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Abstract— In this work, we consider a team of heterogeneous
robots equipped with various types and quantities of resources,
and tasked with supplying these resources to multiple dynamic
demand locations. We present an adaptive control policy that
enables robots to serve a dynamic demand: we allow demand
to deplete as robots supply resources, and we allow demand
injection and movement of demand locations. We show that
the demand is input-to-state stable (ISS) under our proposed
resource dynamics, and thus the robots can drive the demand
to a steady state. Finally, we present simulations and hardware
experiments to demonstrate our approach, and demonstrate the
benefits of coverage over a persistent monitoring approach.

I. INTRODUCTION

When natural disasters occur, failure of traditional infras-
tructure may limit the ability for first responders to assess
damage, distribute supplies, and help those in need. Further,
traversal of the terrain may be dangerous to those first
responders. Robotic delivery systems may provide a solution
to help distribute supplies, however, they must be capable
of dispersing supplies to evolving, dynamic demand of the
different resource types. We envision a team of supply deliv-
ery robots capable of carrying different types and quantities
of supplies, delivering them to desired locations within the
environment. The distributed team adapts to changes in the
demand, providing spatial coverage.

Here, we explore the general spatial supply-and-demand
problem. In our prior work [1], we solved the problem
of supplying multiple types and quantities of resources to
various areas of demand. We proposed a Voronoi-based
coverage control approach to deploy robots in a continuous,
distributed fashion. This prior work only considered a static
demand focusing on the initial deployment of a team. Within
this paper, we consider dynamic demand that can move and
increase over time, as well as depleting supplies on the
robots. These methods allow for a longer deployment in
evolving environments.

By considering that the demand of resources evolves over
time, we extend the capabilities of the system. Consider
again the example of a team of delivery robots assisting
human first responders after a natural disaster. The different
resources needed could include medical supplies, batteries,
food, communication devices, or tools. Some robots within
the team may be very good at delivering one particular
resource, while other robots may carry multiple resource
types. The need for these resources across some environment
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Fig. 1. Our experiments demonstrate a team of 6 robots supplying 2
different types of resources to 2 dynamic locations (◦). Quantities of each
resource carried/demanded are printed to the right of the robot/◦. The
contours indicate density in the space, and solid lines represent Voronoi
boundaries.

evolves as time passes and more information is known to
the first responders. Allowing the resource demand to move
and grow over time models the changing delivery locations,
while injecting demand into the system models the need
for continued or additional resources. As robots provide
coverage, their supplies deplete and the demand reduces,
such as delivering single-use medical supplies.

More generally, the spatial supply-and-demand problem
pertains to task allocation, drone delivery, persistent mon-
itoring, and job assignment for heterogeneous robot teams.
We model the demand of resources as continuous multi-peak
distributions over the environment, akin to the probability
that resource is needed at a particular location. This paper
focuses on the robot team’s response and coverage to a
dynamic demand. The main contributions of this paper are:

• Adaptive coverage control for deploying a heteroge-
neous multi-robot team to multiple, moving demand
locations with depleting and injected demand;

• Analyses to prove minimization of the locational cost
and input-to-state stability of the demand;

• Demonstrate the benefits of coverage control compared
to persistent monitoring through simulations; and

• Demonstrate real-time performance through hardware-
in-the-loop experiments.

Related Work

Prior work has indeed explored coverage control of hetero-
geneous teams. For example, [2], [3], [4] explored coverage
control in relation to task allocation, specifically the problem
of deploying robots with different sensors to cover regions



requiring those sensors. This approach is equivalent to allo-
cating robots with different types of resources to demand.
Other approaches introduce heterogeneity by using weighted
Voronoi diagrams, where the size of a robot’s Voronoi cell
depends on some factor, such as sensor quality [5] or robot
speed [6]. This approach is equivalent to considering multiple
resources of one type. We bridge the gap between these
approaches in our previous work [1].

In relation to the general spatial supply-and-demand prob-
lem, several studies have explored task allocation and coor-
dination techniques in multi-robot systems. For example, [7]
focuses on multi-robot task allocation under task uncertainty
and temporal constraints. The authors of [8] propose a
framework to enable adaptive dynamic task allocation when
robot capabilities are unknown. In [9], authors propose a
receding horizon framework to dynamically assign robots
to demand regions. The works [10], [11] use a Markov
decision process (MDP) approach to dynamically allocate
resources in uncertain environments. While these works
tackle the task/resource allocation problem, they do not
consider heterogeneity within the team.

