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AbstractÐSemi-quantum cryptography involves at least one
user who is semi-quantum or ªclassicalº in nature. Such a user
can only interact with the quantum channel in a very restricted
way. Many semi-quantum key distribution protocols have been
developed, some with rigorous proofs of security. Here we show
for the first time that quantum random number generation is
possible in the semi-quantum setting. We also develop a rigorous
proof of security, deriving a bound on the random bit generation
rate of the protocol as a function of noise in the channel.
Our protocol and proof may be broadly applicable to other
quantum and semi-quantum cryptographic scenarios where users
are limited in their capabilities.

Index TermsÐQuantum Cryptography, Quantum Random
Number Generation, Quantum Information Theory, Security

I. INTRODUCTION

Quantum Random Number Generators (QRNG) are an

important cryptographic tool. By utilizing the physical ran-

domness of a quantum source, such protocols can distill

cryptographically-secure random strings which are, them-

selves, important necessities for other cryptographic primitives

(e.g., encryption, key distillation, and so on). By now there are

many QRNG protocols along with several security models.

Security models range from the extreme device independent

scenario [1], [2], [3], [4] (where all measurement and source

devices are untrusted) to the fully trusted scenario (where all

devices are trusted and completely characterized). An interest-

ing middle-ground is the source independent model whereby

measurement devices are trusted, but source devices may be

offloaded to an untrusted party [5], [6], [7]. Such systems lead

to a good security middle-ground while also providing fast

experimental bit generation rates [8], [9]. For a general review

of QRNG protocols the reader is referred to [10]; for a more

general review on quantum cryptography, including theoretical

and experimental developments, the reader is referred to [11],

[12], [13].

Semi-quantum cryptography was first introduced in [14]

for the key-distribution problem (QKD). In general QKD

protocols, like all other quantum cryptographic protocols,

require parties to be ªfully-quantumº or ªquantum-capable.º

Namely, they must be able to manipulate quantum bits in

arbitrary ways. Semi-quantum protocols involve at least one

user who has restrictions and is almost classical in nature. This

restricted user is only able to interact with the quantum channel

in a limited, classical, way: the user may measure and send

in a single, publicly known basis (usually the |0⟩ , |1⟩ basis)

or to ignore the quantum channel, disconnecting from it, and

returning all received signals back to the sender undisturbed.

Clearly, if all parties were restricted to these operations,

the entire protocol would be mathematically equivalent to a

classical one. Thus, the restricted party is often called the

ªclassical user.º The goal of any semi-quantum protocol is

to achieve the same end-result as the original fully-quantum

version (e.g., unconditionally secure key distribution) but using

fewer resources. In a way, they help us to study the ªgapº

between classical and quantum protocols and help us answer

the question ªhow quantumº do protocols need to be to gain

an advantage over its classical counterpart?

Most semi-quantum protocols are restricted to key-

distribution [15], [16], [17], [18], [19], [20], [21], [22], [23],

however there are other primitives that are also available, in

particular secret sharing [24], [25], [26], secure direct commu-

nication [27], [28], [29], [30], [31], private comparison [32],

[33], and identity authentication [34], [35]. Semi-quantum

protocols can also be experimentally feasible [36], [37]. For

a general survey of semi-quantum cryptography, the reader is

referred to [38]. To our knowledge, no semi-quantum random

number generation (SQRNG) protocol is available. We prove

in this paper that QRNG is a viable semi-quantum primitive

by designing the first SQRNG protocol and also deriving a

rigorous information theoretic proof of security for it.

We make several contributions in this work. We develop a

new, and to our knowledge the first, semi-quantum random

number generation protocol allowing a ªclassicalº or semi-

quantum user to generate a cryptographically-secure random

number. This is done using a fully-quantum server as a source

and partial measurement device. However, this server need not

be trusted and, in fact, may be fully controlled by an adversary.

