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ABSTRACT Mechanical stresses generated at the cell-cell level and cell-substrate level have been suggested to be important
in a host of physiological and pathological processes. However, the influence various chemical compounds have on themechan-
ical stresses mentioned above is poorly understood, hindering the discovery of novel therapeutics, and representing a barrier in
the field. To overcome this barrier, we implemented two approaches: 1) monolayer boundary predictor and 2) discretized window
predictor utilizing either stepwise linear regression or quadratic support vector machine machine learning model to predict the
dose-dependent response of tractions and intercellular stresses to chemical perturbation. We used experimental traction and
intercellular stress data gathered from samples subject to 0.2 or 2 mg/mL drug concentrations along with cell morphological prop-
erties extracted from the bright-field images as predictors to train our model. To demonstrate the predictive capability of our ma-
chine learning models, we predicted tractions and intercellular stresses in response to 0 and 1 mg/mL drug concentrations which
were not utilized in the training sets. Results revealed the discretized window predictor trained just with four samples (292 im-
ages) to best predict both intercellular stresses and tractions using the quadratic support vector machine and stepwise linear
regression models, respectively, for the unseen sample images.

INTRODUCTION

Themechanosensingability of cells is critical formanybiolog-
ical processes such as cell migration, growth, and differentia-
tion and is therefore physiologically and pathologically
relevant (1). As the adherent cell migrates through and probes
its environment contractile forcesmust begenerated and,when
migrating as a collective, these same adherent cells also
interact with each other by transmitting intercellular stresses
through cell-cell junctions. Cell-cell junctions enable fast,
long-distance mechanical force communication, which subse-

quently yields intercellular stresses (2). We measure intercel-
lular stresses using monolayer stress microscopy (MSM) and
tractions using traction force microscopy (TFM) (1).

Tractions are generated via actomyosin contractility and
actin polymerization andwere initiallymeasuredbyobserving
wrinkles exerted by single cells on thin, silicone membranes
(3). This method would later be extended tomeasure tractions
generated by cells attached to extracellular matrix (ECM)-
coated polymers and tractions generated by cells attached to
flexible, micropost force sensor arrays (3). Three-dimensional
(3D) tractions have also been measured by cells cultured on
top of flexible polymers and cells embedded in 3D matrices
(4). A novel Förster resonance energy transfer sensor-based
approach has also been employed tomeasure tractions by esti-
mating the change in excitation energy of fluorescent protein
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SIGNIFICANCE The ML framework we present here can be used to predict the mechanical response of any cell type
capable of adherence to a flexible substrate as a function of chemical perturbation. The proposed ML can directly predict
the intercellular stresses or tractions as a function of drug dosage and/or monolayer/cell coverage area which could
potentially reduce the experimental time on studying the mechanics of cells to external chemicals or mechanical
constraints. We believe our findings could be helpful in accelerating drug discovery and increase our understanding in the
role of cellular stresses during disease progression.
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markers that are sensitive to external forces (5,6). The many
variations by which tractions can be measured has led to a
host of studies revealing the importance of tractions bothphys-
iologically and pathologically. In fact, tractions have been
shown to be important in cell adhesion, spreading, migration,
and ECM remodeling (7–10) and are linked to various pathol-
ogies including cancer metastasis, fibrosis, and inflammation
(11–14).

For cells in a monolayer, in addition to tractions being
generated at the cell-substrate interface, intercellular stresses
are generated at the cell-cell interface. Intercellular stresses
have been suggested to be important in tissuemorphogenesis,
epithelial-mesenchymal transition, wound healing, and tu-
mor progression (15–17). Intercellular stresses can be calcu-
lated using MSM, which was first described by Tambe et al.
(18). In brief, both normal and shear intercellular stresses are
recovered from tractions by assuming a monolayer sheet of
cells as elastic thin plates and imposing Newton’s force bal-
ance and strain compatibility equations (19). However, other
groups would also develop additional alternative methods to
calculate intercellular stresses as well, as discussed below.

