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Astatine and bismuth sorption on several ion exchange resins from nitric acid media has been studied.
This work covers commercially available resins Dowex 50 x 4, MP thiol, Dowex 1 x 8, and TEVA. One of
the main advantages of using ion exchangers for astatine separation and purification is the absence of
any organic media in the effluent in comparison with extraction chromatography resins. The behavior of
the above-mentioned metals was investigated in up to 4 M HNOj3 solutions. The determined distribution
coefficients are greater than 1 for all the resins studied, reaching 10* for MP thiol and TEVA resins. The
interaction of nitric acid with an anion exchanger in Cl-form results in an exchange reaction, where
AtO™ chloro complexes can form. To understand the astatine behavior under these conditions, stability
constants of AtOCl and AtOCl,~ complexes have been reevaluated and discrepancy in the literature
values has been eliminated. For each resin a thermodynamic model has been developed to suggest a
possible mechanism of astatine sorption. Literature and new experimental data on bismuth sorption by
studying resins in nitric acid media have been reviewed and a mathematical model to describe its
behavior has been suggested. A ratio of corresponding fit functions of At and Bi assigned to the same
resin and acidity has been used to estimate the separation factors of these elements.

a-emitting radionuclides.> However, astatine is still one of
the least chemically studied elements and the main obstacle

Radiotherapy is one of the most effective approaches to treat
cancer. Radiopharmaceuticals based on alpha emitting radio-
nuclides have gained a lot of attention due to the high thera-
peutic effect and minimal damage of surrounding healthy
tissue.” So far, there has been only one Federal Drug Adminis-
tration (FDA) approved product based on an a-emitter, namely
Xofigo® (***RaCl,).? Yet the superior results of targeted alpha
therapy (TAT) have prompted study on additional candidates
such as astatine-211 (**'At). It has a convenient half-life of 7.2 h
and a short decay chain, matching requirements of therapeutic
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is that the number of production facilities is barely above 20
worldwide.* It is impossible to avoid radiochemical studies of
astatine because there are no stable isotopes of this element
and the most long-lived one, '°At, has a half-life of 8.3 h.
Therefore, prior to clinical studies of astatinated biomolecules
there is a demand to understand astatine fundamental
chemical properties that must be met by radiochemical studies.

Astatine, belonging to the group of halogens, demonstrates
multiple oxidation states, namely —1, 0, +1, +3, +5, and +7.%”
However, the aqueous chemistry of astatine deals with —1, +1,
and +3 states only.® The astatine neutral species, oxidation state
0, is believed to escape aqueous media.® To confirm the two
highest oxidation states, +5 and +7, the presence of aggressive
oxidizing agent xenon difluoride is required.'®'" And this
means that these species exist outside of the window of stability
for water.5'?

It is believed that AtO"' is the most stable species in the
aqueous phase, representing the +3 oxidation state.”*™"” However,
At" can also be found in acidic solutions.’ If reducing agents are
applied, then anionic At~ can be formed.®*° It must be noted
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that AtO" can form complexes with different ligands,
ing the formation of negatively charged complexes.'>>°2¢

The fundamental properties of astatine are also relevant in
the study of superheavy elements. In order to study elements at
the bottom of the periodic table,>”° it is necessary to investi-
gate the chemical properties of their homologs. For example,
astatine is a homolog®® of tennessine (transactinide element,
Ts, Z = 117).'73

Currently, the most popular way to produce medically
relevant amounts of *"At is the *%’Bi(x,2n)*"'At nuclear
reaction,® where a metallic Bi target*>**° is irradiated with
29 MeV a-beam.****" The target bombardment is intentionally
performed not at the maximum of a corresponding excitation
function to avoid co-production of *'°At, which decays to
radiotoxic *'°Po.

