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Abstract: Twin Field QKD (TF-QKD) protocols allow for increased key-rates over long distances
when compared to standard QKD protocols. They are even able to surpass the PLOB bound without
the need for quantum repeaters. In this work, we revisit a previous TF-QKD protocol and derive a
new, simple, proof of security for it. We also look at several variants of the protocol and investigate
their performance, showing some interesting behavior due to the asymmetric nature of the protocol.
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1. Introduction

Quantum key distribution (QKD) allows for two parties to establish a shared secret
key that is secure even against computationally unbounded adversaries. This is a task that
is impossible to achieve using classical communication alone, unless computational as-
sumptions are made on the adversary’s capabilities. However, QKD has several limitations,
especially in terms of distance. See [1-3] for a general survey on QKD.

In general the key-rate of a QKD system is severely restricted by the total transmittance
of the channel between parties. Several strategies can mitigate this, including trusted node
networks [4-6] and quantum repeaters [7-9]. Quantum network research, in general, is a
rapidly growing topic both for QKD [10] and the more general Quantum Internet [11] (the
latter of which can support QKD, but also other applications such as distributed computing
[12-14] and distributed quantum sensing [15-18]). However, an interesting third alternative
to boosting QKD distances are so-called twin-field QKD (TF-QKD) protocols [19-24] which
can even beat the PLOB bound [25].

Proving security of QKD protocols (TF or otherwise) is an important task, and de-
veloping novel proof techniques can be vital to advancing the state of the art (in addition
to providing an additional proof of security which, itself, is interesting). Since TF-QKD
can already be demonstrated experimentally over long distances [26,27] (even up to over
800km [28]), it is important to study, rigorously, the underlying security proofs for these
systems as they are applicable using today’s technology. Doing so affords researchers
more mathematical tools to handle new protocols, and may even lead to improvements in
performance under certain conditions as newer techniques may provide more optimistic
security results in some cases (or, more formally, more optimistic bounds on the quantum
min entropy between the users and an adversary system).

In this paper, we re-visit a TF-QKD protocol introduced in [19] and develop an entirely
new proof of security using methods of quantum sampling as introduced in [29], and
sampling based entropic uncertainty relations [30]. Our proof is fairly simple and can be
used potentially for other TF-QKD protocols. In particular, our method might be easily
adapted to the sending-not-sending TF protocol [31].

While our new proof does not improve on previously produced key-rates, we feel
it is still interesting to develop alternative methods. Indeed, by now numerous proofs of
security have been performed for BB84 all leading to the same result; yet different methods
can be applied to different protocols later “down the road,” and so developing alternative
techniques is an important area of research in quantum cryptography. We also make two
small changes to the original protocol (which our new security proof can handle easily) and
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show some interesting behavior of these new protocols, including improved performance.

We are not aware of these two variants in the current literature, making them a second
contribution of this paper.

2. Preliminaries

We now introduce some notation and other preliminary concepts and technical lemmas
that will be important in our work later. Let A; = {0,1,--- ,d — 1} be a d-dimensional
alphabet. Given a word g € Aé\] and a subset t C {1,---,N}, we write g; to denote
the substring of g which is indexed by f and g_ to mean the substring indexed by the
complement of t. If t is a singleton t = {i}, we often simply write g; to represent the i’th
character of 4.

Given ¢ > 0 and two real numbers x, y, then we write:

X~y = |x—yl <o ey

Given a word q € AY and a particular character a € A, we write #(q) to mean the
number of times a appears in the word g, namely:

#alq) = j g5 = a3, 2
We use #, ,(9) to mean the number of times a and b appear in g, namely:
ap(q) = j : q;=aorg; ="b}|. 3)

Let X be a random variable taking value x; with probability p;. Then H(X) denotes
the Shannon entropy of X, namely H(X) = — Y, p;log, p;. All logarithms in the paper are
base two unless otherwise specified. We use hi(x) to mean the binary Shannon entropy,
defined h(x) = —xlog, x — (1 — x)log,(1 — x).

A quantum state or density operator is a Hermitian positive semi-definite operator of
unit trace, acting on some Hilbert space H. If p4r acts on H4 @ HEg, we write p4 to be the
quantum state resulting from a partial trace over E, namely p4 = trppar. This notation is
similar for states acting on additional Hilbert spaces.

