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A B S T R A C T   

Urban rail transit networks provide critical access to opportunities and livelihood in many urban systems. 
Ensuring that these services are resilient (that is, exhibiting efficient responses to and recovery from disruptions) 
is a key economic and social priority. Increasingly, the ability of urban rail systems to cope with disruptions is a 
function of a complex patchwork of mobility options, wherein alternative modes can complement and fill 
occurring service gaps. This study analyzes the role of ridesourcing in providing adaptive mobility capacity that 
could be leveraged to fill no-notice gaps in rail transit services, addressing the question of distributional impacts 
of resilience. Using a natural experiment, we systematically identify 28 major transit disruptions over the period 
of one year in Chicago and match them, both temporally and spatially, with ridesourcing trip data. Using 
multilevel mixed modeling, we quantify variation in the adaptive use of on-demand mobility across the racially 
and economically diverse city of Chicago. Our findings show that the gap-filling potential of adaptive ride
sourcing during rail transit disruptions is significantly influenced by the station-, community-, and district-level 
factors. Specifically, greater shifts to ridesourcing occur during weekdays, nonholidays, and more severe dis
ruptions, in community areas that have higher percentages of white residents and transit commuters, and in the 
more affluent North district of the city. These findings suggest that while ridesourcing appears to provide 
adaptive capacity during rail disruptions, its benefits do not appear to be equitable for lower-income commu
nities of color that already experience limited mobility options. Research implications for mobility operator 
collaborations to support mobility as a service are discussed. This study builds a more comprehensive under
standing of transit service resilience, variation in vulnerability, and the complementarity of ridesourcing to 
existing transport networks during disruptions.   

1. Introduction 

Urban livability refers to the quality of life in urban communities and 
the degree to which cities satisfy the needs and aspirations of their in
habitants by providing physical and social well-being and supporting 
meaningful existences (Kashef, 2016). One important component of 
urban livability is a resilient mobility system that provides reliable ac
cess to work, healthcare, food, recreation, and other life-sustaining 
services (Renne et al., 2022). Ensuring resilience is challenging, how
ever, because transportation systems rely on a complex web of fixed 
assets and multiple dynamic components, including competing opera
tors, fixed-schedule and on-demand modes, and operations across het
erogeneous built and social environments. In some regions, rail transit 

serves as a backbone for urban mobility (Litman, 2007). As such, in 
complex urban mobility systems, the ability of alternative modes to fill 
no-notice gaps in transit services is of critical importance, and the 
interplay between rail transit with other modes in the transportation 
system is increasingly recognized as foundational to mobility resilience. 

Unexpected disruptions, such as service interruptions due to acci
dents, infrastructure breakdowns, and passenger distress, are common 
occurrences in urban transit systems (Mo et al., 2022). The presence of 
ridesourcing services in mobility portfolios introduces a novel oppor
tunity to bolster mobility response and recovery. Recent work has begun 
to highlight the need for more equitable resilience plans, noting that 
impacts can vary across population groups and be tied to existing 
vulnerability (Coleman et al., 2020; Dargin & Mostafavi, 2020). In this 
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research, we consider the role of ridesourcing as an adaptive substitu
tion strategy to fill gaps created by no-notice disruptions in fixed 
guideway systems, such as rail transit services. Moreover, we analyze 
socio-spatial variation in rail-to-ridesourcing substitution across com
munities. Therefore, our discussion of resilience focuses on the dimen
sion of redundancy, as well as the distributional impacts of resilience. 
This is in line with other works that have emphasized the feature of 
redundancy across spatially heterogeneous urban transport systems to 
reduce the risk of service disruptions (e.g., Estévez-Mauriz et al., 2017). 

Our research uses a natural experiment to study the resilience of 
urban transit in Chicago. The natural experiment approach unlocks the 
opportunity to study variation that naturally results from an event or 
intervention beyond the researchers’ control (e.g., Lu et al., 2021; Wen 
et al., 2017). By jointly studying naturally occurring disruptions in the 
rail transit system with associated surges in ridesourcing demand, we 
empirically capture the substitutability among competing modes. We 
systematically identify 28 significant no-notice rail transit disruptions 
over the period of one year (November 2018 through October 2019). 
Then each event is temporally and spatially matched with ridesourcing 
trip data from the City of Chicago. We estimate a multilevel mixed 
(MLM) model to examine socio-spatial variation in ridesourcing demand 
surges that are associated with transit disruptions across stations, 
neighborhoods, and districts, while controlling for the time of day, day 
of the week, and disruption location. The research design thereby cap
tures spontaneous mobility resilience as travelers use ridesourcing as an 
adaptation strategy to cope with disruptions to their travel. 

