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Abstract—Entropic Uncertainty relations are powerful tools,
especially in quantum cryptography. They typically bound the
amount of uncertainty a third-party adversary may hold on a
measurement outcome as a result of the measurement overlap.
However, when the two measurement bases are biased towards
one another, standard entropic uncertainty relations do not
always provide optimal lower bounds on the entropy. Here, we
derive a new entropic uncertainty relation, for certain quantum
states, which can provide a significantly higher bound even if
the two measurement bases are no longer mutually unbiased.
We evaluate our bound on two different quantum cryptographic
protocols, including BB84 with faulty/biased measurement de-
vices, and show that our new bound can produce substantially
higher key-rates under several scenarios when compared with
prior work using standard entropic uncertainty relations.

I. INTRODUCTION

Quantum entropic uncertainty relations are a powerful tool

in quantum information theory and quantum cryptography.

Such relations typically bound the amount of uncertainty in

the outcome of two different measurements as a function only

of the measurements themselves. For instance, the famous

Maassen and Uffink inequality [?] states that if a quantum state

is measured in one of two bases Z or X , then H(Z)+H(X) ≥
c, where H(Z) is the entropy in the Z basis outcome (similar

for H(X)), and c is a function of the “measurement overlaps”

between the X and Z bases and is maximal whenever Z and X
are mutually unbiased bases. By now there are a large variety

of different entropic uncertainty relations [?], [?], [?], [?]; see

[?] for a general survey.

One very useful entropic uncertainty relation was introduced

in [?] which bounds the quantum min entropy - a quantity we

define formally later, but denote by H∞(A|E). Min entropy

is a very useful resource to measure as it is directly related to

how many uniform random secret bits may be extracted from

a quantum state [?]. In a little detail, let’s assume ρABE is a

quantum state where the A and B registers consist of n qubits

each and let Z = {|0〉 , |1〉} be the standard computational

basis for qubits and X = {|x0〉 , |x1〉} be some other basis

with |x0〉 =
√
1/2 + b and |x1〉 =

√
1/2− b for some “bias”

parameter b ∈ [0, .5] (e.g., this may be the Hadamard basis

if b = 0). Note the results will be symmetric if we have b ∈
[−.5, 0]. Assume a measurement is made on the A system in

either the Z basis (resulting in some random variable AZ) or

the X basis (yielding random variable AX ); similar for the B
system. Then, the relation defined in [?] roughly states (when

restricted to basis measurements of this form), that:

H∞(AZ |E) +Hmax(AX |BX) ≥ −n · log2
(
1

2
+ b

)
. (1)

Note that the lower-bound is maximal when b = 0 and one gets

H∞(AZ |E)+Hmax(AX |BX) ≥ n. This relation is used many

times in various quantum cryptographic proofs of security as

it allows one to bound the quantum min entropy between

Alice and an adversary system Eve, simply as a function of

the measurements performed and Hmax(AX |BX), the latter

of which may be easily bounded through standard classical

sampling arguments and is generally a function of the “error”

induced in the quantum communication line.

The above expression, as stated, is not only highly useful,

but also widely applied. However, when b 6= 0, it is not

difficult to see that the lower bound on H∞(A|E) begins

to drop rapidly. In this work, we derive a new entropic

uncertainty relation for cases when there is non-zero bias in the

measurement bases. Our new relation, though stated formally

in Theorem 2, roughly takes the form:

H∞(AZ |E) + n · h
(
QX + 4b2 + ǫ

)
≥ n, (2)

where h(x) is the binary entropy, QX is the relative number

of errors in Alice and Bob’s X basis measurement, and ǫ is a

function of the number of qubits that were measured in the X
basis (and which goes to zero in the asymptotic limit). Note,

the above is only true if QX + 4b2 + ǫ < 1/2 which can be

checked by the users of the protocol before continuing. This

already puts an upper-bound on b of
√

1/8 ≈ 0.3535 (unlike

Equation 1 which has an upper bound of b < 1/2). Thus, when

there is bias but no noise (QX = 0 and Hmax(AX |BX) = 0),

our result performs worse; however, importantly, when there

is both noise and bias, our bound often outperforms Equation

1, sometimes substantially so as our later evaluations show.

Thus, it can be immediately applied to cryptographic proofs

of protocols where measurements are biased and there is noise

in the channel (either natural noise or adversarial noise) and

used to show that higher bit generation rates are possible

under these circumstances. We comment that our proof in

this paper requires a particular (though arguably minimal,

and even enforceable by the users, as we comment later)

assumption on the quantum state under investigation. However,

this assumption is only needed in one part of the proof and we

suspect our methods can be suitably extended to work, with

the same result, even without this assumption. However, this

we leave as future work.



Our relation is a so-called sampling-based entropic uncer-

tainty relation, which is a class of entropic uncertainty rela-

tions introduced in [?], [?]. These relations utilize a quantum

sampling framework of Bouman and Fehr introduced in [?]

for their proof. Such relations, though still relatively new,

have shown to hold numerous benefits in several applications

including higher bit generation rates for random number gener-

ation [?] (only shown there for un-biased measurements) along

with new applications and easier proofs for high-dimensional

systems [?]. They have been shown to be useful in proving

security of quantum cryptographic protocols where standard

relations such as Equation 1 actually fail (i.e., prior relations

show a trivial bound of 0 whereas sampling based entropic

uncertainty methods show a positive bound) [?], [?].