Isolation of At from Bi is a required next step after the end of
the target bombardment. Historically, a dry distillation method
was employed first,>>>>3® despite safety concerns and proce-
dure reproducibility issues. Nevertheless, this approach led
to an automated setup, successfully employed in Sweden.*?
An alternative route is wet chemistry where the target is
dissolved in nitric acid.*”*° The dissolution and purification
processes can also be automated to reduce the dose to personnel,
and this strategy has been realized in the USA.">"** However, some
research studies after the target dissolution again apply elevated
temperatures to evaporate the solution to dryness as a required
step to convert their matrix to hydrochloric medium.*® Keeping
in mind the At volatility and corresponding radiation safety
concerns, a new approach to remotely separate At from Bi in
nitric acid media was developed by our team.***>*’ The principal
difference is that the target dissolution solution (nitric acid)
without any chemical manipulation is loaded onto a column,
selectively sensitive only to At, while Bi and radioimpurities
(*®F, **Na, *®Co, ***"Ga, '*>"""In, "°Lu) pass through the column.
So far, we tested two extraction chromatography resins using our
automated device, namely 3-octanone and 1-octanol impregnated
beads,” both resulting in up to 95% recovery yield. Our previous
paper expands the range of applicable extraction chromatography
resins with respect to mechanisms of both At and Bi sorption
from nitric acid media.*®

This paper is devoted to commercially available ion exchan-
gers to study At and Bi behavior in up to 4 M HNO;. There is a
limited number of papers studying this topic. Watanabe et al.*’
studied At recovery from 8 M HNO; on an anion exchange
MonoSpin SAX resin (tetraalkylammonium chloride bonded to
inert support),”® showing 55% yield. A strongly acidic cation
exchange Dowex 50 x 8 resin was used to study At behavior in
the presence of nitric, hydrochloric, and sulfuric acids along
with 5 mM dichromic acid as an oxidizing agent or in the pH
range 1-7.20%°1°2 These results were used to estimate AtO"
interaction with NO;~, Cl~, HCr,O, , HSO, , ClO, , and OH™
anions. In order to expand knowledge on At and Bi behavior in
nitric acid media, a set of cation (Dowex 50 x 4, MP thiol) and
anion (Dowex 1 x 8, TEVA) exchangers was considered along
with thermodynamic modeling of the element interactions with
resins.
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Experimental

Chemicals

Nitric acid (67-70% Aristar™ Plus, HNO;) was purchased from
BDH chemicals; TEVA 100-150 pm resin was purchased from
Eichrom; Dowex 50 x 4 200-400 mesh (H) and Dowex 1 X 8
100-200 mesh (Cl) resins were purchased from Alfa Aesar. MP
thiol 100-200 mesh resin was purchased from Supra Sciences.
In this manuscript we have used two cation exchangers (Dowex
50 x 4 and MP thiol) and two anion exchangers (Dowex 1 x 8
and TEVA). Dowex 50 x 4 is a strong acid sulfonated (-SO;H)
resin capable of exchanging H' from the functional group with
other cations in the solution.>* MP thiol resin instead of -SO;H
utilizes a thiophenol group (-PhSH), which is also involved in
H" exchange with cations in solution.”* Dowex 1 x 8> and
TEVA® resins are very similar. They are amine-based resins
with Cl -anion involved in exchanges with anionic species in
solutions. ICP Bi standard was purchased from Inorganic
Ventures. Deionized (DI) H,O was obtained from an ELGA
LabWater Purelab Flex ultrapure laboratory water purification
system operated at 18.2 MQ c¢m at 25 °C. Radionuclide **’Bi in
4 M HNO; was purchased from Eckert & Ziegler.

21 At production

209 211

Astatine-211 was produced by the “™Bi(x,2n)* "At nuclear
reaction via 28.8 MeV a-particle bombardment of a natural
Bi metallic target overnight. Details on the At production,
targeting, beam intensities, and activity produced can be found
elsewhere.'® The target material was dissolved in ~10 M HNO;.
An automated dissolution apparatus was employed to chemi-

cally treat the irradiated target.*’

