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A B S T R A C T

One of the brilliant ideas of John Spence when he saw the first diffraction patterns from the Linac Coherent
Light Source was that one could solve the crystallographic phase problem by utilising the intensities between
Bragg peaks. Because these intensities are due to the Fourier transform of the shape of the crystal, the approach
came to be known as ‘‘shape-transform phasing.’’

Shape-transform phasing was developed over the next ten years and formed the basis for many other
interesting ideas and pursuits. Here we describe the current best implementation of the original idea using
a lattice occupancy formalism and show that certain types of crystal defects can also be modelled via this
approach, allowing the molecular structure to be recovered from the additional information offered by the
inter-Bragg intensities from these crystal defects.

1. Introduction

Once upon a time; December 2009 to be exact, a small crystal was
dropped into the very first operational X-rays generated by the Linac
Coherent Light Source (LCLS). The X-rays diffracted from that crystal
and created the diffraction pattern shown in Fig. 1. The pattern caused
a stir in the control room that prompted John Spence to leap up from
his slumber. Waving his arms in the air and jumping up from his chair,
John proclaimed: ‘‘We can phase that!’’

This accurate historical account triggered the work by Spence et al.
[2] that outlined a method to reconstruct the electron density of a
molecule directly from the diffraction data. The central idea is that
the diffracted intensities between Bragg peaks provide sufficient sam-
pling of the molecular transform to solve the crystallographic phase
problem [3]. In the case of the experiment from 2009, these inter-
Bragg intensities are due to the Fourier transform of the shape of
the crystal, which resulted in the approach being known as ‘‘shape
transform phasing’’.

∗ Corresponding author at: Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand.
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The first part of this manuscript introduces shape transform phasing

and recounts some of the history and the relevant theory. The second

part describes the lattice occupancy approach that provided a viable

way of performing shape transform phasing. Applications of the lat-

tice occupancy model to describe various crystal defect scenarios are

described in the third part, with simulations presented in 2D. Finally

we conclude by outlining the current difficulties of the technique and

future directions of the shape transform phasing method.

2. Origins

Shape transforms from protein crystals have been observed by

Boutet and Robinson [4] using synchrotrons. These signals have since

become prominent in X-ray free-electron laser (XFEL) experiments

termed ‘‘serial femtosecond crystallography’’ because smaller crystals

can be used [[5]]. In serial femtosecond crystallography, diffraction
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Fig. 1. A single diffraction pattern from a sub-micron-sized crystal of Photosystem I
obtained at the LCLS [1].

patterns from crystals of different sizes and shapes are injected into
the X-ray pulse in a serial fashion. The real-space scattering density of
the nth crystal, gn(r), can be written in terms of the scattering density
of the unit molecule, f (r), in the crystal basis as

gn(r) =

Sn∑
�

f
(
r − r�

)
(1)

where the integer tuple � = (�1, �2, �3) indexes the unit cells and
the position of those unit cells are given by the lattice vectors r� =

�1a1 + �2a2 + �3a3, a linear combination of the crystal basis vectors a1,
a2 and a3. The sum is taken over the set of � tuples that describes the
crystal, which we denote here by Sn.

Illuminating the entire crystal coherently with the X-ray beam, the

diffraction pattern in the far-field is given by the Fourier transform of

the electron density of the unit cell. The Fourier transform of the crystal

density is equal to

Gn(q) =

Sn∑
�

∫
∞

−∞

d3reiq⋅rf (r − r�)

=

Sn∑
�

F (q)eiq⋅r� .