In this work, we use the sampling-based approach to derive

a novel entropic uncertainty relation for cases where user mea-

surements are biased. This can occur due to faulty measure-

ment devices for example or, perhaps, “cheaper” measurement

devices are used which cannot perform an exact measurement

in a mutually unbiased basis. It is also interesting from a

theoretical point of view as we prove, here, that better bounds

on min entropy are possible even if the two measurement

bases are “close” to one another. Finally, it shows even

more advantages to the sampling-based approach to entropic

uncertainty and we suspect our proof methods here may be

highly beneficial to other scenarios where measurement or

source devices are imperfect.

We note that, while the main contribution of this paper

is our new entropic uncertainty bound, we also make other

contributions along the way. We prove an interesting result

(Lemma 3), that may be independently useful, which bounds

the min entropy of a particular superposition state. We also

prove that higher bit generation rates are possible for BB84

with faulty source and measurement devices and higher bit

generation rates are possible for a particular quantum random

number generation (QRNG) protocol. Finally, our main results

can be easily incorporated into other quantum cryptographic

protocols.

II. PRELIMINARIES

We begin by introducing some notation that we use through-

out this paper. We denote by Ad to be a d-character al-

phabet; without loss of generality we simply assume Ad =
{0, 1, · · · , d − 1}. Given a word q ∈ An

d , and some subset

t ⊂ {1, 2, · · · , n}, we write qt to mean the substring of q
indexed by t, that is qt = qt1qt2 · · · qt|t| . We write q−t to mean

the substring of q indexed by the complement of t. Finally,

for i = 1, 2, · · · , n, we write qi to mean the i’th character of

q.

Let a, b ∈ An
d . We write #i(a) to be the number of times the

character i appears in a. Formally #i(a) = |{ℓ : aℓ = i}|.
We extend this to multiple counts in the obvious way, for

example #i,j(a) is the number of times the character i and

j appear in a, or #i,j(a) = |{ℓ : aℓ = i or aℓ = j}|.
For a bit string x ∈ {0, 1}, we denote by w(x) to be the

relative Hamming weight, namely w(x) = #1(x)/|x|. Finally,

we denote by ∆H(a, b) to be the Hamming distance of words

a and b, namely: ∆H(a, b) = |{ℓ : aℓ 6= bℓ}|.
Given a random variable X , we denote by H(X) to be the

Shannon entropy of X . If X takes outcome xi with probability

pi, then H(X) = −∑i pi log2 pi. Note that all logarithms in

this paper are base two unless otherwise specified. If X is a

two outcome random variable taking x1 with probability p,

then we use h(p) to denote the binary entropy and H(X) =
h(p) = −p log p − (1 − p) log(1 − p). We also define the

bounded binary entropy function ĥ(x), where ĥ(x) = h(x)
whenever x < 1/2 and ĥ(x) = 1 otherwise.

A density operator ρ is a Hermitian positive semi-definite

operator of unit trace acting on some Hilbert space H. If ρAE
acts on Hilbert space HA ⊗ HE , we write ρA to mean the

state resulting from tracing out the E system, namely ρA =
trEρAE . This is similar for multiple systems. Given a pure

state |ψ〉 we write [ψ] to mean [ψ] = |ψ〉 〈ψ|. We also define

P (|z〉) to be P (|z〉) = [z]. Given an orthonormal basis B =
{|v0〉 , · · · , |vd−1〉}, we write |i〉B to mean |vi〉. Given i ∈
An
d , we write |i〉B to mean |vi1 , · · · , vin〉, namely the word i

represented in the B basis. If the basis is not specified, then it

is assumed to be the computational basis {|0〉 , · · · , |d− 1〉}.

Finally, we use |φi〉 to denote the Bell states:

|φ0〉 =
1√
2
(|00〉+ |11〉) |φ1〉 =

1√
2
(|00〉 − |11〉)

|φ2〉 =
1√
2
(|01〉+ |10〉) |φ3〉 =

1√
2
(|01〉 − |10〉)

Given ρA we write H(A)ρ to mean the von Neumann

entropy of ρA, namely H(A)ρ = −tr(ρA log ρA). Given

ρAE , we write H(A|E)ρ to be the conditional von Neumann

entropy, namely H(A|E)ρ = H(AE)ρ − H(E)ρ. We write

H∞(A|E)ρ to be the conditional quantum min entropy defined

to be [?]:

H∞(A|E)ρ = sup
σE

max
{
λ ∈ R : 2−λIA ⊗ σE − ρAE ≥ 0

}
,

(3)

where A ≥ 0 is used to denote that A is positive semi-definite.

The smooth conditional min entropy is denoted Hǫ
∞(A|E)ρ

and is defined to be: Hǫ
∞(A|E)ρ = supσAE

H∞(A|E)σ,
where the supremum is over all density operators σAE such

that ||σAE − ρAE || ≤ ǫ. Here we use ||A|| to mean the trace

distance of operator A.

Quantum min entropy is a very important quantity to

measure in quantum cryptography as it relates directly to

how many uniform random secret bits may be extracted from

a quantum state [?]. In detail, assume ρAE is a classical-

quantum state (or cq-state). That is, the A register is classical

while the E portion is potentially quantum, thus ρAE =∑
a p(a)[a] ⊗ ρaE . Assume the A register is N -bits in size

(i.e., a ∈ {0, 1}N in the sum). Then privacy amplification is

a process of picking a random two-universal hash function

f : {0, 1}N → {0, 1}ℓ and disclosing the choice to Eve, then



hashing the A register to f(A) yielding cq-state σKE′ . The

state σKE′ satisfies the following inequality as proven in [?]:

||σKE′ − Uℓ ⊗ σE′ || ≤ 2−
1
2 (H

ǫ
∞(A|E)ρ−ℓ) + 2ǫ, (4)

where Uℓ = I/2ℓ is a uniform random string of size ℓ-bits

independent of Eve. Thus, to determine how large ℓ can be, one

requires a bound on the quantum min entropy before privacy

amplification.