We develop an information theoretic proof of security for our

protocol and derive an asymptotic random-bit generation rate,

as a function of observed noise in the channel connecting

the semi-quantum user to the adversarial server. Since the

server performs quantum state preparation and measurement,

this also gives a partial form of device independence for part

of the protocol. Our proof of security involves reducing the

semi-quantum protocol to an entanglement-based version and

deriving a bound on the quantum entropy of the resulting

system. The protocol and security proof methods may be

important foundational building-blocks for future work in

(semi) quantum cryptography.







protocol can be reduced to an equivalent entanglement based

version. For this we will adapt methods similar to those we

developed in [47] for a particular semi-quantum key distribu-

tion protocol. This entanglement protocol is actually a QRNG

protocol (i.e., a fully-quantum protocol), where the user is

now fully quantum. Nonetheless, we show that security of that

QRNG protocol implies security of the SQRNG version. The

second step proves security of this entanglement based version

(thus proving security of the actual semi-quantum prepare-and-

measure protocol we developed). Note that, while we only con-

sider this particular SQRNG protocol, we suspect our methods

and our proof methodology may be broadly applicable to other

quantum cryptographic protocols, especially those with device

limitations and two-way quantum communication, which are

generally a challenge to prove using standard proof techniques.

See Figure 2.

A. Reduction to an Entanglement Based Protocol

We first show how our SQRNG protocol may be reduced

to an entanglement based version denoted by e-QRNG. Our

reduction is based on methods we developed in [47] for

mediated SQKD protocols (key-distribution protocols using a

quantum server [20]); we show here that these methods can

be extended to work with our SQRNG protocol.

We first comment that the SQRNG protocol may be ªpu-

rifiedº in the following sense. Instead of Eve preparing each

qubit individually, she prepares a large N -qubit state where

N is the number of rounds used by the protocol, possibly

entangled with her private ancilla. There is no assumption

that this state be a product state. Next, Alice, on receipt

of these qubits, will choose a subset Θ. For each i =
1, · · · , N , if Θi = 0, she will Reflect the i’th signal

(namely perform an identity operation); otherwise she will

Measure-Resend the qubit. However, instead of actually

performing a destructive measurement at this point, Alice will

simply apply a CNOT gate with the control register being the

i’th qubit sent from the server and the target being a blank

qubit cleared to the |0⟩ state. She may then later measure

this private register in the Z basis. It is clear that this later

measurement will simulate the case where Alice measures the

qubits immediately. Following this operation by Alice (either

the Identity operation or the CNOT operation), the entire signal

of N qubits returns to Eve who performs a quantum instrument

mapping the N qubits and her initial private ancilla to a

classical N -bit message space (modeled as a quantum ancilla)

and an updated ancilla from which Eve will attempt to learn as

much as possible about Alice’s measurement results (or, rather,

Alice’s private register which she will subsequently measure).

Quantum instruments may be used to model scenarios where a

quantum state undergoes some quantum operation (including

potential measurements) yielding a classical and quantum state

as output. The classical part represents the message Eve sends

to Alice while the quantum part represents Eve’s ancilla in the

event she chose to send that particular message. In the purified

case, this instrument may be dilated to an isometry (and

subsequently a unitary) operator using standard techniques

[48]. The fact that this purified version is identical to the

standard prepare-and-measure one follows through standard

methods; the advantage to it is that the quantum state remains

a pure state which will be easier to argue about in terms of

security.

Now, we show how this purified SQRNG protocol can be

reduced to an entanglement QRNG, denoted e-QRNG. The

e-QRNG protocol is a fully quantum protocol (not a semi-

quantum one) with three parties: Alice, a Trusted Server (who

may also be Alice), and Eve. Alice will have choices similar to

the SQRNG case, namely Measure-Resend and Reflect

though these operations are different here and, in fact, have no

operational meaning in the e-QRNG protocol. We show later

that, the operation of Reflect in the e-QRNG case (which

is not actually a reflection but a particular measurement) will

ªsimulateº a true Reflect operation in the SQRNG case;

similarly for the Measure-Resend operation.

The entanglement protocol (e-QRNG) operates as follows:

1) Our quantum source, Eve, prepares an entangled state

|τ⟩ACE ∈ HA ⊗HC ⊗HE . The A and C registers are

each of dimension 2N for user specified N (as before,

N is the number of rounds used by the protocol). The

A system is sent to Alice while the C register is sent to

the trusted server (who may also be Alice). Eve keeps

the E register private.