More recently, Bayesian inversion stress microscopy (BI
SM) (20) and Kalman inversion stress microscopy (KISM)
(21) were presented as predictive models for internal stress
fields based on corresponding traction force data. BISM
and KISM use experimental traction force data as a likeli-
hood function to make intercellular stress field predictions
using Bayesian statistics (Bayes’ theorem). BISM can infer
internal stress fields only from a single traction field image,
but a dimensionless regularization parameter must be calcu-
lated from the experimental data to make predictions. KISM,
however, is capable of estimating internal stress fields from a
time lapse of traction data (movie) with its accuracy depend-
ing on time resolution of the traction data (20,21). There are
several mechanical factors, notably actin filament orienta-
tion, substrate stiffness, cell area, local cell curvature, and
external forces, that have been demonstrated to affect trac-
tions and intercellular stresses (22–27). Kang et al. simulated
rearrangement of actin filaments in response to mechanical
stretch (28). Ghosh et al. predicted endothelial cell tractions
by using substrate stiffness and cell area (27). A positive cor-
relation was observed for both stiffness and area with respect
to the tractions (23). Contrastingly, Han et al. (24) reported
that larger cell area lowered average traction forces in human
pulmonary artery endothelial cells.

The physiological relevance of tractions and intercellular
stresses are equally as important as their pathological rami-
fications. For example, upregulation of endothelial contrac-
tility and increase in tractions via actin stress fiber and ECM
remodeling are linked to higher cellular and vascular stiff-
ness and vascular hyperpermeability, as seen in hyperten-
sion and atherogenesis (29–32). Furthermore, tractions and
intercellular stresses have been linked to vascular hyperper-
meability via ROCK1/2 and thrombin-mediated pathways
(33). Such hyperpermeability induces loss of blood-brain

barrier integrity and has also been linked with several neuro-
logical disorders such as multiple sclerosis, stroke, and trau-
matic brain injury (34).

Taking into account the physiological and pathological rele-
vance of both tractions and intercellular stresses, we propose
that TFM and MSM are powerful tools that can be utilized to
clarify the biomechanical mechanisms of various diseases,
some of which have been mentioned above and potentially
lead to novel therapeutics. Thus far, the development of novel
regenerativemedicineanddrugshasbeenheavily researched to
treat numerous vascular-related diseases such as, for example,
hypertension, atherosclerosis, stroke, and coronary artery dis-
ease (35–37). However, a barrier exists in the field as each of
these mechanics-related diseases often require treatment with
drugs, whose influence is dose dependent. We propose that
studying the biomechanicalmechanismbywhich certain drugs
influence cells and the subsequent tissues they constitute could
improve drug efficacy. However, the time and the financial re-
sources required to evaluate the impact of various drugs on cell
behavior can be overwhelming and expensive. Machine
learning (ML) offers an alternative approach that has the poten-
tial to resolve or at the bare minimum mitigate the issues pre-
viously mentioned. It was therefore our objective to apply the
ML approach to predict the dose-dependent cellular, biome-
chanical response to chemical stimulation.

In this paper, we utilized ML to predict both tractions and
intercellular stresses as a function of drug concentration and
cell morphological parameters such as monolayer perimeter
and cell area. Predictive models were created using stepwise
linear regression (SLR) and quadratic support vector machine
(QSVM) regression learners. The SLR and QSVM models
were trained using two different training sets: 1) a monolayer
boundary set (MBS) that utilizes monolayer area, monolayer
perimeter, and drug concentration as predictors, and 2) a discre-
tizedwindowset (DWS) that utilizes endothelial cell area, endo-
thelial cell, perimeter, and drug concentration as predictors.

MATERIALS AND METHODS

Cell culture

Human umbilical vein endothelial cells (HUVECs) were purchased

commercially and cultured in Medium 200 supplemented with 1% peni-

cillin-streptomycin (Corning, Corning, NY) and large vessel endothelial

supplement. HUVECS, Medium 200, and large vessel endothelial supple-

ment were purchased from Thermo Fisher Scientific, Waltham, MA.

HUVECs were cultured on 0.1% gelatin (Sigma-Aldrich, St. Louis, MO)-

coated flasks at 37�C and 5% CO2.