A. Properties of Quantum Min Entropy

Min entropy has several properties that we will utilize

later. In particular, given a cqc-state or qqc-state of the form

ρAEC =
∑
c p(c)[c]⊗ ρ

(c)
AE , then:

H∞(A|E)ρ ≥ H∞(A|EC)ρ ≥ min
c
H∞(A|E)ρ(c) . (5)

The above is easily shown using the definition of min entropy.

Informally it says that, conditioning on certain events C
happening, the min entropy is the “worst-case” min entropy

of each individual sub-event.

The following lemma from [?] lets us bound the min entropy

in a superposition as a function of the min entropy of a mixed

state, assuming the superposition does not have “too many”

terms:

Lemma 1. (From [?], based on a lemma in [?]): Given

two orthonormal bases Z and X of some Hilbert space

HA, let |ψ〉AE be some pure state of the form |ψ〉AE =∑
i∈J αi |i〉

Z ⊗ |Ei〉 where the |Ei〉 states are arbitrary, but

normalized. Then, if we define the mixed state ρAE =∑
i∈J |αi|2[i]

Z ⊗ [Ei], it holds that:

H∞(X|E)ψ ≥ H∞(X|E)ρ − log2 |J |,

where the X registers, above, are produced by measuring the

A register (originally written in the Z basis above), in the X
basis.

The next lemma we need is from [?] and shows how one

may compute the min entropy in a state that is initially close

to another (in trace distance) but after conditioning on an

outcome (after which, the states may no longer be close and,

thus, smooth min entropy by itself cannot be used):

Lemma 2. (From [?]): Let ρ, σ, and τ , be three quantum

states with ρ and σ acting on the same Hilbert space (τ may

be arbitrary or trivial). Also, let F be a CPTP map with the

property that:

F(τ ⊗ ρ) =
∑

x

p(x)[x]⊗ ρ
(x)
AE

F(τ ⊗ σ) =
∑

x

q(x)[x]⊗ σ
(x)
AE .

Then, if 1
2 ||ρ− σ|| ≤ ǫ, it holds that:

Pr
(
H4ǫ+3ǫ1/3

∞ (A|E)ρ(x) ≥ H∞(A|E)σ(x)

)
≥ 1− 2ǫ1/3,

where the probability is over the random outcome X in the

above states.

Finally, we prove the following lemma below in this work

which may be of independent interest. It bounds the min

entropy of a quantum state that is a superposition of Bell states

on which we have some, but not all, information on (and, thus,

Lemma 1 could not be used directly as that lemma requires

full information on the superposition size which our lemma

below does not require):

Lemma 3. Given |ψ〉 =
∑
i∈J αi |φi〉 |Ei〉, where J ={

i ∈ An
4 : 1

n#1,3(i) ≤ Q
}

, let ρAE be the result of measur-

ing the first particle of each Bell pair in the Z basis (resulting

in register A) and tracing out the second particle of each Bell

pair. Then it holds that:

H∞(A|E)ρ ≥ n
(
1− ĥ (Q)

)
. (6)

Proof. We may rewrite |ψ〉 by permuting subspaces such that

the second particle of each Bell pair is “pushed” to the left-

most subspace while the first particle of each pair is pushed

to the middle register (the right-most register will remain E).

Noting that |φ0〉 and |φ2〉 are of the form 1√
2
(|+,+〉±|−,−〉)

while |φ1〉 and |φ3〉 are of the form 1√
2
(|+,−〉± |−,+〉), the

state, after this permutation of subspaces, can be written in the

form:

|ψ〉 ∼=
∑

b∈{0,1}n

βb |b〉X ⊗
∑

a∈{0,1}n

1
n∆H(a,b)≤Q

βa|b |a〉X |Ea|b〉 . (7)

Above, X is the usual Hadamard basis. From this, we trace

out the left-most register (which was originally the second

particle of each Bell pair) - this, of course, is equivalent to

first measuring the system and then tracing it out - yielding

the state:

ρRE =
∑

b

|βb|2 P




∑

a∈{0,1}n

1
n∆H(a,b)≤Q

βa|b |a〉X |Ea|b〉




︸ ︷︷ ︸
ρbRE

, (8)

where, recall, P (|z〉) = [z].

The R system is now measured in the Z basis yielding∑
b |βb|2ρbAE . From Equation 5, we have H∞(A|E)ρ ≥

minbH∞(A|E)ρb . From Lemma 1, we have:

H∞(A|E)ρb ≥ n− log

∣∣∣∣
{
a ∈ {0, 1}n :

1

n
∆H(a, b) ≤ Q

}∣∣∣∣ .

Noting that, for any b, the size of the set{
a ∈ {0, 1}n : 1

n∆H(a, b) ≤ Q
}

can be bounded using the

well-known bound on the size of a Hamming ball, namely

∣∣∣∣
{
a ∈ {0, 1}n :

1

n
∆H(a, b) ≤ Q

}∣∣∣∣ ≤ 2nĥ(Q),

completes the proof.



B. Quantum Sampling

Our new entropic uncertainty relation is a so-called sam-

pling based entropic uncertainty relation [?] which relies, for

its proof, on the quantum sampling framework introduced by

Bouman and Fehr in [?]. Since we use this framework to prove

our main result, we highlight some of the main concepts here.

