a quantum one in a natural way: given a quantum 115

state |ψ〉AE where the A register consists of N qudits, each qudit of dimension d, one chooses 116

a subset t and measures the qudits, indexed by t, in some d-dimensional orthonormal basis 117

{|0〉B , · · · , |d − 1〉B}. This measurement results in a classical outcome qt. Then, according 118

to Bouman and Fehr’s main result, the unmeasured portion behaves like a superposition of 119

words that are δ close to the guess (with respect to the given target). To formalize this, fix a 120

basis B and consider the following space: 121

span(Gt)⊗HE = span
{
|q〉B : q ∈ Gt

}
⊗HE. (14)

This subspace is called the ideal subspace; a state within it is called an ideal state. Note 122

that if one is given an ideal state |νt〉 (which only makes sense at the moment for a specific 123

subset t according to this definition and thus the superscript index), and if one performs a 124

measurement in the B basis on subset t resulting in outcome qt ∈ A|t|
d , the post measured 125

state must collapse to one that is of the form: 126

|νt
q〉 = ∑

i∈AN−|t|
4

g(qt)∼δr(i)

αi |i〉B ⊗ |Ei〉 . (15)

Namely, it must collapse to a superposition of words that are δ-close to the observed value 127

(again, with respect to the given guess and target functions). Of course, states may not be 128

necessarily ideal - the following theorem, however, says that for any quantum state, one 129

can define a collection of ideal states that are ǫ-close in trace distance to the given state. 130

Theorem 1. (From [29] though re-worded slightly for our application and approach): Let 131

δ > 0, B be a d-dimensional orthonormal basis, and |ψ〉AE be a pure quantum state where 132

the A register consists of N qudits, each qudit of dimension d. It is assumed that the 133

dimension of each system N is known. Given a classical sampling strategy with error 134

probability ǫcl
δ , then there exists a collection of ideal states {|νt〉}t, indexed by all subsets t 135

such that PT(t) > 0, such that: 136

|νt〉 ∈ span(Gt)⊗HE (16)
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and, furthermore: 137

1
2

∣∣∣∣∣

∣∣∣∣∣∑
t

PT(t) |t〉 〈t| ⊗ |ψ〉 〈ψ| − ∑
t

PT(t) |t〉 〈t| ⊗ |νt〉 〈νt|
∣∣∣∣∣

∣∣∣∣∣ ≤
√

ǫcl
δ . (17)

Note that, the original proof of Theorem 1 assumes Eve’s ancilla is finite dimensional. 138

This is without loss of generality in our proof since we are considering ideal sources. 139

Before leaving this section, we discuss an important sampling strategy which we will 140

use later. This strategy was analyzed in [37] for Bell states. Given a word q ∈ An+m
4 , choose 141

a subset of size m uniformly at random from all m-size subsets of {1, · · · , n + m}. The 142

guess and target functions are simply g(x) = r(x) = 1
|x|#1,3(x). This defines the set of good 143

words to be: 144

Gt =

{
q ∈ An+m

4 :
1
m

#1,3(qt) ∼δ
1
n

#1,3(q−t)

}
, (18)

where, recall, #1,3(qt) is the number of 1’s and 3’s in the word qt. 145

The failure probability of this strategy was proven in [37] to be: 146

ǫcl
δ ≤ 2 exp

(
−δ2 m(n + m)

n + m + 2

)
. (19)

3. Protocol 147

We now describe the specific TF-QKD protocol, introduced in [19], which we will be 148

analyzing. A single round of the quantum communication stage consists of the following 149

operations: 150

1. Alice prepares an entangled quantum state of the form: 151

|ψa〉 =
√

q |0, v〉Aa +
√

1 − q |1, p〉Aa

where the A register is a private qubit memory while the a register consists of a single 152

photon in either the vacuum state |v〉a or a non-vacuum state |p〉a. This register will 153

be transmitted to a central server. Finally, q is a publicly known parameter chosen by 154

Alice and Bob which they will optimize over later. 155

2. Similarly Bob creates the state: 156

|ψb〉 =
√

q |1, v〉Bb +
√

1 − q |0, p〉Bb .

