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A. A. Ciobanu,67 R. Ciolfi,118, 62 F. Cipriano,79 A. Cirone,97, 69 F. Clara,51 E. N. Clark,119 J. A. Clark,1, 91

L. Clarke,120 P. Clearwater,112 S. Clesse,121 F. Cleva,79 E. Coccia,25, 85 E. Codazzo,25 P.-F. Cohadon,86

D. E. Cohen,32 L. Cohen,2 M. Colleoni,122 C. G. Collette,123 A. Colombo,48 M. Colpi,48, 49 C. M. Compton,51

M. Constancio Jr.,16 L. Conti,62 S. J. Cooper,14 P. Corban,6 T. R. Corbitt,2 I. Cordero-Carrión,124 S. Corezzi,60, 59

K. R. Corley,35 N. Cornish,63 D. Corre,32 A. Corsi,125 S. Cortese,33 C. A. Costa,16 R. Cotesta,89 M. W. Coughlin,47

J.-P. Coulon,79 S. T. Countryman,35 B. Cousins,126 P. Couvares,1 D. M. Coward,70 M. J. Cowart,6 D. C. Coyne,1

R. Coyne,127 J. D. E. Creighton,7 T. D. Creighton,128 A. W. Criswell,47 M. Croquette,86 S. G. Crowder,129

J. R. Cudell,46 T. J. Cullen,2 A. Cumming,53 R. Cummings,53 L. Cunningham,53 E. Cuoco,33, 130, 18 M. Cury lo,87

P. Dabadie,22 T. Dal Canton,32 S. Dall’Osso,25 G. Dálya,131 A. Dana,57 L. M. DaneshgaranBajastani,68
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C. L. Romel,51 A. Romero-Rodŕıguez,174 I. M. Romero-Shaw,5 J. H. Romie,6 S. Ronchini,25, 85 L. Rosa,4, 21
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32Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

33European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
34Chennai Mathematical Institute, Chennai 603103, India

35Columbia University, New York, NY 10027, USA
36Università degli Studi di Urbino “Carlo Bo”, I-61029 Urbino, Italy
37INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy

38INFN, Sezione di Roma, I-00185 Roma, Italy
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The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary
coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019
15:00 UTC and 1 October 2019 15:00 UTC. Here, we present GWTC-2.1, which reports on a deeper
list of candidate events observed over the same period. We analyze the final version of the strain data
over this period with improved calibration and better subtraction of excess noise, which has been
publicly released. We employ three matched-filter search pipelines for candidate identification, and
estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false
alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm
rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance
candidates that have a probability of astrophysical origin greater than 0.5. Of these candidates, 36
have been reported in GWTC-2. We also calculate updated source properties for all binary block hole
events previously reported in GWTC-1. If the 8 additional high-significance candidates presented
here are astrophysical, the mass range of events that are unambiguously identified as binary black
holes (both objects ≥ 3M⊙) is increased compared to GWTC-2, with total masses from ∼ 14M⊙
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for GW190924 021846 to ∼ 182M⊙ for GW190426 190642. Source properties calculated using our
default prior suggest that the primary components of two new candidate events (GW190403 051519
and GW190426 190642) fall in the mass gap predicted by pair-instability supernova theory. We also
expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-
2 by an additional two events (the mass ratio is less than 0.65 and 0.44 at 90% probability for
GW190403 051519 and GW190917 114630 respectively), and find that 2 of the 8 new events have
effective inspiral spins χeff > 0 (at 90% credibility), while no binary is consistent with χeff < 0
at the same significance. We provide updated estimates for rates of binary black hole and binary
neutron star coalescence in the local Universe.

PACS numbers: 04.80.Nn, 04.25.dg, 95.85.Sz, 97.80.-d 04.30.Db, 04.30.Tv

I. INTRODUCTION

We are in the era of gravitational wave (GW) as-
tronomy, started by the Advanced Laser Interferometer
Gravitational-Wave Observatory (LIGO) [1] and the Ad-
vanced Virgo [2] detectors. The first observing run (O1)
of the advanced detectors yielded the first detection of
GWs from a binary black hole (BBH), GW150914 [3].
By the end of O1, the LIGO Scientific and Virgo Collab-
oration (LVC) had reported on three BBH events [4].
The second observing run (O2) of the advanced de-
tectors saw the first direct detection of GWs from a
binary neutron star (BNS), GW170817 [5]. This event
was also detected in electromagnetic waves [6], expand-
ing the field of multimessenger astronomy to include
GWs. By the end of O2, the LVC had reported on
a total of ten BBHs and one BNS event, described in
the first Gravitational-Wave Transient Catalog, GWTC-
1 [7]. The second Gravitational-Wave Transient Catalog,
GWTC-2 [8], added 39 GW events from the first half of
the third observing run (O3a), and included a total of 50
events. The GW data until the end of third observing
run (O3) have been made available to the public by the
LVC. Since the public release of the LIGO and Virgo
data, groups other than the LVC have also performed
analyses searching for GW signals [9–21] and reported
additional candidate events in some cases.

GW events between 1 April 2019 15:00 UTC and 1 Oc-
tober 2019 15:00 UTC (O3a) that passed a false alarm
rate (FAR) threshold of 2 per year were presented in
GWTC-2. Here, we present GWTC-2.1, a deep catalog
that includes 1201 candidates passing a low-significance
FAR threshold of 2 per day. Although most of the can-
didates in this catalog are noise events, they can be
used for multimessenger searches by comparing against
other astronomical surveys. Temporal and spatial coinci-
dences between candidates in distinct astrophysical chan-
nels could lead to multimessenger discoveries [22, 23].
Multimessenger observations could enhance our under-
standing of the physical processes associated with such
systems. Previous GW searches, both from the LVC [24]
and independent groups [10, 13, 14, 24, 25], including the
3-OGC analysis of public data from O1 to O3a [17], have

a Deceased, August 2020.

released subthreshold candidates. It is computationally
unfeasible to determine detailed source properties of the
large set of subthreshold GW candidates, therefore we
identify a subset of compact binary coalescence (CBC)
candidates that have a probability of astrophysical origin
pastro [26–28] greater than 0.5, and calculate the source
properties of these events. This probability pastro uses
both the signal rate in addition to the noise rate in or-
der to determine the significance of events. There are 44
such candidate events, 36 of which have already been re-
ported in GWTC-2 and their source properties have been
described in detail [8]. We present the source properties
with a consistent set of state-of-the-art waveform models
for all of these candidates, discussing the properties of the
8 new events that have a pastro greater than 0.5 in detail
in the body of the paper, and our results for the previ-
ously reported candidates in Appendix A. A subset of the
8 additional events have been found in the LVC search
of O3a data [29] for faint gravitationally lensed counter-
part images [30, 31], and in the independent 3-OGC [17]
analysis. While the 8 new events presented here have a
non-negligible probability of being from noise, some of
these have astrophysically interesting source properties
under the default prior. Two of the new candidates pre-
sented here have a primary component mass in the pair
instability gap [32–40], and one of those shows support
for high spin and unequal masses. We also find a new
candidate whose masses are consistent with a neutron
star–black hole binary (NSBH), although as in the case
of GW190814 [41], we cannot rule out the possibility that
the secondary component of the candidate could be a
low-mass black hole.

In this work, all the analyses make use of the final
version of the strain data with improved calibration and
noise subtraction, which includes non-linear subtraction
around the 60 Hz frequency of the US power grid [42, 43].
The data used in this work have been released to the
public [44–47]. We use three matched-filter pipelines for
candidate identification: GstLAL [48–50], PyCBC [51–
55], and MBTA [56]. MBTA is reporting results from
an archival search for the first time. Previously, in
GWTC-2, only the GstLAL matched-filter pipeline in-
cluded Virgo data; now all three pipelines analyze the
data from all three detectors. For inferring the source
properties, we use waveform models that include effects
of spin-induced precession of the binary orbit, contribu-
tions from both the dominant and sub-dominant spheri-
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cal harmonic modes, and tidal effects as appropriate [57–
66].

The paper is structured as follows: Sec. II describes
the instruments and the data that are analyzed by the
searches, including methods on calibration, data quality,
and glitch mitigation. Sec. III describes the methods used
by the search pipelines. Sec. IV describes the events in
GWTC-2.1, comparison to GWTC-2, sensitivity of the
search pipelines used, and inferred rates of BNSs and
BBHs. Sec. V describes the methods used for estimating
the source parameters of the GW candidates and results,
and in Sec. VI, we discuss the astrophysically interesting
events and their implications. In Sec. VII we describe
the data products being released alongside this catalog
and our conclusions. Finally, in Appendix A, we provide
the source properties of events with pastro greater than
0.5 that have previously been described in GWTC-1 and
GWTC-2. Companion results from the second half of
the third observing run (O3b) are presented in the third
Gravitational-Wave Transient Catalog, GWTC-3 [67].

II. INSTRUMENTS AND DATA

The Advanced LIGO [1] and Advanced Virgo [2] in-
struments are kilometer-scale laser interferometers. The
two LIGO detectors are located in Hanford, Washington
and Livingston, Louisiana in the United States, and the
Virgo detector near Pisa in Italy. The advanced genera-
tion of interferometers began operations in 2015, and ob-
serving periods have alternated with commissioning peri-
ods since then [68]. In the time between O2 and the O3,
all three detectors underwent significant upgrades that
substantially increased their sensitivity [8, 69].

Major instrumentation upgrades on the LIGO detec-
tors included: replacement of main lasers to increase
beam stability, replacement of test masses to lower scat-
tering and absorption losses, installation of acoustic
mode dampers to mitigate parametric instabilities [70],
installation of a squeezed vacuum source to reduce quan-
tum noise [71], addressing issues with scattered light [72],
and implementation of improved feedback control sys-
tems for the instruments. Compared to the O2 run,
the Hanford BNS range [51, 73] increased by 64% (from
66 Mpc to 108 Mpc), and for Livingston by 53% (from
88 Mpc to 135 Mpc).

For Virgo, major upgrades included: replacement of
the steel wire suspensions of the four test masses with
fused-silica fibers [74], modification of the vacuum sys-
tem to avoid dust contamination of the lowest suspension
stage, replacement of the main laser to increase power,
installation of a squeezed vacuum source to reduce quan-
tum noise [75], improvements in beam stability [76], and
addressing issues with scattered light. Compared to the
O2 run, the Virgo BNS range increased by 73% (from
26 Mpc to 45 Mpc).

The processing of the data recorded by the LIGO and
Virgo detectors includes several steps that occur both

in near-real time to allow for the broadcasting of pub-
lic alerts, and in higher latency to shape the final data
set and update the catalogs of GW events. Raw data
calibration and the subtraction of noise from known in-
strumental sources, documented in Sec. II A, occur first
and the GW strain data, reconstructed independently in
each detector, are then jointly processed. Significant GW
candidates are vetted with several data-quality tests as a
part of the standard analysis procedure. This procedure
is described in Sec. II B.

A. Calibration and noise subtraction

The strain data used for astrophysical analyses is de-
rived from the optical power variations at the output
ports of the interferometers. Calibration of the raw pho-
todetector signal to GW strain requires a detailed under-
standing and modeling of the control system and opto-
mechanical response of the interferometers throughout an
observing run. This allows for accurate and reliable cali-
bration of the strain and also for quantifying its system-
atic and statistical uncertainty. The detailed procedure
for the calibration and the determination of the system-
atic and statistical uncertainty of the LIGO and Virgo
detectors for O3 can be found in [77–79].

There are usually two calibrations applied to the data;
a low-latency calibration and, if needed, an offline cali-
bration. The low-latency (online) estimate of the strain
uses the best models of the detector at the time of record-
ing. However, over the course of any observing run, data
drop-outs due to computer failures, incomplete modeling
of the detector, and unknown residual systematic errors
are often identified. The offline calibration incorporates
the necessary corrections and improvements, producing
a better calibrated strain with better known systematic
uncertainty.

In addition, numerous noise sources and calibration
lines that limit detectors’ sensitivity are measured and
linearly subtracted from the data [42, 80–82]. This sub-
traction is performed online to generate the LIGO and
Virgo low-latency strain data, and it is also performed
when regenerating the LIGO offline strain data. Ad-
ditionally, noise due to non-stationary coupling of the
power mains with the LIGO detectors was subtracted
from the offline data [42]. As an example of noise sub-
traction, Fig. 1 shows the improvement in the noise levels
around the 60 Hz mains line in the Hanford detector, af-
ter non-linear noise subtraction was applied to the strain
time series. Taking as a figure of merit the BNS range of
the detectors [51, 73], the subtraction results in a median
range increase of 0.9 Mpc for Hanford and 0.2 Mpc for
Livingston.

In GWTC-2, search pipelines and parameter estima-
tion analyses used a mix of low-latency and offline cali-
brated frames. In contrast to this, all searches and anal-
yses presented in this paper use strain data with the
best available calibration and noise subtraction for each
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FIG. 1. Comparison of the amplitude spectral density at Han-
ford around the 60 Hz mains line, between data with sub-
tracted non-stationary noise and data with no subtraction.
The data correspond to a typical one-hour observation-ready
data stretch during O3a.

detector. For LIGO, this corresponds to the offline re-
calibrated data with 60 Hz non-linear subtraction. For
Virgo, the online strain data stream was good enough to
be used offline, except for the last two weeks of O3a which
were reprocessed to improve subtraction of control and
laser frequency noise [83]. The strain data used in this
work are publicly accessible through the Gravitational
Wave Open Science Center (GWOSC) [44, 47].

In addition, the LIGO offline data are accompanied
with a much improved systematic and statistical error
estimate compared to the online data. The probability
distribution of the calibration uncertainty estimate for
LIGO in O3a is characterized in [77], with the system-
atic error over the detectors’ bandwidth being under 3%
in magnitude and under 2◦ in phase. The uncertainty in
the Virgo strain data in O3a had a maximum systematic
error over the detector’s bandwidth under 5% in magni-
tude and under 2◦ in phase [78]. Parameter estimation
takes into account calibration uncertainties, as described
in Sec. V. Given the size of calibration uncertainties in
O3, there is no evidence that they have a significant im-
pact on the inference of source parameters [84, 85].

B. Data quality, event validation & glitch
mitigation

LIGO and Virgo data quality is continuously moni-
tored during an observing run both on site and remotely,
as reported in [86, 87]. This can include, for example,
internal detector summary pages which detail the status
of the detectors and interferometer subsystems [88, 89].
Feedback from GW searches also gives an indication of
the impact of data quality on the sensitivity of a search.

Name Mitigation

GW190413 134308 L1 glitch subtraction, glitch-only
model

GW190425 L1 glitch subtraction, glitch-only
model

GW190503 185404 L1 glitch subtraction, glitch-only
model

GW190513 205428 L1 glitch subtraction, glitch-only
model

GW190514 065416 L1 glitch subtraction, glitch-only
model

GW190701 203306 L1 glitch subtraction, glitch+signal
model

GW190727 060333 L1 fmin: 50 Hz

GW190814 L1 fmin: 30 Hz; H1 non-observing
data used

GW190924 021846 L1 glitch subtraction, glitch-only
model

TABLE I. List of candidate-specific data usage and mitiga-
tion methods for parameter estimates. Only candidate events
for which mitigation of instrumental artifacts was performed
are listed. The glitch subtraction methods used for these
candidate events are detailed in Sec. II B. The minimum fre-
quency is the lower limit of data used in analyses of GW
source properties for the listed interferometer.

To exclude identified instances of poor data quality from
the searches and produce the results in Sec. III, we used
the same methods and data products as reported for
GWTC-2 [8]. The data-quality products used in this
work are publicly available [44, 45].