For more information, the reader is referred to the original

sampling paper [?] from which all information in this section

is derived.

A classical sampling strategy over AN
d is a triple (PT , g, r),

where PT is a probability distribution over subsets of

{1, 2, · · · , N}; g is a “guess function,” g : A∗
d → R; and

r is a “target function,” r : A∗
d → R. Given a word q ∈ AN

d ,

the strategy will first sample t according to PT , observe qt
and compute g(qt) (or, equivalently, simply observe g(qt)),
and use this as a guess for the value of r(q−t). That is, given

an observed portion of q, the strategy should use that to guess

at the target value of an unobserved portion of the string.

Let δ > 0, then we define the set of ideal words to be:

Gt = {q ∈ AN
d : g(qt) ∼δ r(q−t)},

where we write x ∼δ y to mean |x− y| ≤ δ. Then, the error

probability of the sampling strategy is defined to be:

ǫcl = max
q∈AN

d

Pr (q 6∈ Gt) , (9)

where the above probability is over the choice of subset t. It is

clear from this definition that, for any q ∈ AN
d , the probability

that the given sampling strategy fails to give a δ-close guess of

the target value is at most ǫcl. Note that the “cl” superscript

is used here as a reminder that this is the classical failure

probability.

A sampling strategy as above may be promoted to a

quantum one. Let B be a d-dimensional orthonormal basis and

let |ψ〉AE be some quantum state where the A portion lives in

a dN dimensional Hilbert space. Note that the state |ψ〉 may

be arbitrary. Then the sampling strategy will first choose a

subset t according to PT , and then measure those systems in

A indexed by t using basis B to produce outcome qt ∈ A|t|
d .

The unmeasured portion collapses to some state |ψtq〉. Bouman

and Fehr’s main result is to give a rigorous analysis of this

post measured state.

Formally, we define a space of ideal states for subset t with

respect to basis B (or simply ideal states when the context is

clear) as follows:

span (Gt)⊗HE = span{|q〉B : q ∈ Gt} ⊗ HE .

Note that the definition depends on the chosen basis B. An

“ideal state for subset t” (with respect to basis B) is one that

lives in this space. In general, if a B basis measurement is

performed on subset t of an ideal state, yielding outcome q,

then it is guaranteed that the post-measured state is of the

form:

|ψtq〉 =
∑

i∈Jq
αi |i〉B ⊗ |Ei〉 ,

where Jq = {i ∈ AN−|t|
d : g(q) ∼δ r(i)}. Bouman and

Fehr’s main result is stated in the Theorem below:

Theorem 1. (From [?], though we reword it here for our

application): Given a classical sampling strategy with error

probability ǫcl for a given δ > 0, it holds that for any |ψ〉 ∈
HA ⊗ HE (where HA is a dN dimensional Hilbert space)

and any d-dimensional orthonormal basis B, that there exists

a collection of ideal states {|φt〉}, indexed by every possible

subset choice t, such that |φt〉 are ideal states for subset t with

respect to basis B, and it holds that:

1

2

∣∣∣∣∣

∣∣∣∣∣
∑

t

PT (t)[t]⊗
(
[ψ]−

[
φt
])
∣∣∣∣∣

∣∣∣∣∣ ≤
√
ǫcl. (10)

The proof of the above theorem is actually by construction

where the ideal states are defined by projecting onto the ideal

subspace and a subspace orthogonal to it. In particular, given

a fixed t and an input state |ψ〉 =
∑
i |i〉

B ⊗ |Ei〉, then the

ideal states are defined by:

|ψ〉 = 〈φt|ψ〉 |φt〉+ 〈φ̄t|ψ〉 |φ̄t〉
= α

∑

i∈Gt

|i〉B ⊗ |Ei〉+ β
∑

i 6∈Gt

|i〉B ⊗ |Ei〉 .

Thus, given some property of Eve’s ancilla in the real state,

those properties may translate also to the ideal system, a point

that will be important in the proof of our main theorem.

We comment on a few things. First, Theorem 1 let’s us

promote classical sampling strategies to quantum ones where

the error (in terms, now, of trace distance) only increases

quadratically. Second, one doesn’t actually have to perform the

sampling strategy in the given basis - the above states exist

regardless. Thus, one may use the existence of these states

but actually perform different measurements on them, yet still

be able to say something about the post-measured state. We

will use this later in our proof. Finally, though our wording

of Theorem 1 is different from how it was worded originally

in [?], their original proof is by construction and readily leads

to the above statement as shown in [?].

Before leaving this section, we discuss a basic sampling

strategy for bit strings (i.e., d = 2). Let PT be the uniform

distribution on subsets of size m (with m < N/2) and let

g(x) = r(x) = w(x). From this, it is clear that the set of

ideal words is:

Gt =
{
q ∈ {0, 1}N : w(qt) ∼δ w(q−t)

}
, (11)

where n = N −m. Thus, this strategy observes the relative

number of 1’s in the given string qt and uses this as a guess

as to the number of 1’s in the unobserved portion q−t. Then,

it was proven in [?], that the error probability of this strategy

may be bounded by:

ǫcl0 ≤ 2 exp

(
−δ2 mN

N + 2

)
. (12)

The above equation will be useful later.