The main contributions of this study are the insights it provides into: 
(1) whether ridesourcing is used as a gap-filling mechanism during 
unplanned rail transit disruptions in Chicago, (2) whether its utilization 
for this purpose is equitably distributed across the city, especially in 
terms of racial and economic representation, and (3) whether variation 
in adaptive ridesourcing demand during disruptions is primarily 
attributable to the station-, community-, or broader district-level factors. 
This study contributes to an improved understanding of how riders 
across different communities cope with disruptions. Furthermore, we 
discuss how our findings can guide more equitable communication 
strategies for transportation agencies and potential collaborations with 
private, on-demand mobility service operators to treat mobility as a 
service regardless of the specific transportation mode used. 

Our research contributes to filling two main gaps in knowledge. First, 
considering the resilience concept of redundancy, we analyze how the 
complex multimodality of transportation systems contributes to 
mobility resilience in terms of the interaction between public transit and 
ridesourcing, rather than focusing on single-mode resilience. Second, 
acknowledging the growing interest in equitable resilience, we provide 
further insights on the socio-spatial variation in adaptive ridesourcing 
during unplanned transit disruptions. Our analysis suggests that transit 
riders in under-resourced areas may not be benefitting as much as more 
privileged transit users from the same ridesourcing-based, mobility gap- 
filling strategy. 

The remainder of this paper is organized as follows. The next section 
reviews related studies on the relationships between transit disruptions, 
connections between rail transit and ridesourcing, and social equity. The 
third section discusses the data sources, variable definitions, and model 
specifications. The fourth section compares the results from the MLM 
models and discusses the empirical findings. Research implications are 
discussed in the fifth section. Finally, the conclusion is presented in the 
sixth section. 

2. Literature review 

2.1. Mobility resilience 

To study mobility resilience, we must consider how transit agencies 
are preparing for, reacting to, and recovering from service disruptions 
that impact the daily lives of individuals and businesses. Resilience is 

currently a key priority in national policy agendas and discourse (Na
tional Academies of Sciences, Engineering, and Medicine, 2021a; U.S. 
Chamber of Commerce, 2022). Mobility resilience refers to the adaptive 
ability of a transportation system to maintain functionality despite a 
disturbance (Walker et al., 2002; Walker et al., 2004). da Mata Martins 
et al. (2019) define mobility resilience as the ability of travelers to 
maintain their mobility without compromising their quality of life, 
adaptable resilience as the possibility of adopting new mobility patterns 
to maintain quality of life, and transformable resilience as the ability to 
transform current mobility patterns into more adaptable ones. Current 
research on mobility resilience covers a broad range of subjects, from 
post-disaster recovery following extreme climate events (Chan & 
Schofer, 2016; Donovan & Work, 2017; Ji et al., 2022) to disruption 
preparation that takes into consideration network redundancies and 
impacts on links and nodes (Caprì et al., 2016; Fotouhi et al., 2017; King 
& Shalaby, 2016; Leu et al., 2010; Serulle et al., 2011). 

Operationally, transportation resilience is difficult to define and 
measure (National Academies of Sciences, Engineering, and Medicine, 
2021b), and many metrics have been proposed, often centering on the 
four Rs of resilience: robustness (i.e., maintaining operations while 
withstanding stresses), resourcefulness (e.g., supply chain management, 
communication, and mobilization of resources), rapidity (i.e., quickly 
returning to normal operations, containing losses, and preventing 
further degradation of the system), and redundancy (e.g., providing 
backup resources and substitutability) (Adams et al., 2012; DiPietro 
et al., 2014; Faturechi & Miller-Hooks, 2015; Gu et al., 2020; King et al., 
2020). In this study, we focus on disruption recovery by applying the 
resilience dimension of redundancy, that is, the provision of backup 
urban mobility resources for modal substitution. Recently, resilience 
equity and its ties to vulnerability have attracted attention (Coleman 
et al., 2020; Dargin & Mostafavi, 2020). From a social equity perspec
tive, it is important to consider how spatial and temporal differences in 
resilience can result in inequitable outcomes (Meerow & Newell, 2019). 
Specifically, in this paper we examine the variation of resilient mobility 
behavior across communities at three levels of aggregation to identify 
potential resilience inequities. 