Once a GW event has been identified by the search
pipelines, we check the quality of data around the time
of the event. We followed the same procedures outlined
in [8] to validate the data quality around each new GW
candidate reported in this paper. The aim of these vali-
dation procedures is to identify any instrumental or en-
vironmental noise that may impact the estimation of
GW signal parameters. As summarized for GWTC-
2 [8], in some cases short-duration noise transients, or
glitches [86, 90–92], can be subtracted from the data [93–
96]. When this is not possible, analyses use tailored con-
figurations, for example, a modified low-frequency cutoff,
to exclude data that could be corrupted by the presence
of a nearby glitch. The full list of candidate events us-
ing candidate-specific glitch mitigation, along with the
mitigation configuration, is found in Table I. These data,
for the events where the glitch-mitigated data was used
for the parameter estimation analysis in Sec. V, are pub-
licly accessible [46]. No candidates in this catalog have
clear evidence of instrumental origin identified through
data-quality validation studies.
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III. CANDIDATE IDENTIFICATION

GW data is analyzed to search for candidates in two
stages: first in low-latency in order to generate public
alerts that subsequently trigger follow-up astronomical
observations, and then in higher latency in the form of
an offline analysis of the archival strain data, which is
used to create GW catalogs. Five pipelines were used
in real time to analyze O3 data: a minimally modeled
generic transient search (coherent WaveBurst [97–101]),
and four matched-filter [51, 52] pipelines (GstLAL [48–
50], MBTA [56], PyCBC [53–55, 102], and SPIIR [103]).
Collectively, they identified 56 unretracted candidates
during O3, 33 of which were found in O3a. GWTC-2 [8]
presented 39 events identified by coherent WaveBurst,
GstLAL, and PyCBC in the first offline search over O3a.

We present here results from a refined offline search of
O3a. The search employs three matched-filter pipelines:
GstLAL, PyCBC, and MBTA [56], marking the first time
that MBTA results from archival data are presented and
included in a GW catalog. All three pipelines analyze
the data from all three detectors. While GWTC-2 im-
posed a FAR ceiling of 2 per year on candidates, here we
release a deep list of GW candidates with a FAR smaller
than 2 per day [104]. In addition, we identify the 44 CBC
candidates with an estimated pastro greater than 0.5 (Ta-
ble II). There are also 2 candidates with pastro below 0.5
that do meet the FAR criterion used in GWTC-2; these
are presented as marginal candidates. This GW cata-
log contains the largest number of candidates with pastro
greater than 0.5 to date.

In Sec. III A, we first lay out a general description of
matched filter searches and in Sec. III B, we describe the
methods employed by the three CBC searches used in
this work. We describe the search results in the following
Sec. IV.

A. Matched-filter searches

The matched-filter method relies on having a model of
the signal, as a function of the physical parameters. The
parameters include those that are intrinsic to the source:
two individual component masses m1, m2 and two di-
mensionless spin vectors χ⃗1, χ⃗2 (related to each compo-

nent’s spin angular momentum S⃗i by χ⃗i = cS⃗i/(Gm
2
i )),

and seven extrinsic parameters that provide the orienta-
tion and position of the source in relation to the Earth:
the luminosity distance DL, two-dimensional sky position
(right ascension α and declination δ), inclination between
total angular momentum and line-of-sight θJN , time of
merger tc, a reference phase ϕ, and polarization angle ψ.
The search pipelines create a template bank [105–107] of
GW waveforms covering the desired intrinsic parameter
space, and use these to filter against the data and pro-
duce signal-to-noise ratio (SNR) time series. The compo-
nent masses describing template waveforms are affected
by source redshift z as mdet

i = (1 + z)mi.

For each set of intrinsic parameters, extrinsic param-
eters affecting the signal’s amplitude and phase may be
maximized over analytically [51], if the signal can be ap-
proximated as a pure quadrupole mode, i.e. (ℓ, |m|) =
(2, 2). In particular, for this search, the templates use
only the dominant quadrupole mode and assume quasi-
circular orbits with component spins aligned with the
total orbital angular momentum. Peaks in the result-
ing SNR time series are stored as triggers. GW candi-
dates are formed by imposing consistency in time and in
template intrinsic parameters between triggers in differ-
ent detectors; in addition, GstLAL also considers non-
coincident triggers as candidates [48].

When considering a single template in a single detec-
tor with stationary, Gaussian noise, the matched filter
SNR is an optimal statistic for ranking candidates. How-
ever, additional terms are needed to optimize sensitivity
in searches of real data covering a wide signal param-
eter space. To account for the multi-detector network,
the distribution of signals over relative times, phases
and amplitudes between detectors is considered [49, 55].
Since detector noise is not stationary or Gaussian, signal-
consistency tests such as chi-squared [52] are calculated
and used to rank candidates.

The distribution of noise triggers may vary strongly
over the template masses and spins; we then model its
variation empirically, as a function of combinations of
parameters that are typically well-constrained by GW
measurements. The binary’s chirp mass [108],

M =
(m1m2)3/5

(m1 +m2)1/5
, (1)

determines to lowest order the phase evolution during
the inspiral, and is typically better constrained than the
component masses. At higher orders, the binary phase
evolution is affected by the mass ratio q = m2/m1 (where
m2 ≤ m1) and by the effective inspiral spin χeff , defined
as [109]

χeff =
(m1χ⃗1 +m2χ⃗2) · L̂N

M
, (2)

where M = m1 +m2 is the total mass and L̂N is the unit
vector along the Newtonian orbital angular momentum.
Finally, the ranking of events by the search pipelines may
account for an assumed prior distribution of signals over
masses and spins [110, 111].

The significance of each candidate event is quantified
by its FAR, the estimated rate of events due to noise
with equal or higher ranking statistic value. The FAR
is calculated by each search pipeline by constructing a
set of background samples designed to have the same
distribution over ranking statistic as search events in the
absence of binary merger GW signals.

By considering also the expected distribution of GW
signal events recovered by a given search, we may de-
rive an estimate of the relative probabilities of noise
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(terrestrial) origin pterr, and signal (astrophysical) ori-
gin pastro [26–28]. For the bulk of released events, de-
tailed estimates of source parameters are not calculated.
Therefore, based only on the matched-filter search re-
sults we also estimate the probability for each event
to belong to three possible astrophysical binary source
classes, labeled BNS, NSBH and BBH. The classes are
defined by binary component masses: BNS corresponds
to {m1,m2} < 3 M⊙, NSBH to m1 > 3 M⊙, m2 < 3 M⊙,
and BBH to {m1,m2} > 3 M⊙. For MBTA, a 2.5 M⊙
cut is used instead of 3 M⊙, with a gap to 5 M⊙ for
BBH. These definitions are chosen for simplicity: they
do not imply that every binary component within a given
mass range is necessarily a neutron star (NS) or a black
hole (BH). Such inference would ultimately require mea-
surement of the effects of NS matter on observed signals,
which is beyond the capabilities of the search pipelines.
The probabilities for an event to belong to each class
(pBNS, pNSBH, pBBH, and pterr) are calculated from the
template masses and spins recovered by the searches, un-
der the assumption that events from each class occur as
independent Poisson processes. The calculation also re-
quires the choice of a prior on the event counts in each
category [28]. GstLAL used a uniform prior for the BNS
and NSBH categories, and a Poisson–Jeffreys prior for
the BBH category; MBTA used a uniform prior for the
BNS category, and a Poisson–Jeffreys prior for the NSBH
and BBH categories; and PyCBC used a Poisson–Jeffreys
prior for all three categories. Given the number of can-
didates, the prior choice does not significantly impact
the BBH results. Implementation details differ between
pipelines, as summarized below; the resulting probability
estimates are listed in Tables II and III.

While the pastro values given here represent our best es-
timates of the origin of candidates using the information
available from search pipelines, they are subject to statis-
tical (random) and systematic errors, as well as in some
cases clearly differing for a given candidate between dif-
ferent pipelines. One such uncertainty arises from meth-
ods used to rank events between pipelines, including tests
for noise artifacts: such tests, such as chi-squared statis-
tics, will in general add (different) random variations to
the ranking of a given event, in addition to their dif-
fering power in distinguishing signals from artifacts. For
single-detector candidates, there is an additional inherent
uncertainty in estimating the rate of comparable noise
events, which may only be bounded to (less than) 1 per
observing time. An inherent source of potential system-
atic error also lies in the search ranking statistic used in
the calculation of pastro: such statistics are optimized to
detect a specific (usually broad) distribution of signals
over binary intrinsic parameters. The resulting pastro es-
timates may be biased if this distribution deviates sig-
nificantly from the (unknown) true signal distribution.
The risk of such bias is largest for regions of parame-
ter space containing few, or zero, confirmed detections.
For all these reasons, our current pastro values may be
revised in the future, particularly as and when current

uncertainties in the true signal rate and distributions are
eventually reduced.

We next review specific methods used by individual
matched-filter pipelines.

B. Search pipelines

In this section we describe the pipelines that were used
to identify the candidates presented in GWTC-2.1.

1. GstLAL

The GstLAL analysis used in this search is similar to
the one used in the previous analysis for GWTC-2 [8].
The template bank used in this analysis is identical to
the one used by GstLAL for GWTC-2 [8]. It covers wave-
forms with redshifted total masses from 2 M⊙ to 758 M⊙,
and spins that are aligned or anti-aligned with the bi-
nary’s orbital angular momentum. The template bank is
constructed using a stochastic placement method in five
different regions of the parameter space [8]. The ranking
statistic used by the analysis is the log-likelihood ratio
L used in the previous analysis [8]. Improvements have
been made to the input data products generated by iDQ,
the statistical inference framework to autonomously de-
tect non-Gaussian noise artifacts in strain data based on
auxiliary witness sensors [112, 113]. This iDQ timeseries
is used to compute one of the terms in the log-likelihood
ratio within the GstLAL analysis, that informs the search
of the presence of non-Gaussian noise in close proximity
to a GW candidate. Compared to GWTC-2, the time-
series generated by iDQ was reprocessed offline, having
access to an expanded set of auxiliary witness sensors
and trained with an acausal binning scheme [112]. As
a result, the generated iDQ timeseries performs better
in identifying noise artifacts in strain data. In addi-
tion, for GWTC-2 the iDQ term was only used when
ranking single-detector triggers, whereas now it is used
for both coincident and single-detector triggers. Because
of changes in the iDQ term, the empirically determined
penalty for single-detector candidates had to be retuned
compared to GWTC-2, and was increased to a penalty
of ∆L = −12 from ∆L = −10. The single-detector event
penalty is determined by comparing the recovery of sim-
ulated signals in single detector versus combinations of
detectors and the sensitive volume–time for each config-
uration.

For the GstLAL analysis, pterr and pastro shown in Ta-
bles II and III are estimated following the multicompo-
nent population analysis [26, 114]. The response of each
GstLAL template to each astrophysical source class, com-
puted semi-analytically [111], is used in estimating these
probabilities. The volume–time sensitivity of the pipeline
used in this calculation is estimated based on simulated
sources injected into the pipeline and is rescaled to the
astrophysical distribution [115]. The volume–time ratios
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are used to combine triggers from various observation
runs and perform a multicomponent analysis yielding
pastro and merger rates [26, 114] inferred from O1 to O3a.
The astrophysical distribution assumed in this analysis
uses a log-uniform distribution for the source component
masses, the component spins aligned with the orbital
angular momentum, and a uniform distribution for the
component spin magnitudes. The BH masses in BBHs
and NSBHs are distributed between 3 M⊙ and 300 M⊙
with aligned component spins distributed in the range
[−0.99, 0.99]. The NS masses in NSBHs and BNSs are
distributed between 1 M⊙ and 3 M⊙. In NSBHs, the NS
spins are assumed to be aligned and distributed in the
range [−0.4, 0.4], whereas, in BNSs the NSs are assumed
to have small spins in the range [−0.05, 0.05]. These
choices match previous analyses [8].

2. MBTA

The Multi-Band Template Analysis (MBTA)
pipeline [56] is based on matched filtering, relying
on coincidences between triggers observed in different
detectors. The version used for the offline search is
close to the online version which contributed to the LVC
public alerts [116]. The archival-search version benefits
from offline-specific improvements, with a background
estimate made over a longer duration, and with a
reranking of the candidates using information collected
not just before but also after the candidate.

The parameter space covered by this analysis ranges
from 1 M⊙ to 195 M⊙ for the primary (more massive)
component, with total masses up to 200 M⊙; or from
1 M⊙ to 100 M⊙ for the primary when the mass of the
secondary is between 1 M⊙ and 2 M⊙. Component spins
are aligned with the total angular momentum and are
limited to 0.05 for objects below 2 M⊙, and going up
to 0.997 for objects above 2 M⊙. The waveform used
for the search is SpinTaylorT4 [117–119] if both binary
masses are lighter than 2 M⊙, and SEOBNRv4 [120] if
the mass of one of the components is above 2 M⊙. The
total number of templates in the bank used is 727,992.
The SNR threshold for recording triggers in each detector
is 4.5, or 4.8 if one of the components is above 2 M⊙.

The FAR is calculated for each coincident event
by forming random coincidences among single detector
background triggers. This computation is performed
independently for three large regions of the parameter
space bounded by a 2 M⊙ limit for the mass of each com-
ponent. These three regions are allowed to contribute
equally to the background, while within each of them we
sum the background contributions from all the templates.

The pBNS, pNSBH, pBBH, and derived pastro quanti-
ties are computed as the fraction of recovered simulated
events, representative of an astrophysical population, to
this foreground plus background estimate provided by
the pipeline [121]. The parameterizations of the popula-
tions are described in Sec. IV D, with the Power Law +

Peak model used for BBH [122]. The rate of each type
of source is adjusted using a multicomponent population
analysis [26]. To follow the population and background
evolution across the parameter space, 165 subregions are
used. This finer resolution has the benefit of revealing
events in population-rich areas, even if the overall back-
ground rate for their ranking statistic value is larger than
few per year, as in the case of the high mass BBH event
GW190916 200658 presented in Table II.

3. PyCBC

In previous LVC searches [4, 7, 8, 123], the offline Py-
CBC [54, 124] pipeline has analyzed data only from the
two LIGO detectors. In this analysis, PyCBC was ex-
tended to search data from the three-detector LIGO–
Virgo network, along with updates to the event rank-
ing statistic [102] and the pastro calculation and a new
method to estimate source class probability [125].

The PyCBC search uses the same template bank as
in GWTC-2 [8], constructed using a hybrid geometric-
random algorithm outlined in [126, 127]. Peaks in SNR
time series exceeding a threshold of 4 constitute single-
detector triggers. Two-detector coincident events are
formed from triggers with the same component masses
and spins with a physically allowed time difference be-
tween detectors, allowing for timing errors. Three-
detector triple coincidences require triggers in all pairs
of detectors to pass this consistency test.

The detection statistic is given by the logarithm of the
ratio of estimated signal event rate density to noise event
rate density. We model the noise distribution in each de-
tector as a decreasing exponential of the matched-filter
SNR, reweighted based on a chi-squared signal–glitch dis-
criminator [52, 128], with parameters that depend on the
template intrinsic parameters. The signal distribution in-
cludes terms accounting for dependence on relative times
of arrival, phases and amplitudes between detectors, as
well as relative sensitivities of the participating detec-
tors [55]. We estimate the FAR separately for each com-
bination of detectors via time-shifted analyses [54, 129].
The significance for each candidate event is then found
through addition of the FARs at the candidate’s ranking
statistic value over all active detector combinations [102].