III. NEW ENTROPIC UNCERTAINTY RELATION

We now prove our main result. Consider the following

experiment. Let ρABE be a quantum state where the A and

B registers each consist of N qubits. Also consider two bases

Z and Xα, where Xα is defined to be spanned by the states

|x0〉 = α |0〉 +
√
1− α2 |1〉 and |x1〉 =

√
1− α2 |0〉 − α |1〉

where α =
√

1
2 + b for some bias parameter b ∈ [−.5, .5]

(our methods can be extended to arbitrary complex amplitudes

α, however we restrict to real values for this work as the

presentation is simpler and, already, this gives an interesting

result as shown later in our evaluations). Note that, when

b = 0, the Xα basis is the usual Hadamard basis. When

b = ±1/2, the Xα basis is no different from the Z basis. We

assume b is known or can be bounded by the parties running

the experiment.

Given ρABE , Alice and Bob will choose a random subset

t of size m < N/2 and measure their qubits, indexed by

t, in basis Xα. Let q ∈ {0, 1}m be the result of XOR’ing

their measurement results (i.e., qi = 0 if the i’th measurement

yielded equal outcomes in the Xα basis and it is 1 otherwise).

This causes the remaining n = N −m qubits to collapse to

some state ρ
(t,q)
ABE . Next, the remaining n qubits are measured

in the Z basis. Our main result is stated in Theorem 2

below, provides a bound on the min entropy in this Z basis

measurement as a function of the bias parameter b, and the

Shannon entropy of the observed parity value q.

Our proof assumes the states under investigation have a spe-

cific form on the adversary/environment system as defined be-

low in Definition III.1. This assumption is needed in only one

part of our proof, though removing the assumption does seem

to greatly complicate the proof. We suspect this assumption is

not actually required, though a full proof remains elusive. That

being said, the assumption below is, in a way, minimal and, in

fact, most quantum states investigated in security proofs satisfy

it. Thus, while we have to make this assumption on the given

quantum state, it is not very problematic towards applications,

including cryptographic ones. In fact, this assumption may

even be enforced if one utilizes mismatched measurements

[?], [?], [?], [?] (see also methods in [?]).

Definition III.1. Let |ψ〉ABE be a quantum state with the

A and B portions consisting of N qubits each. Without loss

of generality, we may write |ψ〉ABE =
∑
i∈AN

4
αi |φi〉 |Ei〉,

where |φi〉 is the Bell basis defined earlier. We say |ψ〉ABE is

produced by a depolarizing source if it holds that 〈Ei|Ej〉 = 0
whenever i 6= j.

Note that a depolarizing channel produces a state according

to Definition III.1. A state produced by a depolarizing source

also produces, in a way, “symmetric” (though potentially still

biased based on the measurements’ biases) measurement re-

sults and so can even be enforced as mentioned earlier (using,

potentially, mismatched measurements if measurements are

biased [?]).

To prove our main result, we’ll need the following classical

sampling strategy: Given a word q ∈ An+m
4 , choose a subset

t ⊂ {1, · · · , n + m} of size |t| = m uniformly at random.

The guess function is the relative number of 1’s and 3’s in

the observed portion, namely f(qt) =
1
m#1,3(qt). The target

function is the relative number of 1’s and 3’s in the unobserved

portion, r(q−t) = 1
n#1,3(q−t). This induces the set of ideal

words:

Gt =
{
i ∈ An+m

4 :
1

m
#1,3(it) ∼δ

1

n
#1,3(i−t)

}
. (13)

The classical error probability of this sampling strategy is

analyzed in the following Lemma:

Lemma 4. Given δ > 0 and m < n, the classical error

probability ǫcl of the sampling strategy described above is

bounded by:

ǫcl ≤ 2 exp

(
−δ2m(n+m)

n+m+ 2

)
.

Proof. We prove this by, essentially, reducing to the sampling

strategy described at the end of Section II-B and bounded by

Equation 12. Let G̃t be the set of ideal words for the earlier

defined sampling strategy (see Equation 11). Let q ∈ AN
4 (with

N = n+m) and consider a fixed subset t of size m < N/2.

Then, define the word q̃ ∈ {0, 1}N where q̃i = 0 if qi = 0
or 2 and q̃i = 1 otherwise. Thus, w(q̃t) = 1

m#1,3(qt) and,

similarly, for the complement of t. In particular, for any t, it

holds that q 6∈ Gt ⇐⇒ q̃ 6∈ G̃t. From this, we conclude:

Pr(q 6∈ Gt) = Pr
(
q̃ 6∈ G̃t

)
≤ max
i∈{0,1}N

Pr
(
i 6∈ G̃t

)
≤ ǫcl0 ,

where ǫcl0 was defined in Equation 12. Since the above is true

for any q, the proof is complete.

We now have all the tools we need to state and prove our

main result:

Theorem 2. Let ǫ > 0, α =
√
1/2 + b for some b ∈ [−.5, .5],

and let |ψ〉ABE be a state prepared by a depolarizing source

(according to Definition III.1) where the A and B registers

each consist of N qubits. Assume a random subset is chosen

t of size m and a measurement in the Xα basis is performed in

the A and B registers, indexed by t and resulting in outcomes

qA, qB ∈ {0, 1}m. The remaining qubits in the A and B

portions are measured in the Z basis resulting in state ρ
(t,q)
ABE

(which depends on q = qA ⊕ qB and t). Then, except with

probability ǫfail = (16ǫ)1/3, it holds that:

Pr
(
H8ǫ+3(2ǫ)1/3

∞ (A|E)ρ(t,q) ≥ n(1− ĥ(w(q) + ν + δ))
)
,

(14)

where ĥ(x) is the bounded binary entropy function and:

δ =

√
(m+ n+ 2)

m(m+ n)
ln

2

ǫ2
(15)

and

ν = 4b2 +
1√
m

ln
1

2ǫ
(16)

The probability is over the choice of subset and the measure-

ment outcome q = qA ⊕ qB .