The A and B registers are kept private while the a and b registers are sent to a central 157

server. 158

3. The central server routes the incoming ab registers through a 50 : 50 beam splitter 159

with two detectors D0 and D1. The outcome of the detectors are reported to Alice 160

and Bob. The possible outcomes are “0” (meaning detector D0 clicked); “1” (meaning 161

detector D1 clicked); “vac” (meaning no detector clicked); and “other” (meaning any 162

other outcome, such as both detectors clicking). 163

4. If the server reported “vac” or “other”, Alice and Bob discard this round and their 164

private qubits. If the server reported “1” Bob applies a Pauli Z gate to his private 165

ancilla, flipping the phase of the |1〉B state. 166

5. If the server reported either “0” or “1”, Alice and Bob should now hold a Bell state 167

|φ0
0〉AB. They will measure their private qubits in either the Z or the X basis. Some of 168

the Z and X measurements will be used to test the fidelity of the state; the remaining 169

Z basis states will be used for key distillation. 170

We note that there is a simple change to the above protocol which turns it into an 171

equivalent prepare-and-measure protocol where Alice and Bob do not need to measure or 172

hold private memories. For more details on that, the reader is referred to the original paper 173

[19]. 174
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To see why the above protocol works, consider a single round. At start, Alice and Bob
create the joint state:

|ψ0〉 = (
√

q |0, v〉Aa +
√

1 − q |1, p〉A,a)⊗ (
√

q |1, v〉Bb +
√

1 − q |0, p〉Bb)

∼= q |0, 1, v, v〉ABab +
√

q(1 − q)(|0, 0, v, p〉ABab + |1, 1, p, v〉ABab) + (1 − q) |1, 0, p, p〉ABab .

(20)

At this point the ab registers are sent through a 50 : 50 beam splitter. We denote the
output modes of the BS to be D0 and D1. The action of this splitter we take to simply be
(up to phase rotation):

BS |v, v〉ab = |v〉01

BS |p, v〉ab =
1√
2
(|D0〉01 + |D1〉01)

BS |v, p〉ab =
1√
2
(|D0〉01 − |D1〉01)

BS |p, p〉ab = |ψ2〉01

where |ψ2〉01 is the state resulting from the action of the beam splitter on receipt of two 175

photons, one from Alice and one from Bob; the exact description of this state is not important 176

for the following discussion. 177

After applying the BS to Equation 20, but before measuring the output of the BS, the 178

state evolves to (after permuting subspaces): 179

q |v〉01 |01〉AB +
√

q(1 − q)(|0〉01 |φ0〉AB − |1〉01 |φ1〉AB) + (1 − q) |ψ2〉01 |10〉AB . (21)

At this point, a measurement of the BS output register is performed and the outcome 180

broadcast. Assuming 1 − q is “small”, whenever a “D0” or “D1” is measured, Alice and 181

Bob’s state should collapse to an entangled Bell state; when the outcome is D1, Bob will 182

apply a Pauli Z gate to transform the state |φ1〉 to |φ0〉. Of course 1 − q > 0, so there will 183

be some error in the multi-photon case, and this is something that users must optimize 184

over. Thus, interestingly, for this TF-QKD protocol, even when there is no channel noise 185

and everything is ideal, there will always be some error in Alice and Bob’s raw key which 186

error correction must later repair. 187

At this point, we comment that two varieties of the above protocol may be introduced 188

which we denote Π-Zero and Π-One. For Π-Zero, Alice and Bob will only use rounds 189

where the server reports an outcome of D0 (if any other outcome is reported, including D1, 190

that round is discarded); similarly, Π-One is defined to be the same, but Alice and Bob will 191

only use rounds where the server reports an outcome of D1. The original protocol, where 192

Alice and Bob use rounds where the server reports either D0 or D1 will be denoted Π-Total. 193