= F (q)

Sn∑
�

eiq⋅r� (2)

The intensity is then

In(q) =
||Gn(q)

||2 = |||F (q)
|||
2||||

Sn∑
�

eiq⋅r�
||||
2

(3)

which for a cuboidal crystal, of sides (Nx, Ny, Nz), the summation

in Eq. (3) can be evaluated to reduced the equation to

In(q) = |F (q)|2 sin
2(Nxnqx)

sin2(qx)

sin2(Nynqy)

sin2(qy)

sin2(Nznqz)

sin2(qz)
(4)

The magnitude squared of the Fourier transform of the molecule |F (q)|2
modulated by the sin2 ∕ sin2 function is visualised on the left hand side

of Fig. 2 in 1D, for different values of N and explains the diffraction

pattern observed in Fig. 1 where it is possible to count the number of

unit cells!

In serial femtosecond crystallography, the diffraction patterns from

crystals of different sizes and shapes in the same orientation are aver-

aged to increase the signal-to-noise ratio [7,8]. The average intensity

over many crystals is

I(q) =
⟨||Gn(q)

||2
⟩
n
=
|||F (q)

|||
2
⟨||||

Sn∑
�

eiq⋅r�
||||
2⟩

n

(5)

Fig. 2. The process of dividing out the shape transform first proposed by Spence et al. [2] illustrated in 1D. The N on the left-hand-side denotes the number of unit cells in each
1D crystal. The blue rectangular boxes indicate the Wigner-Seitz cells.
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Fig. 3. Two types of unit cells (top row) and three different crystals composed of the
same molecular building blocks but terminated in different ways. The shaded molecules
indicate the asymmetric units that can be described by the unit cell at the top of each
column. the un-shaded molecules are what are known as ‘‘partial’’ or ‘‘incomplete’’ unit
cells.

which for the cuboidal case simplifies to

I(q) = |F (q)|2
⟨
sin2(Nxnqx)

sin2(qx)

sin2(Nynqy)

sin2(qy)

sin2(Nznqz)

sin2(qz)

⟩

n

(6)

The expectation value for an individual sin2 ∕ sin2 function was studied
by [9] where they showed that the minimum value of this mean is
1∕2 for any well-behaved probability density function describing the
distribution of the number of unit cells in the crystal ensemble.

Spence et al. [2] proceed to show that you can estimate the aver-
aged shape transform by summing over many Wigner-Seitz cells. Upon
dividing out the estimated shape transform one can recover the Fourier
magnitude of one molecule which is then able to be phased with phase
retrieval methods from single particle imaging [10]. The whole process
is depicted in Fig. 2. Chen et al. [11] studied the phasing process when
dividing out the shape transform in the presence of noise.

3. Non-uniqueness of unit cell

A problem with the shape transform phasing method as proposed
by Spence et al. [2] gradually emerged. The problem was that when a
finite crystal is composed of molecules in more than one orientations,
i.e., when the crystal has a space group other than P1, the unit cell does
not have a unique definition. Different crystal truncations will give rise
to crystals described by different unit cells, as depicted in Fig. 3.

Elser [12] first realised this problem and proposes the idea of
unwrapping the electron density, along side a phasing method utilising
the gradients of the molecular transform.

Richard Bean (unpublished) looked at estimating the intensities
mid-way between the Bragg reflections by interpolation and then sort-
ing the diffraction patterns to disentangle the different molecular trans-
forms.

Chen and Millane [13,14],Kirian et al. [15],Liu et al. [16],Millane
and Chen [17],Williams et al. [18] all analysed the effects of partial
unit cells and made contributions towards a deeper understanding of
the problem.

Kirian et al. [19] carried out the first experimental demonstration
of shape transform phasing, utilising artificial 2D crystals on silicon
nitride membranes. They showed that shape transform phasing could
work even in the presence of unknown and jittery wavefront, but also
demonstrated the non-uniqueness of the unit cell problem by experi-
mentally fabricating crystals with four different kinds of unit cells, and
showing that their molecular transforms differed greatly away from the
Bragg locations.

Chen et al. [20] provided a partial solution to the unit cell non-
uniqueness problem by coming up with an algorithm that could phase
the intensities of a weighted sum of different molecular transforms.
However that algorithm could not deal with the multitude of unit cells
that would be generated from arbitrary crystal truncations.