Methods

Quantitative analysis of radionuclides was performed via y-ray
spectroscopy using high-purity germanium detectors (HPGe,
Canberra Model GC2020 and BE2020) equipped with Genie-2000
software for *''At and an automatic Nal gamma counter (2480
Wizard, PerkinElmer) for **’Bi assay. The *''At was tracked
directly by measurement of the 76.9 keV, 79.3 keV, 89.8 keV,
and 92.3 keV X-rays and 687 keV y-ray; the **’Bi was tracked by its
characteristic X-rays at ~75 keV. Stable Bi was analyzed by ICP-
OES. The equilibrium acidity of the radioactive aqueous solutions
was determined using a Titroline 5000 automatic potentiometric
titrator (SI Analytics) with 0.1 M NaOH. It should be noted that the
radioactive solutions were first allowed to decay for at least 10
half-lives of >''At (>3 days). WARNING: *''At is highly radioactive
and was handled under ALARA principles in laboratories
equipped to handle radioactive materials appropriately, and a
radiological biosafety cabinet was employed.

Resin batch studies

Each batch experiment was performed in a 1.5 mL plastic screw
cap tube by adding 20-30 mg of dry resin along with 0.5 mL of
nitric acid solution of desired concentration (up to 4 M) spiked
with a target dissolution solution containing >"'At, or 4 M
HNO; containing >*’Bi. The system was mixed by vigorous
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shaking for several seconds followed by end-over-end tumbling
on a tube rotator at roughly 18 rpm for a minimum of 10 min
for >''At and overnight for 2°*°°Bi. Each tube was measured
with the HPGe y-detector or the Nal automatic gamma counter
to determine the initial activity of the sample or by ICP-OES to
determine the initial concentration of stable Bi. The samples
were then centrifuged on a SCILOGEX D1008 Mini Centrifuge
at 7000 rpm for at least 1 min. An aliquot (usually 400 pL) of
aqueous phase was placed into a spin column and centrifuged
again to completely separate a small amount of floating beads
from solution. An aliquot of this centrifuged solution (usually
200-300 pL) was measured with the HPGe y-detector or the Nal
automatic gamma counter for radioactive samples and with the
ICP-OES for stable Bi.
Distribution coefficients (Ky) were calculated according to

h—he Vg

Ky =
Iaq Myes

1)
Where I, and I,4 are volume- and decay-corrected net count
rates of the measured nuclide in the aqueous phase before and
after phase separation; V,q and m,. are the aqueous phase
volume (mL) and resin mass (g), respectively. All experiments
were performed at least in duplicate.

Results and discussion
Dowex 50 X 8, Dowex 50 x 4, and MP thiol resins

As mentioned above, the majority of published work devoted to
At chemistry on ion exchangers deals with Dowex 50 x 8 resin.
This section is to expand the available data on cation exchangers
by including other commercially available resins, namely Dowex
50 x 4 and MP thiol, showing the lowest and the highest K4
values, respectively. Due to the fact that the MP resin also
exchanges its protons with cations in solution,’® here we provide
reactions only for the sulfonated Dowex resin, because they are
similar to those of thiol-based one. The cation exchange reaction
between AtO" and the resin can be written as

R-SO3H ¢ + AtOnq" 2 R-SO3AtOes + Hag' (2)
and a sorption constant is

[R_SC)?)'AtC)]res'aH‘qur (3)
[AtO*],, ’

Kcix_ar =

where activity in the aqueous phase is a = y-[H'] and activity
coefficients y for nitric acid solutions were derived from the
literature.””

It is known from the literature that AtO" forms a weak
complex with the NO; -anion*® according to

ArO" + NO;~ 2 AtO(NO3). (4)

The stability constant of this kind of complex is 0.88
according to our previous work,'® and can be described as

_ [AtO(NO3)]

K= [AtO*] -aNof. (5)
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Champion et al.’ suggested a reduction process of astatine
in the aqueous acidic solutions

AtO" + 2H' + 2¢~ 2 At' + H,0, (6)

where the redox reaction constant is
[At']

Kredox = W (7)

Analogously, the autoreduction process of Cu®** to Cu** in
acidic media was also mentioned in the literature.>® Equations
to describe At'-based systems are similar to eqn (2) and (3).
It must be mentioned that there is no literature data on nitrate
complex formation of At'. According to the definition of a
distribution coefficient, the following equation can be used

[R*SO3A'[O} res+[R7SO3Aﬂ res (8)
[AtO],,+[AtO(NO;3 )] +HAL],,

Kicix =

Incorporating eqn (3), (5) and (7), one can get a function
Ka_cix = f(anoy- ) to fit experimental data. Assuming [H']aqeq =
[NO; Jag,eq: the best function to fit both Dowex 50 x 4 and MP
thiol data is

Kcix_awo/anoy + Keix_at - Kredox - anoy- 9)
1 4+ K, - anoy + Kredox - aNO5-2

Ky cix =

This function has only three unknown parameters that can
be determined by fitting (see Fig. 1). The estimated values of
these unknown constants are summarized in Table 1.