While Π-Zero and Π-One may discard more rounds, we show later that improvements 194

in key-rates can be found in some instances based on channel statistics. This is due to the 195

asymmetric nature of the protocol (which we discuss in more detail in Section 5.1). We are 196

not aware of these slight modifications being analyzed in prior literature. 197

3.1. Entanglement Based Version 198

Instead of analyzing the above protocol we will, instead, analyze the following entan- 199

glement based protocol. It is not difficult to see that security of the following entanglement 200

based version will imply security of the above prepare-and-measure version. The entangle- 201

ment based version operates as follows: 202

1. Eve creates a quantum state |ψ〉ABCE, where the A and B portions consist of N qubits 203

each, while the C portion lives in a Hilbert space spanned by orthonormal basis C = 204

{|“c′′〉} for all c ∈ {“0′′, “1′′, “v′′, “?′′}N (here, “v” will denote a vacuum observation 205
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and “?” an “other” event). The E portion is arbitrary. Alice and Bob are given the A 206

and B registers while the C register is sent to a trusted third party Charlie. 207

2. Charlie measures his entire C register in the C basis, broadcasting the result to all 208

parties. Alice and Bob discard all qubits rounds where the reported outcome was 209

“vac” or “?”. Let Nc be the number of remaining systems not discarded. 210

3. Alice and Bob choose a random subset t ⊂ {1, · · · , Nc} of size mc (which may depend 211

on Nc), and measure their respective systems, indexed by this subset, in the X basis 212

which they subsequently broadcast to determine the fidelity of their state. 213

4. Alice and Bob measure the remaining systems in the Z basis, leading to their raw key. 214

They then further process this through error correction and privacy amplification as 215

normal. 216

Entanglement based versions of Π-Zero and Π-One are defined similarly, with only 217

step 2 changing. 218

Note that in the entanglement based version, Bob does not apply a Pauli correction 219

gate - since Eve gets to prepare not only Alice and Bob’s state, but also the state that would 220

normally have been output from the BS, it is to Eve’s advantage to “simulate” the Pauli 221

correction before sending to Bob (though, of course, she doesn’t have to - however not 222

doing so would lead to additional X basis noise). It is not difficult to see that security of 223

the entanglement based version, above, will imply security of the actual TF-QKD protocol. 224

In the next section, we show a new proof of security, deriving an entropy bound for the 225

entanglement based version, which will subsequently produce a key-rate bound for the 226

TF-QKD protocol. 227

We note that the protocols above are not novel - they are, at most, very slight variations 228

of protocols from [19]. Π-Total is identical to prior work in [19], while Π-Zero and Π-One 229

are only minor variations of that protocol. As discussed in the introduction, the novelty of 230

our work is in an alternative security proof, derived in the following section. 231

4. New Security Proof 232

We now present our new proof of security for the above TF-QKD protocol. Our proof 233

uses the quantum sampling framework of Bouman and Fehr [29], discussed above, along 234

with proof techniques used for sampling-based entropic uncertainty relations [30]. Namely, 235

we prove security of the entanglement based version which will imply security of the 236

prepare and measure version. The main result is in the following theorem: 237

Theorem 2. Let |ψ〉ABCE be the state Eve prepares where the A and B portions are N qubits 238

each and the C portion is in a Hilbert space of dimension 4N . After Charlie’s measurement 239

of the C register, let c ∈ {0, 1, v, ?}N be the resulting outcome and |ψc〉ABE be the post 240

measured state (tracing out the measured C register). Let Nc be the number of signals not 241

discarded; namely Nc = #0,1(c) for Π-Total, Nc = #0(c) for Π-Zero, and Nc = #1(c) for 242

Π-One. Alice and Bob will choose a random sample of size mc < Nc/2, measure those 243

qubits in the X basis and determine the relative number of errors in that basis, denoted QX . 244