Proof. Let ǫ > 0 be given and set δ as in Equation 15. From

Theorem 1, and using the sampling strategy described earlier

in this section and analyzed in Lemma 4, there exist ideal

states {|φt〉ABE}, with respect to the Bell basis, such that

|φt〉 ∈ span (Gt)⊗HE where:

span (Gt) = span

{
|φq〉 :

1

m
#1,3(qt) ∼δ

1

n
#1,3(q−t)

}

and:
∣∣∣∣∣

∣∣∣∣∣
∑

t

PT (t)[t]⊗ ([ψ]−
[
φt
]
)

∣∣∣∣∣

∣∣∣∣∣ ≤
√
ǫcl ≤ ǫ,

where the latter inequality follows from Lemma 4 and our

choice of δ.

Note that, since these states are constructed by projecting

|ψ〉 into the subspace of ideal states, it is not difficult to see

that, since |ψ〉 is produced by a depolarizing source, each |φt〉
is also. (See the discussion under Theorem 1.)

We first analyze the ideal states and show the min entropy

there is high, based on the observed Xα basis noise.

By permuting subspaces so that those systems indexed by

t are the left-most system, we may write:

|φt〉 ∼=
∑

i∈Am
4

αi |φi〉 ⊗
∑

ℓ∈Ji
βℓ|i |φℓ〉 |Ei,j〉

︸ ︷︷ ︸
|µi〉

, (17)

with:

Ji =

{
ℓ ∈ An

4 :
1

n
#1,3(ℓ) ∼δ

1

m
#1,3(i)

}
.

Note that we are permuting subspaces only for clarity in

presentation, this is not a required step of the protocol. Now,

if we were able to make a Bell basis measurement on subset

t, observing, say, outcome x ∈ Am
d , we would know, for

certain, that the post measured state must have collapsed to

|φtx〉 =
∑
y βy |φx〉 |Ex〉 where the number of 1’s and 3’s in

y is δ-close to the number of 1’s and 3’s in the observed

x. However, we can only measure in the Xα basis leading to

outcomes qA and qB . The idea is that, based on α, the observed

string cannot be too different from the underlying state in the

original Bell basis. To prove this formally, we now consider

the following two-qubit basis based on Xα (which we call the

Xα-Bell basis):

|φX0 〉 = 1√
2
|x0, x0〉+

1√
2
|x1, x1〉

|φX1 〉 = 1√
2
|x0, x1〉+

1√
2
|x1, x0〉

|φX2 〉 = 1√
2
|x0, x0〉 −

1√
2
|x1, x1〉

|φX3 〉 = 1√
2
|x0, x1〉 −

1√
2
|x1, x0〉

Note that if α = 1/
√
2 (thus Xα basis is the Hadamard basis),

then it holds |φXi 〉 = |φi〉 for i = 0, 1, 2, 3.

Changing basis of those systems indexed by t in Equation

17, we have:

|φt〉 ∼=
∑

i∈Am
4

αi



∑

j∈Am
4

〈φXj |φi〉 |φXj 〉


⊗ |µi〉

=
∑

j∈Am
4

|φXj 〉 ⊗



∑

i∈Am
4

αi 〈φXj |φi〉 |µi〉


 . (18)

A measurement is now performed on the A and B registers,

indexed by t, in the Xα basis. However, the important factor

will be the number of errors in the measurements. Thus,

we equivalently consider Alice and Bob measuring in the

following two-outcome POVM: X0 = [x0,x0] + [x1,x1] and

X1 = [x0,x1] + [x1,x0]. Thus, X1 represents an outcome

where Alice and Bob get different measurement outcomes after

measuring in basis Xα. Note that an outcome of X1 can only

occur if the underlying state is |φX1 〉 or |φX3 〉. Of course, if

α = 1/
√
2 and Xα is the Hadamard basis, this gives us an

exact count of the number of 1’s and 3’s in the state i (needed

to bound the entropy in |µi〉). However, we actually only count

the number of 1’s and 3’s in j - from this, we will need to

determine a good bound for the number of 1’s and 3’s in i.
Intuitively, this should follow since, for α close to 1/

√
2, the

Xα-Bell states are almost the Bell states and, so, any entropy

equation should behave similarly in both bases for small bias

parameter b. We prove this rigorously below.

For a fixed j ∈ Am
4 , and user-defined ν ≥ 0, let’s define

“good” and “bad” states as follows:

Gj = {i ∈ Am
4 : ∆H(i, j) ≤ mν}

Bj = {i ∈ Am
4 : ∆H(i, j) > mν}.

Note that ν will control how likely we are to get a “good” state

as larger ν means more states are considered good - though

this will lead to additional uncertainty in i as we also want to

control how far i is from j. We will show later that ν may be

made a function of ǫ. Given this, we may rewrite Equation 18

as follows: |φt〉 ∼=

∑

j∈Am
4

|φXj 〉 ⊗



∑

i∈Gj

αi 〈φXj |φi〉 |µi〉+
∑

i∈Bj

αi 〈φXj |φi〉 |µi〉




(19)

Let |gj〉 =
∑
i∈Gj

αi 〈φXj |φi〉 |µi〉 and |bj〉 =∑
i∈Bj

αi 〈φXj |φi〉 |µi〉 and so |φt〉 ∼=
∑
j |φXj 〉⊗(|gj〉+ |bj〉).