The supply-and-demand problem can also be tackled by
monitoring, exploration, routing, and scheduling. For exam-
ple [12] considers tasks with heterogeneous requirements,
and uses a combination of the traveling salesman and knap-
sack problems. The authors of [13] consider a heterogeneous
team of drones deployed from a moving truck to complete
tasks, implementing the vehicle routing problem for drone
routes and the traveling salesman problem for scheduling. In
[14], authors focus on routing for heterogeneous multi-robot
task allocation in smart warehouses. These approaches, while
they account for heterogeneity, require that the problems
be solved prior to deployment, and thus cannot account for
changes in demand or the environment.

Thus far, researchers have approached the multi-robot
resource allocation problem as task allocation without con-
sidering resource capacity or heterogeneity, or as monitoring
and scheduling without the ability to adapt to changes in
the system. Contrary to prior work, our approach enables
a heterogeneous multi-robot team, with different types and
quantities of resources, to perpetually serve a dynamic de-
mand. By utilizing Voronoi-based coverage control, we can
guarantee locational optimality while naturally adapting to
changes in the system and environment in a distributed
fashion. We enable robots to adapt to not only the move-
ment of the demand, but also changes in the resources of
the system, including transfer of resources from supply to
demand, injection of demand, and moving demand.

The remainder of this paper is organized as follows:
Section II details the problem formulation, with a brief
review of our prior work and a definition of the resource
dynamics. In Section III, we update our previous control
policy and prove that our robots meet demand. In Section
IV, we demonstrate the performance of our approach through
simulations and experiments. Finally, we provide conclusions
in Section V.
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Fig. 2. Our goal is to assign robots with varying supplies to meet varying
demand across the environment. In this example, we have three demand
locations µj , each requiring one or both of the resources denoted by the △
and ⋄. Each robot at location pi carries different amounts of resources, and
some robots may specialize in one resource type.

II. PROBLEM FORMULATION

In this section, we review key technical concepts from
our prior work detailed in [1], then introduce the resource
dynamics that represent evolving demand. Consider a team
of i = {1, ..., N} robots, i ∈ R, in a bounded, convex
environment Q ⊂ R2, with points in Q denoted q, and robot
positions denoted pi ∈ Q. We denote each type of resource
with the index k ∈ S . Demand for the resources occurs at
j = {1, ...,M} different locations through the environment,
with the set of all demand locations denoted D. We let
ϕj(·) represent the density function associated with demand
j, centered around a peak µj ∈ Q. We write dkj ∈ R+

as the demand of resource k that is required at location j.
Each robot i contains a supply of resources, with ski ∈ R+

denoting the supply of resource k carried by robot i. Our goal
is to find the control policy for the team to deliver supplies to
the demand within the environment. Figure 2 illustrates this
deployment problem of our robots with different resource
supplies to the varying demand locations.

A. Heterogeneous Coverage for Resource Allocation

In [1], we enabled coverage control for multi-resource
allocation. To allow robots to distinguish between the differ-
ent demands, we define M different Voronoi partitions. We
assign robot i to partition j if robot i can supply resources
to demand j. Formally, we define the set of robots assigned
to partition j as

Pj = {i | ∃k : dkj > 0 ∧ ski > 0}. (1)

Then, the Voronoi cell V j
i for robot i ∈ Pj is given by

V j
i = {q ∈ Q | ∥q − pi∥ ≤ ∥q − pl∥, ∀l ∈ Pj , ∀l ̸= i}. (2)



We can also compute the mass and centroid [3], [4], respec-
tively, of each cell V j

i by

mj
i =

∫
V j
i

ϕj(q, p, t)dq

cji =

∫
V j
i
qϕj(q, p, t)dq∫

V j
i
ϕj(q, p, t)dq

=
1

mj
i

∫
V j
i

qϕj(q, p, t)dq,

where ϕj(q, p, t) is our proposed time-varying, position-
varying density function associated with demand j. We
define the following density function [1] to drive robots to
demand j based on their resource capacities ski with respect
to the demand dkj :

ϕj(q, p, t) =
Dj

Sj
,

where

Dj =
∑
k∈S

dkj exp

[
− 1

σ
(q − µj)

TΣ−1(q − µj)

]
,

Sj =
∑
l∈Pj

∑
k∈S,dk

j ̸=0

skl exp

[
− 1

σ
(q − pl)

TΣ−1(q − pl)

]
,

σ is a positive constant, and Σ is a constant covariant matrix.
Figure 2 illustrates the peaks Dj that contribute to this
density function.