2.2. Recovering from mobility disruptions: what do we know? 

Understanding mode substitution for disruption recovery requires us 
to ground our analysis in travel behavior surrounding transit disruptions 
more broadly, followed by a focus on no-notice disruptions. We also 
summarize the on-demand mobility literature in the context of disrup
tions and user profiles to build a fuller understanding of the connections 
between disruptions in fixed transit services and on-demand ridesourc
ing behaviors. 

2.2.1. Recovery from planned rail transit disruptions: decisions of travelers 
The duration of planned transit service disruptions can span from 

short-term (e.g., hours or days) to long-term (e.g., months or years) 
(Arslan Asim et al., 2021). Planned, long-term rail transit disruptions 
may include scheduled maintenance, infrastructure upgrades, and 
strikes. For planned and long-term rail line or station closures, riders 
have ample time to adjust their travel plans, whether temporarily or 
permanently, including choice of departure time, route, and mode. The 
impacts of long-term rail transit disruptions on travel behavior have 
been widely studied over the past decades (Marsden & Docherty, 2013; 
Pnevmatikou et al., 2015; Pu et al., 2017; Van Exel & Rietveld, 2001; 
Zhu et al., 2017). Across Europe and the United States, the effects of 
long-term transit disruptions have resulted in a permanent decline in 
transit ridership (Van Exel & Rietveld, 2001; Zhu et al., 2017). In Chi
cago, lengthy track operation disruptions have led to transit abandon
ment by an estimated 4 % of riders (Mojica, 2008). 

In general, mode-shifting behavior during long-term transit disrup
tions has been shown to vary according to rider sociodemographics, 
disruption type, and city-specific factors. More specifically, transit 
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disruption responses during strikes include individual-specific factors (i. 
e., car ownership, number of household members, available cars, 
driver’s licenses, and income), context-specific factors (i.e., travel dis
tance, travel time, travel cost, trip destination, and weather), and 
journey-specific factors (i.e., public transport station accessibility and 
trip purpose) (Nguyen-Phuoc et al., 2018). Li et al. (2020) found that the 
uncertainty surrounding disruptions split riders into two classes of be
haviors, namely uncertainty pessimists and uncertainty optimists. 
Typically, during long-term disruptions, most travelers switch to per
sonal vehicles (Van Exel & Rietveld, 2001; Zhu et al., 2017), but 
disruption outcomes are often inequitable. For example, those less likely 
to shift to a car during transit disruptions include women and lower- 
income individuals, as well as workers with more flexible schedules 
(Pnevmatikou et al., 2015). In Washington, D.C., long-term rail transit 
disruptions are associated with increased bus ridership (Pu et al., 2017), 
especially among lower-income riders (Zhu et al., 2017). In Chicago, 
planned maintenance resulted in a minor share of rail riders shifting to 
buses and the majority continuing to use rail transit (Mojica, 2008). 
More recent smart card data analysis suggests that Chicago travelers use 
a myriad of adaptation strategies (Mo et al., 2022). 

Since 2020, the COVID-19 pandemic has resulted in long-term dis
ruptions to transportation systems, including lasting reductions in public 
transit ridership (Soria et al., 2023). A national U.S. study found that 
locations with greater proportions of essential workers, African Ameri
cans, Hispanics, older adults, and females, maintained higher transit 
demand levels during COVID-19 (Liu, Miller, & Scheff, 2020; Liu, Palm, 
et al., 2020). Ongoing work is finding interesting relationships between 
pandemic transit disruptions and alternative mode use. During the 
pandemic, bikeshare ridership was shown to increase (Chen et al., 2022; 
Kim & Cho, 2022). Considering ‘post-pandemic’ travel (defined as “the 
period during which COVID-19 is no longer a public health threat”), Loa 
and Habib (2023) found a greater influence of sociodemographic factors 
and level-of-service attributes for mode choice decisions than percep
tions of risk and other pandemic-related factors. 