The Bell basis [32-34] is spanned by states {|¢o), - - -, [¢3)}, where:

90) = 7<|oo>+|n>> 7<\++ ) )
1) = 7<|oo> 1)) = 7<\+ )+ —+))
|¢2>=\72(|01>+|10>) 7<\++ --))
93) = —=(J01) — [10)) = —=(]+—) — [—+))

S|

where, above, |+) and |—) are the Hadamard basis states, |+) = %(|O> +|1)). Given a

word i € AY, we write |¢;) to mean |¢;) = |¢;,) ® - - |¢hiy,)-

Given a density operator p4 we write H(A), to be the von Neumann entropy of p4
defined to be H(A), = —tr(palog, pa). The conditional quantum min entropy is defined
to be [35]:

He(A|E), :supmax{AE]R D27 M @0 szE}, ®)
UE

where A > B is used to indicate that the operator A — B is positive semi-definite. The
smooth conditional min entropy, denoted Hg,(A|E),, is defined to be [35]:

HS,(A|E), = sup Heo(A|E),, (6)
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where the supremum is over all density operators o4 such that ||oar — cag|| < €, where
||Al| is the trace distance of operator A.

Quantum min entropy is a vital quantity in quantum cryptography as it relates directly
to the number of uniform random secret bits one may extract from a quantum state [35]. In
particular, given p 4y where the A register is classical and the E register is quantum, privacy
amplification may be used to extract a uniform secret bit string. Let oxg be the result after
applying the privacy amplification process to p 4. Then, it holds that [35]:

1
OKE — 77 ® OE

2l < 2 3(HE(AIE)=0) 4 0e — ¢p,. 7

In particular, after privacy amplification, the resulting output is almost a uniform random
{-bit string, independent of Eve’s system. To determine a suitable size for ¢, one need only
measure the min entropy of the state p og before privacy amplification. For a given €py, the
final key is said to be ep4 secure.

Quantum min entropy has a number of useful properties that we will require later.

First, given a state of the form papz = Y, p- |z) (z| ® pE:I)_: (i.e., a state classical on Z), it
holds that:
Heo(A[E), > Hu(A[EZ), > min Heo(A[E) . ®

The following lemma allows us to bound the entropy in a state after performing a
certain type of quantum operation on it, if we know the min entropy in a suitable state that
is close in trace distance:

Lemma 1. (From [36]): Let p and ¢ be two quantum states and F be some CPTP map that
acts as follows:

Flo) = Y_px|x) (x| @05}
F(o) = Y gx |x) (x| @ 0

Then it holds that:

Pr(HEP (AIE) ) — Hool A[E)y ) 2 0) 2 1—-2€73, ©)

where the probability is over the outcome x and € > 1||p — |-

Finally, the following lemma lets us bound the min entropy of a superposition of Bell
states (the lemma is found in [37], though its proof uses techniques similar to those in
[29,35] for bounding the min entropy of a general superposition state):

Lemma 2. (From [37] based on a proof in [29,35]): Let Q € [0,1/2] and:

|l/J>ABE = Z ai|4)i>AB|Ei> :Z"‘i|¢i1>A131 |¢i2>Asz'“‘¢iN>ANBN ‘Ei>/ (10)
ic AN i
n#15()<Q
where, recall #; 5(i) is the number of times 1 and 3 appear in the string i. Let p4r be the

state resulting from taking |¢), measuring all A particles in the Z basis and then tracing
out the B register. Then, it holds that:

Heo(A|E)p > N(1 = 1(Q)). (11)

2.1. Quantum Sampling

Our new proof of security will utilize a quantum sampling framework introduced by
Bouman and Fehr in [29]. In this section we review some of their work that we will need
later.
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A classical sampling strategy over Aé\] is a triple of algorithms. First, is a process that
randomly chooses a subset t C {1,---, N} with probability Pr(t). Second, is a guessing
function g : A — R. Third is a target function r : A — R. The strategy will first choose
a random subset and observe g;. Next, a guess is computed g(g;); this guess should be
d-close to the value of the target function, but evaluated on the unobserved portion of the
string r(g—¢). Thatis, g(q¢) ~s r(q—¢).