It was not until 2019 that the problem of non-uniqueness of unit
cell in shape transform phasing was fully resolved, leading to the lattice
occupancy model of a crystal.

4. The occupancy model

The lattice occupancy model proposed by Chen et al. [6] describes
a crystal by laying down infinite lattices and multiplying the electron
density of the molecule by a 0 when the molecule does not exist on a
particular lattice point and a 1 when the molecule does exist on that
lattice point. We outline the mathematics associated with this model
in this section, and write down the averaged diffracted intensity of a
crystal in this formalism.

The real-space scattering density of the nth crystal, gn(r), can be
written in terms of the scattering density of the kth asymmetric unit,
fk(r), as

gn(r) =

∞∑
�

K∑
k=1

w�kn fk
(
r − r� − sk

)
(7)

where w�kn is the occupancy of the kth asymmetric unit in the unit cell
indexed by the 3-tuple of integers � = (�1, �2, �3), sk is the constant
shift of the kth asymmetric unit as determined by the space group of
the crystal.

Again, the lattice vectors r� are given by a linear combination
of the three crystal basis vectors as r� = �1a1 + �2a2 + �3a3. The
weights w�kn take on values of either 0 or 1 when interpreted as a
molecular occupancy but can more generally be any complex number
to model, say, the partial coherence of the incident X-ray wavefront.
For the partial coherence modelling to work, we assume the molecule
is much smaller than the fluctuations of the wavefront of the beam
and so when each molecule gets a different complex weight, this can
potentially be interpreted as piece-wise approximations to a partially-
coherent incident wavefront illuminating a volume of molecules that
are all weighted equally.

The Fourier transform of the crystal density is equal to

Gn(q) =

∞∑
�

K∑
k=1

w�kn ∫
∞

−∞

d3re−iq⋅rfk(r − r� − sk)

=

∞∑
�

K∑
k=1

w�knFk(q)e
−iq⋅r� e−iq⋅sk . (8)

The intensity for the nth crystal is then

In(q) =
||Gn(q)

||2 =
∞∑
��

K∑
kl

w�knw�lnF
∗
l
(q)Fk(q)e

−iq⋅(r�−r� )e−iq⋅(sk−sl ) , (9)
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Fig. 4. Flow diagram of the error-reduction form of the algorithm, adapted from Chen et al. [6].  denotes symmetry operations on the molecule due to the space group (rotations
Rk and translations sk), s(r) is the support of the molecule in the position basis, S contains the information about the support, Idata is the averaged diffracted intensity from the
edgy crystal ensemble, Pmax and PPSD are described in the main text.

Fig. 5. Edgy finite crystal and its occupancy model. Filled circle denote w�kn = 1 and empty circles w�kn = 0.

and the average intensity over many crystals is

I(q) =
⟨||Gn(q)

||2
⟩
n
=

∞∑
��

e−iq⋅(r�−r� )
K∑
kl

⟨
w�knw�ln

⟩
n
F ∗
l
(q)Fk(q)e

−iq⋅(sk−sl )

=

∞∑
��

e−iq⋅(r�−r� )
K∑
kl

W�k�lF
∗
l
(q)Fk(q)e

−iq⋅(sk−sl ) , (10)

where the term

W�k�l ≡ ⟨
w�knw�ln

⟩
n

(11)

is referred to as the ‘‘occupancy matrix’’ or the ‘‘crystal covariance
matrix’’.

Now define the averaged lattice-transform functions as

Ckl(q) ≡
∞∑
��

W�k�l e
−iq⋅(r�−r� ) (12)

then the averaged intensity can be written as

I(q) = ⟨In(q)⟩n =
K∑
kl

Ckl(q)Fk(q)F
∗
l
(q)e−iq⋅(sk−sl ) . (13)

Eq. (13) can be written in matrix notation as

I(q) = F
†(q)C(q)F(q) , (14)

where F(q) is a K × 1 array and C(q) is a K × K array containing the
complex amplitudes of the molecular transform and averaged lattice-
transform, respectively. The † denotes complex conjugation transpose.
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Fig. 6. Crystal with substitutional disorder and its occupancy model. Filled circle denote w�kn = 1.