2.2.2. Recovery from unplanned, short-term rail transit disruptions 
Compared to the extensive body of research on planned, long-term 

rail transit disruptions, research on the travel behavior effects of un
planned, short-term disruptions is scant (Sun et al., 2016). Unplanned 
service disruptions may be the result of extreme weather or natural di
sasters, infrastructure failures (e.g., related to power, signaling, and 
crossovers), vehicle breakdown (e.g., rolling stock issues), and service 
interruptions or delays due to intrusions on rail tracks or medical 
emergencies (e.g., debris, suicides, crossing incidents, etc.) (Arslan Asim 
et al., 2021; Pender et al., 2013). A probabilistic model using smart card 
data found five behavioral responses to unplanned rail transit disrup
tions: using a bus, changing rail route, not changing rail route, not using 
public transit, and not being affected (Mo et al., 2022). Important factors 
influencing behavioral responses to no-notice disruptions include user 
expertise, car availability, perception of service recovery time, available 
transport services, time constraints, and the timing and location at 
which communication about the disruption is received (Adelé et al., 
2019). In response to short-term disruptions, riders are more likely to 
cancel their trips compared to long-term disruptions (Nguyen-Phuoc 
et al., 2018). 

2.3. Unexplored capacity: on-demand ridesourcing for mobility 
resilience? 

Ridesourcing offers a potential solution for urban passenger mobility 
in ordinary travel settings, and a large body of research has investigated 
its demographic and spatial use. However, little is known about the 
ability of on-demand modes like ridesourcing to provide urban mobility 
resilience during disruptions (Borowski & Stathopoulos, 2020). The 
following sections summarize what is known about user patterns and 
social inequities to guide the analysis of the role of ridesourcing 

platforms in providing mobility redundancy during disruptions. 

2.3.1. Ridesourcing demand user and spatial profiles 
Consistently, studies have shown that ridesourcing users tend to: 

have a higher income (Sikder, 2019), be younger (Clewlow & Mishra, 
2017; Rayle et al., 2016; Young & Farber, 2019), highly educated (Alemi 
et al., 2018; Dias et al., 2017), full-time workers (Shamshiripour et al., 
2020), male (Zhang & Zhang, 2018), own fewer vehicles per household, 
and live closer to transit stations (Deka & Fei, 2019). Looking at spatial 
use patterns, recent analyses of large-scale ridesourcing trip data reveal 
that several aggregate city-specific factors correlate with ridesourcing 
trip counts. Greater ridesourcing usage is shown to be positively corre
lated with the population density in Austin (Lavieri et al., 2018), Chi
cago (Ghaffar et al., 2020), and Los Angeles (Brown, 2019b), 
employment density in Austin (Lavieri et al., 2018), Chicago (Ghaffar 
et al., 2020), Los Angeles (Brown, 2019b), and New York City (Correa 
et al., 2017), and land-use diversity in Austin (Yu & Peng, 2019) and 
Chicago (Ghaffar et al., 2020), as well as lower household income in Los 
Angeles (Brown, 2019b) and zero-vehicle households and percentage 
transit commuters in Chicago (Ghaffar et al., 2020). 

Relationships of ridesourcing with competing transport options, like 
public transit, are less clear. Some evidence suggests that public trans
port demand is reduced when competing with the door-to-door business 
model of ridesourcing (Clewlow & Mishra, 2017). In Chicago, Marquet 
(2020) finds that ridesourcing is used to travel between areas that are 
already highly accessible by transit, suggesting the potential to com
plement transit due to market density. Soria and Stathopoulos (2021) 
note that the link between ridesourcing and transit varies across cities 
and space and can be either competing or complementary, warranting 
continued research to pinpoint the evolving and location-specific mode 
connections. Overall, evidence indicates that ridesourcing is related to 
rider privilege and that most rides take place in the dense and accessible 
urban core (Lewis & MacKenzie, 2017; Soria & Stathopoulos, 2021). 