While traditional Voronoi-based coverage control [15] uti-
lizes Lloyd’s algorithm [16] to move robots to their centroids,
we implement a minimum-energy, constraint-driven control
policy [17], [18] to account for our time-varying density
function. We first define the total cost [1] as

J(p, t) =
∑
i∈R

∑
j∈D

Jj
i (p, t) =

∑
i∈R

∑
j∈D

1

2
mj

i∥pi − cji∥
2. (3)

We let each robot i obey the single integrator dynamics

ṗi = ui, (4)

where ui is computed by solving [1]

min
ui

∥ui∥2

s.t.
∑
j∈D

(−mj
i (pi − cji )

T(I − ∂cji
∂pi

)ui

− 1

2
∥pi − cji∥

2 ∂m
j
i

∂pi
ui) ≥

∑
j∈D

(−α(−Jj
i (p, t))

−mj
i (pi − cji )

T ∂c
j
i

∂t
+

1

2

∂mj
i

∂t
∥pi − cji∥

2),

(5)
at each point in time, where I is the identity matrix, and α
is an extended class K function.

B. Resource Dynamics

Our prior approach [1] deploys robots with static ski and
dkj to static demand locations µj using a coverage control
approach. We now wish to enable dynamic demand that can
change location, such that we allow demand to move µj =
µj(t), and we define the depletion dynamics as they relate
to the changes in supply and demand. First, we define a few
variables. Recall that ḋkj is the rate of change of resources
of type k required (demanded) at location j. Note that ḋkj
must depend on 1) the rate at which robots are supplying
resources of type k to location j and 2) the injected demand
of type k to location j. Therefore, we can define the demand
dynamics ḋkj as

ḋkj = ζkj (t)−
∑
i∈Pj

ṡkij(d
k
j , µj), (6)

where ζkj (t) ≥ 0 is the injected demand for resources of type
k at location j at time t, and ṡkij is the rate at which robot
i is supplying resources of type k to demand j. Here, ṡkij is
a function of dkj and µj .

We then model the supply dynamics ṡki as the rate at which
robot i’s resources of type k depletes:

ṡki = −
∑

j|i∈Pj

ṡkij(d
k
j , µj). (7)

Note that ṡkij is a function that we design. In summary, ṡki
is the rate at which robot i supplies resources of type k
to the demand(s) j such that robot i belongs to partition(s)
Pj . Indeed, this implies that one robot may serve multiple
demands at one time. Such a feature may be desirable, for
example, when two demands µ1 and µ2 are close together,
and robot i can supply resources to both demands by
situating itself in between them. However, when this is not
the case, and perhaps pi is closer to µ1 than µ2, then one
would expect ṡki1 >> ṡki2. One can design ṡkij such that, in
this example, ṡki2 would be negligible compared to ṡki1. We
propose such a formulation in Section III-B.

III. SERVING DYNAMIC DEMAND

We consider a dynamic demand in the following way: 1)
demand depletes as robots supply resources to that demand,
2) demand can be injected, in that dkj may increase at any
time, and 3) demand locations µj can move, i.e. µj = µj(t).
In this section, we first show in Lemma 1 that with such
a dynamic demand, our robots will still be able to supply
resources to demand locations, while accounting for multiple
resource types and capacities. Then, in Theorem 1, we
propose supply-and-demand dynamics, showing that, under
certain conditions, robots can drive the demand to a steady
state across the environment.

A. Deploying Robots to Heterogeneous Dynamic Demand

In our first work [1], we considered only static ski and
dkj . When we introduce depletion dynamics, both ski , dkj ,
and µj change with time. Therefore, we wish to show that
our prior results [1, Lemma 1] and [1, Proposition 1] still



hold. In other words, as shown in Lemma 1, the policy we
proposed in [1] still minimizes the locational cost and drives
the robots to critical points of their individual costs Ji. We
then leverage these properties to demonstrate we can meet
the dynamic demand in Section III-B.

Lemma 1: Consider a group of N robots obeying single
integrator dynamics (4), with ui given by (5) for all i and
the total locational cost J of the team defined by (3). Let
the supply and demand dynamics be defined by ṡki and ḋkj ,
respectively, and let the demand locations have dynamics µ̇j .
Then 1) the robots minimize J in a decentralized fashion,
and 2) the robots drive to a critical point of the cost J .