We now consider an “ideal-ideal” state |φ̃t〉 defined as:

|φ̃t〉 = 1√
M

∑

j∈Am
4

|φXj 〉 ⊗ |gj〉 , (20)

where M =
∑
j 〈gj |gj〉. By basic properties of trace distance,

we have:

1

2

∣∣∣
∣∣∣
[
φt
]
−
[
φ̃t
]∣∣∣
∣∣∣ =

√
1− | 〈φt|φ̃t〉 |2. (21)



Since all states are prepared by a depolarizing source, we have:

1− | 〈φt|φ̃t〉 |2 = 1−

∣∣∣∣∣∣
1√
M

∑

j

(〈gj |gj〉+ 〈gj |bj〉)

∣∣∣∣∣∣

2

= 1− 1

M



∑

j

〈gj |gj〉




2

= 1−M.

We claim that 1−M may be bounded above by an arbitrarily

small value if user parameters are set appropriately. Note that

1−M =
∑
j 〈bj |bj〉. This follows from the fact that Equation

19 is normalized and so:

1 =
∑

j

(〈gj |gj〉+ 〈bj |bj〉) =⇒
∑

j

〈bj |bj〉 = 1−M.

Now, since the state is produced by a depolarizing source, we

find:

∑

j∈Am
4

〈bj |bj〉 =
∑

j∈Am
4



∑

i∈Bj

|αi|2| 〈φXj |φi〉 |2



=
∑

i∈Am
4

|αi|2
∑

j∈Bi

| 〈φXj |φi〉 |2. (22)

For a fixed i ∈ Am
4 , let’s focus on

∑
j∈Bi

| 〈φXj |φi〉 |2. The

following identities can be easily shown for any α ∈ [0, 1]:

|φX0 〉 = |φ0〉 , |φX3 〉 = |φ3〉 ,
|φX1 〉 = √

p |φ2〉+
√
q |φ1〉 ,

|φX2 〉 = √
q |φ2〉 −

√
p |φ1〉

where:

√
p = β2 − α2 = 2b,

√
q = 2αβ

From this, we see that, given a fixed i ∈ Am
4 , and a

particular j ∈ Bi, then if there exists even a single index

ℓ ∈ {1, 2, · · · ,m} such that iℓ = 0 and jℓ 6= 0 or iℓ = 3 and

jℓ 6= 3, then the entire inner product 〈φXj |φi〉 = 0. Since we

want to upper-bound Equation 22, the only way that expression

can have non-zero terms is if, for a given i, jℓ = 0 whenever

iℓ = 0 and jℓ = 3 whenever iℓ = 3. If iℓ = 1 or 2, then jℓ
may be either 1 or 2. Of course, since we are summing over

“bad” states, there must be at least mν differences in j.
Considering any fixed i, if #1,2(i) ≤ mν, it is clear that∑
j∈Bi

| 〈φXj |φi〉 |2 = 0 since at least one index in each j ∈ Bi
must differ on an index where iℓ = 0 or 3. The only time the

sum over j can be non-zero is if i satisfies #1,2(i) = k > mν.

For any such i, there exists a j ∈ Bi such that ∆H(i, j) = d
with mν < d ≤ k and where j = i everywhere except on

d indices where i happens to be 1 (j will be a 2 on such

an index) or 2 (j will be a 1 on such an index). This would

lead to a value of | 〈φXj |φi〉 |2 = pdqk−d = pd(1 − p)k−d,

where we note that q = 1 − p. The pd term comes from

changing the d indices (flipping a 1 to a 2 and a 2 to a 1)

while the qk−d term comes from leaving the remaining 1’s

and 2’s in i the same in j. Of course the rest of i are 0’s and

3’s which are kept the same in j. Since there are
(
k
d

)
such

strings j, it follows that for any i with #1,2(i) = k > mν,

that
∑
j∈Bi

| 〈φXj |φi〉 |2 =
∑k
d=mν

(
k
d

)
pd(1− p)k−d.

Continuing this logic, we can write Equation 22 in the

following way:

1−M =
∑

i∈Am
4

|αi|2
∑

j∈Bi

| 〈φXj |φi〉 |2

≤
m∑

k=mν

p̃(k)

k∑

d=mν

(
k

d

)
pd(1− p)k−d, (23)

where:

p̃(k) =
∑

i : #1,2(i)=k

|αi|2.

Note that, if mν is not an integer, we take the floor value

and thus the reason for the inequality above. Note also that∑m
k=0 p̃(k) =

∑
i∈Am

4
|αi|2 = 1. Thus:

1−M ≤ max
k≤m

(
k∑

d=mν

(
k

d

)
pd(1− p)k−d

)

≤
m∑

d=mν

(
m

d

)
pd(1− p)m−d. (24)

This can be considered the tail of the CDF of a binomial

distribution with parameter p and m trials. By Hoeffding’s

inequality, we may derive the following bound, for ν ≥ p:

1−M ≤ exp
(
−2m(ν − p)2

)
. (25)

By setting ν = p + 1√
m
ln 1

2ǫ , it holds that
√
1−M ≤ ǫ and

thus we have:

1

2

∣∣∣
∣∣∣
[
φt
]
−
[
φ̃t
]∣∣∣
∣∣∣ ≤

√
1−M ≤ ǫ.

Of course, this is true for any subset t in the ideal system

|φt〉 and, so, by the triangle inequality, along with elementary

properties of trace distance, we have:

1

2

∣∣∣∣∣

∣∣∣∣∣
∑

t

PT (t)[t]⊗
(
[ψ]−

[
φ̃t
])∣∣∣∣∣

∣∣∣∣∣ ≤ 2ǫ. (26)

Thus, since the given input state |ψ〉 is actually 2ǫ close to

these “ideal-ideal” states, we may analyze the entropy there

and use Lemma 2 to promote the analysis to the real state.