2.3.2. Social inequity concerns related to on-demand mobility 
The question of demographic or spatial exclusion related to on- 

demand mobility platforms has attracted significant attention (Pan
gbourne et al., 2020). The ridesourcing business model has been accused 
of providing limited accessibility to several rider groups, namely; rural 
populations, under-banked households, individuals without smart
phones, individuals with disabilities, lower-income groups, or other 
historically marginalized communities (Daus Esq, 2016). Specifically, 
the reliance on smart-phone access and skills may generate accessibility 
inequalities (Shaheen et al., 2017). Ridesourcing companies continue to 
grapple with problems of the digital divide, rider discrimination, data 
privacy, and workers’ rights (Jin et al., 2018). 

Prior research has shown evidence that ridesourcing service quality 
differs according to race, ethnicity, and income, which raises important 
equity concerns. Ge et al. (2016) point to patterns of discrimination in 
ridesourcing practices. In Seattle, longer wait times for ridesourcing 
services at night were observed in areas with higher percentages of 
racial minorities (Hughes & MacKenzie, 2016). A similar trend of longer 
ridesourcing wait times has been observed for communities of color in 
Chicago (CNT, 2019). In New York City, ridesourcing pickup rates were 
lower in lower-income areas (Correa et al., 2017; Jin et al., 2019). By 
contrast, other recent research instead argues that ridesourcing is closer 
than traditional taxis to eradicating racial and ethnic inequities in ser
vice quality (Brown, 2019a). In Atlanta, the estimated wait times of 
UberX and UberBLACK were not significantly correlated with either race 
or income (Wang & Mu, 2018). 

Looking at broad spatial ridership patterns for the case of Chicago, 
research confirms a greater concentration of rides in the more affluent 
North and Central districts of the city (Brown, 2019b; Ghaffar et al., 
2020; Soria et al., 2020). Fewer ridesourcing trips are generated in areas 
that are predominantly Hispanic or African American, lower income, or 
have lower rates of car ownership (Marquet, 2020). Similarly, solo 
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ridesourcing demand is lower in areas where socioeconomic disadvan
tage is concentrated (Soria & Stathopoulos, 2021). These findings mirror 
research on another on-demand mobility platform; Divvy bikeshare 
uptake is lower in the less affluent, majority African American, South 
district of Chicago (Biehl et al., 2018). 

2.3.3. Linking on-demand mobility to disruptions 
Only recently has research begun to consider the role of ridesourcing 

in addressing resilience in the context of no-notice transit service dis
ruptions. Borowski and Stathopoulos (2020) found that ridesourcing 
may be used to connect with transit during no-notice urban evacuations. 
One study of ridesourcing during unplanned subway disruptions in 
Toronto suggests less frequent shifts to ridesourcing in disadvantaged 
neighborhoods and inequitable bus bridging services (Liu, Miller, & 
Scheff, 2020; Liu, Palm, et al., 2020). For Chicago, stated preference 
survey research on ridesourcing usage during transit disruptions shows 
that millennial status, higher level of education, smartphone access, and 
prior ridesourcing experience is associated with a shift to ridesourcing 
(Rahimi et al., 2020). Another stated preference investigation shows 
that the preference for on-demand ridesourcing during no-notice 
mobility disruptions is shaped by identity factors, such as the in
tersections of race, gender, and class identities (Borowski & Statho
poulos, 2020). 

The present study builds on earlier work investigating the role of 
bikesharing as a gap-filling mechanism during longer-term transit dis
ruptions wherein a temporary increase in bikeshare demand during 
transit strikes and maintenance projects was noted, suggesting the 
ability of on-demand transportation modes to improve mobility resil
ience (Fuller et al., 2012; Kaviti et al., 2020; Pu et al., 2017; Saberi et al., 
2018). In this study, we focus on shifts to ridesourcing during un
planned, short-term transit service disruptions. While similar research 
has been conducted in Toronto (Liu, Miller, & Scheff, 2020; Liu, Palm, 
et al., 2020), our work is among the first to investigate mobility resil
ience in the context of Chicago with its unique transit and sociodemo
graphic patterns. 