Proof: In [1, Lemma 1], we showed that our cost
function minimizes the cost J in (3) with static ski , dkj , and
µj by allowing each robot to solve

min
ui,δi

∥ui∥2 + |δi|2

s.t. − ∂Ji
∂pi

ui ≥ −α(−Ji(p)) +
∂Ji
∂t
− δi.

Introducing the dynamics ḋkj , ṡki , and µ̇j affects ∂Ji

∂t . How-
ever, since J is not a direct function of dkj , ski , or µj , the
value of ∂Ji

∂t remains to be [1]

∂Jj
i

∂t
=
∑
i∈R

∑
j∈D

1

2

∂mj
i

∂t
∥pi−cji∥

2+mj
i (pi−cji )

T(ṗi−
∂cji
∂t

).

Therefore, since introducing the dynamics ḋkj , ṡki , and µ̇j

does not change the original control policy (5), then by [18],
our control policy (5) still minimizes the total cost J , proving
[1, Lemma 1].

Similarly, since [1, Proposition 1] relies on the fact that
J̇i(pi, t) ≤ α(Ji(pi, t)), and J̇i(pi, t) is not a direct function
of dkj , ski , or µj , then [1, Proposition 1] holds, and the robots
drive to a critical point of the cost J .

Lemma 1 shows that, with the introduction of depletion
dynamics and moving demand locations, the properties of
our control policy proposed in [1] still hold. Namely, we
minimize the locational cost, and the robots are driven to
critical points of their individual locational cost. However,
the policy proposed in [1] does not guarantee that we meet
a dynamic demand.

In order to meet dynamic demand, we need to update our
control policy to account for ḋkj , ṡki , and µ̇j . As stated in
the proof of Lemma 1, these terms only appear in ∂ϕj

∂t .
Therefore, to guarantee that our control policy proposed
in [1] meets dynamic demand, we need to update ∂ϕj

∂t as
follows:

∂ϕj

∂t
=
Dj

Sj

(
2

σ
(q − µj)Σ

−1µ̇j +
Dj∑
k∈S dkj

)∑
k∈S

ḋkj

− Dj

(Sj)2

∑
l∈Pj

(
2
∑

k∈S skl
σ

(q − pl)
TΣ−1ṗl

+
∑
k∈S

ṡkl )
∑
k∈S

skl exp

[
− 1

σ
(q − pl)

TΣ−1(q − pl)

]
.

Then, ∂ϕj

∂t is used to compute ∂mj
i

∂t and ∂cji
∂t , which are

required for the optimal input (5).

B. Meeting Dynamic Demand
The prior section outlines how our control policy (5) ac-

counts for dynamic resource demand, but does not guarantee
the demand is met at all locations within the environment
over time. We are now ready to introduce our model of
resource depletion and injection within the system. From this
model, we derive the formulation that allows the robots to
meet the resource demand.

Recall the demand dynamics (6) and supply dynamics (7)
are both functions of ṡkij , the rate at which robot i supplies
resource type k to demand j. Recall also that ṡkij is designed
based on user preferences. While design choices might vary
between systems, we propose a formulation that allows users
to design the resource depletion rates based on the relative
locations of the robots. Our chosen formulation allows us to
prove that the system is input-to-state stable (Theorem 1),
implying the robots can perpetually service the demand. We
propose the following resource supply depletion, ṡkij :

ṡkij =
mk

ij

κ∥pi − cji∥2 + ϵ
, (8)

where κ and ϵ are positive constants, cji is the centroid of
the robot cell V j

i , and mk
ij is the mass corresponding to a

particular resource within V j
i ,

mk
ij =

∫
V j
i

dkj exp
[
− 1

σ (q − µj)
TΣ−1(q − µj)

]∑
l∈Pj skl exp

[
− 1

σ (q − pl)TΣ−1(q − pl)
]dq.

Intuitively, robot i is responsible for supplying resources to
the demand in its cell V j

i – if robot i belongs to more than
one Pj , then robot i serves multiple demands. With this
formulation, the user can adjust κ accordingly. Effectively,
the user can design the depletion/flow rate themselves based
on the robot proximity to their centroids. If they want robots
to serve demand on their way to demand, they can have a low
κ. Alternatively, if they want robots to only serve demand
when they reach, or get close to, their centroids, then they
can set κ to be large. They can also have a time-varying κ,
but we consider a static κ within this work.