2) Alice, on receipt of the state, has two choices for

each round (i.e., each of the N qubits), as in the

SQRNG protocol. We call these two choices here

Measure-Resend and Reflect to keep the notation

consistent with the SQRNG case, however the operations

are different in the e-QRNG case. If Alice chooses

Reflect, she will measure that qubit in the X basis,

and abort the entire protocol if she observes |−⟩. That

is, to simulate a true ªreflectionº in the semi-quantum

case, A will only continue with the protocol if she

measures and observes |+⟩. We say Alice accepts the

state if she observes |+⟩. Alternatively, if Alice chooses

Measure-Resend, she will measure that particular

qubit in the Z basis.

3) The trusted server, on receipt of the C system, simply

measures all N qubits in the X basis, and publicly

reports the outcome. Note that in the e-QRNG case, the

server is honest in this measurement and, in fact, this C
register measurement may even be done by Alice. Note

that this may be done before, in parallel to, or after

Alice’s operations in step 2.

We comment that this e-QRNG protocol is highly inefficient

due to the high probability of aborting (regardless of the noise

level). However, this e-QRNG protocol is not one users would

actually run, but rather only used as a theoretical tool to

prove security of the actual SQRNG protocol (which only

aborts if the noise level is too high). It is important to note

that the protocol completely aborts if Alice observes |−⟩ on

her Reflect test case. The reason for this is that, as we

show later, an observation of |+⟩ will exactly simulate a true



Reflect in the SQRNG case whereas an observation of |−⟩
produces a quantum system that cannot exist in the SQRNG

case and, so, should not be analyzed.

Theorem 1. Let E be an attack against the SQRNG protocol

(which, itself, consists of an initial state description and a

quantum instrument to apply after Alice’s operation) and let

Θ be Alice’s choice of operation in the SQRNG protocol. Let

|ψ(E ,Θ)⟩AME be the resulting state of operating the purified

SQRNG protocol under these conditions (where A is Alice’s

register; E is Eve’s private ancilla; and M is the register

storing the classical message sent from the adversarial server

to Alice). Then, there exists a quantum state |τ(E)⟩ACE for

the e-QRNG protocol, depending only on E , such that: (1)

the probability of Alice not aborting, assuming she measures

those qubits in A with Θi = 0, (i.e., she accepts |τ⟩)
is non-zero and exactly pa = 1/2ct0(Θ) > 0 for any Θ;

(2) conditioning on accepting, let |τ(E ,Θ)⟩ be the resulting

quantum state (which clearly does depend on Θ), then it holds

that |τ(E ,Θ)⟩ = |ψ(E ,Θ)⟩; and (3) if the SQRNG protocol is

attacked using a collective attack (namely the produced state

is a product state), then the constructed state |τ⟩ is also a

product state |τ⟩ = |τ0⟩⊗N
(the result of a collective attack)

and, furthermore, the probability of observing a |−⟩ on any

individual signal in the e-QRNG case is exactly 1/2.

Proof. Let’s consider the (purified) SQRNG protocol. In this

case, a general attack consists of Eve first preparing an arbi-

trary quantum state |ψ0⟩AE which, without loss of generality,

we may write as:

|ψ0⟩ =
∑

a∈{0,1}N

αa |a⟩ |Ea⟩ ,

where the |Ea⟩ are arbitrary normalized states in Eve’s private

ancilla. The A portion is sent to Alice who chooses Θ which

dictates whether to Measure-Resend or to Reflect.

Whenever Θi = 1 she will apply a CNOT gate as discussed.

Since her ancilla is initially cleared to a zero state, the result

of this action on |ψ0⟩ is easily seen to be:

|0 · · · 0⟩A ⊗ |ψ0⟩ → |ψ′
0⟩ =

∑

a∈{0,1}N

αa |a ∧Θ, a⟩AT |Ea⟩ ,

where a ∧ Θ denotes the bit-wise AND operation and the

|a ∧Θ⟩A is Alice’s private ancilla after applying CNOT gates

whenever Θi = 1. The T (Transit) register represents the

quantum state that will return to Eve.