Formally, fix § > 0 and a subset . Then, define the set of good words to be:

G ={qe€ AY : glq:) ~5r(q-1)}- (12)

Recall, we write x ~; y if and only if |x — y| < J. A good word is one where the guess
is always J-close to the target for the given subset . The classical error probability of the
sampling strategy is defined simply to be:

e = max Pri(q & Gi). (13)
qeA}

From this definition, it holds that for any word g4 € Aé\’ , if the sampling strategy is
performed on it, the probability that it fails (namely that the guess is not é-close to the
target) is at most €9 .

The main result from [29] was to extend this to the quantum domain. A classical
sampling strategy can be promoted to a quantum one in a natural way: given a quantum
state |¢) ,p Where the A register consists of N qudits, each qudit of dimension d, one chooses
a subset t and measures the qudits, indexed by ¢, in some d-dimensional orthonormal basis
{\O)B Ly, |d— 1>B}. This measurement results in a classical outcome g;. Then, according
to Bouman and Fehr’s main result, the unmeasured portion behaves like a superposition of
words that are § close to the guess (with respect to the given target). To formalize this, fix a
basis B and consider the following space:

span(Gy) @ Hg = span{|q)B 1 g€ Qt} ® HE. (14)

This subspace is called the ideal subspace; a state within it is called an ideal state. Note
that if one is given an ideal state |v') (which only makes sense at the moment for a specific
subset t according to this definition and thus the superscript index), and if one performs a

measurement in the B basis on subset t resulting in outcome g; € A(‘;I, the post measured
state must collapse to one that is of the form:

=Y alhPelE). (15)
ieAffM
8(qs)~sr(i)

Namely, it must collapse to a superposition of words that are é-close to the observed value
(again, with respect to the given guess and target functions). Of course, states may not be
necessarily ideal - the following theorem, however, says that for any quantum state, one
can define a collection of ideal states that are e-close in trace distance to the given state.

Theorem 1. (From [29] though re-worded slightly for our application and approach): Let
d > 0, B be a d-dimensional orthonormal basis, and |¢) 4 be a pure quantum state where
the A register consists of N qudits, each qudit of dimension d. It is assumed that the
dimension of each system N is known. Given a classical sampling strategy with error
probability €, then there exists a collection of ideal states {|v) }+, indexed by all subsets ¢
such that Pr(t) > 0, such that:

[v') € span(Gt) ® He (16)
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and, furthermore:

< \fed. (17)

Y Pr(t)[6) (t @ |g) (gl = Y Pr(t) |t) (t @ [v') (V']

1
2

Note that, the original proof of Theorem 1 assumes Eve’s ancilla is finite dimensional.

This is without loss of generality in our proof since we are considering ideal sources.
Before leaving this section, we discuss an important sampling strategy which we will
use later. This strategy was analyzed in [37] for Bell states. Given a word g € A} ™™, choose
a subset of size m uniformly at random from all m-size subsets of {1,--- ,n + m}. The
1

guess and target functions are simply g(x) = r(x) = m#1[3(3€>. This defines the set of good

words to be: . .
Gr = {q € AP i3 (q1) ~s n#l,S(q—t)}f (18)

where, recall, #; 3(g;) is the number of 1’s and 3’s in the word g;.
The failure probability of this strategy was proven in [37] to be:

m(n+m
egl < 2exp<—52n_(|_m+g). (19)

3. Protocol

We now describe the specific TF-QKD protocol, introduced in [19], which we will be
analyzing. A single round of the quantum communication stage consists of the following
operations:

1. Alice prepares an entangled quantum state of the form:

[Ya) = V7 10,0) 0 + V1 =411, P) g,

where the A register is a private qubit memory while the a register consists of a single
photon in either the vacuum state |v), or a non-vacuum state |p),. This register will
be transmitted to a central server. Finally, g is a publicly known parameter chosen by
Alice and Bob which they will optimize over later.

2. Similarly Bob creates the state:

lp) = VA 1L,0)g, + /1 —=q0,p) g

The A and B registers are kept private while the 2 and b registers are sent to a central
server.