2.4. Literature takeaways 

Acute shocks and chronic stressors are likely to continue to worsen in 
urban areas due to climate change and aging infrastructure. In this 
context, transit agencies face the risk of exacerbated ridership aban
donment following unplanned service disruptions. This study examines 
an untapped potential of emergent, on-demand modes to mitigate the 
negative impacts of no-notice transportation system shocks, thereby 
boosting mobility resilience. However, this potential is not without 
shortcomings. Although the interest in equity is growing, its relationship 
with mobility resilience remains understudied (Mattsson & Jenelius, 
2015). Here we carefully consider the equity context of on-demand 
mobility usage to guide our selection and interpretation of station-, 
community-, and district-level predictor variables. We use an MLM 
modeling analysis to examine spatially determined variation in resil
ience across the city. This research fills current gaps in the literature 
related to the question of “resilience for whom” while considering 
multimodal aspects of resilience. In this study, which is among the first 
to use a natural experiment to examine ridesourcing behavioral re
sponses to no-notice, short-term transit disruptions, we hypothesize that 
adaptive ridesourcing will be associated with traditionally privileged 
sociodemographics and resource access. 

3. Data and model 

3.1. Case study context 

In this study, we analyze the equity of ridesourcing for mobility 
resilience in Chicago. Notably, Chicago is home to the second largest 
transit network in the U.S. with the Chicago Transit Authority (CTA) 

serving 3.5 million riders (CTA, 2020a) with nearly 16 million rail 
transit rides each month (CTA, 2020b). While unequal access to essential 
resources is common in many U.S. cities, Chicago contends with his
torically rigid, spatially defined, social and economic inequality that is 
frequently linked to race. For example, the income disparity between 
white households and racial minority households is wider in Chicago 
than it is across the nation (Asante-Muhammed, 2017). Additionally, 
urban mobility systems typically contend with multiple layers of 
inequality in mobility investments and service access that determine 
service quality for different population segments (Lowe, 2014). Chicago 
is subject to urban mobility inequities both in terms of inferior service 
provisions (e.g., poor mobility accessibility or lack of pedestrian-friendly 
infrastructure) and disproportionate negative impacts (e.g., biased 
policing) in low-income communities (Barajas, 2021; Krapp, 2020). 

Fig. 1 shows the spatial distributions in 2019 for Chicago’s 77 
community areas of: (a) median household income, (b) percentage of 
people of color, (c) percentage of transit commuters, (d) population 
density, (e) total ridesourcing trips, and (f) percentage of active mode 
commuters. These heatmaps confirm the following three observations. 
First, there is a narrowly concentrated demand for ridesourcing and 
active mobility commuting in the Central district of the city, repre
senting the urban core from which the rail transit network expands 
radially (e and f). Second, there is a greater concentration of population 
and transit commuting in the North district (c and d). Third, the distri
bution of income is largely opposite of the majority non-white racial 
breakdown (a and b). Fig. 2 shows the layout of the Chicago Transit 
Authority rail network with community area boundaries for comparison. 

3.2. Data and variable description 

This analysis draws on data fusion of six data sources. The ride
sourcing dataset obtained from the City of Chicago data portal is freely 
available for download and consists of over 152 million trips by Uber, 
Lyft, and Via spanning the period of November 2018 through October 
2019 (Chicago Data Portal, 2019). This dataset provided our “Number of 
ridesourcing trips” variable. Five additional datasets were used to 
extract explanatory variables for our analysis, including seven socio
demographic variables from the Community Data Snapshot (CMAP, 
2019), 11 variables related to service quality, ridership, location, and 
timing extracted from the Chicago Transit Authority (CTA, 2019), one 
station count variable from the bikesharing Station Map and Data 
(Divvy, 2020), three disruption source variables from Google News for 
Chicago, IL (Google, 2019), and two weather variables from Iowa 
Environmental Mesonet (ISU, 2019). Table 1 lists all the variables 
resulting from this data fusion. Variables are grouped by station level 
when available or community level and further grouped by discrete or 
continuous nature. 