Preparation of polyacrylamide gel and cellular
micropatterning

The protocol for preparing polyacrylamide (PA) gels can be found in Steward

et al. (38). Glass-bottom petri dishes (35 mm, Cellvis, Mountain View, CA)

were treated with bind silane solution for 45 min after which the dishes were

rinsed with deionized water and air dried. The PA solution is made by mixing

ultrapure water, 40% acrylamide (Bio-Rad), 2% bis-acrylamide (Bio-Rad,
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Hercules,CA), andfluorescent beads (yelloworTexasRed,�0.5mmdiameter,

Invitrogen, Waltham, MA). The stiffness of the PA gel can be fine-tuned by

changing the ratio of bis-acrylamide andacrylamide solutions.ThePAsolution

iskept inavacuumchamber for 40min.Tenpercentof ammoniapersulfateand

N,N,N0,N0-tetramethylethane-1,2-diamine is added to the degassed PA solu-

tion, which initiates polymerization reaction. After the addition of ammonia

persulfate and N,N,N0,N0-tetramethylethane-1,2-diamine, the PA solution is

mixed well and plated on the petri dish wells. Hydrophobic coverslips are

then placed on top of the PA solution, after which the dishes are inverted to

allow more fluorescent beads to settle on top layer of the polymerizing gel.

The subsequent PA gels with stiffness �1.2 kPa and height �100 mm were

used for the experiments as described by Stroka and Aranda-Espinoza (39).

Cellular micropattern preparation

Polydimethylsiloxane (PDMS) was used to fabricate thin micropatterns as

described previously (38). A thin cross section of PDMS (Dow Corning,

Midland, MI) was prepared by mixing silicone base with a curing agent

(20:1) and the mixture was then poured into a 100 mm petri dish. The

PDMS mixture in the petri dish with no air bubbles was then incubated

at 70�C overnight. Thin, circular cross sections of cured PDMS (16 mm)

were fabricated using a hole puncher. Small 2 mm holes were made on

the circular PDMS section using a biopsy punch. The fabricated micropat-

terns were gently placed on the top layer of the PA gels.

SANPAH burning and Col I-FN treatment

The petri dish samples with PDMS micropatterns stamped on PA gels were

then subject to treatment with sulfosuccinimidyl-6-(4-azido-2-nitropheny-

lamino) hexanoate (Sulfo-SANPAH, ProteoChem, Hurricane, UT) dis-

solved in 0.1 M HEPES buffer solution (Thermo Fisher Scientific) and

kept under a UV lamp for 8 min. After SANPAH and UV treatments, the

samples were treated with type Collage I (Col-I).

After the treatment of Col-I (Advanced BioMatrix, Carlsbad, CA) over-

night at 4�C, the excess protein solution was carefully removed and

HUVECs were seeded at a density of �50 � 104 cells/mL. After 60–

75 min, micropatterns were cautiously removed using a tweezer. The

HUVEC monolayer samples were incubated at 37�C and 5% CO2 for at

least 24 h to allow enough time for the formation of cell-cell junctions

before experimentation.

Pharmacological perturbation experiments

Wehave previously demonstrated tractions and intercellular stresses to exhibit

a dose-dependent response to 2,5-dihydroxychalcone (chalcone) (40). Chal-

cone is a unique drug in that it has been reported to solely disrupt the gap junc-

tion connexin 43 (40). Therefore, for this study HUVECs were seeded at a

density of 50� 104 cells/mL onto polyacrylamide gels for at least 36 h. After

this time, independent experimentswere conductedwhere chalconewas added

at the following concentrations: 0.2 mg/mL (low concentration) and 2 mg/mL

(high concentration). Experiments performed to validate our ML model con-

sisted of controls and exposing HUVECs to 1 mg/mL of chalcone.

Time-lapse microscopy

Time-lapse microscopy was performed using a Zeiss inverted microscope

with a 10� objective and Hamamatsu camera. Fluorescent and phase

contrast images were acquired at 5 min intervals for 1 h before the addition

of chalcone. After this time, medium with chalcone was added at the con-

centrations mentioned above and imaging was done for an additional 5 h at

5 min intervals after removing the control medium. These experiments

culminated with HUVEC monolayers being treated with 10� trypsin to

detach the cells from the substrate and acquire a ‘‘stress free’’ image of

our gel surface, an image essential for traction calculation.