3. The central server routes the incoming ab registers through a 50 : 50 beam splitter
with two detectors Dy and D;. The outcome of the detectors are reported to Alice
and Bob. The possible outcomes are “0” (meaning detector Dy clicked); “1” (meaning
detector D; clicked); “vac” (meaning no detector clicked); and “other” (meaning any
other outcome, such as both detectors clicking).

4. If the server reported “vac” or “other”, Alice and Bob discard this round and their
private qubits. If the server reported “1” Bob applies a Pauli Z gate to his private
ancilla, flipping the phase of the |1) 5 state.

5. If the server reported either “0” or “1”, Alice and Bob should now hold a Bell state
|¢3) 45- They will measure their private qubits in either the Z or the X basis. Some of
the Z and X measurements will be used to test the fidelity of the state; the remaining
Z basis states will be used for key distillation.

We note that there is a simple change to the above protocol which turns it into an
equivalent prepare-and-measure protocol where Alice and Bob do not need to measure or

hold private memories. For more details on that, the reader is referred to the original paper
[19].
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To see why the above protocol works, consider a single round. At start, Alice and Bob
create the joint state:

[$0) = (V710,0) 4o + V1—=q|Lp)a,) @ (V411 0) g, + 1 —410,p)p)

=q00,1,9,0) apap, +1/7(1 = 49)(10,0,0,p) ppap, + 11,1, 9, 0) gpep) + (1= 4) [1,0, 9, P) apap -

(20)

At this point the ab registers are sent through a 50 : 50 beam splitter. We denote the
output modes of the BS to be Dy and D;. The action of this splitter we take to simply be
(up to phase rotation):

BS |va>ah - |U>01

1

BS|p,v), = ﬁ(\DOM + [D1)o1)
1

BS[v,p) = —=(IDo)o1 — |D1)o1)

V2
BS|p,pP)ap = 1$2)01

where [i2), is the state resulting from the action of the beam splitter on receipt of two
photons, one from Alice and one from Bob; the exact description of this state is not important
for the following discussion.

After applying the BS to Equation 20, but before measuring the output of the BS, the
state evolves to (after permuting subspaces):

719)01 101) 45 + 1/q(1 = 7) (10001 [90) ap — [Do1 [¢1) ap) + (1 — ) [¥2)1[10) g5 - (21)

At this point, a measurement of the BS output register is performed and the outcome
broadcast. Assuming 1 — ¢ is “small”, whenever a “Dy” or “D;” is measured, Alice and
Bob’s state should collapse to an entangled Bell state; when the outcome is D, Bob will
apply a Pauli Z gate to transform the state |¢;) to |¢o). Of course 1 — g > 0, so there will
be some error in the multi-photon case, and this is something that users must optimize
over. Thus, interestingly, for this TF-QKD protocol, even when there is no channel noise
and everything is ideal, there will always be some error in Alice and Bob’s raw key which
error correction must later repair.

At this point, we comment that two varieties of the above protocol may be introduced
which we denote I1-Zero and II-One. For I1-Zero, Alice and Bob will only use rounds
where the server reports an outcome of Dy (if any other outcome is reported, including Dy,
that round is discarded); similarly, I1-One is defined to be the same, but Alice and Bob will
only use rounds where the server reports an outcome of D;. The original protocol, where
Alice and Bob use rounds where the server reports either Dy or D; will be denoted II-Total.
While I1-Zero and I1-0One may discard more rounds, we show later that improvements
in key-rates can be found in some instances based on channel statistics. This is due to the
asymmetric nature of the protocol (which we discuss in more detail in Section 5.1). We are
not aware of these slight modifications being analyzed in prior literature.

3.1. Entanglement Based Version

Instead of analyzing the above protocol we will, instead, analyze the following entan-
glement based protocol. It is not difficult to see that security of the following entanglement
based version will imply security of the above prepare-and-measure version. The entangle-
ment based version operates as follows:

1. Eve creates a quantum state |¢) 4 5-p, Where the A and B portions consist of N qubits
each, while the C portion lives in a Hilbert space spanned by orthonormal basis C =
{|“c"y} forall c € {“0",“1",“v",“?"}N (here, “v” will denote a vacuum observation
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and “?” an “other” event). The E portion is arbitrary. Alice and Bob are given the A
and B registers while the C register is sent to a trusted third party Charlie.