3.2.1. Community area sociodemographics 
The City of Chicago comprises 77 community areas that can be 

further aggregated into four districts (i.e., North, Central, South, and 
West). For reasons of privacy, individual-level data on ridesourcing trip- 
makers, such as sociodemographics and residential locations of rail and 
ridesourcing riders, are not publicly available (City of Chicago, 2020). 
Therefore, we follow the practice of using aggregated measurements of 
community sociodemographics to represent sociodemographic variables 
of interest (Liu, Miller, & Scheff, 2020; Liu, Palm, et al., 2020). While 
this practice can mask variation in rider characteristics, it is currently 
the best option available to researchers. 

3.2.2. Disruption-based ridesourcing demand 
Twenty-eight CTA rail transit disruptions lasting a minimum of 1 h 

are identified as having occurred from November 2018 through October 
2019 using a Google News search for the phrase “CTA disruption”. The 
timespan for our study was truncated to a single year due to the major 
impacts of the COVID-19 pandemic on public transit and ridesourcing 
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ridership beginning in early 2020. Fig. 3 highlights the locations of these 
transit disruption sources at the station, community, and district levels, 
and it can be observed that all CTA lines experienced disruptions during 
this period. Table 2 lists the disruption events and identifies their lo
cations, impacted stations, whether the disruption occurred during peak 
travel hours, and whether a shuttle bus was deployed by CTA to assist 
riders according to the associated report. 

3.2.3. Baseline ridesourcing demand 
To generate a robust four-day ridesourcing demand baseline, trip 

counts during the disruption period are averaged across the same day of 
the week and the time of day (i.e., the specified disruption period) as the 
disruption for two weeks prior to the event and two weeks following, as 
in Liu, Miller, and Scheff (2020), and Liu, Palm, et al. (2020). This was 
done to account for station accessibility and seasonality. Each ride
sourcing trip is included in the analysis if the starting location is within a 
0.25-mile radius of a disrupted transit station. This frequently used 
walking estimate (Younes et al., 2019; Zhao et al., 2003) is applied to 
account for riders who source rides on their way to or from the impacted 
transit station, such as to facilitate ridesourcing pick-up by avoiding the 
potential crowds surrounding the disrupted station. 

3.3. Multilevel mixed model specification 

To address the research question of ridesourcing surges prompted by 
transit disruptions, we control not only for the immediate station attri
butes where the disruption occurs, but also for community area and 
district-level factors in an MLM structure as shown in Fig. 4. MLM 
models provide a mechanism for analyzing datasets where events (in 
this case, station disruptions) are nested within higher-order spatial 
contexts and correctly account for the hierarchical nesting of data and 

effects happening at different levels (Goldstein, 2003; Julian, 2001; 
Wampold & Serlin, 2000). In the past, MLM or hierarchical models have 
been used to represent the structure of social relations within personal 
networks (Carrasco & Miller, 2009), temporal changes in bikeshare trips 
(El-Assi et al., 2017), and transit demand between origin-destination 
station pairs (Iseki et al., 2018). Here we use the multilevel analysis to 
identify the factors associated with systematic variations in ridesourcing 
demand during transit disruptions at the station, community area, and 
city district levels. We can thereby examine explanatory variables at 
each level of the data hierarchy, and in doing so, control for the com
munity area effects on station ridership variations. 

The advantage of using the multilevel structure is the ability to es
timate the variability in results that can be attributed to the neighbor
hood (e.g., community area) effects rather than only to the individual 
station effects. By carefully controlling variable inclusion at the appro
priate level, the model considers the correlations between observations 
within the same group (i.e., a given community area) as distinct from the 
correlations between groups (Jones & Duncan, 1996). In contrast, a 
standard one-level regression model would ignore group-level distinc
tions (e.g., different commuting patterns in different communities) and 
group-level correlations (e.g., similar patterns of use among stations in 
the same community related to the income level of riders). A useful way 
to think of MLM models is as a structure positioned between two 
modeling extremes when groupings are known: fully pooled and fully 
unpooled specification (Gelman & Hill, 2007). A fully pooled model 
treats group-level variables as individual variables, thereby ignoring 
group-level distinctions. The opposite extreme, a fully unpooled model, 
asserts that the groups are so completely different that they cannot be 
associated in the same model. The MLM model offers a compromise 
between these perspectives by modeling individual-level fixed effects as 
well as distributional assumptions on the random effects. 