At this point, the T register will return to Eve’s control

who applies a quantum instrument to the system. As shown

in [20], this is equivalent to applying an isometry U mapping

Eve’s ancilla and the Transit register into a quantum ancilla

for Eve and a Hilbert space spanned by all possible classical

messages that could have been sent (namely, a Hilbert space

of dimension 2N since for every round there are only two

classical messages Eve is allowed to send). After applying the

isometry U to the returning system and Eve’s ancilla from

her initial state preparation, she measures the message Hilbert

space. The measurement outcome determines the message

transcript she sends to Alice while the post measured system

represents her quantum ancilla in the event she had sent that

message using the quantum instrument attack.

Without loss of generality, we may define U ’s action on

basis states as follows:

U |a,Ea⟩ =
∑

m∈{+,−}N

|m,Fa,m⟩
M,E

,

where the M register is Eve’s classical message. Note that

U ’s action on basis states of the form |a,Eb⟩ for a ̸= b
may be arbitrary as these do not appear in the system under

investigation.

Applying U to the returning state |ψ′
0⟩ yields:

|ψ⟩ =
∑

a∈{0,1}N

αa |a ∧Θ⟩ ⊗
∑

m∈{+,−}N

|m,Fa,m⟩
cl,E

(3)

Eve will then measure the M register dictating her message.

We now claim that there is an equivalent attack strategy

against the e-QRNG protocol, producing an identical quantum

system in the event the entanglement based protocol does not

abort. That is, any attack against the SQRNG protocol can be

translated to an equivalent attack against the e-QRNG protocol

and, therefore, if the e-QRNG protocol is secure, the SQRNG

protocol must also be (since e-QRNG can only have more

attacks against it).

Consider, now, the entanglement based protocol. Assume

Eve prepares the initial state:

|τ⟩ACE = U





∑

a∈{0,1}N

αa |a,Ea⟩





=
∑

a∈{0,1}N

αa |a⟩A ⊗
∑

m∈{+,−}N

|m,Fa,m⟩
CE

. (4)

The A and C registers are sent to Alice and the trusted server

respectively (as discussed, the trusted server may in fact be

Alice in the e-QRNG protocol case).

We first show the second claim of the theorem namely

that, conditioning on Alice accepting the e-QRNG state, it

agrees with the SQRNG state. For this, we note that we can

decompose the sum over a ∈ {0, 1}N in |ψ⟩ (Equation 3) into

two parts: a part where Θi = 0 and a part where Θi = 1. In

particular, we can write a = πΘ(a0, a1) for some permutation

π depending on Θ. Here, |a0| = ct0(Θ) and |a1| = ct1(Θ).
The function πΘ simply maps the first argument into the

appropriate bit-position of a where Θ is zero; similarly for

the second argument. Thus Equation 3 (the SQRNG case)

becomes:

|ψ⟩ =
∑

a0,a1

απΘ(a0,a1) |πΘ(0 · · · 0, a1)⟩⊗
∑

m

|m,FπΘ(a0,a1),m⟩ .

(5)

Of course the sum above is over all a0 ∈ {0, 1}ct0(Θ) and

a1 ∈ {0, 1}ct1(Θ).



Now, we may similarly decompose the initial state prepared

by Eve in the e-QRNG case (Equation 4) as follows:

|τ⟩ =
∑

a0,a1

απΘ(a0,a1) |πΘ(a0, a1)⟩ ⊗
∑

m

|m,FπΘ(a0,a1)⟩

=
1√
2m

∑

a0,a1

απΘ(a0,a1) |πΘ(+m, a1)⟩
∑

m

|m,FπΘ(a0,a1)⟩

+ |µ⟩AE

∼= 1√
2ct0(Θ)

|ψ⟩+ |µ⟩ .

where m = ct0(Θ), +m = + · · ·+ (m times), and |µ⟩AE is

some state that has at least one |−⟩ where Θi = 0 in Alice’s

register (and, thus, would lead to the protocol aborting). It is

clear, then, that conditioned on Alice not aborting the e-QRNG

protocol (i.e., accepting the state |τ⟩), the state collapses to

|ψ⟩, the same state that would have been produced if the

SQRNG protocol had been run.