2. Charlie measures his entire C register in the C basis, broadcasting the result to all
parties. Alice and Bob discard all qubits rounds where the reported outcome was
“vac” or “?”. Let N, be the number of remaining systems not discarded.

3. Alice and Bob choose a random subset t C {1, - -, N} of size m. (which may depend
on N;), and measure their respective systems, indexed by this subset, in the X basis
which they subsequently broadcast to determine the fidelity of their state.

4. Alice and Bob measure the remaining systems in the Z basis, leading to their raw key.
They then further process this through error correction and privacy amplification as
normal.

Entanglement based versions of I1-Zero and I1-One are defined similarly, with only
step 2 changing.

Note that in the entanglement based version, Bob does not apply a Pauli correction
gate - since Eve gets to prepare not only Alice and Bob’s state, but also the state that would
normally have been output from the BS, it is to Eve’s advantage to “simulate” the Pauli
correction before sending to Bob (though, of course, she doesn’t have to - however not
doing so would lead to additional X basis noise). It is not difficult to see that security of
the entanglement based version, above, will imply security of the actual TF-QKD protocol.
In the next section, we show a new proof of security, deriving an entropy bound for the
entanglement based version, which will subsequently produce a key-rate bound for the
TF-QKD protocol.

We note that the protocols above are not novel - they are, at most, very slight variations
of protocols from [19]. I1-Total is identical to prior work in [19], while I1-Zero and I1-0One
are only minor variations of that protocol. As discussed in the introduction, the novelty of
our work is in an alternative security proof, derived in the following section.

4. New Security Proof

We now present our new proof of security for the above TF-QKD protocol. Our proof
uses the quantum sampling framework of Bouman and Fehr [29], discussed above, along
with proof techniques used for sampling-based entropic uncertainty relations [30]. Namely,
we prove security of the entanglement based version which will imply security of the
prepare and measure version. The main result is in the following theorem:

Theorem 2. Let [¢) 4p be the state Eve prepares where the A and B portions are N qubits
each and the C portion is in a Hilbert space of dimension 4N. After Charlie’s measurement
of the C register, let c € {0,1,v,?}N be the resulting outcome and | 4 be the post
measured state (tracing out the measured C register). Let N, be the number of signals not
discarded; namely N. = #1(c) for IT-Total, N = #o(c) for II-Zero, and N, = #;(c) for
IT-One. Alice and Bob will choose a random sample of size m, < N./2, measure those
qubits in the X basis and determine the relative number of errors in that basis, denoted Qx.
Then it holds that, except with probability €, = 2¢!/3, if the remaining N, — m, signals
are measured in the Z basis:

1/3

HS P (A[E) 2 (Ne = me)(1—h(Qx +6c)), (22)
where:
[ (Nc+2)In(2/€?)
oc = \/ oL . (23)

Proof. Consider the post-measured state ) o5 as discussed in the theorem statement.
Without loss of generality, we may write this state as:

) ape = Y ildi) [EF) (24)

icAY

249
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At this point, Alice and Bob discard certain systems based on the value of c. For instance,
whenever ¢; € {v,?} they will discard that round; furthermore, if they are running IT-Zero
(respectively I1-One) they will discard rounds when ¢; = 1 (respectively ¢; = 0). This
effectively traces these systems out. Let N, be defined as in the theorem statement and
Rc = N — N¢ (the number of signals Rejected). It is easy to see that this operation,
effectively tracing out certain systems of A and B, yields a mixed state which may be
written as:

Pape= 3, PP | X Bildi) [Eqp) | = X p(r) ") ¢

reAge i€ Ay reAge

(25)

[¥°") aBE

where P(|z)) = |z) (z|. Above, the A and B registers of |y*") , 5 are of N qubits each.

At this point, Alice and Bob choose a random subset t of size m. < N:/2 (which may
depend on N;) with uniform probability Pr(t), and measure their respective systems in the
X basis, observing the number of errors in this test set. The remaining qubits are measured
in the Z basis. Our goal is to compute the min entropy of this final Z basis measurement.