It is clear that in both cases astatine was adsorbed mostly
in the form of At'. Apparently, interaction of the acidic
solution, containing AtO", with these resins results in astatine
reduction.

Cation exchangers have been extensively studied in terms of
metal sorption from mineral acids. Strelow et al. investigated

104 4 MP thiol

104_

10°4

b4
!'cl Dowex 50x8 +
5 mM H,Cr,0;

10" 4 T
Dowex 1x8 1
Dowex 50x4 "
100 = T T 102 T T
0.1 1 10 0.1 1 10
apNo, Auno,

Fig. 1 Astatine sorption from nitric acid media by different ion exchange
resins. Dowex 50 x 8 data (red) are taken from literature®" with the fit
function described in our previous work.*® Dowex 50 x 4 and MP thiol
resin data were fitted using egn (9). Dowex 1 x 8 and TEVA resin data were
fitted using eqn (26) (only fit functions shown on the left panel). Shades
represent 95% confidence intervals.
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Table 1 Results of Dowex 50 x 4 and MP thiol resins fitting according to
eqgn (9)

Resin Kerx_ato Kerx_ac Kredox
Dowex 50 x 4 3.0 £ 1.0 45 £ 8 3.4 +1.7
MP thiol 300 + 140 12000 + 1800 1.3 £ 0.5

sorption of 49 cations by AG 50W X 8 resin (analogue of Dowex
50 x 8) up to 4 M nitric acid media.’® Marsh et al. studied the
behavior of 53 metals in the presence of different cation
exchangers from 3 to 12 M HNO;.°® This acidity range is mostly
outside of the scope of our work, however very low Bi uptake
was observed for Dowex 50 x 4 resin. Distribution coefficient
data for Bi under these conditions are shown in Fig. 2. In order
to fit these data points, one should consider Bi interactions
with both NO;~ and OH™ anions. The corresponding stability
constants are known from the literature.®®* The cation
exchange between positively charged Bi species and the resin
can be written as

n - R—SO3H,¢ + Bi(NO3)§fH&q 2 (R-S0;3),Bi(NO;)

3—Hres

+n-Hyg™, (10)

where n = 1, 2, and 3 (only cationic species). An analogous
reaction can be written for hydroxy-species of Bi. A corres-
ponding constant of this sorption reaction is

[(R—S05),Bi(NOs)3_, ], af, -+

Ksorb_Bi(N03)gfn = ) (11)

[Bi(NOs)i%, ],
HNO,, M
0:1 0.2 0.5 1 2 3 4
1 1 1 1 1 1 1
10° 3
] Koix sinoye+ = 360 + 40
102 3

¥:| 10° 1 Keix o = 122+ 1.8
KCIXfBi(Noa)z* =17.2+1.8

10°
1 Keix_sino, = 6727
1074 Keix_gino,), = 0.65 £ 0.14
| T T
0.1 ) A
Auno,

Fig. 2 Distribution coefficient values for Bi absorbed by AG 50W x 8 (red),
MP thiol (blue), and Dowex 50 x 4 (green) cation exchange resins from
nitric acid media. Experimental data for AG 50W x 8 were taken from the
literature.>® The solid lines are fit results according to egn (13).
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Thus, the Ky value of this process is

Ky_crx
> [(R=S03),Bi(NO3);_,] .. + > [(R—S03),Bi(OH),_, |
> [BiNOy)T ]+ [BiORT]

Ires
)

(12)

where x = 0, 1, 2, 3, and 4 (all possible species).
The best fit of experimental data shown in Fig. 2 was found
using the equation

Keix_pinos 2+ 'ﬁl/aNOf + Kcrx_Bi(Nos),+ * B2 - anos
L+ By - aoy + 20 B - adu- .