It is also clear that, since ⟨ψ|ψ⟩ = 1 and ⟨ψ|µ⟩ = 0, the

probability of Alice not aborting is strictly positive (and, thus,

we do not condition on a probability zero event). In fact, the

probability of not aborting (i.e., accepting) is exactly 1√
2ct0(Θ)

proving claim (1) of the theorem.

Finally, to prove claim (3), we note that if Equation 3

were produced by a collective attack, then Equation 4 would

be a product state also and the probability of accepting will

remain 1√
2ct0(Θ)

implying that the probability of accepting any

particular signal is exactly 1/2 completing the proof.

Theorem 1 implies that any attack against the SQRNG

protocol (whose security we want to prove) can be translated to

an attack against the e-QRNG protocol which: (1) produces the

same quantum system for Alice and Eve conditioned on Alice

accepting the e-QRNG state (thus any entropy computation

will be identical and any observed statistics will also be

identical in the accepting case); and (2) the probability of

accepting is strictly positive and known. Note that, even though

the e-QRNG protocol is highly inefficient, this is not relevant

as we are only interested in bounding the quantum entropy of

the e-QRNG protocol conditioned on a non-abort. This will

translate directly to a bound on the entropy of the SQRNG

protocol (which never aborts, unless Alice determines the

noise is too high - a threshold which we can compute later).

Thus, even though the e-QRNG protocol is highly inefficient,

this does not matter as it is only a theoretical tool for the

security proof and not an actual protocol to run in practice.

Note, also, that there are many more attacks against the e-

QRNG protocol, including attacks which would cause it to

always abort; however analyzing those ªdenial of serviceº

attacks are not relevant as they would never appear in the

SQRNG protocol.

B. Secure Bit Rate Analysis

Our goal is to derive an asymptotic bit generation rate for

the SQRNG protocol. Consider a run of the SQRNG proto-

col where Eve employed some (unknown) attack described

by E , and Θ was Alice’s choice of operations resulting in

state |ψSQRNG⟩. From Theorem 1, there exists an equivalent

quantum state |ψ⟩ produced by the e-QRNG protocol. We

will derive a bit generation rate for this e-QRNG state which

will translate directly to a bit-generation rate for the SQRNG

protocol. Since E and Θ were arbitrary, our method will work

for any attack and choice of Θ for the SQRNG protocol thus

proving the SQRNG protocol secure.

We first assume collective attacks for the SQRNG protocol

(and thus, by condition (3) of Theorem 1 also for the e-QRNG

protocol state); namely, the state |ψ⟩ may be described as a

product state |ψ⟩ = |µ⟩⊗N
with the probability of accepting

any particular signal state |µ⟩ is 1/2 (i.e., the probability of

Alice observing a |+⟩ in |µ⟩ is 1/2) .

Now, let’s consider an individual signal state |µ⟩. We may

write this in the most general way as follows:

|µ⟩ =
∑

a,c∈{0,1}
|a, c⟩AC ⊗ |ea,c⟩E , (6)

where the |ea,c⟩ states are arbitrary (not necessarily normalized

nor orthogonal) states in Eve’s ancilla. Note that, when c = 0
in the summation we actually mean a state of |+⟩ while c = 1
implies |−⟩. Our goal now is to compute a bound on S(A|E)µ
since this will give us our bit-rate according to Equation 2. Our

bound, of course, must be a function only of those statistics

which may be observed by the users in the event the protocol

does not abort.