We now switch to ideal states to complete our analysis. Fix r and c. Then, by Theorem
1, we construct ideal states {|¢°")} such that for every r, c it holds that:

. 1 . 1 .
lp"t) € span(G;) @ Hg = span{|q>i> = Af“ and m—c#m(zt) ~ nc#l’g(l_t)} ® HE

(26)
and, also:

— Y Pr(t) |) {t @ [¢~) (¢

t

- LPr(o) 16 (12 19°) (9 </ @

Now, using the sampling strategy discussed earlier, with error probability shown in Equa-

tion 19, and choosing 4 as in Equation 23, we have 4/ egl < €. The above is true for any r
and c; of course, by the triangle inequality, it also holds that, for every c, we have:

r);\f><t|®|¢” U ZP ;|t><f\®|¢c’r’t><¢

= Y Pr(t) |t) (t @ [¢°"") (9"

t

<3 L) ) (1l @ 19°7) (9 <e @9)

Let Xo = |[++) (++]| + |——) (——]| be the POVM element measuring Alice and Bob’s
qubit in the X basis and reporting the same result (i.e., no error); let X; = I — X, be the
same, but when Alice and Bob’s outcomes are different (i.e., an X basis error). Note that
X1 |¢j) = 0 whenever j = 0,2. Thus, X; can only be observed if j = 1,3 (see Equation 4).

After choosing t and measuring using POVM { X, X; }, resulting in outcome gx €
{0, 1}mf, it is clear from Equation 26, that the post measured state must collapse to one that
may be written in the form:

o5 = Y pG)P Y 97) [Ejpi) |- (29)
i€ Ay jEAC
#3(1)=#1(7x) -t 3()~o mst,3(1)
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Alice and Bob subsequently measure their remaining particles in the Z basis leading 27
to their raw keys. Denote by Uzz’t the resulting density operator. Using Lemma 2, along 2

with Equation 8, we have: 274
Heo(A[E)gers 2 me(1—h(#(4x) + &c))- (30)
Lemma 1 and Equation 28 completes the proof. [J 275

The actual key-rate of the TF-QKD protocol, then, follows immediately and is stated 276
in the corollary below: 277

Corollary 4.1. Let ¢ > 0 be given. Then, except with probability €7, = 2¢'/3, if the 27s
key-length of the TF-QKD protocol is set to: 279

1
{= Tlc(l — h(QX + (55)) — leakpc — 210g2 = (31)

where leakg is the information leaked during error correction, the final resulting key is 20
€epa-secure, for epy = 9e + 4el/5.

Proof. This follows immediately from Theorem 2 and Equation 7. O 202

We note that our key-rate above agrees, asymptotically, with prior work from [19] = zes
for IT-Total and so our new proof above is simply an alternative method, not one to give e
higher results necessarily. 285

5. Evaluation 286

We now evaluate the key-rate assuming a lossy channel with detector mismatches zer
and inefficiencies. In particular, each channel will have a transmittance of \/ﬁ . We will  2ss
assume, for evaluation purposes, that the server is honest, but has faulty devices. Thus, the = 2e0
server will perform the correct measurement, however the detectors will have non-zero e
dark count rate p; and will have non-unit efficiency f. The measurement may also be 20
misaligned in that it may report “0” when it should have, ideally, observed “1”. 202

To evaluate, we require certain expected values for N, along with the expected noise. 2e2
Let p(0) (respectively p(1)) be the probability that the server sends the message “0” (re- zea
spectively “1”). Then the expected value of N¢ is simply N(p(0) + p(1)), where N is the zes
total number of rounds Alice and Bob perform the protocol. To find these values under our =ze6
evaluation setup, we trace the protocol’s execution. 207

First, consider the joint state created by Alice and Bob:

(Va10.0) a0+ VI=41Lp)a0) ® (VAL O, + V1410, p)s)

=710,1,9,9) ggap + (1 =) 1,0, 1, ) apap + /(1 —7)(10,0,0, p) ppap + 11,1, P, 0) ppapy)-
(32)

The qubits are sent through a lossy channel which, as in [19], we model as a beamsplit-
ter with transmittance /7. In particular:

BS|p) = ilp) +V1—1|0)
BS |v) = |v).