In addition to the generic PyCBC search, which covers
the full parameter space [8] including a range of possible
signal types, we also conduct a focused PyCBC BBH
search [8, 14], capable of uncovering fainter BBH merg-
ers by imposing a prior form for the signal distribution
over the template bank [110]. This search is targeted at
systems with mass ratios from 1 to 1/3, primary com-
ponent masses from 5 M⊙ to 350 M⊙, and aligned, equal
component spins from χ = −0.998 to 0.998.

The inference of pastro and pterr for each candidate
event employs a Poisson mixture model of signal and
noise events [26–28]. Here, the distribution of signal
events is estimated via a set of simulated signals analyzed
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by the pipeline, and the rate and distribution of noise
events are estimated from time-shifted analyses [54]. In
GWTC-2 the calculation was only performed on poten-
tial BBH events with template chirp mass above 4.35 M⊙
(which corresponds to equal 5 M⊙ component masses).
Here, we include potential BNS and NSBH events by
performing independent calculations over ranges of tem-
plate chirp mass below 2.18 M⊙ (corresponding to equal
2.5 M⊙ components), and between 2.18 M⊙–4.35 M⊙, re-
spectively. Although the implied signal distribution over
template chirp mass does not correspond to any spe-
cific astrophysical model, it is adequate for assignment
of pastro given the current knowledge of BNS and NSBH
merger populations. Systematic biases in pastro calcula-
tion may arise if the (unknown) true mass distribution
is different from that assumed. The calculation is also
extended relative to previous analyses to account for dif-
ferent possible coincident combinations of detectors [130].
The results given here are obtained from events occurring
during O3a only, except for the BNS region where prior
information of 1 highly significant detection was applied
to represent GW170817 [5].

The estimation method for binary source class prob-
abilities [125] uses the binary chirp mass as input, and
assumes a uniform density of candidate signals over the
plane of component masses {m1,m2}. Here we take
the classes to be defined by boundaries between differ-
ent types of binary component at 3 M⊙. To estimate
source chirp mass, we correct the search template masses
for cosmological redshift, using an estimate of the lumi-
nosity distance derived from the search SNRs and the
corresponding templates’ sensitivity. We then derive the
relative probabilities of each source class and enforce that
the sum of astrophysical source probabilities is equal to
pastro.

IV. SEARCH RESULTS

We recover 1201 candidates that have FAR less than 2
per day in any of the search pipelines. These events and
their estimated source probabilities are shown in Fig. 2.
The candidates are shown in decreasing order of pastro.
The total sum of pastro represents the Poisson rate of
sources that pass the FAR threshold of 2 per day in each
source class per O3a experiment, as estimated by the
search pipelines. We find that this corresponds to be-
tween 24.95–44.50 signals in the BBH class, 0.66–3.80
signals in the NSBH class, and 0.22–0.81 signals in the
BNS class in O3a. The range represents the difference
in the search pipelines. We do not consider the PyCBC-
BBH analysis in the estimate of the number of signals
in the BNS class provided here, as the analysis does not
search over the BNS parameter space. Names are marked
for the candidate events with pBNS or pNSBH greater than
20%. The dashed vertical line shows the least signifi-
cant event with pastro greater than 0.5. An estimate of
the rate of sources in the subthreshold candidate list per

O3a experiment is obtained by the contribution to the
sum from events with pastro less than 0.5. This corre-
sponds to between 2.55–12.40 signals in the BBH class,
0.36–2.39 signals in the NSBH class, and 0.02–0.49 sig-
nals in the BNS class in the subthreshold candidates in
O3a.

We find 44 high probability CBC candidates that have
pastro greater than 0.5. These events are listed in Table II.
This list includes 8 new candidates that were not present
in GWTC-2 [8]. These are marked in bold in Table II.
Out of the 44 candidates, 4 were found with significant
SNR only in one of the detectors by the GstLAL search,
which is the only pipeline that looked for GW signals in
single-detector data. These are listed with a dagger (†)
next to the FAR in Table II. For the majority of events
listed in Table II, pastro ≈ pBBH; the exceptions are listed
in Table III, which provides the list of candidates that
have pBNS or pNSBH greater than 0.01.

A. New high probability candidates

We recover all the events found in GWTC-2 as
having pastro above 0.5, with the exception of
three: GW190424 180648, GW190426 152155, and
GW190909 114149. Since the rate of BBH events
detectable by the LIGO–Virgo detectors is greater than
the rate of detectable BNS or NSBH events, the pastro for
events in the BBH class is higher than that of the events
in the BNS or NSBH class at a fixed FAR. Therefore,
in switching to a pastro threshold from a FAR threshold,
one can expect to add BBH events while dropping some
low-mass events.

All the 8 new candidates with pastro greater than
0.5 are classified as BBHs, that is, pBBH is greater
than pNSBH and pBNS. Only one new candidate,
GW190725 174728, has a non-negligible probability
in a source class other than BBH, with non-zero
pNSBH (Table III). Out of the 8 candidates, only
two (GW190725 174728 and GW190916 200658) are
assigned pastro > 0.5 by more than one pipeline. Differ-
ences between pipelines are expected, due to the effects
of random noise fluctuations on the different ranking
statistics used, and due to different assumed signal
distributions and other choices. In principle, a more
accurate assessment of the candidates’ origins could be
obtained by considering information from all pipelines;
however, this is not currently implemented as a quanti-
tative measure. One of the events, GW190917 114630, is
identified as a BBH by the GstLAL pipeline, with pBBH

= 0.77 (Table II). However, when its source properties
are inferred by follow-up pipelines, the mass parameters
are found to be consistent with NSBH systems. Had it
been classified as an NSBH to begin with by the search
pipeline, the resulting pastro would not have made the
threshold of 0.5. There is also non-stationary noise
in the LIGO Livingston detector at the time of this
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Name Inst. MBTA GstLAL PyCBC PyCBC-BBH

FAR (yr−1) SNR pastro FAR (yr−1) SNR pastro FAR (yr−1) SNR pastro FAR (yr−1) SNR pastro

GW190403 051519 HLV – – – – – – – – – 7.7 8.0 0.61

GW190408 181802 HLV 8.7 × 10−5 14.4 1.00 < 1.0 × 10−5 14.7 1.00 2.5 × 10−4 13.1‡ 1.00 < 1.2 × 10−4 13.7‡ 1.00

GW190412 HLV < 1.0 × 10−5 18.2 1.00 < 1.0 × 10−5 19.0 1.00 < 1.1 × 10−4 17.4‡ 1.00 < 1.2 × 10−4 17.9‡ 1.00

GW190413 052954 HLV – – – – – – 170 8.5 0.13 0.82 8.5 0.93

GW190413 134308 HLV 0.34 10.3 0.99 39 10.1 0.04 21 9.3‡ 0.48 0.18 8.9‡ 0.99

GW190421 213856 HL 1.2 9.7 0.99 0.0028 10.5 1.00 5.9 10.1 0.75 0.014 10.1 1.00

GW190425 LV – – – 0.034† 12.9 0.78 – – – – – –

GW190426 190642 HLV – – – – – – – – – 4.1 9.6 0.75

GW190503 185404 HLV 0.013 12.8 1.00 < 1.0 × 10−5 12.0 1.00 0.038 12.2‡ 1.00 0.0026 12.2‡ 1.00

GW190512 180714 HLV 0.038 11.7 0.99 < 1.0 × 10−5 12.2 1.00 1.1 × 10−4 12.4‡ 1.00 < 1.1 × 10−4 12.4‡ 1.00

GW190513 205428 HLV 0.11 13.0 0.99 1.3 × 10−5 12.3 1.00 19 11.6‡ 0.49 0.044 11.8‡ 1.00

GW190514 065416 HL – – – 450 8.3 0.00 – – – 2.8 8.4 0.76

GW190517 055101 HLV 0.11 11.3 1.00 0.0045 10.8 1.00 0.0095 10.4‡ 1.00 3.5 × 10−4 10.3‡ 1.00

GW190519 153544 HLV 7.0 × 10−5 13.7 1.00 < 1.0 × 10−5 12.4 1.00 < 1.0 × 10−4 13.2‡ 1.00 < 1.1 × 10−4 13.2‡ 1.00

GW190521 HLV 0.042 13.0 0.96 0.20 13.3 0.79 0.44 13.7‡ 0.96 0.0013 13.6‡ 1.00

GW190521 074359 HL < 1.0 × 10−5 22.2 1.00 < 1.0 × 10−5 24.4 1.00 < 1.8 × 10−5 24.0 1.00 < 2.3 × 10−5 24.0 1.00

GW190527 092055 HL – – – 0.23 8.7 0.85 – – – 19 8.4 0.33

GW190602 175927 HLV 3.0 × 10−4 12.6 1.00 < 1.0 × 10−5 12.3 1.00 0.29 11.9‡ 0.98 0.013 11.9‡ 1.00

GW190620 030421 LV – – – 0.011† 10.9 0.99 – – – – – –

GW190630 185205 LV – – – < 1.0 × 10−5 15.2 1.00 – – – 0.24 15.1 1.00

GW190701 203306 HLV 35 11.3 0.87 0.0057 11.7 0.99 0.064 11.9 0.99 0.56 11.7 1.00

GW190706 222641 HLV 0.0015 11.9 1.00 5.0 × 10−5 12.5 1.00 3.7 × 10−4 11.7‡ 1.00 0.34 12.6‡ 1.00

GW190707 093326 HL 0.032 12.6 1.00 < 1.0 × 10−5 13.2 1.00 < 1.0 × 10−5 13.0 1.00 < 1.9 × 10−5 13.0 1.00

GW190708 232457 LV – – – 3.1 × 10−4† 13.1 1.00 – – – – – –

GW190719 215514 HL – – – – – – – – – 0.63 8.0 0.92

GW190720 000836 HLV 0.094 11.6 1.00 < 1.0 × 10−5 11.5 1.00 1.4 × 10−4 10.6‡ 1.00 < 7.8 × 10−5 11.4 1.00

GW190725 174728* HLV 3.1 9.8 0.59 – – – 0.46 9.1‡ 0.96 2.9 8.8‡ 0.82

GW190727 060333 HLV 0.023 12.0 1.00 < 1.0 × 10−5 12.1 1.00 0.0056 11.4‡ 1.00 2.0 × 10−4 11.1‡ 1.00

GW190728 064510 HLV 7.5 × 10−4 13.1 1.00 < 1.0 × 10−5 13.4 1.00 < 8.2 × 10−5 13.0‡ 1.00 < 7.8 × 10−5 13.0‡ 1.00

GW190731 140936 HL 6.1 9.1 0.80 0.33 8.5 0.78 – – – 1.9 7.8 0.83

GW190803 022701 HLV 77 9.0 0.96 0.073 9.1 0.94 81 8.7‡ 0.17 0.39 8.7‡ 0.97

GW190805 211137 HLV – – – – – – – – – 0.63 8.3 0.95

GW190814 LV < 2.0 × 10−4 20.4 1.00 < 1.0 × 10−5 22.2 1.00 0.17 19.5 1.00 – – –

GW190828 063405 HLV < 1.0 × 10−5 15.2 1.00 < 1.0 × 10−5 16.3 1.00 < 8.5 × 10−5 13.9‡ 1.00 < 7.0 × 10−5 15.9‡ 1.00

GW190828 065509 HLV 0.16 10.8 0.96 3.5 × 10−5 11.1 1.00 2.8 × 10−4 10.5‡ 1.00 1.1 × 10−4 10.5‡ 1.00

GW190910 112807 LV – – – 0.0029† 13.4 1.00 – – – – – –

GW190915 235702 HLV 0.0055 12.7 1.00 < 1.0 × 10−5 13.0 1.00 6.8 × 10−4 13.0‡ 1.00 < 7.0 × 10−5 13.1‡ 1.00

GW190916 200658* HLV 6.9 × 103 8.2 0.66 12 8.2 0.09 – – – 4.7 7.9‡ 0.64

GW190917 114630 HLV – – – 0.66 9.5 0.77 – – – – – –

GW190924 021846 HLV 0.0049 11.9 0.99 < 1.0 × 10−5 13.0 1.00 < 8.2 × 10−5 12.4‡ 1.00 8.3 × 10−5 12.5‡ 1.00

GW190925 232845* HV 100 9.4 0.35 – – – 73 9.0 0.02 0.0072 9.9 0.99

GW190926 050336* HLV – – – 1.1 9.0 0.54 – – – 87 7.8‡ 0.09

GW190929 012149 HLV 2.9 10.3 0.64 0.16 10.1 0.87 120 9.4‡ 0.14 14 8.5‡ 0.41

GW190930 133541 HL 0.34 10.0 0.87 0.43 10.1 0.76 0.018 9.8 1.00 0.012 10.0 1.00

TABLE II. Above-threshold GW candidate list. We find 44 events that have pastro in at least one of the searches as greater
than 0.5. Bold-faced names indicate the events that were not previously reported in GWTC-2 [8]. The candidates marked with
an asterisk were first published in 3-OGC [17]. The second column denotes the observing instruments. Candidate events in
GWTC-2.1 which do not meet the pastro threshold but were at the same time as above-threshold events are given in italics. The
PyCBC and PyCBC-BBH network SNRs do not include detectors with SNRs below 4; these events are marked with double
dagger (‡) next to their network SNR. The 4 events marked with a dagger (†) next to their FARs were found only in one
detector by the GstLAL search. All four were detected using the data from LIGO Livingston. For the single-detector candidate
events, the FAR estimate involves extrapolation. All single-detector candidate events in this list according to the FAR assigned
to them are rarer than the background data of about 6 months collected in this analysis. Therefore, a conservative bound on
the FAR for candidates denoted by † is ∼ 2 yr−1. GstLAL FARs have been capped at 1 × 10−5 yr−1 to be consistent with
the limiting FARs from other pipelines. Dashes indicate that a pipeline did not find the event with a FAR smaller than the
subthreshold FAR threshold of 2 per day.
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FIG. 2. Cumulative sum of pBNS, pNSBH, pBBH as a function of the candidates that pass a FAR threshold of 2 per day. The
events are shown in decreasing order of pastro. The sum of the source probabilities shown here represents the estimated Poisson
rate of sources in each source class per O3a experiment by the different search pipelines. An estimate of the rate of sources in
the subthreshold candidate list is obtained by the contribution to the sum from events with pastro less than 0.5. This estimate
yields between 2.55–12.40 signals in the BBH class, 0.36–2.39 signals in the NSBH class, and 0.02–0.49 signals in the BNS class
in the subthreshold candidates in O3a. The dashed vertical grey line shows where this threshold is for each pipeline. Names are
marked for the candidate events with pBNS or pNSBH greater than 20%, since these are of particular interest for cross-correlation
studies.
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Name MBTA GstLAL PyCBC PyCBC-BBH

pBBH pNSBH pBNS pastro pBBH pNSBH pBNS pastro pBBH pNSBH pBNS pastro pBBH pNSBH pastro

GW190425 – – – – 0.00 0.00 0.78 0.78 – – – – – – –

GW190707 093326 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.93 0.07 0.00 1.00 0.93 0.07 1.00

GW190720 000836 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.95 0.05 0.00 1.00 1.00 0.00 1.00

GW190725 174728 0.59 0.00 0.00 0.59 – – – – 0.79 0.17 0.00 0.96 0.58 0.24 0.82

GW190728 064510 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.97 0.03 0.00 1.00 0.97 0.03 1.00

GW190814 0.93 0.07 0.00 1.00 0.19 0.81 0.00 1.00 0.54 0.46 0.00 1.00 – – –

GW190924 021846 0.92 0.07 0.00 0.99 1.00 0.00 0.00 1.00 0.44 0.56 0.00 1.00 0.44 0.56 1.00

GW190930 133541 0.87 0.00 0.00 0.87 0.76 0.00 0.00 0.76 0.93 0.07 0.00 1.00 0.85 0.15 1.00

TABLE III. Source probabilities (pBBH, pBNS, pNSBH) for the high significance GW candidates listed in Table II for which
pBNS or pNSBH is greater than 1%. For other events in Table II, pastro ≈ pBBH, and therefore we do not list them here. Results
are provided from all three matched-filter pipelines. Dashes indicate that a pipeline did not find the event with a FAR smaller
than the subthreshold FAR threshold of 2 per day. The classification provided here assumes a boundary of 3 M⊙ between NSs
and BHs in the case of GstLAL and PyCBC, and 2.5 M⊙ in the case of MBTA.

event, but we have no evidence that the FAR of the
event is misestimated. Out of the 8 new candidates, 5
candidates (GW190426 190642, GW190725 174728,
GW190805 211137, GW190916 200658, and
GW190925 232845) were identified in the LVC search for
gravitationally lensed candidates in O3a data [29], while
4 candidates (GW190725 174728, GW190916 200658,
GW190925 232845, and GW190926 050336) were also
independently identified and presented in 3-OGC [17].
The source properties of all 8 candidates are discussed
in Sec. V D.