Note that although robots with smaller cells will more
easily serve demands, as they will be closer to each of its
centroids, (8) still achieves the desired depletion effects. For
example, if pi is far away from demand peak µ1, and not
close to c1i , then mk

ij will be very small, even though the
denominator of (8) may be relatively small. Therefore, ṡkij
should still be small. If the robot pi is in between multiple
peaks µj’s, but closer to c1i , then robot i may serve both
demands, but it will serve demand j = 1 faster.

Before we can claim that the robots will drive the demand
to a steady state, we first need to make the assumption
that the demand µj cannot move faster than the robots.
Assumption 1 formalizes this requirement.

Assumption 1: The peak of the demand location can-
not move faster than the robots, i.e., ṗi ≥ µ̇j , ∀ i ∈
{1, ..., N}, ∀ j ∈ {1, ...,M}.



With demand dynamics (6), supply dynamics (8), and
Assumption 1, we can now show that the robots will drive the
total demand to a steady state, as formalized in Theorem 1.
Our analysis focuses on the stability under injected demand
ζkj , which is the demand added over time to the system. In
fact, treating ζkj as the input to the system ḋkj , we show that
the system (6) is input-to-state stable (ISS). In other words,
we show that there exists a class KL function β and a class
K function γ such that for t ≥ t0

dkj (t) ≤ β(dkj (t0), t− t0) + γ

(
sup

t0≤τ≤t
|ζkj (τ)|

)
,

for bounded input ζkj (t). Thus, dkj will be bounded by γ for
bounded input ζkj .

Theorem 1: Consider a team of N robots with supply
dynamics (7) serving M locations with demand dynamics
(6), with ṡkij given by (8). Then, the origin dkj = 0 is ISS
with

γ(r) =
r

θ
∑

i∈Pj

Mk
ij

κ∥pi−cji∥2+ϵ

, (9)

where 0 < θ < 1 and

Mk
ij =

∫
V j
i

exp
[
− 1

σ (q − µj)
TΣ−1(q − µj)

]∑
l∈Pj skl exp

[
− 1

σ (q − pl)TΣ−1(q − pl)
]dq.

Proof: We begin by noting that when the input ζkj = 0,
the system (6) has a globally asymptotically stable equilib-
rium point at the origin dkj = 0. Let V (dkj ) =

1
2 (d

k
j )

2 be a
Lyapunov function candidate. The time derivative of V along
the trajectories of the system is

V̇ (dkj ) =dkj ζ
k
j (t)− dkj

∑
i∈Pj

ṡkij

=dkj ζ
k
j (t)− dkj

∑
i∈Pj

mk
ij

κ∥pi − cji∥2 + ϵ
.

Note dkj is constant across mk
ij , therefore

V̇ (dkj ) = dkj ζ
k
j (t)− (dkj )

2
∑
i∈Pj

Mk
ij

κ∥pi − cji∥2 + ϵ
.

Then, we can proceed as follows:

V̇ (dkj ) =dkj ζ
k
j (t)− (1− θ)(dkj )

2
∑
i∈Pj

Mk
ij

κ∥pi − cji∥2 + ϵ

− θ(dkj )
2
∑
i∈Pj

Mk
ij

κ∥pi − cji∥2 + ϵ

≤− (1− θ)(dkj )
2
∑
i∈Pj

Mk
ij

κ∥pi − cji∥2 + ϵ

∀dkj ≥ ρ(ζkj ), (10)

where 0 < θ < 1 and

ρ(ζkj ) =
ζkj (t)

θ
∑

i∈Pj

Mk
ij

κ∥pi−cji∥2+ϵ

. (11)

Since dkj ≥ 0 ∀ t ≥ 0, ρ′(ζkj ) > 0 ∀t ≥ 0, and thus ρ(ζkj ) is
a class K function. Therefore, by Theorem 4.19 in [19], the
system (6) is ISS, with γ(r) given by (9), which completes
the proof.

Theorem 1 shows that when the injected demand ζkj is
bounded, the demand dkj will be bounded by γ, thus the
demand dkj will reach a steady state. Note also that, although
we provide a proof specifically for our proposed dynamics
in (8), a similar proof can be carried out for alternative
formulations for ṡkij . We can go beyond Theorem 1 to define
the limits of ζkj to maintain input-to-state stability, formalized
in Corollary 1.