TFM and MSM

First, in-plane displacement of fluorescent beads located on the top surface

of the gel was computed using a custom-written particle image velocimetry

routine (41). Awindow size of 32 pixels with an overlap of 0.75 was utilized

for each region of interest. Cross correlation between each window in the

reference image with no cells attached to the gel (stress-free configuration)

was computed against a window occupying the same coordinates in the

fluorescent image with cells attached (stressed configuration) sequentially

across all the window blocks. The displacements were calculated in the x

and y coordinate system in pixels using an iterative cross correlation func-

tion. The displacement calculated from peak cross correlation function be-

tween each reference-fluorescence window pair was assigned to the center

coordinates of those windows (3). TFM (42) and MSM (7,18) were used as

described by Butler et al. and Trepat et al. to calculate the cell-substrate

tractions and cell-cell intercellular stresses, respectively. In brief, the gel de-

formations described above were used to calculate the tractions and the

intercellular stresses were subsequently recovered from traction force

maps by using straightforward force balance equations imposed by New-

ton’s law (19). We computed the local 2D stress tensor within the mono-

layer by converting the maximum principal stress (smax) and minimum

principal stress (smin) along the principal plane by rotating the local coor-

dinate system along the principal orientation. The average normal stress

(smaxþ smin)/2 and maximum shear stress (smax� smin)/2 were calculated

at each point in the elements within the monolayer.

Building of training tables

Experimental TFM and MSM data used for building our training tables were

solely obtained from the 0.2 and 2 mg/mL chalcone experiments. We used

results gathered from four time-lapse experiments (two per each chalcone

concentration: 0.2 and 2 mg/mL chalcone experiments, respectively) and

concatenated the data sets row-wise into one large data set. The size of exp-

erimental data dictates the number of predictions required for our ML model.

In general, we based our training data size on the size of the experimental data

gathered. We found model prediction accuracy to be dependent on training

data size, as higher training size led to higher accuracies. As far as our ML

models are concerned, large data sets can help with increasing prediction ac-

curacies. However, accuracy was found to no longer increase once a certain

data size threshold was reached. The data gathered from TFM and MSM ex-

periments were in the form of a cropped, 246� 246 squarematrix, which con-

tained approximately 60,516 data points per time series once converted into

column form. This data columnwas subsequently used to build training tables

for our predictor and response variables. The three response variables were

RMS (root-mean square) tractions, maximum principal stress, and minimum

principal stress. Column training tables were created separately for each of

these response variables with the help of predictors before training them

with ML models. Predictors utilized were drug concentration and either of

the two morphological predictors: monolayer boundary or discretized mono-

layer windows. In addition, the principal-component analysis tool in

MATLAB was used to confirm that our selected predictors explained more

than 95% of variability in the data.

MBS

The monolayer boundary training set was generated from the monolayer area.

A contour of the monolayer shape was obtained from phase contrast images

and converted to a binary image. Utilizing this binary image, monolayer

area and perimeter were then calculated using the ‘‘regionprops’’ command

in MATLAB (The MathWorks, Natick, MA). The monolayer area and

ML prediction of cellular stresses
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perimeter remain the same for all the time frames as ourmonolayerwas seeded

as a constrained, micropattern during experiments. Monolayer boundary data

cannot capture individual HUVECmovement and individual HUVEC geom-

etry within the monolayer since measurements are only made for the entire

monolayer as a whole. Furthermore, as the single monolayer area and perim-

eter do not change, themonolayer boundary data set can only trainMLmodels

to predict the average values of our response variables. Ramifications of this

include the lack of ability to predict the dynamic behavior of our response vari-

ables, which would be revealed through a time series. To overcome the mono-

layer boundary data’s lack of ability to predict time series information we

developed the discretized window training table.

DWS

The discretized window training set was generated by converting binarized

phase images of cellular monolayers into multiple overlapping grids, which

we call here ‘‘windows.’’ For any given frame we used a grid resolution of

32� 32 to generate our windows and from these windows we calculated an

area and perimeter, which were then stored as a column matrix for each im-

age. The area and perimeter of each discretized window gives information

about coverage of endothelium within that window. We choose this method

as computing cell area and perimeter in an automated fashion would be

difficult and time consuming because these cell properties change from

frame to frame. The discretized window training method eliminates the

need to track individual cell properties and is 2.6� faster compared with

our traditionally used fast Fourier transform-based, cross correlation

method used for cell displacement tracking for a single image pair of 32

square pixels each (Fig. S4).

Selection of ML models

The generated predictor variables and response variables mentioned above

were utilized in several ML models in MATLAB using the Machine

Learning Toolbox. Since the data were relatively small, we were able to

utilize all the available ML models in MATLAB. A fivefold variable cross

validation was chosen to validate the models where the inputted training

table was randomly divided into five groups (see supporting material, sec-

tion 3) and one group was held as the ‘‘test data’’ from which the model

makes predictions after training data from the remaining four sets. ML

models that 1) had the highest R2 and lowest root-mean square error

(RMSE) values when predicting our response variables (tractions and

intercellular stresses) and 2) were most sensitive to our predictor variables

(area, perimeter, and drug concentration) served as our selection criteria.