Then it holds that, except with probability ǫ f ail = 2ǫ1/3, if the remaining Nc − mc signals 245

are measured in the Z basis: 246

H4ǫ+3ǫ1/3

∞ (A|E) ≥ (Nc − mc)(1 − h(QX + δc)), (22)

where: 247

δc =

√
(Nc + 2) ln(2/ǫ2)

mcNc
. (23)

Proof. Consider the post-measured state |ψc〉ABE as discussed in the theorem statement. 248

Without loss of generality, we may write this state as: 249

|ψc〉ABE = ∑
i∈AN

4

αi |φi〉 |Ec
i 〉 . (24)
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At this point, Alice and Bob discard certain systems based on the value of c. For instance, 250

whenever cj ∈ {v, ?} they will discard that round; furthermore, if they are running Π-Zero 251

(respectively Π-One) they will discard rounds when cj = 1 (respectively cj = 0). This 252

effectively traces these systems out. Let Nc be defined as in the theorem statement and 253

RC = N − NC (the number of signals Rejected). It is easy to see that this operation, 254

effectively tracing out certain systems of A and B, yields a mixed state which may be 255

written as: 256

ρc
ABE = ∑

r∈ARc
4

p(r)P


 ∑

i∈ANc
4

βi|r |φi〉 |Ei|r〉




︸ ︷︷ ︸
|ψc,r〉ABE

= ∑
r∈ARc

4

p(r) |ψc,r〉 〈ψc,r|ABE , (25)

where P(|z〉) = |z〉 〈z|. Above, the A and B registers of |ψc,r〉ABE are of Nc qubits each. 257

At this point, Alice and Bob choose a random subset t of size mc < Nc/2 (which may 258

depend on Nc) with uniform probability PT(t), and measure their respective systems in the 259

X basis, observing the number of errors in this test set. The remaining qubits are measured 260

in the Z basis. Our goal is to compute the min entropy of this final Z basis measurement. 261

We now switch to ideal states to complete our analysis. Fix r and c. Then, by Theorem 262

1, we construct ideal states {|φc,r,t〉} such that for every r, c it holds that: 263

|φc,r,t〉 ∈ span(Gt)⊗HE = span
{
|φi〉 : i ∈ ANc

4 and
1

mc
#1,3(it) ∼δ

1
nc

#1,3(i−t)

}
⊗HE

(26)
and, also: 264

1
2

∣∣∣∣∣

∣∣∣∣∣∑
t

PT(t) |t〉 〈t| ⊗ |ψc,r〉 〈ψc,r| − ∑
t

PT(t) |t〉 〈t| ⊗ |φc,r,t〉 〈φc,r,t|
∣∣∣∣∣

∣∣∣∣∣ ≤
√

ǫcl
δ . (27)

Now, using the sampling strategy discussed earlier, with error probability shown in Equa-

tion 19, and choosing δ as in Equation 23, we have
√

ǫcl
δ ≤ ǫ. The above is true for any r

and c; of course, by the triangle inequality, it also holds that, for every c, we have:

1
2

∣∣∣∣∣

∣∣∣∣∣∑r

p(r)∑
t

|t〉 〈t| ⊗ |ψc,r〉 〈ψc,r| − ∑
r

p(r)∑
t

|t〉 〈t| ⊗ |φc,r,t〉 〈φc,r,t|
∣∣∣∣∣

∣∣∣∣∣

≤1
2 ∑

r

p(r)

∣∣∣∣∣

∣∣∣∣∣∑
t

PT(t) |t〉 〈t| ⊗ |ψc,r〉 〈ψc,r| − ∑
t

PT(t) |t〉 〈t| ⊗ |φc,r,t〉 〈φc,r,t|
∣∣∣∣∣

∣∣∣∣∣ ≤ ǫ. (28)

Let X0 = |++〉 〈++|+ |−−〉 〈−−| be the POVM element measuring Alice and Bob’s 265

qubit in the X basis and reporting the same result (i.e., no error); let X1 = I − X0 be the 266

same, but when Alice and Bob’s outcomes are different (i.e., an X basis error). Note that 267