Corollary 1: With the same assumptions as Theorem 1,
the origin dkj = 0 is ISS when

ζkj (t) ≤ θ
∑
i∈Pj

mk
ij

κ∥pi − cji∥2 + ϵ
. (12)

Proof: The proof follows from the inequality (10).
Multiplying both sides by the denominator in (11), we attain

ζkj (t) ≤ dkj θ
∑
i∈Pj

Mk
ij

κ∥pi − cji∥2 + ϵ
. (13)

Since dkj
∑

i∈PjMk
ij ≡ mk

ij , then (13) simplifies to (12)
thus completing the proof.

By Corollary 1, we can conclude that when the input ζkj
is bounded as in (12), the demand of a resource dkj at a peak
reaches a steady state. In other words, when the injected
demand is bounded, the robots keep the demand within a
threshold defined by γ (9).

Recall that our supply and demand dynamics are functions
of robot positions pi and demand locations µj ; specifically,
the rate at which the robots serve demand increases as
the robot positions near the demand locations. Our results
demonstrate that, with our proposed formulation (8), the
robots can deliver supplies that meet the resource demand
over various locations of the environment and over time given
bounded input (12).

C. Algorithm Overview
Algorithm 1 summarizes how the supply robots deploy to

meet the dynamic resource demand. We first retrieve robot
positions, supply quantities, demand quantities, demand lo-
cations, and demand injection as inputs. We then deploy
resource robots as follows until we meet the demand. At
each iteration, we obtain the demand location dynamics and
demand injection, then assign robots to partitions and update
each Voronoi tessellation. From here, the robots can compute
their control inputs ui. Note that when computing the control
input using the optimization problem 5, it is possible for the
robots to travel outside of environment Q due to a lack of
constraints. We therefore check (Line 8) that if the input ui

causes the robot to travel outside the convex environment Q,
the corresponding x-/y- component of ui will be set to 0.
In our simulations, we update the robot positions as in Line
7. In experiments, however, robots simply execute ui. Then,
we update ski , dkj , and µj , repeating the process until the
demand is met.



Algorithm 1 Coverage of Dynamic Demand
1: Input t = t0, pi(t0), ski (t0), dkj (t0), µj(t0), ζkj (t0),
∀i, j, k

2: while dkj (t) > 0 ∀j, k do
3: Input µ̇j(t) and ζkj (t)
4: Assign robots to partitions Pj (1)
5: Update tessellation V j

i (2)
6: Compute control input ui (5) ∀i ∈ R
7: Update robot position:

pi(t+∆t)← pi(t) + ui(t)∆t
8: if pi(t+∆t) /∈ Q then
9: Set the respective x/y component to zero: ui ← 0

10: Recompute positions: pi(t+∆t)← pi(t)+ui(t)∆t
11: end if
12: Update resources:

ski (t+∆t)← ski (t) + ṡki (t)∆t
dkj (t+∆t)← dkj (t) + ḋkj (t)∆t

13: Update demand locations:
µj(t+∆t)← µj(t) + µ̇j(t)∆t

14: t← t+∆t
15: end while

IV. VALIDATION

Here, we present a series of simulations and experiments
to evaluate our proposed approach for serving dynamic
demand. Recall the formulation for ṡkij (8). As robots ap-
proach their respective centroids, the value of ṡkij becomes
exponentially large. In practice, robots releasing resources at
such a high rate is unrealistic. Therefore, in our simulations
and experiments, we place a cap on ṡkij such that

ṡkij = min
{
ṡkij , ṡ

k
ij,max

}
,

where ṡkij,max is the maximum rate at which robot i can
supply resources of type k to demand j. Additionally, to
effectively evaluate the ability of robots to perpetually serve
demand, we initialize the robot team with enough resources
to be able to serve demand until Algorithm 1 is terminated.

To evaluate the performance of our robot teams, we define
the Demand Index (DI) as the percentage of the initial
demand:

DI(t) =

∑
j∈D

∑
k∈S dkj (t)∑

j∈D
∑

k∈S dkj (t0)
.

A lower DI implies a greater performance, and a DI less than
one implies that the team has reduced the overall demand.
We utilize this performance metric to evaluate the team in
both simulations and experiments. We also introduce the
performance metric

∫ tf
t0

DI(t)dt as an indication of the speed
at which the robots serve demand from time t0 to the time
at which the algorithm is terminated tf .