B. GWTC-2 candidates with pastro < 0.5

The three events in GWTC-2 that have a pastro smaller
than 0.5 in GWTC-2.1 analyses are:
GW190424 180648: This event was found by Gst-

LAL as a single detector BBH event in Livingston.
However, the data surrounding this event recorded
periodic glitching from a camera shutter and iDQ
(Sec. III B 1) heavily downranked the timespan surround-
ing this event [113]. Figure 4 of the paper describing this
iDQ [113] shows both the inspiral track and the surround-
ing glitches in the time–frequency spectrogram surround-
ing this event and the response of iDQ. While the down-
ranking due to iDQ for this particular event remains
largely the same between GWTC-2 and GWTC-2.1, the
retuning of the singles penalty (Sec. III B 1) in GstLAL
for GWTC-2.1 caused the significance of the event to go
down. Consequently, in GWTC-2.1, this event does not
meet either the FAR threshold of 2 per year or the pastro
threshold of 0.5.

GW190426 152155: This event is in the marginal-
significance candidate list for GWTC-2.1 (Table IV); the
FAR is similar to the one in GWTC-2 and still passed the
threshold of 2 per year considered in the previous catalog.
However, based on the masses recovered by the pipeline,
it is assigned to the NSBH class with pNSBH = 0.14. The

low pastro in the NSBH class is due to the fact that the
inferred rate of detectable NSBHs is lower than that of
detectable BBHs.
GW190909 114149: This candidate BBH event was

found as a coincident event in Hanford and Livingston de-
tectors by GstLAL. It is recovered now with smaller SNR
in the Hanford detector and is therefore ranked lower.

C. Marginal-significance candidates

The two GW candidates that satisfy the FAR criteria
used by GWTC-2, but do not have pastro greater than 0.5
are listed as marginal candidates in Table IV. Both these
events were detected by GstLAL with a small FAR, and
were assigned to the NSBH class with pastro and pNSBH

smaller than 0.5. Since the rate of detectable signals in
the NSBH class is smaller than that in the BBH class,
the pastro for these are smaller than they would be in the
BBH class at the same FAR.

D. Search sensitivity

As in GWTC-2 [8], we quantify the sensitivity of the
search via a campaign of simulated signals injected into
the O3a data and analyzed by the search pipelines. We
use a BBH signal distribution adjusted over that used
for GWTC-2 to give more even coverage of the inferred
distribution from O1–O3a [122], changing specifically the
distributions over binary mass ratio and redshift. In ad-
dition to the BBH set, we also inject BNS and NSBH sets
of simulated signals into the data. The sets are generated
in two stages: first, points are sampled out to the max-
imum redshift considered for each set, then the samples
are reduced to sets of potentially detectable signals by
imposing that the expected LIGO Hanford–LIGO Liv-
ingston network SNR, calculated using a representative
noise power spectral density (PSD), be above a threshold
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Name Inst. MBTA GstLAL PyCBC

FAR (yr−1) SNR max pastro FAR (yr−1) SNR max pastro FAR (yr−1) SNR max pastro

GW190426 152155 HLV 32 9.8 pNSBH = 0.01 0.91 10.1 pNSBH = 0.14 43 8.8 pNSBH = 0.01

GW190531 023648 HLV 8.1 9.8 pBNS = 0.05 0.41 10.0 pNSBH = 0.28 29 9.2 pNSBH = 0.01

TABLE IV. Marginal-significance GW event candidate list. There are 2 candidates that are found in at least one of the searches
with a FAR less than 2 per year, but with a pastro smaller than 0.5 in all searches. The candidate in bold, GW190531 023648,
is a new candidate identified in GWTC-2.1, not included in GWTC-2. The column max pastro shows the astrophysical class
assigned with highest probability. Both candidates are detected by GstLAL with a small FAR, and are assigned to the NSBH
class with pastro and pNSBH smaller than 0.5.

of 6. Although this threshold is below the matched-filter
SNRs of events we consider as high-significance candi-
dates, for detection thresholds corresponding to FARs
significantly higher than 2 per year (the value used in
GWTC-2), the cut may remove a non-negligible fraction
of potentially detectable signals, due to random fluctua-
tions in matched-filter SNR. The results of this simula-
tion campaign for all the search pipelines have been made
available [131].

The BNS signals are generated using the SpinTaylorT4
waveform model [117, 119], while the BBH and NSBH
sets are generated using the SEOBNRv4PHM model [61–
63]. For simulated signals with redshifted total mass be-
low 9 M⊙, the SEOBNRv4P model without higher-order
multipole emission was used, as higher-order multipoles
would lie above the data sampling Nyquist frequency.
The component spin magnitudes |χi| are distributed uni-
formly up to a maximum of 0.4 for NS components and
0.998 for BBH, with isotropically distributed orienta-
tions.

The signal distributions over sky direction and binary
orientation are isotropic. The distributions over redshift
are proportional to the comoving volume element dVc/dz,
multiplied by a factor (1 + z)−1 accounting for time dila-
tion, and by a factor (1+z)κ modeling possible evolution
of the comoving merger rate density with redshift (as in
Appendix E of the GWTC-2 population analysis [122]).
A summary of the distributions of the three injection sets
is given in Table V.

Given the merger distribution used for each injection
set, the sensitivity of each search over the O3 data is
quantified by relating the expected number of detec-
tions, at a specified significance threshold, to the local
astrophysical merger rate as Ndet = VR(z = 0), where
V is an effective sensitive hypervolume with units of
volume×time. This effective hypervolume is estimated
by counting the number of injected signals that are de-
tected at the given threshold, here a FAR of 2 per year.

In addition to assumed merger distributions that fol-
low those used for the injection sets, we also provide V
for a fiducial BBH population model representative of
those found to have high posterior probability in our
population analysis of GWTC-2 [122]. We choose the
Power Law + Peak model (defined in Appendix B.2
of the GWTC-2 population analysis [122]) with param-
eters α = 2.5, β = 1.5, mmin = 5 M⊙, mmax = 80 M⊙,

λpeak = 0.1, µm = 34 M⊙, σm = 5 M⊙, δm = 3.5 M⊙, set-
ting the redshift evolution to κ = 0. The sensitivity for
this BBH population is evaluated via importance sam-
pling [115, 132] implemented via GWPopulation [133].
The effective hypervolume for each search and signal pop-
ulation is given in Table V.

E. Rates of BBH and BNS events

The rates of BBH and BNS binary mergers in the local
Universe were estimated in a companion paper [122] to
GWTC-2, using the count of detected events with FAR
below 1 per year, combined with estimates of search sen-
sitivity to the respective populations. The BBH rate
estimate was marginalized over uncertainties in the pa-
rameters of the population models used, while the BNS
rate estimate assumed a population uniform in compo-
nent masses between 1 M⊙ and 2.5 M⊙. The merger
rate of NSBHs was calculated following the discovery of
GW200105 162426 and GW200115 042309 [134], and we
do not update it here.

Here, we present complementary BBH and BNS rate
estimates based solely on the matched filter search
pipeline outputs, with methods that allow us to in-
corporate a large number of likely noise (background)
events [26] and thus avoid potential bias due to an ar-
bitrary choice of significance threshold. Such methods
allow for both foreground (signal) and background event
distributions with a priori unknown rates, considered
as independent Poisson processes. Furthermore, for the
GstLAL pipeline we employ a multicomponent mixture
analysis [114] to estimate the rates of events in several
astrophysical classes (BNS, NSBH, and BBH) and ter-
restrial. Every trigger is assigned probabilities of mem-
bership in each class, as described in Sec. III B 1. For the
MBTA and PyCBC rate estimates, only the BBH class
is considered.

The merger rate estimate then arises from the num-
ber of search events assigned to each class, divided by
the estimated search sensitivity obtained via injection
campaigns re-weighted to an astrophysical population
model [115], as discussed in the previous section. The
population models used here to quantify search sensi-
tivity are in general different from those used to obtain
source classification probabilities, described in Sec. III A.



20

Injection populations Sensitive hypervolume V (Gpc3 yr)

mass mass range spin redshift max.
GstLAL MBTA PyCBC

PyCBC
All

distribution (M⊙) range evolution redshift BBH

BBH
(INJ)

p(m1) ∝ m1
−2.35

p(m2|m1) ∝ m2

2 < m1 < 100
2 < m2 < 100

|χ1,2| < 0.998 κ = 1 1.9 0.258 0.196 0.194 0.234 0.308

BBH
(POP)

Power Law + Peak (see text) |χ1,2| < 0.998 κ = 0 1.9 1.22 0.885 0.914 1.20 1.44

BNS uniform
1 < m1 < 2.5
1 < m2 < 2.5

|χ1,2| < 0.4 κ = 0 0.15 0.00594 0.00631 0.00657 – 0.00781

NSBH
p(m1) ∝ m1

−2.35

uniform
2.5 < m1 < 60
1 < m2 < 2.5

|χ1| < 0.998
|χ2| < 0.4

κ = 0 0.25 0.0174 0.0165 0.0181 – 0.0221

TABLE V. Measures of sensitivity for the search pipelines. We state the sensitive hypervolume V for each of four assumed
signal populations: a BBH population following the injected distribution, a BBH population given by the Power Law + Peak
model of [122], and BNS and NSBH populations following the injected distributions. We give estimates for each search pipeline
independently at a FAR threshold of 2 per year, and for all pipelines combined, i.e. counting all injections detected in at least
one pipeline at the given threshold.

In both the BBH and BNS cases, as for other rate inter-
val estimates derived from search results [7], a Poisson–
Jeffreys (∝ R−1/2) prior was used. The choice of prior
has little influence on estimated BBH rate due to the
large count of signals, but it has a nontrivial effect on
the BNS rate estimate as compared to, for instance, a
uniform prior.

BBH merger rate estimates are provided by the Gst-
LAL, PyCBC-BBH and MBTA pipelines. The as-
trophysical population assumed for measuring search
sensitivities is given by the Power Law + Peak
model [122] with fiducial parameters as in Sec. IV D.
The resulting merger rates are 25.0+7.2

−6.1 Gpc−3 yr−1

for GstLAL, 26.0+8.2
−6.8 Gpc−3 yr−1 for PyCBC-BBH and

25.6+9.6
−7.8 Gpc−3 yr−1 for MBTA. These estimates are fully

consistent with the estimate of 23.9+14.3
−8.6 Gpc−3 yr−1

as derived from GWTC-2 [122] using only significant
(FAR< 1 yr−1) events, and allowing for uncertainties in
the population model parameters. Following the GWTC-
2 analysis [122], we have not included the effect of cali-
bration uncertainties in our rate estimates. A full quan-
titative analysis of such uncertainties would require ac-
counting for possible frequency- and time-dependent am-
plitude systematic errors [77]; these are typically ∼ 3%
or less, corresponding to a ≲ 10% sensitive volume un-
certainty which remains subdominant to the Poisson un-
certainty in the signal counts [122].

Since the only significant event consistent with BNS
merger in O3a, GW190425 [135], was observed in a single
detector, it is present only in the GstLAL search results.
Hence, we quote a BNS merger rate estimate only from
the GstLAL pipeline, as we expect this to be more infor-
mative than estimates from pipelines that did not con-
sider single-detector triggers. For measuring the search
sensitivity to BNS mergers, we use the injected popula-
tion described above in Sec. IV D, yielding an estimated
merger rate 286+510

−237 Gpc−3 yr−1. This estimate is fully

consistent within uncertainties with the simpler estimate
of 320+490

−240 Gpc−3 yr−1 derived using a fixed threshold in
expected SNR to determine sensitivity to simulated sig-
nals [122].

V. ESTIMATION OF SOURCE PARAMETERS

The physical parameters ϑ⃗ describing each GW source
binary, corresponding to individual entries from the list
of events in Table II, are inferred directly from the data
d and represented as a posterior probability distribution

p(ϑ⃗|d). This probability distribution is evaluated through
Bayes’ theorem as

p(ϑ⃗|d) ∝ p(d|ϑ⃗)π(ϑ⃗) , (3)

with p(d|ϑ⃗) being the likelihood of d given a set of source

parameters ϑ⃗, and π(ϑ⃗) being the prior probability dis-
tribution assumed for those parameters.

The likelihood itself describes the assumptions of
the underlying stochastic process generating the noise
present in d from a given detector. This noise is as-
sumed to be Gaussian, stationary and uncorrelated be-
tween pairs of detectors [136, 137], as further discussed
in Sec. II B. This yields a Gaussian likelihood [138, 139],
which for the i-th detector used in a given analysis takes
the form

p(di|ϑ⃗) ∝ exp

[
−1

2

〈
di − hiM(ϑ⃗)

∣∣∣di − hiM(ϑ⃗)
〉]

, (4)

with di representing the data from this instrument.

hiM(ϑ⃗) is the binary waveform model h(ϑ⃗) calculated for

ϑ⃗ after being projected onto the detector and adjusted
to account for the uncertainty present in the offline cal-
ibration (as described in Sec. II) of di [140]. The final
likelihood is evaluated coherently across the network of
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available detectors and is obtained by multiplication of
the likelihoods in each detector.

The term from Eq. (4) in angle brackets, ⟨a|b⟩, rep-
resents a noise-weighted inner product [138, 141]. In

addition to di and hiM (ϑ⃗), evaluating this inner prod-
uct requires specification of the bandwidth to be used in
the analysis as well as the PSD characterizing the noise
process. The low-frequency cutoff used in our analysis
is set at flow = 20 Hz. Time-domain waveform mod-
els are generated starting at a frequency fstart such that
the (ℓ, |m|) = (3, 3) spherical harmonic mode of the
binary inspiral signal, as estimated from a set of pre-
liminary analyses [7, 8], is present at flow. The high-
frequency cutoff fhigh is selected for each analysis as
fhigh = αroll−offfNyquist such that the ringdown frequency
of the (ℓ, |m|) = (3, 3) spherical harmonic mode, inferred
from waveforms taken from the same set of preliminary
analyses as mentioned above [7, 8], occurs below fhigh.
The parameter αroll−off in this expression is a scale factor
chosen in order to minimize the frequency roll-off effects
caused by the application of a tapering window to the
time-domain data [142]. The Nyquist frequency fNyquist

is then selected as the smallest power-of-two-valued fre-
quency which together with αroll−off = 0.875 satisfies the
constraint on fhigh specified above. Similarly, the dura-
tion of data d used in each analysis is determined from
a requirement that the waveforms from previous analy-
ses [7, 8] as evaluated from flow = 20 Hz and rounding
up to the next power-of-two number of seconds, are con-
tained in the selected data segment. The PSD for each
event is inferred directly from the same data that is to be
used in the likelihood, through the parametrized model
implemented in BayesWave [143, 144]. From the inferred
posterior distribution of PSDs, the median value at each
frequency is then used in the final analysis [144, 145].