Fig. 7. Crystal with ABC stacking fault and its occupancy model. Filled circle denote w�kn = 1 and empty circles w�kn = 0.

Fig. 8. A summary table of four different crystal scenarios.

The C(q) matrix is positive-semidefinite and periodic, with a period
given by the Wigner–Seitz cells, as shown by Chen et al. [6]. These
properties will be utilised in the reconstruction algorithm to recover
the averaged lattice transform, along with the molecular density, as
described in the next section.

5. Reconstruction algorithm

Once we have an equation describing the forward problem, we
can proceed to find a method to back-out the quantities inputted into

our model, to solve the inverse problem. Specifically, we would like
to recover the molecular density f (r). The reconstruction algorithm
proposed by Chen et al. [6] takes the averaged intensity I(q) and
recovers both Ckl(q) and f (r) for all k and l. Briefly, the algorithm uses
the framework of iterative projection algorithms, detailed by Fienup
[21],Bauschke et al. [22],Elser [23,24],Luke [25],Marchesini [26],Elser
et al. [27],Millane and Lo [28], where the problem is posed in terms
of the satisfaction of constraints, and projection operators are utilised
to move an initial guess towards the intersection of the constraints.
In the case of the algorithm proposed by Chen et al. [6], the iterate
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Fig. 9. Diffracted intensity data, and the crystal that it is generated from for the edgy crystal reconstruction.

Fig. 10. Edgy crystal reconstruction. Ground truths are on the left column and reconstructions on the right. (a) The root-mean-squared errors for the real-space molecular density,
Ef , diffracted intensity data, EI , and averaged lattice transform matrix, EC , (b) Real-space density. (c) Zoomed-in diffracted intensity. (d) A single period of the averaged lattice
transform functions, arranged on a K by K array such that the on-diagonal images are Ckk(q), upper triangular images are Re(Ckl(q)) and bottom triangular images are Im(Ckl(q)).
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Fig. 11. Diffracted intensity data, and the crystal that it is generated from, for the substitutional disorder reconstruction.

consists of the set of all symmetry partners of the molecule {fk(r)} and
the averaged lattice transform matrices {Ckl(q)}, and the two projection
operators, PS and PM , are formulated as follows:

PS consists of first (1) undoing the symmetry operators on each of
the fk(r) to map the density to a common molecular orientation, (2)
average the result, (3) apply the support constraint, (4) normalise the
densities (Pmax) so that its root-mean-squared value is 1 for numerical
stability, and (5) applying the symmetry mapping to the updated
common molecule to redistribute copies of the molecule to form a set
of new {fk(r)}.

PM consists of (1) updating the {Ckl(q)} through a least-squares op-
timisation on the common periods of the matrix while holding {fk(r)}

constant, (2) changing each {Ckl(q)} matrices so that they are positive
semi-definite with the projection operator PPSD, and then (3) updating
the Fourier transform of the {fk(r)} while holding {Ckl(q)} constant
through a projection onto an ellipsoid [29].

A flow diagram of the error-reduction implementation of the algo-
rithm utilising these projections is depicted in Fig. 4. Details of the
operators and the entire process can be found in Chen et al. [6].

6. Applications to other situations

The lattice occupancy formalism can be applied to model a number
of crystal defects, which we summarise in this section.

6.1. Edgy finite crystals

To describe finite edgy crystals, as is needed for shape transform
phasing, every lattice point where the molecule does not exist, we
set the weight at that lattice point, w�kn, to 0, otherwise we set the
weight to 1, indicating the presence of a molecule. An illustration of
this description is shown in Fig. 5.