First, consider PAC
a,c = Pr(A = a∧C = c). From Equation

6, this is easily seen to be PAC
a,c = ⟨ea,c|ea,c⟩. Ideally, this

should be 1/4, though we do not assume anything about these

values in our proof only that they may be observed. Next,

consider the P+|acc = Pr(C = “+′′ |accept). Changing basis,

we have:

|µ⟩ = 1√
2
|+⟩A ⊗

(

∑

c

|c⟩ (|e0,c⟩+ |e1,c⟩)
)

+
1√
2
|−⟩ (· · · )

Since by Theorem 1 we know the probability of accepting (i.e.,

measuring a |+⟩) is 1/2 for each signal state independently,

the conditional state collapses to:

|+⟩A ⊗ [|0⟩C (|e0,0⟩+ |e1,0⟩) + |1⟩C (|e0,1⟩+ |e1,1⟩)] ,

from which it is clear that P+|acc = ⟨e0,0|e0,0⟩+ ⟨e1,0|e1,0⟩+
2Re ⟨e0,0|e1,0⟩. Similarly, we may define P−|acc and find it to

be P−|acc = ⟨e0,1|e0,1⟩ + ⟨e1,1|e1,1⟩ + 2Re ⟨e0,1|e1,1⟩. Note

that these probabilities coincide directly with the probability

the server sends the message ª+º/ª−º conditioned on Alice

choosing Reflect in the SQRNG case.

We are now in a position to compute the bit generation rate.

From Equation 6, the system, conditioning on Alice actually



distilling a random bit (namely she measures the A register of

|µ⟩ in the Z basis) is easily found to be:

ρACE = [0]A⊗
(

∑

c

[c, e0,c]

)

+[0]A⊗
(

∑

c

[c, e1,c]

)

(7)

Of course, Eve has access to the C and and E registers

(since the trusted server makes its measurement results public);

thus to compute the bit generation rate, we need to bound

S(A|CE). Using Theorem 1 from [49], along with our anal-

ysis above of Eve’s inner-products, we have the following

lower-bound:

S(A|CE) ≥
(

PAC
0,0 + PAC

1,0

)

·
(

h

[

PAC
0,0

PAC
0,0 + PAC

1,0

]

− h [λ0]

)

(8)

+
(

PAC
0,1 + PAC

1,1

)

·
(

h

[

PAC
0,1

PAC
0,1 + PAC

1,1

]

− h [λ1]

)

,

where:

λc =
1

2



1 +

√

(PAC
0,c − PAC

1,c )2 + 4Re2 ⟨e0,c|e1,c⟩
PAC
0,c + PAC

0,c



 . (9)

The inner products needed to compute λc may be determined

from Pc|acc. For instance, 2Re ⟨e0,0|e1,0⟩ = P+|acc − PAC
0,0 −

PAC
1,0 . This gives us everything we need to compute the

quantum entropy of the e-QRNG state conditioned on the

protocol not aborting. Since the state for the entanglement

based protocol conditioned on not aborting is identical to that

of the SQRNG protocol of the given, but arbitrary, attack

and, furthermore, since all observable statistics in that case

are also identical, the computed bit generation rate applies to

the SQRNG protocol as desired.

The above rate applies to collective attacks against the

SQRNG protocol in the asymptotic scenario. However, for

general attacks, the constructed e-QRNG state may be made

permutation invariant in the usual way [39] and then, de

Finetti style arguments [50] may be used to promote the above

analysis to general attacks.

V. EVALUATION

To evaluate the bit generation rate of our SQRNG protocol,

one only needs to observe those probability values appearing

in the entropy expression Equation 8. For the purposes of this

paper, we simulate observable probability values assuming the

source noise is modeled by a depolarization channel acting

independently on each qubit and that the server is honest.

Note that this assumption is only used in this section to

determine values for those probability values appearing in our

bit generation expression above. That is, this assumption is

only used here for evaluation purposes and is not a required

assumption in our security proof above. Normally, one would

simply observe the actual probability values; however since we

are performing a theoretical analysis and not an experiment,

we must simulate ªreasonableº values for these probabilities.

Depolarization channels are the most common ones evaluated

theoretically.