X1 |φj〉 = 0 whenever j = 0, 2. Thus, X1 can only be observed if j = 1, 3 (see Equation 4). 268

After choosing t and measuring using POVM {X0, X1}, resulting in outcome qX ∈ 269

{0, 1}mc , it is clear from Equation 26, that the post measured state must collapse to one that 270

may be written in the form: 271

|φc,r,t
qX

〉 = ∑
i∈Amc

4
#1,3(i)=#1(qX)

p(i)P




∑
j∈Anc

4
1

nc
#1,3(j)∼δ

1
mc

#1,3(i)

|φj〉 |Ẽj|i〉




. (29)
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Alice and Bob subsequently measure their remaining particles in the Z basis leading 272

to their raw keys. Denote by σc,r,t
AE the resulting density operator. Using Lemma 2, along 273

with Equation 8, we have: 274

H∞(A|E)σc,r,t ≥ nc(1 − h(#1(qX) + δc)). (30)

Lemma 1 and Equation 28 completes the proof. 275

The actual key-rate of the TF-QKD protocol, then, follows immediately and is stated 276

in the corollary below: 277

Corollary 4.1. Let ǫ > 0 be given. Then, except with probability ǫ f ail = 2ǫ1/3, if the 278

key-length of the TF-QKD protocol is set to: 279

ℓ = nc(1 − h(QX + δc))− leakEC − 2 log2
1
ǫ

(31)

where leakEC is the information leaked during error correction, the final resulting key is 280

ǫPA-secure, for ǫPA = 9ǫ + 4ǫ1/3. 281

Proof. This follows immediately from Theorem 2 and Equation 7. 282

We note that our key-rate above agrees, asymptotically, with prior work from [19] 283

for Π-Total and so our new proof above is simply an alternative method, not one to give 284

higher results necessarily. 285

5. Evaluation 286

We now evaluate the key-rate assuming a lossy channel with detector mismatches 287

and inefficiencies. In particular, each channel will have a transmittance of
√

η. We will 288

assume, for evaluation purposes, that the server is honest, but has faulty devices. Thus, the 289

server will perform the correct measurement, however the detectors will have non-zero 290

dark count rate pd and will have non-unit efficiency f . The measurement may also be 291

misaligned in that it may report “0” when it should have, ideally, observed “1”. 292

To evaluate, we require certain expected values for Nc along with the expected noise. 293

Let p(0) (respectively p(1)) be the probability that the server sends the message “0” (re- 294

spectively “1”). Then the expected value of NC is simply N(p(0) + p(1)), where N is the 295

total number of rounds Alice and Bob perform the protocol. To find these values under our 296

evaluation setup, we trace the protocol’s execution. 297

First, consider the joint state created by Alice and Bob:
(√

q |0, v〉Aa +
√

1 − q |1, p〉Aa

)
⊗

(√
q |1, v〉Bb +

√
1 − q |0, p〉Bb

)

∼=q |0, 1, v, v〉ABab + (1 − q) |1, 0, p, p〉ABab +
√

q(1 − q)(|0, 0, v, p〉ABab + |1, 1, p, v〉ABab).

(32)

The qubits are sent through a lossy channel which, as in [19], we model as a beamsplit-
ter with transmittance

√
η. In particular:

BS |p〉 = √
η |p〉+

√
1 − η |ṽ〉

BS |v〉 = |v〉 .

Note we introduce a new state |ṽ〉 to ensure the above is unitary, however |v〉 and |ṽ〉 298

cannot be distinguished by the parties and will look like a vacuum in either case. 299



Version December 15, 2023 submitted to Appl. Sci. 10 of 14

The above causes the joint state to evolve to:

q |01vv〉+ (1 − q) |10〉 (η |pp〉+ (1 − η) |ṽṽ〉+
√

η(1 − η)(|pṽ〉+ |ṽ, p〉))

+
√

q(1 − q)(|00〉 (√η |v, p〉+
√

1 − η |v, ṽ〉) + |11〉 (√η |p, v〉+
√

1 − η |ṽ, v〉)) (33)