A GW signal emitted from a binary containing two

BHs can be fully characterized by ϑ⃗ containing a set
of fifteen parameters, as introduced in Sec. III A, if the
binary orbit is assumed to have negligible eccentricity.1

The mass and spin of the post-merger remnant BH, to-
gether with the peak GW luminosity, are calculated from
the initial binary parameters using fits to numerical rel-
ativity (NR) [146–151].

For binaries expected to contain at least one NS, the
time-evolution of the binary orbit is modified by the pres-
ence of matter and quantified in terms of the dimension-
less quadrupole tidal deformability Λ1,2, adding one more
parameter for each NS. In addition to the quadrupole
tidal effects, other matter effects are parameterized in
terms of Λ1,2 using equation of state (EoS)-insensitive
relations [152]. When a GW event is assumed to contain
one or more neutron star, we do not report final masses
or spins for the remnant object.

1 See Table E1 in [142] for precise definitions of all parameters
used.

A. Waveform models

The binary properties of the observed GW events are
characterized through matching against a set of waveform
models. For the events identified as BBHs, with both
components inferred to have masses above 3M⊙, we use
the independently developed IMRPhenomXPHM [57–60]
and SEOBNRv4PHM [61–63] models. Both waveform
models capture effects from spin-induced precession of
the binary orbit, as well as contributions from both the
dominant and sub-dominant multipole moments of the
emitted gravitational radiation.

IMRPhenomXPHM [57] describes the GW signal from
precessing non-eccentric BBHs and is part of the fourth
generation of phenomenological frequency domain mod-
els. Precession is implemented via a twisting-up proce-
dure, as for its predecessors IMRPhenomPv2 [153, 154]
and IMRPhenomPv3HM [155, 156]. For this, an aligned-
spin model defined in the co-precessing frame is mapped
through a suitable frame rotation to approximate the
multipolar emission of a precessing system in the in-
ertial frame. The stationary phase approximation is
used to obtain closed form expressions in the frequency
domain [157]. The description for the precession dy-
namics is derived using a multiple scale analysis of
the post-Newtonian (PN) equations of motion [158].
The underlying aligned spin model for IMRPhenomX-
PHM is IMRPhenomXHM [58–60], which calibrates the
(ℓ, |m|) = (2, 2), (2, 1), (3, 2), (3, 3) and (4,4) spheri-
cal harmonic modes to hybrid waveforms constructed
from NR waveforms and information from the PN and
effective-one-body (EOB) descriptions for the inspiral.
IMRPhenomXHM represents the amplitudes and phases
of spherical or spheroidal harmonic modes in terms of
piecewise closed form expressions, with coefficients that
vary across the compact binary parameter space, which
results in extreme compression of the waveform informa-
tion and computational efficiency.

SEOBNRv4PHM comes from another waveform fam-
ily that is primarily based on the EOB formalism where
the relativistic two-body problem is mapped to motion
of a single body in an effective metric. In this frame-
work, analytical information from several sources, such
as PN theory and the test-particle limit, is combined
in a resummed form. This is complemented with in-
sights from NR simulations that accurately model the
strong-field regime and incorporated into the EOB wave-
forms via a calibration procedure. We use the SEOB-
NRv4PHM [61–63] model, which includes precession and
modes beyond the dominant quadrupole. This model is
based on the aligned-spin model SEOBNRv4HM [64] and
is calibrated to NR in that regime. It features full two-
spin treatment of the precession equations and relies on
a twisting-up procedure to map aligned spin waveforms
in the co-precessing frame to the precessing waveforms in
the inertial frame [62, 63].

For GW190917 114630, the less massive component is
indicated to lie below 3M⊙ and hence to have a strong
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likelihood of being a NS instead of a BH. Following the
discussion for GW190814 [41], the nature of the less mas-
sive compact object in GW190917 114630 cannot be dis-
cerned from the GW data at present. This is primarily
dependent on the unequal masses [159–161] which will
lead the merger of the binary to occur before an eventual
NS component could have been tidally disrupted for any
realistic NS EoS [159]. The lack of an observable NS dis-
ruption thus removes the potential for the observed sig-
nal to contain any additional information above a point-
particle baseline. For this reason, we present results for
GW190917 114630 and GW190814 based on the BBH
waveform models discussed above.

For GW190425, the only O3a event in this catalog clas-
sified as a BNS, we follow previous analyses [8, 135], and
report findings using the IMRPhenomP NRTidal wave-
form model [65, 66], which is based upon the BBH model
IMRPhenomPv2 [153, 162, 163] with the addition of EoS
dependent self-spin effects and contributions from tidal
interactions tuned against NR and tidal EOB models.
In order to reduce computational cost for the analysis
of GW190425, a reduced-order-quadrature method was
applied to the IMRPhenomP NRTidal model used [164,
165].

B. Sampling methods

To represent the continuous posterior probability den-

sity functions in ϑ⃗, we draw discrete samples from those
distributions using three different methods. For analyses
using IMRPhenomXPHM and IMRPhenomP NRTidal
we use the Bilby inference package [142, 166], together
with the nested sampling [167] method implemented in
the Dynesty sampler [168], or the Markov-chain Monte
Carlo sampler implemented in the LALInference pack-
age [139, 169–171]. An extensive set of comparison and
verification studies for analyses done with both Bilby and
LALInference shows consistency between the two infer-
ence variants [142]. For analyses using SEOBNRv4PHM,
we use the RIFT package [172–175] which, due to a hy-
brid exploration of the parameter space split into intrin-
sic (masses and spins) and extrinsic parameters, is bet-
ter suited for use with this more computationally expen-
sive waveform model. The robustness and performance
of RIFT is verified through a set of tests [175]. The
Asimov library [176] is used to manage all stages of the
parameter-estimation analyses. This includes the auto-
mated creation of common configurations used for the
Bilby, LALInference and RIFT runs, and the actual ini-
tialization, maintenance and completion of the analyses.
The results from all analyses are collected, again man-
aged by Asimov, and presented in a common format us-
ing the PESummary package [177, 178].

C. Priors

The prior probability on ϑ⃗ is defined similar to GWTC-
2 [8] as uniform in spin magnitudes and redshifted com-
ponent masses (specified in the geocenter rest frame),
and isotropic in spin orientations, sky location and ori-
entation of the binary orbit. We also assume uncorre-
lated and uniform prior probabilities for the tidal de-
formability parameters of the NSs in GW190425. The
prior on the luminosity distance follows a distribution
uniform in comoving volume, using a flat ΛCDM cos-
mology with Hubble constant H0 = 67.90 km s−1 Mpc−1

and matter density Ωm = 0.3065 [179]. Masses reported
in Sec. V D are defined in the rest frame of the original
binary, and computed by dividing the redshifted masses
by (1 + z), with z calculated from the same cosmological
model. For GW190425 we perform two separate anal-
yses, differing in the spin magnitudes they allow with
a low-spin (|χ⃗1| < 0.05) and a high-spin (|χ⃗1| < 0.89),
consistent with the choices made in GWTC-2 [8] for this
binary.

All analyses account for uncertainties in the reported
strain calibration [77, 180]. The calibration uncertain-
ties are described as frequency-dependent splines, defined
separately for the strain amplitude and phase [181]. The
coefficients at the spline nodes are allowed to vary along-
side the binary signal parameters according to a Gaussian
prior distribution set by the measured uncertainty at each
node [140]. For analyses performed with the LALInfer-
ence or Bilby inference packages, calibration uncertain-
ties are marginalized over through direct sampling of the
spline coefficients whereas RIFT analyses implement a
likelihood reweighting method through importance sam-
pling over an initial analysis where perfect calibration is
assumed [182].

D. Source properties

In this subsection we report the inferred source
properties of the 8 new events reported in Table II.
The source properties for the BBH events from the first
and second observation runs, reported in GWTC-1 [7],
together with the remaining 36 events from Table II
are reported in Appendix A. For the vast majority
of the events reported both in this section and in
Appendix A, the quoted source properties are taken
from a set of posterior samples constructed from the
two IMRPhenomXPHM and SEOBNRv4PHM analyses
with each given equal weight. For a subset of events
(GW151226, GW190413 052954, GW190413 134308,
GW190421 213856, GW190426 190642, GW190521,
GW190602 175927, GW190719 215514,
GW190725 174728, GW190803 022701,
GW190814, GW190828 063405, GW190828 065509,
GW190917 114630, GW190926 050336 and
GW190929 012149) the respective SEOBNRv4PHM
analyses did not converge in a timely manner, hence
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we report results from the IMRPhenomXPHM only for
these events.

A selection of the one-dimensional marginal posterior
distributions are shown in Fig. 3, with two-dimensional
projections on the M–q and M–χeff planes in Fig. 4 and
Fig. 5 respectively. A more detailed set of results are
presented in Table VI in the form of median and 90%
credible intervals for the one-dimensional marginal pos-
terior distributions for all 8 events. The complete multi-
dimensional posterior distributions are available as part
of the public data release accompanying this paper [183],
as detailed further in Sec. VII.

1. Masses

The masses inferred for the 8 events presented in
this section are generally comparable to, or higher,
than the binaries reported in GWTC-2 [7, 8], as shown
in Fig. 4. We find that the most massive BBH in
GWTC-2.1 is GW190426 190642 with a total mass of
182.3+40.2

−35.7M⊙ and a remnant mass of 172.9+37.7
−33.6M⊙; it

probably supersedes the previous most massive BBH
GW1905212 with total mass of 153.1+42.2

−16.2M⊙ and a rem-

nant mass of 147.4+40.0
−16.0M⊙ as reported in Appendix A 2.

Both GW190426 190642 and GW190403 051519 join
GW190519 153544, GW190521, GW190602 175927 and
GW190706 222641 in a population of BBHs with over
50% posterior support for total mass M > 100M⊙ [8].

While the majority of the new events show a preference
for mass ratios near unity, following the trend already
observed in GWTC-2 [7, 8], both GW190403 051519 and
GW190917 114630 recover posteriors with median q ∼
1/5 with q = 0.23+0.57

−0.12 and q = 0.21+0.32
−0.09 respectively. As

shown in Fig. 4, this constraint for unequal masses is ro-
bust at the 90% credible level for both GW190403 051519
and GW190917 114630. Although the contour indicating
the 90% credible region for GW190403 051519 includes
support at q ∼ 0 in Fig. 4, this is an artifact of the
bounded kernel density estimation used to construct the
contours, and for this event there are no samples at the
prior boundary of q = 0.05.

2. Spins

The best measured spin parameter for CBCs with ob-
servable inspiral signals tends to be the effective inspi-
ral spin χeff [184–186], introduced in Eq. (2), which is
approximately conserved under spin-induced precession
of the binary orbit [187–190]. Consequently, the angles
between the spin-vectors and the orbital angular mo-
mentum at a formally infinite separation are well de-
fined [190]. We therefore report χeff , as well as the spin

2 In GWTC-2, GW190521 was inferred to have a total mass of
163.9+39.2

−23.5M⊙ and remnant mass of 156.3+36.8
−22.4M⊙ [8]

tilt angles themselves, at this fiducial reference point of
infinite binary separation, or equivalently at an infinite
time before the binary merger. The spins are evolved to
infinite separation [191] using a precession-averaged evo-
lution scheme [158, 190] where the orbital angular mo-
mentum is computed using higher-order PN expressions.

The posterior distributions for χeff for all 8 events
are shown in Fig. 3 and Fig. 5. Again, the ma-
jority of the binaries are consistent with containing
two non-spinning BHs with only GW190403 051519 and
GW190805 211137 recovering a non-zero χeff at 90%
credibility. Both binaries report predominantly positive
χeff , further strengthening the pattern of a surplus of
events with χeff > 0 relative to those with χeff < 0 re-
ported in GWTC-2 [8] and investigated further in a com-
panion paper [122].

Similar to the compact objects reported in GWTC-
2 [7, 8], the majority of the compact-object spins re-
ported in GWTC-2.1 have magnitudes consistent with
zero. Two of the new events show evidence for large
BH spins. In the case of GW190403 051519, 82% of the
posterior probability lies in a region where at least one
of the component spin magnitudes is above 0.8 whereas
for GW190805 211137 this holds for 59% of the posterior
probability.

For binaries with very unequal masses, measurements
of χeff can translate into strong measurement constraints
of χ1, the spin magnitude of the more massive object,
whose spin angular momentum dominates over the sec-
ondary. This is the case for GW190403 051519, whose
primary dimensionless spin is measured to be χ1 =
0.89+0.09

−0.31. This represents the most nearly-extremal spin
observed using GWs. Similarly, GW190805 211137 is
recovered with χ1 = 0.75+0.22

−0.59 and GW190917 114630

with χ1 = 0.23+0.63
−0.21. Both GW190403 051519 and

GW190805 211137 are recovered as strongly preferring
large χ1, with the inferred posterior distributions rail-
ing against the extremal BH-spin bound at χ1 = 1.
Hence, we also report the one-sided 90% lower bounds
of χ1 > 0.69 for GW190403 051519 and χ1 > 0.29 for
GW190805 211137. The posterior distributions for the
spin magnitudes and tilt angles for these three events are
shown in Fig. 6.