Utilizing this criterion, the support vector machine (SVM)- and SLR-

based models emerged as our best candidates for predicting TFM and

MSM data as a function of area, perimeter, and drug concentration.

Trained models based on SVM and SLR were found to be sensitive to

new data with less overfit and high R2 values compared with the other

models. SVM and SLR are described below.

SVM

SVM is widely used in classification and regression analysis. SVM makes

predictions by utilizing various kernelization techniques to effectively find

the hyperplane that separates the support vectors by transforming the data in

higher dimensions in classification problems. In regression, the hyperplane

is the best fit line or curve that effectively fits most of the points or support

vectors. SVM can use different kernels such as linear, quadratic, or

Gaussian to compute the transformation in higher dimensions at a reduced

computational cost, where it is easier to find the hyperplane that is closer to

most of the data points. SVM optimizes the hyperplane so that the distance

from each support vector is minimized within the chosen decision bound-

ary. The decision boundary encompasses the data that are closer to the hy-

perplane. A margin of tolerance (ε) can be inputted by the user to increase

the tolerance level from the decision boundary. SVM is well equipped to

handle complex, nonlinear data, robust to outliers and has better prediction

accuracy compared with linear regression models. However, SVM is

susceptible to noise and not preferred for very large or very small data

sets (43).

SLR

SLR evaluates the independent or exploratory variables one by one

through a forward selection rule (variables added at each step), back-

ward-elimination rule (all variables included), or a bidirectional rule (com-

bination of both forward selection and backward elimination) by

computing the t statistics for the coefficients of the selected variable at

each step. The SLR regression model helps choose the best independent

variables efficiently based on statistical significance. Although very effec-

tive in minimizing the number of predictors, the SLR model is prone to

choosing wrong variables if there is a large number of predictors and small

amount of data (44).

RESULTS

A schematic showing the overview of the two proposed ML
methods for the prediction of tractions and intercellular
stresses is shown in Fig. 1. The defined predictor sets and
corresponding features are shown in Fig. S1.

RMS tractions are best predicted by the SLR
model

Both ML models (SLR and QSVM) were generated using
data from cells exposed to two different chalcone concentra-
tions (0.2 and 2 mg/mL). Particularly, the QSVM model uti-
lizing MBS and the SLR model utilizing DWS yielded
the best results for traction predictions, while MBS-SLR
and DWS-QSVM yielded the best results for intercellular
stress predictions based on validation (training) data. The
values, coefficient of determination (R2), and RMSE were
calculated for different chalcone concentrations (0, 0.2, 1,
and 2 mg/mL) based on the average from three unseen
monolayers (test data) for each concentration. The results
for 0 and 1 mg/mL chalcone concentrations were broken
down and shown separately in the model validation section
comparing it with the corresponding actual experimental
results.

Monolayer boundary predictor

A relatively low R2 value of 0.54 was seen for RMS tractions
predicted by theQSVMmodel for different chalcone concen-
trations (0, 0.2, 1, and 2 mg/mL) (from Fig. 2 a [MBS] and
Table S1). RMSE for the RMS traction predictions from
the QSVM model was 5 Pa as shown in Fig. 2 b MBS and
Table S1. The predicted RMS tractions distributions as a
function of chalcone concentrations (0.2 and 2 mg/mL) is
shown in Fig. 3, b and eMBS-QSVMpanel. The correspond-
ing averages are shown in Table S2 and Fig. 2 g.
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Discretized window predictor

Similar to results discussed above, predictions were made
using the SLR model for three unseen samples for 0.2 and
2 mg/mL chalcone concentrations using discretized window
training sets and compared against the experimental results
(Fig. 3, c and f in the DWS-SLR panel). The R2 and RMSE
values for RMS tractions predicted by SLR were 0.85 and
4.86 Pa for different chalcone concentrations (0, 0.2, 1,
and 2 mg/mL), as shown in Fig. 2, a and b and Table S1
in the DWS panel. The average tractions for 0.2 and 2
mg/mL are shown in Fig. 3 g and Table S2 in the discretized
window sections, respectively.