Ki_cix =

(13)

Having fit functions for At and Bi, one can estimate the
corresponding separation factors as a ratio of derived equa-
tions. Fig. 3 shows separation factors for MP thiol, Dowex 50 x
4, and Dowex 50 x 8 resins. The latter is not favorable due to
Kiep values close to 1. The former in turn demonstrates good
separation with K., > 10 at > 0.5 M HNOj, reaching 10 000 at
4 M HNO;. It can be seen that sorption of Bi(NOz)*" species
decreases in the order MP thiol > Dowex 50 x 4 > Dowex 50 X
8. Sorption of Bi(NOj3)," was found to be negligibly small for MP
thiol resin, and sorption of this species decreases in reverse
order. It should be noted that the MP thiol resin is not
chemically stable at >8 M HNO;. And Dowex 50 X 4 resin
can be used for efficient At and Bi separation at 1-2 M HNO;
(Kq_ac < 10 at >2 M HNO;3, see Fig. 1).

10 5
3
10 MP thiol
Dowex 50x4
g 10%4
g _—
3 =
o 1 .
. 10
100 s
/ S
107 4 - Dowex 50x8
~
107 :
0.1 1 10

Auno,

Fig. 3 Separation factor of the At and Bi mixture in nitric acid media
utilizing Dowex 50 x 8 (red), Dowex 50 x 4 (green), and MP thiol (blue)
resins. Astatine in the presence of Dowex 50 x 8 was oxidized by 5 mM
H,Cr,O5 according to literature data.?* Separation factors were calculated
as a ratio of the corresponding fit functions. Shade represents 95%
confidence interval.
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Dowex 1 x 8 and TEVA resins

Both Dowex 1 x 8 and TEVA®” resins are anion exchangers in
Cl -form and they show very high Ky values of astatine dis-
tribution in a wide range of nitric acid concentrations (see
Fig. 1). This means that there must be negatively charged
species of At in the solution. There is no data in the literature
indicating that nitrates can form negatively charged complexes
with AtO". Also, it is very unlikely that AtO" can be reduced to
At~ without any chemical pretreatment. This leaves the AtOCl, ™
complex, which is more probable because of its very high
stability constant of f, ~ 2.5 x 10°.>>*! We provide equations
here for Dowex 1 x 8 resin only, because they are very similar to
those for TEVA resin. Each resin will be slowly converted to the
NO; -form upon passage of nitric acid solutions through them
according to

R-Clyes + NO5 = 2 R-NO;_ + Clyg (14)

It is important to note that Dowex 1 resin contains a small
number of tertiary and secondary nitrogen atoms which can
retain protons and release them upon washing with water.®*°
Thus, assuming that the concentration of released protons
from the resin is proportional to 1/[H'l,q (the higher the
solution acidity the more protons are trapped by the resin
amino groups and the fewer protons are released to the aqu-
eous phase), the charge balance in the solution is [HJaqeq +
1/[H lag,eq = [NO3 Jag,eq + [Cl Jag,eq- The selectivity constant of
the anion exchange reaction can be written as

2
Knosa = [R_NOBLCS.“CIZ‘( = B (15)
3.Cl = =
aNO3,q ~ ay,,+ + 1/aHaq+ — Al

and the value of this constant is equal to 3.8 for Dowex 1 x 8
resin.®® By solving quadratic eqn (15), it is possible to estimate
the concentration of Cl” anions in solution. In our experi-
ments, the phase ratio was not equal to unity, so a correction
factor f must be used

aClaq -

—Kno,.a + \/1(1\103,(?12 +4- Knos,a1 ((ZHM* +f/aHuq+)
f : 2 )
(16)

where f = Myes/(PresVag), including mys — resin mass, g; pres —
resin density, g mL™'; V,q - volume of aqueous phase, mL.
Density values of air dry resins were taken from the literature.>
This equation shows how Cl~ concentration depends on the