3. Three-Dimensional Localization

As the 8 new events are all detected at relatively mod-
est SNRs, together with several identifications as high-
mass BBHs, the inferred luminosity distances DL are
generally larger than the binaries from GWTC-2 [7, 8].
GW190403 051519 is identified as probably the most dis-
tant event, with a recovered DL = 8.28+6.72

−4.29 Gpc cor-

responding to a redshift z = 1.18+0.73
−0.53 approximately

twice as distant as the most distant events that were re-
ported in GWTC-2 [7, 8] as also shown in Appendix A 2.
In addition GW190426 190642, GW190805 211137,
GW190916 200658 and GW190926 050336 all have
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Event M
(M⊙)

M
(M⊙)

m1

(M⊙)
m2

(M⊙)
χeff DL

(Gpc)
z Mf

(M⊙)
χf ∆Ω

(deg2)
SNR

GW190403 051519 106.6+26.7
−23.634.0+15.1

−8.4 85.0+27.8
−33.0 20.0+26.3

−8.4 0.68+0.16
−0.43 8.28+6.72

−4.29 1.18+0.73
−0.53 102.2+26.3

−24.30.91+0.05
−0.17 3900 7.6+0.6

−1.1

GW190426 190642 182.3+40.2
−35.776.0+19.1

−17.4 105.5+45.3
−24.176.0+26.2

−36.5 0.23+0.42
−0.41 4.58+3.40

−2.28 0.73+0.41
−0.32 172.9+37.7

−33.60.77+0.14
−0.16 4600 8.7+0.4

−0.6

GW190725 174728 18.3+7.4
−1.9 7.4+0.5

−0.5 11.8+10.1
−3.0 6.3+2.1

−2.5 −0.04+0.36
−0.16 1.03+0.52

−0.43 0.20+0.09
−0.08 17.6+7.7

−1.8 0.65+0.09
−0.07 2200 9.1+0.4

−0.7

GW190805 211137 76.7+19.5
−13.8 31.9+8.8

−6.3 46.2+15.4
−11.2 30.6+11.8

−11.3 0.37+0.29
−0.39 6.13+3.72

−3.08 0.92+0.43
−0.40 72.4+18.2

−13.2 0.82+0.09
−0.16 1600 8.1+0.5

−0.7

GW190916 200658 68.0+18.3
−13.1 26.9+8.2

−5.4 43.8+19.9
−12.6 23.3+12.5

−10.0 0.20+0.33
−0.31 4.94+3.71

−2.38 0.77+0.45
−0.32 65.0+17.3

−12.6 0.74+0.13
−0.24 2400 8.1+0.3

−0.5

GW190917 114630 11.8+3.0
−2.8 3.7+0.2

−0.2 9.7+3.4
−3.9 2.1+1.1

−0.4 −0.08+0.21
−0.43 0.72+0.30

−0.31 0.15+0.05
−0.06 11.6+3.1

−2.9 0.42+0.14
−0.05 1700 8.3+0.5

−0.8

GW190925 232845 36.7+3.6
−2.8 15.6+1.1

−1.1 20.8+6.5
−2.9 15.5+2.5

−3.6 0.09+0.16
−0.15 0.93+0.46

−0.35 0.19+0.08
−0.07 34.9+3.5

−2.6 0.71+0.06
−0.06 2900 9.7+0.3

−0.6

GW190926 050336 61.9+22.7
−12.0 24.4+9.0

−4.9 41.1+20.8
−12.5 20.4+11.4

−8.2 −0.02+0.25
−0.32 3.28+3.40

−1.73 0.55+0.44
−0.26 59.6+22.1

−11.8 0.64+0.14
−0.20 2000 8.1+0.6

−0.8

TABLE VI. Median and 90% symmetric credible intervals for the one-dimensional marginal posterior distributions on selected
source parameters for the 8 events that are new to this catalog with pastro > 0.5, highlighted in bold in Table II. The columns
show source total mass M , chirp mass M and component masses mi, dimensionless effective inspiral spin χeff , luminosity
distance DL, redshift z, final mass Mf , final spin χf , sky localization ∆Ω and the network matched-filter SNR. The sky
localization is the area of the 90% credible region. All quoted results are calculated from a set of posterior samples drawn
with equal weight from the IMRPhenomXPHM and SEOBNRv4PHM analyses, with the exception of the SNRs that are taken
from the IMRPhenomXPHM analysis alone (as RIFT, which was used for the SEOBNRv4PHM analysis, does not output that
quantity). Additionally, following Sec. V D, the results presented for GW190426 190642, GW190725 174728, GW190917 114630
and GW190926 050336 are taken from an analysis using the IMRPhenomXPHM model only. A subset of the one-dimensional
posterior distributions are visualized in Fig. 3. Two-dimensional projections of the 90% credible regions in the M–q and M–χeff

planes are shown in Fig. 4 and Fig. 5.
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FIG. 3. Marginal posterior distributions on the primary mass m1, secondary mass m2, mass ratio q, effective inspiral spin χeff

and luminosity distance DL for the 8 events that are new to this catalog with pastro > 0.5, highlighted in bold in Table II. The
vertical span for each region is constructed to be proportional to the one-dimensional marginal posterior at a given parameter
value for the corresponding event. The posterior distributions are also represented numerically in terms of their one-dimensional
median and 90% credible intervals in Table VI.

inferred distances comparable to, or larger than,
GW190413 134308, further highlighting the access to the
distant Universe provided in GWTC-2.1.

Another effect of the modest SNR of the new events is
their comparatively poor localization on the sky. The
best localized event is GW190805 211137 with a 90%
credible region of ∆Ω = 1600 deg2. The credible inter-
vals for the inferred distances and sky areas are shown
in Table VI. The inferred localizations for all events are

available as part of the accompanying data release to this
paper, detailed further in Sec. VII.

4. Waveform comparisons – Model systematics

The use of both the IMRPhenomXPHM [57–60] and
SEOBNRv4PHM [61–63] models in the analyses of these
events are motivated by the need to capture, and account
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for, potential differences in the inferred source parame-
ters caused by the different methods used in the con-
structions of the models themselves. The vast majority
of the posterior distributions reported in this section are
constructed by combining an equal number of samples
drawn from each of the IMRPhenomXPHM and SEOB-
NRv4PHM analyses [140]. For the majority of the 8
new events, the differences between the two single-model
analyses, as well as to the combined-model results, are
found to be comparable to the impact of model system-
atics effects identified in GWTC-2 [7, 8] being generally
subdominant to the statistical uncertainty caused by the
noisy data. For GW190403 051519 there are, however,
slight differences identified between the IMRPhenomX-
PHM and SEOBNRv4PHM analyses, most noticeably in
the shape and structure of the marginal posterior distri-
bution of some of the recovered mass and spin parame-
ters. In these cases, the differences between analyses us-
ing either the IMRPhenomXPHM or SEOBNRv4PHM
models are dominating over the other systematic uncer-
tainties of the analysis, such as the estimation of the
noise PSD. A deeper investigation into the broader im-
pact of these model systematic effects, and their impact
on the inferred source parameters for the population of
GW events presented here, is left for a future study.

5. Comparison to 3-OGC

Out of the 8 new events presented in this
section, GW190725 174728, GW190916 200658,
GW190925 232845 and GW190926 050336 were also
independently identified and analyzed as part of 3-
OGC [17] using the PyCBC Inference package [192] and
the IMRPhenomXPHM waveform model. We compare
the inferred source properties for these events as pre-
sented in 3-OGC [193] and, to minimize potential model
systematic effects, the IMRPhenomXPHM analysis
performed for GWTC-2.1 presented here. Overall, we
find a broad agreement between the two analyses. While
there are differences found in the two sets of posterior
distributions, they appear consistent within expectations
from the differing choices of the analysis configurations
and the assumed prior distributions between the two
analyses for low SNR signals [194].

VI. ASTROPHYSICAL IMPLICATIONS

Our analysis reports 8 new candidates with pastro > 0.5
in at least one pipeline. None of these candidates have
pastro equal to 1 (Table II). Four of them were found
only by a single analysis, and none were detected by all
the pipelines (Table II). As discussed above in Sec. III A,
pastro values are subject to statistical uncertainties, and
are also subject to uncertainties arising from the true
rate and distribution of signals. Such uncertainties are
larger for events which, if astrophysical, fall within pop-

ulations with few or zero significant detections. Here, we
highlight such uncertainties for specific candidates, and
discuss possible astrophysical implications under the hy-
pothesis that the candidates do originate from compact
object mergers.

Parameter estimation indicates that two of the new
candidates, GW190403 051519 and GW190426 190642,
if astrophysical, have sources with a large total mass
(≳ 100 M⊙, Table VI). Both were found only by the
PyCBC-BBH analysis with a low SNR and relatively low
pastro. They were also not recovered as significant events
in the focused search of O3 data for intermediate-mass
BH binaries [195]. Since there is only one significant de-
tection to date of a comparable BBH system, GW190521
[196, 197], the calculation of pastro for these candidates is
subject to significant potential systematic error. These
events are confidently above the break mass in the bro-
ken power law mass distribution model, at 39.7+20.3

−9.1 M⊙,
or the Gaussian in the Power Law + Peak model
at 33.1+4.0

−5.6 M⊙ [122, 198, 199]. The estimated primary
component masses, assuming astrophysical origin, are
both above the lower edge of the pair-instability mass
gap mlow [200–203], even considering the large uncer-
tainties about its value (≈ 40–70M⊙, [32–40]). Adopting
a conservative estimate of mlow = 65M⊙, the primary
component of GW190403 051519 (m1 = 85.0+27.8

−33.0M⊙)
has a probability 0.16 of being below mlow with our
standard mass prior. Similarly, GW190426 190642’s sec-
ondary component (m2 = 76.0+26.2

−36.5M⊙) has a prob-
ability of 0.30 of being below mlow, while its pri-
mary component (m1 = 105.5+45.3

−24.1M⊙) has a negligi-
ble probability of being below mlow. The upper edge
of the mass gap is even more uncertain, with theoret-
ical predictions suggesting mup ≈ 120 M⊙ [204, 205].
The primary mass component of GW190403 051519
(GW190426 190642) has a probability 0.021 (0.25) of
being above this value of mup. Thus, if astrophysi-
cal, GW190403 051519 and GW190426 190642 lie in the
same group with GW190521: their primary components
might be either inside or above the mass gap. More-
over, the estimated final mass of the merger remnant
of GW190426 190642 (Mf = 172.9+37.7

−33.6M⊙) is in the

intermediate-mass black hole regime (102–105M⊙).

These features are suggestive of a dynamical forma-
tion channel, such as the hierarchical merger of smaller
BHs [206–217] or repeated stellar collisions in dense star
clusters [218–221]. In active galactic nuclei, the dense
gaseous disk surrounding the central BH also triggers
the hierarchical assembly of BHs [222–228]. Alterna-
tively, extreme gas accretion from a dense gaseous disk
[229–231] or from a stellar companion [232] might assist
the growth of BH mass above the pair-instability thresh-
old. Finally, primordial BHs might also have masses in
the pair-instability gap [233, 234]. However, even the
formation of BHs in this mass range from stellar col-
lapse cannot be excluded, given the large uncertainties
in stellar-evolution models [36, 39, 40, 235–237]. For ex-
ample, very massive (≳ 230 M⊙) extremely metal-poor
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FIG. 4. Contours representing the 90% credible regions in the total mass M and mass ratio q plane for all events reported
in this catalog. The events that are new to this catalog with pastro > 0.5, highlighted in bold in Table II, are highlighted in
this figure following the same color scheme used in Fig. 3. The dashed lines act to separate regions where the primary and
secondary binary component can have a mass below 3M⊙.
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(Z < 10−4) stars might turn into BHs with mass above
the pair-instability gap [238–241].

Parameter-estimation analysis indicates a large posi-
tive value of the effective inspiral spin χeff = 0.68+0.16

−0.43

and of the primary’s spin magnitude χ1 = 0.89+0.09
−0.31

for GW190403 051519. From a theoretical perspective,
BH spin magnitudes are highly uncertain [235, 242],
with some models [243, 244] predicting very low spins
(∼ 0.01) for single BHs because of efficient angular mo-
mentum transport in the stellar interior [245]. Observa-
tions of high-mass X-ray binaries in the local Universe
indicate that BH spins can be nearly maximal [246, 247],
while the majority of mergers in GWTC-2 are associ-
ated with low values of χeff , with a slight preference
for positive values [122]. Even if single stars form BHs
with low spins [244], BHs in binaries may still develop
high spins because of mass transfer [248], tidal interac-
tions [242, 249, 250], or chemically homogeneous evolu-
tion [251, 252]. Alternatively, BHs born from the merger
of two smaller BHs are expected to have high natal spins
(∼ 0.7–0.9, [147, 148, 150]). This might suggest that the
primary component of GW190403 051519 is a second-
generation BH, which is also consistent with its large
mass [208, 209, 217, 253, 254]. However, the positive ef-
fective inspiral spin χeff of GW190403 051519 indicates
a significant alignment of the spin vectors of (any of)
the two components with the orbital angular momentum
vector of the BBH. Nearly aligned spins are preferentially
associated with isolated binary evolution [255, 256], while
dynamically formed binaries tend to have an isotropically
distributed spin orientations [257, 258].

Finally, GW190403 051519 is associated with a com-
paratively small mass ratio q (Fig. 3). Such low values
of the mass ratio are unusual in isolated binary evolu-
tion, especially for the chemically homogeneous evolu-
tion [251, 259] but also for the common-envelope scenario
[235, 260–263]. In contrast, low mass ratios are expected
if the primary and secondary components are a second-
and a first-generation BH, respectively [211, 212, 214], or
if the primary BH is the result of a stellar merger in a
young star cluster [219].

Four of the other new candidates (GW190805 211137,
GW190916 200658, GW190925 232845,
GW190926 050336) fall in the mass range of the
bulk of GWTC-2 BBHs, while the secondary component
of GW190725 174728 has a 0.18 probability of lying in
the lower mass gap (∼ 2–5 M⊙). The existence of a lower
mass gap was inferred from observations of Galactic
X-ray binaries [264–266], but there are a few observa-
tions of BHs with mass ≈ 3–4 M⊙ in non-interacting
binary systems [267, 268] and microlensing surveys
find no evidence for a mass gap between NSs and BHs
[269, 270]. GWTC-2 BBH observations also suggest a
dearth of systems between 2.6 M⊙ and 6 M⊙ [122, 271].
The only confirmed GW event in GWTC-2 with a
component in the lower mass gap is GW190814 [41].
Numerical and theoretical models do not exclude the
formation of compact objects in this mass range from

a core-collapse supernova [272–275]. Other scenarios
to explain the formation of binary compact objects in
this mass range include mergers in multiple systems
[276–279], primordial BHs [233, 280] and mass accretion
onto a neutron star [281].

Finally, GW190917 114630 has component masses
consistent with an NSBH (m1 = 9.7+3.4

−3.9M⊙, m2 =

2.1+1.1
−0.4M⊙), but was identified only as a BBH candi-

date, with pNSBH = 0 and pBBH = 0.77, by the pipeline
that detected it (GstLAL). Since GW190426 152155 is
a marginal candidate in this catalog, due to its low
pastro (Table IV), GW190917 114630 is the only high-
probability candidate with mass components in the
NSBH range. However, as discussed in Sec. IV A, had
it been classified as an NSBH to begin with, its pastro
measured by GstLAL would have been smaller due to the
lower foreground rate of NSBHs as compared to BBHs in
the detection pipelines, and not passed the threshold of
0.5 considered by the follow-up pipelines. As with the
unusually high-mass BBH candidates, the assignment of
pastro for NSBHs is subject to potential systematic error
since no NSBH events have been confidently detected in
the data set up to O3a used here, although there were
NSBH discoveries in O3b [67, 134]. The masses and ef-
fective inspiral spin of this candidate are consistent with
prior expectations for NSBH systems [260, 282–288]. In-
ferring the impact on the overall population of binary
compact objects of the new candidates, including those
with non-negligible probability of noise origin, requires a
more involved analysis which is beyond this scope of this
work [289, 290].

VII. CONCLUSION

We have presented GWTC-2.1, which includes results
from a refined search for CBCs in the first part of the
third observing run of the Advanced LIGO and Advanced
Virgo detectors. This is an extension to the previous GW
catalog, GWTC-2 [8], over the same data, and provides
a deeper list of GW candidates. The search we presented
here was carried out using three matched-filter pipelines,
MBTA, GstLAL, and PyCBC, and includes a list of can-
didates that have a FAR less than 2 per day in any of the
pipelines. We provide detailed source properties of the
8 events that have pastro greater than 0.5 and were not
present in GWTC-2. In addition, the source properties
of previously reported events with pastro greater than 0.5
are presented in Appendix A.