Note we introduce a new state |7) to ensure the above is unitary, however |v) and |7) 208
cannot be distinguished by the parties and will look like a vacuum in either case. 299
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The above causes the joint state to evolve to:

q101vv) + (1 —q) [10) (17 |pp) + (1 =) [00) + \/n(1 —n)(|pD) + [T, p)))
+4/4(1 = 9)(100) (/7 |v, p) + /1 —1lv,0)) +11) (Vi |p,v) +/1—n|0,0)))  (33)

At this point, the system enters the server’s measurement device which, before the
actual measurement is performed, we model as a unitary operator C where for any x,y €

{v,7}:
Clyvy) =[xy
Clp,x) = («[Do) + B [D1)) [x)
Clx,p) = (B|Do) —a[Dy)) |x)
Clp,p) = [¢2)

Ideally, « = B = 1/+/2. Note that the additional |x) system in the above definitions are
used only to ensure unitarity of C and the fact that the server’s subsequent measurement
cannot distinguish between |v) and |7). Following the application of C, the server will
measure the first of the two systems in its control leading to the reported outcome. Note
that, since |v) and |0) are technically indistinguishable, both observations are reported
simply as a “vacuum” by the server.

Applying C to the joint state in Equation 33, but before the actual measurement, yields:

7101) [00) + (1 q) [10) (7 ]2) + (1 — 1) [3,9)
/11 =) ([a+ Bl Do, ) + [x — B]|D1,3))

/(1 = 9)(00) (/7(B Do, ) — & D1, 0)) + /T~ 71]0,5)))
+/a(1 = @) (111) (v/7(&|Do,0) + B D1,0)) + /T~ 7[3,0))) (34)

At this point, the server measures and reports the outcome. This measurement will be
affected by dark counts (p;) and the detector efficiency (f). For simplicity in evaluation,
we will simply assume that the double-photon outcomes (namely, |¢,)) do not interfere,
constructively or destructively, with the other terms in the |10) 45 term. We will simply
assume, then, that the probability of observing a |Dy) in [¢2) is p and the probability
of observing |D;) is pi. It turns out that, since g is large generally, this term does not
significantly affect the key-rate and so this assumption does not play a major role in hurting
or benefiting the key-rate. From this, we have:

p(0) = 2B+ (1= (Pp3 + (1 =Bl +n(1 =) (a4 B)?f)
+M<ﬂﬁ@ﬁf+ﬂ—nﬁ¥+ﬂﬁf+(—wﬂ?)

= PE - 1= (PpS + A= B+ -+ )
+9(1=q)(nf + A =n)pa) (35)
Similarly, we find:
p(1) = 2B+ (1= (Pph+ (1 =02 B 4 n(1 =) (- BY%f)
+9(1=q)(nf + 1 —=n)pa)
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Figure 1. Left: Asymptotic key-rate of the TF-QKD protocol version II-Total. Here (x,y,z) implies
pq =10%, a = \/m and f = z. We also compare with the PLOB bound [25]. If 4 is the distance
to Alice and Bob, we set 7 = 10~(4/2)/10, Right: Asymptotic key rate of TE-QKD protocol [1-Total,
I1-Zero, and I1-One. Here we set p; = 107°, & = v/3/4, and f = 0.8. Note that our key-rate agrees
asymptotically with that from [19] for II-Total and so we do not plot a comparison; we are not
aware of a key-rate result for I1-Zero or I1-One. We note that I1-One can give strictly higher keyrates
and support longer distances.

Next, we need the Z basis and X basis noise, conditioned on Alice and Bob not
discarding the round; i.e., conditioned on the server sending a non-vacuum message in
the II-Total protocol case; or conditioned on sending either “0” or “1” for the I1-Zero or
I1-0One protocol case. Let Qz g be the probability of a Z basis error and the server sending
the message “0”. Similarly define Qz 1, Qx 0, and Qx 1. From the above equations, these
expressions are easily found to be:

Qzo =B+ (1= (P + 1=l 4 (1 —n)f(a + B)?) (36)
Qz1 = ? B+ (1= (P + 1 =02 EL 4 (1 =) f(a - B)?) (37)
Qo= 52+ 2 (1= 202 + (L= )P2E (1= ) fla+ )

+ 20 - ) (B~ ?f + (1 - ) ) @9)
Qxa = 5824 21— PP+ (- P 0= ) f (e~ pP)

+ 20— ) (e~ BRf + (1 - ) B) 9)

From these, the needed conditional noise values may be determined for our evaluation
scenario.