A. Simulations

In this section, we demonstrate our approach for serving
a dynamic demand and compare our results with a simple
persistent monitoring approach to further motivate a coverage
control approach to resource allocation. Specifically, we

(a) Coverage. (b) Lawnmower.

Fig. 3. Screenshots of example randomized simulations. Both subfigures
show configurations from the same initial conditions. In (a), we show our
approach. Robots are represented by ×’s, and the demand locations µj are
represented by black ◦’s. Magenta lines signify Voronoi boundaries, and
the contour lines represent the total density. In (b), robots are following a
lawnmower algorithm. Robots follow the solid yellow lines in a clockwise
direction. Although the Voronoi diagram and density does not play into the
robot controls in the lawnmower algorithm, we still show them as they are
required to compute resource dynamics.

compare our approach with a lawnmower algorithm, giving
the robots a predefined trajectory to follow at maximum
velocity. Figure 3(a) shows an example of our coverage
approach in simulation, and Figure 3(b) shows an example
of the lawnmower approach, with the lawnmower trajectory
indicated by yellow lines. We study two scenarios, consid-
ering two resource types (k = {1, 2}) with the following
randomized team parameters: N ∈ [6, 10], ski ∈ [100, 200],
and pi ∈ Q. We initialized the demand locations at µ1 =
(−0.5,−0.5) and µ2 = (0.5, 0.5), and demand quantities
at dk1 = {100, 0} and dk2 = {50, 100}. We ran 50 trials of
each scenario. In each trial, both the demand locations and
demand quantities are static for time t ∈ [t0, t1). For time
t ≥ t1, the demand moves in a counterclockwise circular
path at a constant speed about the origin. In our simulations,
we let t1 = 22.5s. We ensure that ṗi,max > µ̇j to satisfy
Assumption 1.

1) Moving demand without injection: In the first scenario,
we consider the case where ζkj = 0 for the entire trial, i.e.
we allow the demand to move, but we do not inject demand.
We allow simulations to run until all demand is completely
depleted, i.e.

∑
j∈D

∑
k∈S dkj (t) ≡ 0. Results are shown in

Figure 4(a). Since there is no injected demand, the team is
always able to drive the demand to zero. We observe from
Figures 4(a) and 4(c) that although both approaches are able
to meet demand, our approach depletes the demand at a much
faster rate than the lawnmower algorithm.

2) Moving demand with injection: In this scenario, we
increase the complexity of the task even more by not only
moving demand but also injecting demand into the system
at time t ≥ t1 (µ̇j = 0 and ζkj = 0 for t0 ≤ t < t1, and
µ̇j ̸= 0 and ζkj > 0 for t ≥ t1). Specifically, at time t ≥ t1,
we inject demand as follows: ḋk1(t) = (8 sin(2t), 10 sin(3t)),
ḋk2(t) = (3, 2). Results are shown in Figures 4(b) and 4(c).
Since the lawnmower algorithm is not able to drive the
demand to zero once ζkj > 0, we terminate simulations
at time t = 160s. We can see from these results that, in
all 50 trials, our approach is not only able to maintain



(a) Without injected demand. (b) With injected demand. (c) Boxplots.

Fig. 4. Simulation results. (a) and (b) show the DI over time for 50 trials of each case study, comparing our approach (blue) and a lawnmower algorithm
(red). The black vertical line at time t = 22.5s represents the time at which demand changes. In (a), demand locations move but demand is not injected.
In (b), demand locations move and demand is injected into the system. (c) shows boxplots of the integral of DI over the entire trial, with 50 trials making
up each box. In the left two boxes, demand locations move but demand is not injected. In the right two boxes, demand locations move, and we inject
demand into the system.

(a) t = 63s (b) t = 123s (c) t = 151s (d) t = 197s

Fig. 5. Time series of Experiment 1. Here we consider six robots, each equipped with one type of resource, serving two demand locations indicated by
black circles. The amount of resources that each robot carries is printed to the right of each robot, and the amount of resources demanded at each demand
location is printed to the right of each demand location. Solid pink lines indicate the Voronoi boundaries, and the contour lines indicate the density across
the environment, which peaks around the demand locations. As the robots serve demand over time, the supply and demand quantities both decrease as the
robots transfer their resources to the demand.

a DI < 1, but also drive the demand to a steady state,
even when ζkj > 0. At t = t1, we see a slight increase
in the DI before the robots adjust, and the DI decreases
to steady state. On the other hand, a persistent monitoring
approach does not provide adequate service when demand is
injected into the system, as the lawnmower algorithm cannot
adequately follow the dynamic demand. These results further
demonstrate the benefits of implementing a coverage control
approach, as coverage control enables us to continuously
adapt to spatial changes in demand. Further, we demonstrate
that our proposed demand dynamics (8) ensure that robots
meet demand spatially.