At this point, the system enters the server’s measurement device which, before the
actual measurement is performed, we model as a unitary operator C where for any x, y ∈
{v, ṽ}:

C |x, y〉 = |x, y〉
C |p, x〉 = (α |D0〉+ β |D1〉) |x〉
C |x, p〉 = (β |D0〉 − α |D1〉) |x〉
C |p, p〉 = |ψ2〉

Ideally, α = β = 1/
√

2. Note that the additional |x〉 system in the above definitions are 300

used only to ensure unitarity of C and the fact that the server’s subsequent measurement 301

cannot distinguish between |v〉 and |ṽ〉. Following the application of C, the server will 302

measure the first of the two systems in its control leading to the reported outcome. Note 303

that, since |v〉 and |ṽ〉 are technically indistinguishable, both observations are reported 304

simply as a “vacuum” by the server. 305

Applying C to the joint state in Equation 33, but before the actual measurement, yields:

q |01〉 |vv〉+ (1 − q) |10〉 (η |ψ2〉+ (1 − η) |ṽ, ṽ〉

+
√

η(1 − η)([α + β] |D0, ṽ〉+ [α − β] |D1, ṽ〉))

+
√

q(1 − q)(|00〉 (√η(β |D0, v〉 − α |D1, v〉) +
√

1 − η |v, ṽ〉))

+
√

q(1 − q)(|11〉 (√η(α |D0, v〉+ β |D1, v〉) +
√

1 − η |ṽ, v〉)) (34)

At this point, the server measures and reports the outcome. This measurement will be
affected by dark counts (pd) and the detector efficiency ( f ). For simplicity in evaluation,
we will simply assume that the double-photon outcomes (namely, |ψ2〉) do not interfere,
constructively or destructively, with the other terms in the |10〉AB term. We will simply
assume, then, that the probability of observing a |D0〉 in |ψ2〉 is p0

2 and the probability
of observing |D1〉 is p1

2. It turns out that, since q is large generally, this term does not
significantly affect the key-rate and so this assumption does not play a major role in hurting
or benefiting the key-rate. From this, we have:

p(0) = q2 pd

2
+ (1 − q)2

(
η2 p0

2 + (1 − η)2 pd

2
+ η(1 − η)(α + β)2 f

)

+ q(1 − q)
(

ηβ2 f + (1 − η)
pd

2
+ ηα2 f + (1 − η)

pd

2

)

= q2 pd

2
+ (1 − q)2

(
η2 p0

2 + (1 − η)2 pd

2
+ η(1 − η)(α + β)2 f

)

+ q(1 − q)(η f + (1 − η)pd) (35)

Similarly, we find:

p(1) = q2 pd

2
+ (1 − q)2

(
η2 p1

2 + (1 − η)2 pd

2
+ η(1 − η)(α − β)2 f

)

+ q(1 − q)(η f + (1 − η)pd)
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Many interesting future problems remain. Perhaps the most fruitful would be to 349

further explore the two variants and see if additional improvements can be made. Fur- 350

thermore, a finite-key proof using decoy-state methods (using our sampling based proof 351

approach) would be interesting, especially for Π-Zero and Π-One. Adapting our proof 352

technique to other TF-QKD protocols would also be very interesting; a particular candidate 353

to start with would be the sending or not sending (SNS) TF-QKD protocol [31] due to its 354

similar encoding mechanism. Also, it would be interesting to discover whether or not 355

asymmetric protocols (similar to Π-Zero and Π-One analyzed in this work) can be defined 356

and shown to be more efficient for such protocols like the SNS TF-QKD mechanism. 357

Also, leading into more practical device considerations, it is known that for single 358

photon interference protocols (such as the TF protocol discussed in this paper), there are 359

still challenges with matching the mode of the photon and detector which ultimately affects 360

the protocol’s performance [38]. Such issues must be considered in future work to address 361

applicability issues of the protocol. 362
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