Intercellular stresses are best predicted by the
QSVM model

Monolayer boundary predictor

The overall coefficient of determination (R2) for the average
normal stress predicted by the SLR model for different chal-
cone concentrations (0, 0.2, 1, and 2 mg/mL) was 0.74, while
the R2 for maximum shear stress predicted by SLR was 0.88
(Fig. 2 a and Table S3, monolayer boundary training col-
umn). RMSE values for the predictions from the SLR model
were 24.18 and 47.26 Pa, respectively, for average normal
and maximum shear stresses, respectively. The predicted in-
tercellular stresses (average normal and maximum shear)
distributions for 0.2 and 2 mg/mL chalcone concentrations

are shown in Fig. 4 (average normal stress, Fig. 4, b and
h) and (maximum shear stress, Fig. 4, e and k) in the
MBS-SLR panel and the corresponding averages are shown
in Fig. 4, m and n (bar plots) and Table S4 in the monolayer
boundary training sections.

Discretized window predictor

The R2 values for average normal stress predicted by
QSVM was 0.81 and the RMSE value was 22.20 Pa
(Fig. 2, a and b and Table S3). A higher R2 value of
0.93 was seen for maximum shear stress predicted by the
QSVM model with RMSE of 52.67 Pa, representing our
best predicted values for different chalcone concentrations
0, 0.2, 1, and 2 mg/mL, respectively. The predicted intercel-
lular stresses: average normal and maximum shear distribu-
tions for 0.2 and 2 mg/mL chalcone concentrations are
shown in Fig. 4 (average normal stress, Fig. 4, c and I
and maximum shear stress, Fig. 4, f and l). The average
values for the same are shown in Table S4 and Fig. 4, m
and n (bar plots) in the discretized window section.

Validation of our ML model

Wedetermined (based onvalidation score for the trained data)
the prediction accuracy was to be optimally determined over-
all with SLR for traction predictions and the QSVMmodel for

FIGURE 1 Flowchart showing implementation of machine learning approach to predict intercellular stress and tractions. The QSVM and SLR machine

learning models were used along with two predictor sets: 1) monolayer boundary set and 2) discretized window set. To see this figure in color, go on-

line.
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intercellular stress predictions utilizing discretized window
sets. Similarly, for monolayer boundary sets, QSVM and
SLR models were determined to best predict tractions and
intercellular stresses, respectively. Therefore, it was our next
objective to evaluate the predictive capability of our ML
model. To this end, we predicted intercellular stresses and
RMS tractions in response to 0 and 1 mg/mL of chalcone
and compared our predictions to experimental values obtained
from these concentrations. We highlight the fact that 0 and 1
mg/mL chalcone data were not used in either of the training
sets to build our model and the results we present here repre-
sent a true test prediction and not a fit. Predicted spatial distri-
butions of RMS tractions for monolayers exposed to 0 and 1
mg/mL compared with experimental results are shown in the
Fig. 5, a–n (MBS-SLR andDWS-QSVMpanels) and intercel-
lular stresses in Fig. 6, a–g (MBS-QSVM and DWS-SLR
panels). The rawvalues shown inTables S5 andS6 are for trac-
tion and intercellular stresses predictions. Overall, higher ac-
curacy (R2) of 0.85, 0.81, and 0.93 for traction, average
normal, andmaximumshear stresses predictions, respectively,
were observed for discretized window sets compared with the
monolayer boundary set (Fig. 2 a).

DISCUSSION

In this paper, we present both tractions and intercellular
stresses as a function of monolayer morphology and drug
concentration for the first time using regression ML models
QSVM and SLR with two different training sets, utilizing
one of the monolayer boundary or discretized window
sets. Overall, SLR models exhibited optimal predictive
capability with monolayer boundary training sets for inter-
cellular stress predictions while the QSVM model did

perform more optimally than SLR for discretized window
training sets for the same. The R2 value of intercellular
stress predictions was highest for the QSVMmodel utilizing
a discretized window training set (R2 ¼ 0.81 for average
normal stress and R2 ¼ 0.93 for maximum shear stress).
The SLR model utilizing the discretized window training
set had the highest R2 value of 0.85 for traction predictions.
While QVSM best predicted intercellular stresses, traction
predictions were relatively poor. We believe this could be
attributed to the fact that the discretized window training
predictor was used and the potential boundary effects
from edges that were used to train the regression models.
Discretized window training requires preprocessing to
extract input variables from the new data (image) for mak-
ing predictions, while the monolayer boundary method re-
quires very little preprocessing to extract the independent
variables. The prediction time for a new (unseen) image
was relatively same across the all the ML models built on
the two different training sets (�10–20 min).