6.2. Substitutional disorder

Substitutional disorders can be modelled by using overlapping lat-
tices for all molecule types, which is equivalent to saying sk = 0 for all
k. For example, if there are three different molecular types, K = 3, and
at every lattice point, either w�1n or w�2n or w�3n will be 1, the rest will
be 0. An illustration of this description is shown in Fig. 6.

6.3. Stacking faults

ABC stacking faults can be modelled by three separate lattices, each
of which determines the occurrence of the same molecular density,
i.e., fk(x) = f (x) for all k. An illustration of this description is shown
in Fig. 7.

6.4. Summary of different defects

The cases described in the previous section can be summarised by
the table in Fig. 8. When all molecules are the same, but the lattices
are different, we have stacking faults. When all lattices are the same,
but the molecules are different, we have substitutional disorder. When
both molecule densities and lattices are different we get edgy crystals.

6.5. Uniqueness

As was pointed out in Section 3.3.4 in the paper by Chen et al. [6],
a degeneracy exists that prevents the unique recovery of {Ckl(q)}. This
degeneracy can occur when at least two of the molecular transforms
are equal. This is because we can write the intensity from Eq. (13) as

I(q) =

K∑
k=1

K∑
l=1

F ∗
l
(q)Ckl(q)Fk(q)

=

K∑
k=1

|Fk(q)|2Ckk(q) +

K∑
k=1

K∑
l=1
l≠k

F ∗
l
(q)Ckl(q)Fk(q). (15)

Assume all of the molecular transforms are the same, i.e., |Fk(q)|2 =

|F (q)|2 for all k, then we can factor out the molecular transform from
the first term, leaving

I(q) = |F (q)|2
K∑
k=1

Ckk(q) +

K∑
k=1

K∑
l=1
l≠k

F ∗
l
(q)Ckl(q)Fk(q). (16)

Thus we cannot distinguish between the different Ckk(q) and can only
recover up to their sum. An even more significant situation is the case
for our occupancy model of the ABC stacking fault where fk(x) = f (x)

for all k, giving

I(q) = |F (q)|2
K∑
k=1

K∑
l=1

Ckl(q)

= |F (q)|2
⎛
⎜⎜⎜⎝

K∑
k=1

Ckk(q) +

K∑
k=1

K∑
l=1
l≠k

Ckl(q)

⎞
⎟⎟⎟⎠

= |F (q)|2
⎛
⎜⎜⎜⎝

K∑
k=1

Ckk(q) + 2

K∑
k=1

K∑
l=1
l>k

Re(Ckl(q))

⎞⎟⎟⎟⎠
(17)

since Ckl(q) = C∗
lk
(q). Thus, for the case of the ABC stacking fault, we

can only recover up to the sum of Ckk(q) and the sum of the real parts
of Ckl(q), with the imaginary parts of Ckl(q) left unconstrained.

7. Simulations

In this section we show some phasing results for diffraction patterns
from single 2D crystals for each of the three aforementioned defect
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Fig. 12. Substitutional disorder reconstruction. Ground truths are on the left column and reconstructions on the right. (a) The root-mean-squared errors for the real-space molecular
density, Ef , diffracted intensity data, EI , and averaged lattice transform matrix, EC , (b) Real-space density. (c) Zoomed-in diffracted intensity. (d) A single period of the averaged
lattice transform functions, arranged on a K by K array such that the on-diagonal images are Ckk(q), upper triangular images are Re(Ckl(q)) and bottom triangular images are
Im(Ckl(q)).

Fig. 13. Diffracted intensity data, and the crystal that it is generated from for the stacking fault reconstruction.
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Fig. 14. Stacking fault reconstruction. Ground truths are on the left column and reconstructions on the right. (a) The root-mean-squared errors for the real-space molecular density,
Ef , diffracted intensity data, EI , and averaged lattice transform matrix, EC , (b) Real-space density. (c) Zoomed-in diffracted intensity. (d) A single period of the averaged lattice
transform functions, arranged on a K by K array such that the on-diagonal images are Ckk(q), upper triangular images are Re(Ckl(q)) and bottom triangular images are Im(Ckl(q)).

cases, i.e., there is only a single crystal in the ensemble for each of the
cases (following the quick-and-dirty, emphasis-on-clear-illustrations-
and-ideas spirit of John!). The three cases are: (1) edgy crystal (Figs. 9,
10), (2) substitutional disorder (Figs. 11, 12), (3) ABC stacking fault
(Figs. 13, 14). The result figures for the three cases are displayed in

pairs, the first figure for the input quantities and the second figure for
the reconstruction results.