[R—AtOCl,], .+ [HAtOCI,]
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acidity of the solution, leading to the formation of the AtO"
chloro complexes

AtO" + CI™ =2 AtOC], (17)
AtOCI + CI~ 2 AtOCl, ", (18)
where equations for the stability constants are

[AtOC]]

N A0 a )
_ [AOCL ]
By = A0 a2 (20)

So, sorption of AtOCl, ™ by the anion exchange resin can be
described as

R—Clyes + AtOCly,,~ 2 R—AtOCh,, + Clyg~ 1)

and a thermodynamic constant of this reaction takes the form

[R—AtOCly],.dcy,, -
[AtOCl, ]

(22)

Karx_ A =
aq

At elevated acidity the following reaction requires inclusion
AtOCl,~ + H" 2 HAtOCl,, (23)
where a protonation constant is

. HAOCL),, o)
a [AtOClg’]aq~aHuq+'

This HAtOCl, acid can also be absorbed by the resin and
then the distribution coefficient is as shown in eqn (25).

Using the equations above, one can simplify this expression
and present it as a function Ky ax = f(au+) to fit experimental
data, as shown in eqn (26), where ac- = f(ay+) according to
eqn (16).

It was mentioned above that the stability of astatine chloro
complexes was estimated in the literature.’*>" We decided to
re-evaluate published constants, assuming that the AtO" dom-
inates in the solution, because the B, values are different by a
factor of ~2. It turns out that in 1968, when the authors®!
published their results, the stability constants of AtO" com-
plexes with NO;~ and HCr,O, anions were not yet known.
However, these two ligands were present in their HCI system
and must be considered. In our previous paper'® we analyzed
the results of Norseyev et al.>' and derived equations, describ-
ing AtO" sorption by Dowex 50 x 8 from nitric acid solutions in

Ki_arx = [

2
Katx_at - B - ac- + Ksorv_HAt0C, - By - Ka - au+ - aci-

Ies (25)

AtO],, +[AtO(NO3)] HAT ], +[ALOCI],, +[AtOCL ], + [HAtOCL],

Ky arx =

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

1+ K- aNos- + Kiedox aH+2 +[))1 ~dcr- + /32 . acrz . (1 + K, - a].[+)’

(26)
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Fig. 4 Astatine sorption by Dowex 50 x 8 from HCl solutions in the
presence of 0.5 M HNOz and 5 mM H,Cr,0O;. Experimental data points
were taken from the literature.?* The solid line is a fit according to eqgn (30).
Shade represents 95% confidence interval.

the presence of 5 mM H,Cr,0,

Kcrx_at/an+
9
1 4+ K - anoy + Kdichrom * P * AHCr,0;

Ky At = (27)

where p describes the deprotonation of the HCr,O,  anion

HCr,0,” =2 Cr,0,> + H', (28)
ay+

=— 29

P ayg+ + Ka ( )

The pK, value of the reaction described by eqn (28) is equal
to 1.18.°” The same paper’' also considers AtO* sorption by
Dowex 50 x 8 from 0.5 M HNO; solution in the presence of
5 mM H,Cr,0, as a function of HCI concentrations. In this case
the distribution ratio is

Kcixai/an+
14 K - anoy~ + Kdichrom * P - aicr,0,- + B - aci- + Py - aci-?’
(30)

Kaac=

where [H'] = [HNOs] + [H,Cr,0] + [HCI].

Activity coefficients for HCI solutions were taken from the
literature.®® Eqn (30) was used to fit the experimental data
shown in Fig. 4. Tyung et al. also studied stability constants of
astatine with chloride anions in the presence of dichromic acid
and Dowex 50 x 8 resin;*® however, in this case nitric acid was
substituted with perchloric acid. They studied At interaction
with perchloric acid and found that AtO" does not form a
complex with the ClO, -anion, which was confirmed by elec-
tromigration studies of At behavior under these conditions.*
In other words, parameter K - ano,- in eqn (30) can be omitted
to fit data (see Fig. S1 and S2 in the ESI{) published
elsewhere.”® Activity coefficients for corresponding molar
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Fig. 5 Astatine speciation in the CI” media if [H"] > 0.3 M (no hydrolysis).
Shade represents propagated uncertainties.