Out of the two proposed training sets, ML models built on
discretized window training were very much sensitive to the
outliers. In the discretized window method, the predictions
from all three regression models (SLR, LSVM, and
QSVM) were subject to a filter that excludes the
outliers<�1000 Pa and>þ1000 Pa (values corresponding
to the 0.15th, 99.95th percentiles) for intercellular stresses
and>þ600 Pa (values corresponding to the 99.95th percen-
tile) for RMS tractions to filter noise due to overfitting. Also,
the most important feature of the discretized window
method is the ability to generate time series predictions of
tractions and intercellular stresses based on the changes in
area and perimeter observed in each small overlapping
grid across the entire field of view. The R2 values especially

FIGURE 2 R2 accuracy and root-mean square

error (RMSE) plots for monolayer boundary and

discretized window predictors’ overall R2 accuracy

(a) and RMSE in Pa (b) for RMS traction, average

normal stress, and maximum shear stress predic-

tions using the monolayer boundary set (MBS)

and the discretized window set (DWS). MBS uti-

lizes QSVM for traction predictions and the SLR

model for intercellular stresses predictions while

DWS utilizes SLR for traction and QSVM for inter-

cellular stresses predictions. To see this figure in

color, go online.
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for tractions can be improved by using more predictors such
as substrate stiffness, cell orientation, cell velocity, etc.
Also, training the models using a cropped monolayer sec-
tion inside the circular monolayer samples could reduce
the noise due to boundary effects and improve prediction ac-
curacy. Time series prediction is possible with discretized
window training, but the R2 value was too low because of
overfitting due to noise for both tractions and intercellular
stresses. One of the future works is to reduce the boundary
effects of the training sets by using cropped subsets inside
the monolayer and employing cell velocity as an indepen-
dent variable for time series predictions. However, including
cell velocity as a predictor can increase the preprocessing
and computation time compared with window-based and
monolayer area predictors. Other future works include mak-
ing time series predictions for expanding monolayers using

monolayer boundary training sets and explore using more
predictors such as cell velocity, cell orientation, curvature,
cell area, ECM concentration, and substrate stiffness.

Comparison of predicted results with
experimental results

Predictions made for each response variable were computed
for a new image with different monolayer area and drug con-
centration. Although, 292 images were used to build the
models, they correspond to only 4 monolayer samples with
just two chalcone concentrations (0.2 and 2 mg/mL). Predic-
tions were made for new phase images with chalcone concen-
trations set to 0 and 1 mg/mL, respectively.Master averages of
the predicted results (RMS traction, average normal stress,
maximum shear stress) were compared with the actual master

FIGURE 3 Predicted tractions using monolayer boundary and discretized window predictors. Experimental-, MBS-QSVM-, and DWS-SLR-predicted

RMS traction distributions for 0.2 mg/mL chalcone concentration (a–c) and 2 mg/mL chalcone concentration (d–f) and the corresponding averages from three

samples for each condition with standard errors shown in the bar plot (g). To see this figure in color, go online.
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average of the results computed from TFM and MSM. The
master average of the results is the average of the responsevar-
iable in all the overlapping blocks that make up the image and
the average taken across the entire image time series that
follow in the MSM experiment. Predictions were made for
threemonolayer samples for eachof the four chalcone concen-
trations, using the proposedMLmodels based on two different
training sets and compared against the actual experimental
result averages from three samples for each chalcone concen-
tration obtained from MSM. Pearson correlation coefficient
(R) was calculated in Excel 2016, using the formula: R ¼
Covariance (A, B)/(SD A * SD B). If the trend between
MSM and predicted results were close, then we get high R
values and vice versa. R2 (coefficient of determination) is a
much-preferred metric in statistics, which represents the
percent of variability in data that can be explained by the
ML model. RMSE was also computed for the predicted aver-
ages of the response variable against the experimental MSM
data based on averages from 3 samples, across 60,516 grid
points in the time series for each chalcone concentration.