B. Experiments

In addition to simulations, we conducted hardware-in-the-
loop experiments to demonstrate our approach in real time.
We implement Algorithm 1 on a team of six AgileX LIMO1

ground robots each equipped with the NVIDIA Jetson Nano2.
We compute control inputs ui on a desktop computer (8-core,
32GB RAM, Windows 10) and send velocity commands to
robots over Wi-Fi using Robot Operating System (ROS).
Robot poses are retrieved from an Optitrack Motion Cap-
ture3 system. We convert ui to linear and angular velocity

1https://global.agilex.ai/products/limo
2https://developer.nvidia.com/embedded/jetson-nano-developer-kit
3https://optitrack.com/

commands [20], respectively, by

vi = kv
[
cos θi sin θi

]
ui,

ωi = kω arctan

([
− sin θi cos θi

]
ui[

cos θi sin θi
]
ui

)
,

where θi is the robot heading angle with respect to the global
frame, and kv and kω are positive gains.

We present two experiments, with a time series of Exper-
iment 1 shown in Figure 5 and a screenshot of Experiment
2 in Figure 1 (for full experiments, see supplemental video).
In both cases, demand locations are initialized to µ1 =
(2.0, 1.0) and µ2 = (7.0, 2.0) with no demand injection.
At time t = t1, demand is injected as specified below,
and demand moves at a constant speed in a straight line
between the positions x = 2.0 and x = 7.0, with y-
positions remaining constant. Once demand reaches either
x-position, the demand moves toward the other x-position.
We ran experiments until the demand appeared to reach a
steady state. Results for the team performance over time is
shown in Figure 6, where we can see that the team is able
to serve the demand.

1) Experiment 1: In the first experiment, we consider only
one resource type (k = {1}) with the two demand locations.
Here, we initialize demand at dk1 = {50} and dk2 = {200},
and robot supplies at ski = {100, 100, 200, 150, 300, 150}.
At time t = 57s, the demand locations begin to move
as mentioned above, and we inject demand at rates ḋ11 =



Fig. 6. DI over time for the two experimental trials. The circles on each line
represent the time at which demand locations started moving, and demand
was injected into the system.

4 sin(2t) and ḋ12 = 8 cos(3t).
Figure 5 shows a time series of this experiment, with µ1

and µ2 starting in the bottom left and top right corners of
the environment, respectively. Over time, we see the demand
move from their initial positions to opposite sides of the
space: µ1 moves to the bottom right corner, and µ2 moves
to the top left corner. As the demand locations move and
vertically align with one another, we see the robots rearrange
themselves to better serve the dynamic demand. Specifically,
in Figure 5(a), the robot with 89 resources serves µ1, but
when the two demand peaks cross paths (Figures 5(b)-5(c)),
this robot moves to serve µ2 which demands more resources.

2) Experiment 2: In the second experiment, we ac-
count for two resource types (k = {1, 2}) with the
same two demand locations. We initialize demand to be
dk1 = {200, 0} and dk2 = {100, 200} and robot re-
sources to be s1i = {150, 200, 100, 200, 0, 200} and s2i =
{100, 100, 200, 150, 300, 150}. At time t = 60s, the de-
mand locations move with the same dynamics as that
of Experiment 1, and we inject demand at rates ḋk1 =
{4 sin(2t), 8 sin(3t)} and ḋk2 = {8 cos(3t), 4 cos(2t)}. We
observe similar results to that of Experiment 1, with the
robots taking a slightly longer time to serve demand given
the greater number of resources demanded.

V. CONCLUSIONS

In this paper, we consider a heterogeneous multi-robot
team, equipped with different types and quantities of re-
sources, and tasked with supplying these resources to various
demand locations. We build upon our previous work [1]
to enable adaptation to changes in demand. Specifically,
we allow resources to deplete from both robots and from
demand. We also allow demand locations to move, and for
demand to be injected into the system. We use a Voronoi-
based coverage control approach to enable robots to serve
demand perpetually and in a continuous, distributed fashion.
Simulations and experiments demonstrate the effectiveness
of our approach, particularly compared to a persistent mon-
itoring approach.
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