Such a channel takes a qubit quantum state ρ and maps

it to DQ : ρ 7→ (1 − 2Q)ρ + Q · I , where I is the

identity operator (an equally mixed state of |+⟩ and |−⟩).
Of course, since we have a two-way channel, we will need

to worry about the noise and behavior of the channel in both

directions. For this, we consider two scenarios: independent

channels and dependent ones. The distinction only matters

when Alice chooses to Reflect since, then, it is possible

that noise in the reverse channel depends on noise in the

forward one. When Alice chooses Measure-Resend, the

qubit is measured so any channel dependence is broken. More

formally, we parameterize the noise in the forward and reverse

channels by Q. But in the event Alice chooses Reflect, the

joint forward/reverse channel is modeled as a depolarization

channel with parameter QFR. For independent channels, the

noise in the reverse channel acts independently of the forward

for reflection events and, so, we set QFR = 2Q(1−Q). In the

case of dependent channels, the noise in the reverse channel

can depend on the forward and so we set QFR = Q. Note that

this behavior often appears in fiber implementations where any

phase noise picked up in the forward direction is ªundoneº in

the reverse channel assuming the photon is reflected back [51],

[52].

From this parameterization, we may determine values for

the needed probability values. In particular, we will assume

the state arriving at Alice’s lab is of the form DQ([+]). From

this, it is clear that the probability of Alice measuring either a

|0⟩ or |1⟩ is 1/2. Conditioned on such a measurement, a qubit

returns to the server; the state, then, arriving at the server

will be DQ([a]), where a ∈ {0, 1} is Alice’s measurement

outcome. Since we are simulating an honest server in this

section and a noisy channel, the probability that the server

sends the message ª+º is also 1/2. Thus, we find PAC
a,c = 1/4

for all a, c.
Next, consider the case of a reflection. In this case, the

state returning to the server is of the form DQFR
([+]). From

this, we see that P+|acc = (1 − QFR). Note that P+|acc is

technically defined only for the e-QRNG protocol, however

from Theorem 1 it exactly coincides with the probability that

the (potentially adversarial) server sends the message ª+º

conditioned on Alice choosing Reflect in the SQRNG case.

This gives us everything we need to compute Equation 8.

In fact, under these conditions, our entropy bound simplifies

significantly to:

S(A|CE) ≥ 1− h (1−QFR) . (10)

This can be seen by noting that all PAC
a,c are 1/4 and that λ0 =

λ1 = 1−QFR since 4Re2 ⟨e0,0|e1,0⟩ = (1−QFR−1/2)2 and

4Re2 ⟨e0,1|e1,1⟩ = (−QFR + 1/2)2. A graph of the resulting

bit generation rate is shown in Figure 3. Rather interestingly,

in the event of a dependent channel, the SQRNG protocol

matches the bit-generation rate of the fully-quantum QRNG

protocol introduced in [5], at least in the asymptotic ideal qubit

scenario.



Fig. 3. Showing the bit-generation rate of our SQRNG protocol under
depolarization noise. Both the dependent and independent channel cases are
plotted.

VI. CLOSING REMARKS

We developed a novel, and to our knowledge the first,

semi-quantum random number generation protocol. We also

derived a rigorous information theoretic proof of security

for the protocol, by reducing it to an entanglement-based

protocol and deriving a bound on its random bit generation

rate. Our evaluations showed that the bit-generation rate can

match that of other fully-quantum QRNG protocols, at least

in the asymptotic ideal-qubit scenario. Combined with recent

research in semi-quantum key distribution, which shows that

the asymptotic behavior of SQKD protocols can match BB84

[38], our work in this paper shows similarly optimistic results

for the QRNG case.

Many interesting future problems remain open. Of great

importance would be to study SQRNG protocols under more

practical considerations. Here certain practical device attacks

are problematic such as the photon-tagging attack [43], [44].

However, mirror style devices may mitigate this [36]. Adapting

mirror-style devices to the SQRNG case would be an interest-

ing problem. Also of importance would be deriving a bound

on the random bit generation rate in the finite signal setting

(as opposed to the asymptotic case considered here). Our

reduction Theorem 1 applies here, however when analyzing

the finite key scenario, one requires bounds on the quantum

min entropy which is harder to derive. Thus, we leave this as

an open problem, though our reduction in Theorem 1 should

prove a valuable tool in that investigation.
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