CONCLUSION

The ML model proposed here was built using intercellular
stresses and traction data derived from MSM and TFM,

respectively. Traction and intercellular stress measurement
in part relies upon the following premises: 1) the cell type
to be studied is physically adhered to a substrate, 2) the un-
derlying substrate is soft enough such that underlying sub-
strate deformations can be measured, and 3) if in a
monolayer, cells are physically connected through cell-cell
junctions. Intercellular stresses and tractions measured
from a HUVEC monolayer can depend on a wide variety
of factors such as monolayer area, substrate stiffness, cell
area, curvature, external forces and biochemical substances,
or drugs. Cellular tractions have been correlated to factors
such as substrate stiffness, cell area, local curvature, and
cell geometry (9). BISM and KISM were recently intro-
duced to predict intercellular stresses from TFM. However,
we believe this is the very first work to predict both tractions
and intercellular stresses from the following independent
variables: drug concentration, monolayer area/perimeter,
and discretized window area/perimeter based on prior
knowledge of tractions and intercellular stresses. We pre-
dicted both tractions and intercellular stresses using
QSVM and SLR regression learners built on two different
training sets. Accuracy was higher for shear stress compared
with normal stress and traction predictions.

Although this study only measured tractions and inter-
cellular stresses in endothelial cells, both tractions and

FIGURE 4 Predicted intercellular stresses using monolayer boundary and discretized window predictors. Experimental-, MBS-SLR-, and DWS-QSVM-

predicted average normal stress distributions for 0.2 mg/mL chalcone concentration (a–c) and 2 mg/mL chalcone concentration (g–i). Experimental-, MBS-

SLR-, and DWS-QSVM-predicted maximum shear stress distributions for 0.2 mg/mL chalcone concentration (d–f) and 2 mg/mL chalcone concentration (j–l).

Corresponding averages of the distributions from three monolayers for each condition with standard errors are shown in (m and n) for average normal and

maximum shear stresses, respectively. To see this figure in color, go online.
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intercellular stresses have been measured by other groups in
several cell types such as epithelial cells, fibroblasts, cardi-
omyocytes, osteocytes, cancer cells, and leukocytes, for
example (7,40,45–48). Taken into account, we believe the
model proposed here can be applied to any cell type that sat-
isfies the conditions mentioned above. Inclusion of more
predictors such as substrate stiffness should increase the pre-
diction accuracy (R2) of the regression learners. With these
promising results, more accurate predictions can be ob-
tained by adding additional predictors such as cell velocity,
substrate stiffness, ECM concentration, for example, to
improve the accuracy of the current models to make more
reliable predictions of stress distributions and time series
predictions instead of just the average trend. Furthermore,
although not possible with our current experimental setup
we believe that high-throughput prediction is possible as

several groups have already reported high-throughput trac-
tion measurement (49–51). We reason that, if high-
throughput tractions can be measured, high-throughput
intercellular stresses can also potentially be measured as
well. For example, Yoshie et al. utilized PDMS-coated mul-
tiwell plates to measure high-throughput tractions generated
by EMT, which reflects the impact our method could have
on the field.

Although we tested the impact of chalcone on HUVECS
and measured subsequent tractions and intercellular stresses,
other groups have measured the impact of barrier-disruptive
and barrier-protective compounds on the endothelium.
For example, Hardin et al. demonstrated barrier-disruptive
compounds (thrombin, histamine, and H202) to increase
intercellular stresses, whereas barrier-protective compounds
(Y27632, S1P, and HGF) decreased intercellular stresses

FIGURE 5 Model validation of tractions using monolayer boundary and discretized window predictors. Experimental-, MBS-QSVM-, and DWS-SLR-

predicted RMS traction distributions for 0 mg/mL chalcone concentration (a–c) and 1 mg/mL chalcone concentration (d–f) and the corresponding averages

from three samples for each condition with standard errors is shown in the bar plot (g). To see this figure in color, go online.
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(52). However, the experiments mentioned above were done
using human lung microvascular endothelial cells and with
only one drug concentration. Taken into account these drugs
do have a documented impact on cell-derived mechanical
forces we suggest these drugs to be an additional potential
application for our model. In summary, we believe this work
will be helpful for accelerating research in experimental drugs
that target cellmechanical activity such as cellular contractility
and tissue barrier strength and function. Proposed MLmodels
could be applicable for testing cell mechanics of any
anchorage-dependent cells as a function of pharmacological
and other morphological parameters that can influence cell
mechanics.

SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2023.07.016.
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