Define σTQ =
∑
t PT (t)[t] ⊗

[
φ̃t
]

and we analyze the

min entropy in this state, following the conclusion of the

measurements and sampling. Sampling on such a state implies

measuring the subset register T causing the state to collapse

to |φ̃t〉. After measuring those systems indexed by t in the

POVM X0 and X1 defined above, observing q ∈ {0, 1}m,

then tracing out the measured portion, the state collapses to

|φ̃tq〉 which may be written in the form:

|φ̃t〉 =
∑

j∈Am
4

#1,3(j)=#1(q)

pjP



∑

i∈Gj

βi|j |µi〉


 . (27)



The above can be seen easily from Equation 20 and simply

re-parameterizing. Note that whenever an observation of X1

is observed, the underlying index of j may be either a 1 or

a 3 and, thus, the state collapses to some j where we have a

bound on the number of 1’s and 3’s based on the observed q.

Let Q = #1(q). Continuing our derivation, we may write the

above state in the following form:

|φ̃t〉 =
∑

j∈Am
4

#1,3(j)=Q

pjP



∑

i∈Gj

βi|j |µi〉




=
∑

j∈Am
4

#1,3(j)=Q

pjP




∑

i∈Am
4

∆H(i,j)≤mν

βi|j

×




∑

ℓ∈An
4

1
n#1,3(ℓ)∼δ

1
m#1,3(i)

γℓ|i,j |φℓ〉 |Eℓ|i,j〉







=
∑

j∈Am
4

#1,3(j)=Q

pjP




∑

ℓ∈Am
4

1
n#1,3(ℓ)≤w(q)+ν+δ

γ̃ℓ|j |φℓ〉 |Ẽℓ|j〉


 .

(28)

Above, for the last equality, we simply re-parameterized and

changed the order of the summation. Note that some of the

γ̃ℓ|j values may be zero. We did this so that we can easily

use Equation 5 along with Lemma 3 to find the following

lower-bound: H∞(A|E)φ̃t
q
≥ 1− ĥ(w(q) + ν + δ), where the

A register is used to store a Z basis measurement of the first

particle of each Bell pair in the above state (the second particle

is traced out).

Of course, this is only the ideal state. However, Equation

26, along with Lemma 2, finishes the proof. In particular, the

X random variable for Lemma 2 is the subset choice t and

measurement outcome q while the CPTP map F is the choice

of subset and the measurement in POVM {X0, X1}.

Corollary III.1. Let ρABE be a quantum state where the A
and B registers hold a single qubit. Let α =

√
1/2 + b for

some b ∈ [−.5, .5] and let QX be the random variable induced

by performing an Xα basis measurement on the A and B qubit

and XOR’ing the outcome. Let QbX be the random variable

which takes the value 1 with probability min(1/2, P r(QX =
1) + 4b2). Then it follows that:

H(AZ |E)ρ +H
(
QbX
)
≥ 1. (29)

where AZ is the random variable induced by Alice’s Z basis

measurement on her particle in ρABE .

Proof. This follows immediately from Theorem 2 and by the

asymptotic equipartition property [?] and the law of large

numbers.

A. Comparison to Standard Entropic Uncertainty in the

Asymptotic Limit

In the next section, we apply our new entropic uncertainty

bound to two particular cryptographic applications, each of

which were proven in previous work, using standard entropic

uncertainty relations for quantum min entropy and we compare

the resulting bit generation rates for various bias parameters

and noise levels in the channel. However, before this, we show

here a comparison in the asymptotic case to the following

standard entropic uncertainty inequality proven in [?] (written

in a form, here, for the particular scenario and measurements

we’re interested in):

H(AZ |E) +H(AX |BX) ≥ − log2

(
1

2
+ b

)
, (30)

for b ≥ 0. Such a comparison gives a general notion of the

improvement that is possible using our new result, since the

asymptotic case will always provide an upper-bound.

For this comparison, we assume the state is produced by

a depolarization channel (which is easily confirmed to satisfy

Definition III.1), and thus have H(AX |BX) = h(q), where

q will denote the error rate in the channel. Comparing with

Equation 29, of course when b = 0, the two identities agree

exactly, as expected.

The comparison for b ≥ 0 is shown in Figure 1. There are

several interesting observations to make here; in particular, we

note that, in many settings, our entropic uncertainty relation

produces a strictly better bound on the entropy. However, this

is not always the case. In particular, when the noise and bias

are both small, standard entropic uncertainty produces a better

result. However, in all other tests we performed when the noise

is larger and there is bias, our result produces a strictly better

bound on the entropy. Since both our new result and standard

results are both lower-bounds, one may, in practice, simply

take the maximum of the two and, thus, our work can only

benefit future analyses requiring bounds on quantum entropy

with biased measurements.

IV. APPLICATIONS

We now apply our main theorem to two different crypto-

graphic applications. The first is a quantum random number

generator (QRNG) with a faulty and uncharacterized source.

The second is a QKD protocol where Alice and Bob are not

able to measure in mutually unbiased bases, as is typically

required by BB84 style protocols to maximize key generation

rates. In both instances we show there are several cases where

our new result significantly outperforms prior work using

standard entropic uncertainty relations.

Quantum Random Number Generation: We first con-

sider a source independent (SI) QRNG protocol whereby the

measurement devices are fully characterized, but the source

is unknown, as introduced in [?]. The goal of a QRNG