In our evaluations, we set g = 0.95 which was found to be roughly the optimal value.
We also set pJ = pl to be 1/2. We found no significant affect on the key-rate for other
values, due to the high value of g and so simply make this value 1/2. For finite key rates,
we set m, = /Nc.

To evaluate, we use Corollary 4.1, setting leakpc = 1.2h(Q + 6), where Q is the Z basis
error noise (e.g., Q = (Qzo+ Qz1)/(p(0) + p1) for I1-Total; similar for other protocol
settings). A graph of the resulting asymptotic keyrates are shown in Figure 1 (comparing
to the PLOB bound [25]). Finite key results are shown in Figure 2. Note that our key-rates
agree asymptotically to previous results for the II-Total version and so we do not compare
to prior work for that setting; for other settings (namely I1-Zero and I1-0ne), we are not
aware of any security proof, and so there is no comparison beyond comparing to I1-Total.

5.1. A Discussion on the Asymmetric Nature of the Protocol

It is worth taking a closer look as to why I1-Zero and I1-0One perform differently from
the standard version I1-Total. Consider, first, Equations 36 and 37. Note that, even under
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Figure 2. Left: Key-rate as a function of the number of signals (note that x-axis is log-scale). Here,

Pi= 108, distance is 25km; & = v/3/4; and f = .8; Right: Finite key-rate as a function of distance;

015

here we use the same parameters as in the left figure, but with N = 10"°. Again, we note that IT-One

can outperform the other two protocol modes of operation.

05F
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01r
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i 2  — n n 1 n L L L
20 40 60 80
Distance

Figure 3. Showing the total Z basis error rate for II-Zero (top), II-Total (middle) and I1-One
(bottom). Lower is better as it indicates less raw key error. The asymmetric nature of the protocol
causes there to be fewer errors when the server sends the message 1. See text for further discussion.

ideal conditions of p; = 0, f = 1, and « = B = 1/+/2 (which is what would be expected
if all devices were perfect and there were simply natural loss #), then for any 7 > 0, it
holds that Qz1 < Qz,. Similarly, Qx1 < Qx. The same inequalities hold for imperfect
devices (i.e., when p; > 0 and f < 1). This can be seen more clearly in Figure 3. Thus,
anytime the server sends the message 0, there is actually a greater chance of error than
in the 1 message case. Therefore, under most conditions and under this channel scenario,
discarding all messages of 0 actually improves performance of the system. Of course, users
may decide after measuring the channel statistics to determine which mode of operation to
perform - thus, users can always optimize over their choice of protocol after the quantum
data has been transmitted, and can therefore always choose the mode that will return the
higher number of key-bits. It would be interesting to analyze these three protocols under
other channel scenarios, beyond depolarizing. Note that our security proof can handle
any channel scenario - we choose depolarization channels only for our evaluations in this
section.

6. Closing Remarks

In this paper, we revisited a TF-QKD protocol introduced in [19] and derived a new
proof of security for it. Our new proof uses methods from quantum sampling techniques
[29]. While our new proof agrees with prior work and, so, does not show higher key-
rates compared to prior work, we still feel alternative proof techniques are interesting and
important. We also investigated two slight variants of the protocol and showed how they
can lead to improved key-rates in some scenarios.
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Many interesting future problems remain. Perhaps the most fruitful would be to
further explore the two variants and see if additional improvements can be made. Fur-
thermore, a finite-key proof using decoy-state methods (using our sampling based proof
approach) would be interesting, especially for [1-Zero and II-0One. Adapting our proof
technique to other TF-QKD protocols would also be very interesting; a particular candidate
to start with would be the sending or not sending (SNS) TF-QKD protocol [31] due to its
similar encoding mechanism. Also, it would be interesting to discover whether or not
asymmetric protocols (similar to IT-Zero and I1-0ne analyzed in this work) can be defined
and shown to be more efficient for such protocols like the SNS TF-QKD mechanism.

Also, leading into more practical device considerations, it is known that for single
photon interference protocols (such as the TF protocol discussed in this paper), there are
still challenges with matching the mode of the photon and detector which ultimately affects
the protocol’s performance [38]. Such issues must be considered in future work to address
applicability issues of the protocol.
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