The Relaxed Averaged Alternating Reflections (RAAR) algorithm
[25] was used, with � = 0.7 for the edgy crystal and substitutional disor-
der reconstructions. For the ABC stacking fault case, the error-reduction
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Fig. 15. The summed quantities (Left)
∑

k Ckk(q), (Middle)
∑

kl Re(Ckl(q)), (Right)
∑

kl Im(Ckl(q)) for the ABC stacking fault case. (Top row) Ground truth, (Bottom row) reconstruction.

algorithm was applied as that algorithm was sufficient to produce the
ambiguity outlined in Section 6.5 that prevents the reconstruction from
converging to a unique solution. An intensity mask was also applied
as there are many zeros in the intensity data of the single diffraction
pattern. The mask allowed the pixel value in Fourier space to float
when the intensity of that pixel is below a chosen threshold of 10−5.

The root-mean-squared (RMS) reconstruction errors shown in
Figs. 10(a), 12(a) and 14(a) are calculated for the real space molec-
ular density, Ef , diffracted intensity data, EI , and averaged lattice
transform matrix, EC .

Note that EC in Fig. 14(a) stays very high. This is due to the
imaginary parts of Ckl(q) being unconstrained as shown in Section 6.5.
From Fig. 15, we can see that the sum,

∑
k Ckk(q), and the sum of

the real parts of the lattice transform functions
∑

kl Re(Ckl(q)), are
indeed the same as the ground truth. The sum of the imaginary parts,∑

kl Im(Ckl(q)) also looks visually the same as the ground truth, but
the actual numerical error for that is in fact a bit higher: The RMS
errors for the case

∑
k Ckk(q),

∑
kl Re(Ckl(q)), and

∑
kl Im(Ckl(q)) are

3.86×10−5, 5.82×10−5, and 3.35×10−2, respectively, as compared to the
ground truth, illustrating the fact that the imaginary parts are indeed
unconstrained, as shown in Section 6.5.

8. Conclusion and future outlook

Shape transform phasing is a phasing method that has in principle
no resolution restrictions or the need for sample modifications, and
thus is an ab initio phasing method that is able to give unbiased
reconstructions of molecular structures.

One way to formulate the forward problem in shape transform
phasing is through the lattice occupancy model. Appropriate molecules
can be turned on or off at the desired lattice points by assigning a
weight value to each lattice points — this is the basic idea of the lattice
occupancy model and this formalism can be used to describe various
disorder. We have considered three types of disorder in this manuscript:
(1) random crystal truncations (origin of shape transforms), (2) substi-
tutional disorder, and (3) ABC stacking faults, and successfully tested

the reconstruction algorithm for all of these cases under noiseless
conditions in 2D. The reader is referred to Chen et al. [6] for results
from 3D simulations under noisy conditions in the random crystal
truncation case.

Despite its utility, the lattice occupancy model is still quite rigid and
is unable to efficiently describe continuous movements of molecules
such as those present in rotational disorder. The future of shape trans-
form phasing, and phasing using disordered structures in general,
looks likely to move towards more ‘‘fluid’’ and ‘‘dynamic’’ models
incorporating methods such as molecular dynamics (see for exam-
ple Mazumder and Ayyer [30]) and machine learning approaches.
Nevertheless, the shape transform phasing paradigm initiated by John
lives on and continues to flourish — just like the memory, the ideas
and the inspirational spirit of John himself.
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