Out of the 8 new candidates presented here, all events
have masses consistent with BBH sources with the ex-
ception of GW190917 114630, whose source masses are
consistent with being an NSBH (Sec. V D). If astrophys-
ical, these events expand the scope of observed BBHs,
with several binaries inferred at larger distances than pre-
vious detections and with both a new broader range of
recovered BH masses and the addition of two binaries
with significantly unequal masses. The primary compo-
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FIG. 5. Contours representing the 90% credible regions in the plane of chirp mass M and effective inspiral spin χeff for all
events reported in this catalog. The events that are new to this catalog with pastro > 0.5, highlighted in bold in Table II, are
highlighted in this figure following the same color scheme used in Fig. 3.
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29

nents of two of the new candidates (GW190403 051519
and GW190426 190642) lie inside or, less likely, above the
pair-instability mass gap. GW190403 051519 also shows
support for high spin, unequal masses, and remnant mass
in the intermediate-mass BH regime. These features are
suggestive of dynamical formation, by hierarchical BH
merger or by stellar collisions in dense stellar clusters or
active galactic nuclei. However, we cannot exclude that
GW190403 051519 and GW190426 190642 originated
from isolated binary systems, because of the large un-
certainties in the mass range of the pair-instability mass
gap. Among the new candidates, GW190725 174728
shows some support for a secondary component mass in
the lower mass gap (2–5M⊙). GW190917 114630, the
only candidate with component masses consistent with
an NSBH was initially classified as a BBH by the search
pipeline, and therefore the pastro assigned to it is subject
to systematics due to uncertainty in classification.

The data products associated with GWTC-2.1 include
candidate information from relevant search pipeline(s)
and localizations for all events that pass a threshold of
2 per day in any search pipeline. The information from
each search pipeline includes the template mass and spin
parameters, the SNR time series, chi-squared values, the
time and phase of coalescence in each detector, FAR,
and pastro (Sec. III A). These data can be found at Zen-
odo [104]. The source localizations are computed us-
ing the rapid localization tool BAYESTAR [291, 292],
which was also used to produce the localizations in near
real time during the observing runs while sending out
GW alerts. We also release the results of the search
pipelines running over simulated signal sets classified as
BNS, NSBH, and BBH [131] that were used to calculate
the sensitivities shown in Table V. For candidates that
have a pastro > 0.5, we perform follow-up parameter esti-
mation and also release the posterior samples associated
with these events. These are available via Zenodo [183].
Finally, the strain data for O3a used for the analyses in
this paper are also available [44, 47].

The LIGO Scientific, Virgo and KAGRA Collabora-
tion (LVK) have already announced the first observations
from NSBHs [134] in the data from O3b, and the cata-
log that extends events up to O3b, GWTC-3 [67], has
been released. GWTC-3 adds 35 GW candidates with
pastro greater than 0.5 from O3b. O3 marks the most
sensitive GW data published upon so far. The LIGO,
Virgo, and KAGRA [293] detectors are currently offline
and undergoing commissioning to enhance their sensitiv-
ities, and plan to all collect data simultaneously during
the fourth observing run (O4) [68]. With further im-
provement in sensitivities and planning for pre-merger
BNS detections [294–296], O4 offers improved prospects
for GW and multimessenger astronomy, and promises to
build upon our current knowledge of binary populations.

ACKNOWLEDGMENTS

This material is based upon work supported by NSF’s
LIGO Laboratory which is a major facility fully funded
by the National Science Foundation. The authors also
gratefully acknowledge the support of the Science and
Technology Facilities Council (STFC) of the United
Kingdom, the Max-Planck-Society (MPS), and the State
of Niedersachsen/Germany for support of the construc-
tion of Advanced LIGO and construction and operation
of the GEO600 detector. Additional support for Ad-
vanced LIGO was provided by the Australian Research
Council. The authors gratefully acknowledge the Italian
Istituto Nazionale di Fisica Nucleare (INFN), the French
Centre National de la Recherche Scientifique (CNRS)
and the Netherlands Organization for Scientific Research,
for the construction and operation of the Virgo detec-
tor and the creation and support of the EGO consor-
tium. The authors also gratefully acknowledge research
support from these agencies as well as by the Council
of Scientific and Industrial Research of India, the De-
partment of Science and Technology, India, the Science
& Engineering Research Board (SERB), India, the Min-
istry of Human Resource Development, India, the Span-
ish Agencia Estatal de Investigación, the Vicepresidència
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Analyses in this catalog relied upon the LALSuite
software library [171]. The detection of the signals
and subsequent significance evaluations were performed
with the GstLAL-based inspiral software pipeline [48–
50, 297], with the MBTA pipeline [56, 298], and with
the PyCBC [54, 55, 102, 124] package. Estimates of
the noise spectra and glitch models were obtained us-
ing BayesWave [93, 96, 299]. Source parameter es-
timation was performed with the Bilby library [142,
166] using the Dynesty nested sampling package [300],
the RIFT library [172–174] and the LALInference li-
brary [139]. PESummary was used to post-process and
collate parameter-estimation results [177]. The various
stages of the parameter-estimation analysis were man-
aged with the Asimov library [176]. Plots were prepared
with Matplotlib [301], seaborn [302] and GWpy [88].
NumPy [303] and SciPy [304] were used in the prepara-
tion of the manuscript.

Appendix A: Estimation of source parameters

1. Binary black holes from the first and second
observing runs

In order to provide a self-consistent set of source prop-
erties, inferred using the state-of-the-art BBH waveform
models described in Sec. V A, we have reanalyzed the 10
BBH events observed during O1 and O2, and reported in
GWTC-1 [7]. We present results combining samples from
analyses using both the IMRPhenomXPHM and SEOB-
NRv4PHM, with the exception of GW151226 which, as
mentioned earlier in Sec. V D, was analyzed using IMR-
PhenomXPHM only. As the BNS models available at the
time of GWTC-1 still can be considered state-of-the-art
in the NS-physics they describe, we have elected to not
reanalyze the BNS event GW170817 as part of this study.
For the source properties of GW170817, we instead refer
to GWTC-1 [7] and its accompanying data release [305].

The source properties for the 10 BBH events from the
O1 and O2 are reported in Table VII, with a selection
of the one-dimensional marginal posterior distributions
shown in Fig. 7. The two-dimensional projections on the
M–q and M–χeff planes are shown as light-grey contours
in Fig. 4 and Fig. 5 respectively. The full 15-dimensional
posterior distributions are available as part of the public
data release accompanying this paper [183], as detailed
further in Sec. VII.

Generally, the inferred source properties for these 10
BBHs are consistent with those presented in GWTC-
1 [7], but there are some new features worth highlighting.
Where most binaries have a nominal support for χeff = 0,
GW151226 was in GWTC-1 identified to exclude this
value at > 90% probability [7, 306], a conclusion which

is strengthened further as of the analysis presented here
in GWTC-2.1. The other BBH in GWTC-1 with only
marginal support for χeff = 0, GW170729, is now found
to include support for negative χeff in its 90% credible
interval while also simultaneously preferring BH compo-
nents with more unequal masses relative to what was
inferred in GWTC-1.

Previous independent analyses of these 10 events with
the IMRPhenomXPHM model show broad consistency
with the results presented in this section [307].

2. Previously reported binaries from the first half
of the third observing run

The high-significance events from O3a are reported
in Table II. Out of these events, 36 were included in
GWTC-2 [8] with its accompanying data release [308].
Again, to ensure a self-consistent set of inferred source
properties available for all CBC events observed by
Advanced LIGO and Advanced Virgo, we provide a
reanalysis of these 36 events using the BBH waveform
models described in Sec. V A. We present results
combining samples from analyses using both the
IMRPhenomXPHM and SEOBNRv4PHM, with the
exception of GW190413 052954, GW190413 134308,
GW190421 213856, GW190521, GW190602 175927,
GW190719 215514, GW190803 022701, GW190814,
GW190828 063405, GW190828 065509 and
GW190929 012149 which, as mentioned earlier in
Sec. V D, were analyzed using IMRPhenomXPHM
only. As also described in Sec. V A, for the BNS
event GW190425, the IMRPhenomP NRTidal waveform
model [65, 66] was used. The analyses of these events
also used the GW strain data described in Sec. II A, an
additional improvement over the analyses presented in
GWTC-2 [8]. For the events listed in Table I all analyses
made use of data which included glitch subtraction or a
reduction in the bandwidth available for astrophysical
inference.

The source properties for the 36 events from O3a are
reported in Table VIII, with a selection of the one-
dimensional marginal posterior distributions shown in
Fig. 8. The two-dimensional projections on the M–q and
M–χeff planes are shown as light-grey contours in Fig. 4
and Fig. 5 respectively. The full multi-dimensional poste-
rior distributions are available as part of the public data
release accompanying this paper [183], as detailed further
in Sec. VII.

Similar to the results presented in Sec. A 1, the vast
majority of the inferred source properties for these 36
binaries are consistent with those presented in GWTC-
2 [8]. For a subset of binaries, their inferred masses
have changed nominally with GW190706 222641 as of
the GWTC-2.1 analysis preferring a higher total mass
whereas both GW190521 and GW190929 012149 now are
recovered as less massive than in GWTC-2. Addition-
ally, GW190929 012149 as recovered in GWTC-2 had
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Event M
(M⊙)

M
(M⊙)

m1

(M⊙)
m2

(M⊙)
χeff DL

(Gpc)
z Mf

(M⊙)
χf ∆Ω

(deg2)
SNR

GW150914 64.5+3.7
−3.2 27.9+1.7

−1.5 34.6+4.4
−2.6 30.0+2.9

−4.6 −0.04+0.12
−0.14 0.47+0.14

−0.16 0.10+0.03
−0.03 61.5+3.4

−2.9 0.68+0.05
−0.05 250 26.0+0.1

−0.2

GW151012 38.8+10.3
−4.7 15.6+2.3

−1.5 24.8+14.5
−6.3 13.6+4.5

−4.9 0.12+0.28
−0.21 1.00+0.64

−0.49 0.20+0.11
−0.09 37.1+10.6

−4.6 0.69+0.13
−0.13 1700 9.3+0.3

−0.5

GW151226 21.7+8.3
−1.6 8.9+0.3

−0.3 14.2+11.1
−3.6 7.5+2.4

−2.8 0.20+0.23
−0.08 0.46+0.16

−0.20 0.10+0.03
−0.04 20.7+8.6

−1.6 0.75+0.12
−0.05 950 12.7+0.3

−0.4

GW170104 49.6+4.7
−3.6 21.1+2.0

−1.5 28.7+6.6
−4.2 20.8+4.1

−4.7 −0.04+0.15
−0.19 1.11+0.39

−0.48 0.22+0.07
−0.09 47.5+4.5

−3.4 0.67+0.06
−0.08 1000 13.8+0.2

−0.3

GW170608 18.5+2.0
−0.6 7.9+0.2

−0.2 10.6+4.0
−1.4 7.8+1.2

−1.9 0.05+0.13
−0.05 0.34+0.12

−0.13 0.07+0.03
−0.03 17.7+2.1

−0.6 0.69+0.03
−0.03 380 15.3+0.2

−0.3

GW170729 84.4+15.0
−10.9 34.6+7.0

−5.7 54.7+12.7
−12.8 30.2+11.9

−10.2 0.29+0.25
−0.33 2.49+1.69

−1.23 0.44+0.24
−0.19 80.3+13.5

−10.2 0.78+0.09
−0.22 830 10.7+0.4

−0.5

GW170809 58.5+5.3
−3.9 24.8+2.2

−1.6 34.1+8.0
−5.3 24.2+4.8

−5.3 0.07+0.17
−0.17 1.07+0.31

−0.38 0.21+0.05
−0.07 55.7+5.0

−3.6 0.71+0.08
−0.08 260 12.8+0.2

−0.3

GW170814 56.0+3.5
−3.0 24.1+1.4

−1.2 30.9+5.4
−3.3 24.9+3.0

−4.0 0.08+0.13
−0.12 0.61+0.16

−0.23 0.13+0.03
−0.05 53.2+3.2

−2.7 0.72+0.07
−0.06 92 17.7+0.2

−0.3

GW170818 62.5+5.3
−4.6 26.8+2.3

−2.0 34.8+6.5
−4.2 27.6+4.1

−5.1 −0.06+0.19
−0.22 1.08+0.43

−0.41 0.21+0.07
−0.07 59.7+4.9

−4.2 0.68+0.08
−0.08 35 12.0+0.3

−0.4

GW170823 67.0+10.3
−7.2 28.6+4.5

−3.3 38.3+9.5
−6.2 29.0+6.5

−7.8 0.05+0.21
−0.22 1.97+0.84

−0.93 0.36+0.13
−0.15 63.9+9.6

−6.8 0.71+0.08
−0.10 1800 12.2+0.2

−0.3

TABLE VII. Median and 90% symmetric credible intervals for the one-dimensional marginal posterior distributions on selected
source parameters for the 10 BBH events observed during the O1 and O2. These binaries were reported in GWTC-1 [7].
The columns show source total mass M , chirp mass M and component masses mi, dimensionless effective inspiral spin χeff ,
luminosity distance DL, redshift z, final mass Mf , final spin χf , sky localization ∆Ω and the network matched-filter SNR.
The sky localization is the area of the 90% credible region. All quoted results are calculated from a set of posterior samples
drawn with equal weight from the IMRPhenomXPHM and SEOBNRv4PHM analyses, with the exception of the SNRs that
are taken from the IMRPhenomXPHM analysis alone (as RIFT, which was used for the SEOBNRv4PHM analysis, does not
output that quantity). Additionally, following Sec. V D, the results presented for GW151226 are taken from an analysis using
the IMRPhenomXPHM model only. A subset of the one-dimensional posterior distributions are visualized in Fig. 7. Two-
dimensional projections of the 90% credible regions in the M–q and M–χeff planes are shown in grey in Fig. 4 and Fig. 5.

a comparatively broad and multimodal posterior distri-
bution for its primary mass. The higher-mass mode is
no longer present in the GWTC-2.1 analysis, which to-
gether with the secondary mass of GW190929 012149 re-
maining largely unchanged between the GWTC-2 and
GWTC-2.1 analyses also leads to larger support for
a more equal-mass binary. On the other hand, we
now identify GW190707 093326, GW190708 232457 and
GW190930 133541 more predominantly with an unequal
q distribution as compared to the broad support, with
stronger preference for equal masses, reported in GWTC-
2. Finally, where in GWTC-2 GW190521 was identified
with a unimodal q posterior distribution, GWTC-2.1 now
also supports an additional subdominant mode at more
unequal masses.

A more direct comparison between the source prop-
erties for the 36 events originally reported in GWTC-
2 [8], with its associated public data release [308], and the
analysis presented in this section is presented in Fig. 9.
The main differences between the two sets of analyses
were already presented in Sec. V, but where it is impor-
tant to highlight the differing choices of waveform models
used. As detailed in Sec. V A, the GWTC-2.1 analysis
uses the same two models (IMRPhenomXPHM [57–60]
and SEOBNRv4PHM [61–63]) for inferring the source
properties of all BBHs whereas GWTC-2 makes use of
a much broader set of models with significant variability
between the analysis of specific events (the specific wave-
form model choices are laid out in Sec V.A and Table III
of GWTC-2 [8]). These differences make the comparison

presented in Fig. 9 more complicated than between two
consistent sets of waveforms, but it nonetheless provides
a measure for the evolution and improvement of the infer-
ence of the source properties of the observed events with
the newer and more self-consistent analysis presented in
GWTC-2.1 as the preferred results.