Table 2 Reevaluated stability constants of astatine chloro complexes
published in literature

P iy Comment
1600 + 80 (33.4 + 1.5) x 10* 0.3 M HCIO,, data from ref. 20
1880 £ 220 (27 £+ 5) x 10* 0.5 M HCIlO,, data from ref. 20
1220 £ 140 (36 £ 4) x 10* 0.5 M HNOj;, data from ref. 21
1530 & 70 (33.3 + 1.3) x 10* Weighted average

concentrations of HClO, were interpolated based on literature
values.”””" The results of this analysis are presented in Table 2.

Taking uncertainty into account, the new stability constant
values from different authors are in good agreement.

Once stability constants of AtO" in HCI media from different
authors agree with each other, one can reconstitute the specia-
tion diagram (Fig. 5). It can be seen that at 0.1 M HCI
concentration and above, At is predominantly in the AtOCl,™
form. This means that such HCI or saline solution can be used
to strip At from cation exchangers.

These new stability constant values of AtO" chloro com-
plexes were used to fit corresponding data in Fig. 1. Results are
summarized in Table 3. In both cases, the best fit was found
under the assumption that there is no AtO" reduction to At".
This is supported by previous findings where complexation may
occur fast enough to preclude reduction. For example, with
ketones'” and TI** complexation with Cl~.”> Apparently, the
TEVA data set does not have enough experimental points to
determine the constants of HAtOCI, sorption.

Thus, investigation of astatine sorption on the different ion
exchange resins provided in this work show that astatine

Table 3 Results of Dowex 1 x 8 and TEVA resins fit according to egn (26)

Resin Karx_at K, Ksorb_natoci,
Dowex 1 x 8 86 £ 9 0.83 £ 0.32 430 £ 30
TEVA 266 + 13 0.17 £ 0.05 —

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023
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uptake decreases in the order MP thiol ~ TEVA > Dowex 1 x
8 > Dowex 50 x 4. Taking into account results of At sorption by
extraction chromatography resins,*® the uptake decreases in
the order MP thiol ~ TEVA > Dowex1 x 8 > TRU > UTEVA >
TK 400 = SR > LN Z Dowex 50 X 4.

Conclusions

A set of four ion exchange resins have been tested to adsorb
astatine from nitric acid media. The two cation exchangers
Dowex 50 x 4 and MP thiol show the lowest and the highest
distribution coefficients for astatine, respectively. The K4 values
for Dowex 50 x 4 do not exceed 40, while the MP Thiol resin
demonstrates values on the order of 4 x 10°. Of the two anion
exchange resins examined, TEVA demonstrates sorption effi-
ciency very close to MP thiol resin, whereas Dowex 1 x 8 has Ky
values greater than 10° only below a nitric acid concentration of
1 M. For each resin a thermodynamic-based mathematical
model has been derived and used to fit experimental data.
The results from this analysis show that the cation exchange
resins Dowex 50 x 4 and MP thiol most likely adsorb astatine in
its +1 oxidation state. The anion exchangers Dowex 1 x 8 and
TEVA adsorb a negatively charged complex AtOCl, , which is
formed due to release of CI™ anions upon washing of the resins
with nitric acid. The concentration of chlorides in the aqueous
phase has been mathematically estimated as a function of
nitrates. There is some discrepancy across stability constant
values for chloro complexes of AtO" reported in the literature.
The published results on astatine stability complexation have
been re-evaluated based on mathematical equations derived in
this study. Uptake of astatine from nitric acid media by the
studied resins decreases in the order: MP thiol & TEVA >
Dowex 1 x 8 > TRU = UTEVA > TK 400 = SR > LN > Dowex
50 x 4. Sorption of Bi by MP thiol, Dowex 50 x 8, and Dowex
50 x 4 resins in nitric acid media has also been mathematically
modeled. The results obtained have been used to estimate At/Bi
separation factors. These calculations led to a conclusion that
MP thiol and Dowex 50 X 4 resins can potentially be deployed
to separate At from the bulk Bi matrix.
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