Independent results with the IMRPhenomXPHM
model for many of these events were previously pre-
sented in 3-OGC [17]; other groups have also presented
results with either the IMRPhenomXPHM, SEOB-
NRv4PHM or other precessing higher-mode models for,
most prominently, the events GW190412 [309–312] and
GW190521 [313–316]. While there is general agreement
for the overall inferred source properties from many of
these studies, there are significant differences present
between them. These differences can however, as also
explicitly stated in the studies themselves, be predomi-
nantly attributed to different prior assumptions or anal-
ysis configurations across the spread of the individual
studies, in addition to the variance induced by waveform
differences. This further highlights the need for the clear
and public dissemination of both the exact analysis con-
figurations used and the generated datasets containing
the source properties inferred in order to encourage re-
producibility and further model comparisons, especially
as more events are added to the population of observed
CBCs.
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FIG. 7. Marginal posterior distributions on the primary mass m1, secondary mass m2, mass ratio q, effective inspiral spin χeff

and luminosity distance DL for the 10 BBH events observed during O1 and O2. The vertical span for each region is constructed
to be proportional to the one-dimensional marginal posterior at a given parameter value for the corresponding event. The
posterior distributions are also represented numerically in terms of their one-dimensional median and 90% credible intervals in
Table VII.
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Event M
(M⊙)

M
(M⊙)

m1

(M⊙)
m2

(M⊙)
χeff DL

(Gpc)
z Mf

(M⊙)
χf ∆Ω

(deg2)
SNR

GW190408 181802 43.4+4.2
−3.0 18.5+1.9

−1.2 24.8+5.4
−3.5 18.5+3.3

−4.0 −0.03+0.13
−0.17 1.54+0.44

−0.62 0.29+0.07
−0.11 41.4+3.9

−2.9 0.67+0.06
−0.07 290 14.6+0.2

−0.3

GW190412 36.8+4.7
−4.4 13.3+0.5

−0.5 27.7+6.0
−6.0 9.0+2.0

−1.4 0.21+0.12
−0.13 0.72+0.24

−0.22 0.15+0.04
−0.04 35.6+4.8

−4.5 0.66+0.05
−0.04 240 19.8+0.2

−0.3

GW190413 052954 58.0+10.6
−7.8 24.5+4.6

−3.4 33.7+10.4
−6.4 24.2+6.5

−7.0 −0.04+0.27
−0.32 3.32+1.91

−1.40 0.56+0.25
−0.21 55.5+10.1

−7.3 0.67+0.10
−0.12 650 9.0+0.4

−0.8

GW190413 134308 81.3+16.8
−11.8 33.3+7.8

−6.3 51.3+16.6
−12.6 30.4+11.7

−12.7 −0.01+0.28
−0.38 3.80+2.48

−1.83 0.62+0.32
−0.26 78.0+16.1

−11.5 0.68+0.12
−0.18 630 10.6+0.4

−0.5

GW190421 213856 73.6+13.2
−9.5 31.4+6.0

−4.6 42.0+10.1
−7.4 32.0+8.3

−9.8 −0.10+0.21
−0.27 2.59+1.49

−1.24 0.45+0.21
−0.19 70.5+12.4

−9.0 0.66+0.09
−0.12 1200 10.7+0.2

−0.4

GW190425 3.4+0.3
−0.1 1.44+0.02

−0.02 2.1+0.5
−0.4 1.3+0.3

−0.2 0.07+0.07
−0.05 0.15+0.08

−0.06 0.03+0.02
−0.01 – – 8700 12.4+0.4

−0.4

GW190503 185404 69.4+10.1
−8.6 29.3+4.5

−4.4 41.3+10.3
−7.7 28.3+7.5

−9.2 −0.05+0.23
−0.30 1.52+0.63

−0.60 0.29+0.10
−0.10 66.5+9.4

−7.9 0.66+0.09
−0.15 100 12.2+0.2

−0.4

GW190512 180714 35.8+4.1
−3.5 14.6+1.4

−0.9 23.2+5.6
−5.6 12.5+3.5

−2.6 0.02+0.13
−0.14 1.46+0.51

−0.59 0.28+0.08
−0.10 34.3+4.1

−3.4 0.65+0.06
−0.07 230 12.7+0.3

−0.4

GW190513 205428 54.4+9.3
−6.7 21.8+3.8

−2.2 36.0+10.6
−9.7 18.3+7.4

−4.7 0.16+0.29
−0.22 2.21+0.99

−0.81 0.40+0.14
−0.13 52.1+8.8

−6.6 0.71+0.13
−0.13 450 12.5+0.3

−0.4

GW190514 065416 69.3+19.8
−12.1 29.1+8.1

−5.4 40.9+17.3
−9.3 28.4+10.0

−10.1 −0.08+0.29
−0.35 3.89+2.61

−2.07 0.64+0.33
−0.30 66.4+19.0

−11.5 0.66+0.12
−0.16 3400 8.0+0.3

−0.6

GW190517 055101 64.1+9.9
−9.8 26.5+4.0

−4.2 39.2+13.9
−9.2 24.0+7.4

−7.9 0.49+0.21
−0.28 1.79+1.75

−0.88 0.33+0.26
−0.15 60.1+9.9

−9.4 0.87+0.05
−0.07 510 10.8+0.5

−0.6

GW190519 153544 105.6+14.4
−13.9 44.3+6.8

−7.5 65.1+10.8
−11.0 40.8+11.5

−12.7 0.33+0.20
−0.24 2.60+1.72

−0.96 0.45+0.24
−0.15 100.0+13.0

−12.90.79+0.07
−0.12 570 15.9+0.2

−0.3

GW190521 153.1+42.2
−16.263.3+19.6

−14.6 98.4+33.6
−21.7 57.2+27.1

−30.1 −0.14+0.50
−0.45 3.31+2.79

−1.80 0.56+0.36
−0.27 147.4+40.0

−16.00.62+0.21
−0.23 1000 14.3+0.5

−0.4

GW190521 074359 76.3+7.0
−5.9 32.8+3.2

−2.8 43.4+5.8
−5.5 33.4+5.2

−6.8 0.10+0.13
−0.13 1.08+0.58

−0.53 0.21+0.10
−0.10 72.6+6.5

−5.4 0.71+0.06
−0.06 470 25.9+0.1

−0.2

GW190527 092055 58.1+18.1
−8.8 23.9+6.8

−3.9 35.6+18.7
−8.0 22.2+9.0

−8.7 0.10+0.22
−0.22 2.52+2.08

−1.23 0.44+0.29
−0.19 55.5+17.9

−8.5 0.71+0.10
−0.16 3500 8.0+0.4

−0.9

GW190602 175927 115.6+19.2
−14.8 48.0+9.5

−9.7 71.8+18.1
−14.6 44.8+15.5

−19.6 0.12+0.25
−0.28 2.84+1.93

−1.28 0.49+0.26
−0.20 110.5+17.9

−13.90.72+0.11
−0.17 740 13.2+0.2

−0.3

GW190620 030421 92.7+18.5
−13.2 38.1+8.5

−7.2 58.0+19.2
−13.3 35.0+13.1

−14.5 0.34+0.22
−0.29 2.91+1.71

−1.32 0.50+0.23
−0.20 88.0+17.2

−12.4 0.80+0.07
−0.15 7700 12.1+0.3

−0.4

GW190630 185205 59.4+4.7
−4.8 25.1+2.2

−2.1 35.1+6.5
−5.5 24.0+5.5

−5.2 0.10+0.14
−0.13 0.87+0.53

−0.36 0.18+0.09
−0.07 56.6+4.4

−4.5 0.70+0.06
−0.07 670 16.4+0.2

−0.3

GW190701 203306 94.3+12.0
−9.5 40.2+5.4

−5.0 54.1+12.6
−8.0 40.5+8.7

−12.1 −0.08+0.23
−0.31 2.09+0.77

−0.74 0.38+0.11
−0.12 90.2+11.2

−8.9 0.66+0.09
−0.13 45 11.2+0.2

−0.4

GW190706 222641 112.6+27.4
−16.845.6+13.0

−9.1 74.0+20.1
−16.9 39.4+18.4

−15.4 0.28+0.25
−0.31 3.63+2.60

−2.00 0.60+0.33
−0.29 107.3+25.2

−15.90.78+0.09
−0.19 2600 13.4+0.2

−0.4

GW190707 093326 20.1+1.7
−1.2 8.4+0.6

−0.4 12.1+2.6
−2.0 7.9+1.6

−1.3 −0.04+0.10
−0.09 0.85+0.34

−0.40 0.17+0.06
−0.08 19.2+1.7

−1.2 0.66+0.03
−0.03 1200 13.1+0.2

−0.4

GW190708 232457 31.4+2.8
−2.2 13.1+0.9

−0.6 19.8+4.3
−4.3 11.6+3.1

−2.0 0.05+0.10
−0.10 0.93+0.31

−0.39 0.19+0.06
−0.07 30.1+2.9

−2.1 0.68+0.04
−0.05 11000 13.4+0.2

−0.3

GW190719 215514 57.2+38.4
−11.6 22.8+8.3

−4.3 36.6+42.1
−11.1 19.9+10.0

−9.3 0.25+0.33
−0.32 3.73+3.12

−2.07 0.61+0.39
−0.30 54.5+38.3

−11.1 0.76+0.13
−0.18 3600 7.9+0.3

−0.7

GW190720 000836 21.8+3.8
−2.0 9.0+0.4

−0.8 14.2+5.6
−3.3 7.5+2.2

−1.8 0.19+0.14
−0.11 0.77+0.65

−0.26 0.16+0.11
−0.05 20.8+3.9

−2.0 0.71+0.05
−0.05 260 10.9+0.3

−0.8

GW190727 060333 68.8+10.2
−7.8 29.4+4.6

−3.7 38.9+8.9
−6.0 30.2+6.5

−8.3 0.09+0.25
−0.27 3.07+1.30

−1.23 0.52+0.18
−0.18 65.4+9.5

−7.3 0.73+0.09
−0.11 380 11.7+0.2

−0.5

GW190728 064510 20.7+4.2
−1.4 8.6+0.6

−0.3 12.5+6.9
−2.3 8.0+1.7

−2.6 0.13+0.19
−0.07 0.88+0.26

−0.38 0.18+0.05
−0.07 19.7+4.4

−1.4 0.71+0.04
−0.04 400 13.1+0.3

−0.4

GW190731 140936 70.7+16.3
−11.4 29.7+7.4

−5.3 41.8+12.7
−9.1 29.0+10.2

−9.9 0.07+0.28
−0.25 3.33+2.35

−1.77 0.56+0.31
−0.26 67.4+15.3

−10.8 0.71+0.12
−0.14 3600 8.8+0.3

−0.4

GW190803 022701 65.0+12.0
−8.1 27.6+5.4

−3.8 37.7+9.8
−6.7 27.6+7.6

−8.5 −0.01+0.23
−0.28 3.19+1.63

−1.47 0.54+0.22
−0.22 62.1+11.2

−7.6 0.68+0.09
−0.12 1000 9.3+0.3

−0.5

GW190814 25.9+1.3
−1.3 6.11+0.06

−0.05 23.3+1.4
−1.4 2.6+0.1

−0.1 0.00+0.07
−0.07 0.23+0.04

−0.05 0.05+0.01
−0.01 25.7+1.3

−1.3 0.28+0.03
−0.03 22 25.3+0.1

−0.2

GW190828 063405 57.2+7.9
−4.3 24.6+3.6

−2.0 31.9+5.4
−4.1 25.8+4.9

−5.3 0.15+0.15
−0.16 2.07+0.65

−0.92 0.38+0.10
−0.15 54.3+7.3

−4.0 0.74+0.07
−0.07 340 16.5+0.2

−0.3

GW190828 065509 34.3+5.2
−4.3 13.4+1.4

−1.0 23.7+6.8
−6.7 10.4+3.8

−2.2 0.05+0.16
−0.17 1.54+0.69

−0.65 0.29+0.11
−0.11 33.0+5.3

−4.3 0.64+0.08
−0.08 590 10.2+0.4

−0.5

GW190910 112807 78.0+9.3
−9.1 33.5+4.2

−4.1 43.8+7.6
−6.8 34.2+6.6

−7.3 0.00+0.17
−0.20 1.52+1.09

−0.63 0.29+0.17
−0.11 74.4+8.5

−8.6 0.69+0.07
−0.08 9600 14.5+0.2

−0.3

GW190915 235702 57.2+7.1
−5.3 24.4+3.0

−2.3 32.6+8.8
−4.9 24.5+4.9

−5.8 −0.03+0.19
−0.24 1.75+0.71

−0.65 0.32+0.11
−0.11 54.7+6.6

−5.0 0.69+0.08
−0.09 450 13.1+0.2

−0.3

GW190924 021846 13.9+2.8
−0.9 5.8+0.2

−0.2 8.8+4.3
−1.8 5.1+1.2

−1.5 0.03+0.20
−0.08 0.55+0.22

−0.22 0.11+0.04
−0.04 13.3+3.0

−0.9 0.67+0.05
−0.04 380 12.0+0.3

−0.4

GW190929 012149 93.3+23.3
−15.0 35.6+10.2

−7.4 66.3+21.6
−16.6 26.8+14.7

−10.6 −0.03+0.23
−0.28 3.13+2.51

−1.37 0.53+0.33
−0.20 90.3+22.3

−14.6 0.60+0.17
−0.22 1700 9.7+0.4

−0.6

GW190930 133541 21.2+5.9
−2.0 8.5+0.5

−0.4 14.2+8.0
−4.0 6.9+2.4

−2.1 0.19+0.22
−0.16 0.77+0.32

−0.32 0.16+0.06
−0.06 20.2+6.1

−2.0 0.71+0.07
−0.06 1600 9.7+0.3

−0.5

TABLE VIII. Median and 90% symmetric credible intervals for the one-dimensional marginal posterior distributions on selected
source parameters for the 36 events from Table II that were not reported in Table VI. The columns show source total mass M ,
chirp mass M and component masses mi, dimensionless effective inspiral spin χeff , luminosity distance DL, redshift z, final
mass Mf , final spin χf , sky localization ∆Ω and the network matched-filter SNR. The sky localization is the area of the 90%
credible region. The results for the BBHs are calculated from a set of posterior samples drawn with equal weight from the
IMRPhenomXPHM and SEOBNRv4PHM analyses, with the exception of the SNRs that are taken from the IMRPhenomXPHM
analysis alone (as RIFT, which was used for the SEOBNRv4PHM analysis, does not output that quantity). Additionally,
following Sec. V D, the results for GW190413 052954, GW190413 134308, GW190421 213856, GW190521, GW190602 175927,
GW190719 215514, GW190803 022701, GW190814, GW190828 063405, GW190828 065509 and GW190929 012149 are from
analyses using the IMRPhenomXPHM model only. For GW190425, we report results from the high-spin (|χ⃗1| < 0.89) analysis,
and since the calculation of the BH remnant properties is only valid for BBH model input those properties are excluded for
this BNS signal. A subset of the one-dimensional posterior distributions are visualized in Fig. 8. Two-dimensional projections
of the 90% credible regions in the M–q and M–χeff planes are shown in grey in Fig. 4 and Fig. 5.
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FIG. 8. Marginal posterior distributions on the primary mass m1, secondary mass m2, mass ratio q, effective inspiral spin χeff

and luminosity distance DL for the 36 events from Table II that were not shown in Fig. 3. The vertical span for each region
is constructed to be proportional to the one-dimensional marginal posterior at a given parameter value for the corresponding
event. The posterior distributions are also represented numerically in terms of their one-dimensional median and 90% credible
intervals in Table VIII.
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FIG. 9. Marginal posterior distributions of the primary mass m1, secondary mass m2, mass ratio q, effective inspiral spin χeff and
luminosity distance DL for the 36 events from Table II that were not shown in Fig. 3. The top halves of each distribution match
the results also presented in Fig. 8, with the bottom halves representing the analysis from the previous GWTC-2 [8, 308]. The
vertical span for each region is constructed to be proportional to the one-dimensional marginal posterior at a given parameter
value for the corresponding event.
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