Fig. 1. Heatmaps showing the spatial distribution by Chicago community area (2019) of: (a) median household income, (b) percent population of color, (c) percent 
commute by transit, (d) population density, (e) total ridesourcing trips, and (f) percent commute by active (walk and bike) modes. 
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Fig. 5 highlights each variable tested in the modeling along with the 
inclusion strategy for each level of analysis. The dependent variable is 
the number of ridesourcing trips compared to the baseline demand two 
weeks prior and two weeks following the disruption (i.e., individual 
station observations). Covariates related to the disruption cause, 
context, and timing are included as explanatory variables at the station 
level, in line with Mojica (2008) and Pu et al. (2017). Some variables 
were tested in the model at multiple levels. For example, during model 
development, the temperature and precipitation variables (measured for 
the city at weather stations) were included at various levels, but they 
were only significant at the station level. This makes sense given the 
expectation that weather impacts station-level decision-making (Chan & 
Schofer, 2014). The slight discrepancy that weather data is aggregated 
at the city level and included in the model at the station level does not 
present any major issue given the lack of micro-climates in the city of 
Chicago, and thus, the weather is not a unique characteristic of a com
munity area or district. Future micro-climate studies using localized 
forecasts are encouraged, but the weather in Chicago lacks variation at 
the station level. 

We further investigate whether the fact that stations are nested 
within community areas and major districts plays a role in ridesourcing 
demand shifts. A comparable disruption can likely generate different 
mode-shifting effects depending on where it is located, owing to the 
different composition of travelers and the availability of alternative 
modes. Specifically, the broader context is controlled for by including 
sociodemographic and mobility factors measured at the community 
level, which are then in turn aggregated to the district level of analysis. 
We apply group mean centering for community area variables (Enders & 
Tofighi, 2007) to facilitate the interpretation of the cross-level 

interactions. It is worth noting that since the disruptions we measure 
result from a natural experiment, we are unable to control exhaustively 
for all combinations of factors that are at play within and between 
community areas. Therefore, we include random intercept effects at 
each of the lower-nested group levels to partition the unexplained 
variability effects on the dependent variable. 

Conceptually, the model can be articulated as regression equations 
occurring at different levels where each group-level coefficient has its 
own regression equation. Following Gill and Womack (2013), the gen
eral three-level structure is defined in Eq. (1) as: 

yijk = β0jk + β1jkx1ijk + εijk (1)  

where i represents the station, j represents the community area, and k 
represents the district. β0jk is the (random) intercept measuring average 
ridesourcing use (defined in Eq. (2) when i = 0), and x1ijk is a predictor, 
such as the average daily transit use measured at the station level, while 
β1jk is the (random) slope depicting the relationship between the station- 
level variables and the change in ridesourcing demand (as defined in Eq. 
(2) when i = 1). The error term εijk relates to station-level effects. 

By including Level 2 and 3 explanatory variables in the model, we 
uncover broader area effects. The Level 2 formulation includes variables 
aggregated at the community area level. This can be thought of as being 
equivalent to how student educational performance may be affected by 
their classroom teacher in a way that is distinct from the effects of their 
individual factors or from more aggregate school-level effects. At Level 
2, the general regression equation is defined as: 

βijk = ɣi0k + ɣi1kx2jk + uijk (2) 

Fig. 2. Map of the Chicago Transit Authority rail network and community area boundaries.  
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where i = 0, 1 and the random intercept β0jk is a function of ɣ00k, which 
is the grand mean of the ridesourcing demand surges across the stations 
in the community (defined below in Eq. (3)). The subscript jk denotes 
the distinct community area impacts. The ɣ random effects coefficient 
has numbered subscripts; the first denotes the intercept (0) or slope (1), 
while the second subscript denotes the independent variable. Departures 
from this average intercept represented by x2jk are the community-level 
predictors with ɣ01k denoting the random slope for the community-level 
predictors (Eq. (4)), and u0jk is the unique effect associated with the 
communities assumed to have a multivariate normal distribution. The 
random slope β1jk is a function of ɣ10k representing the average effect of 
the station-level predictors (i.e., the slope over all stations shown in (Eq. 
(5))). Departures from the slope (i.e., random effects) over the station 
predictors are represented by the ɣ11k coefficient (Eq. (6)) that would be 
removed in the case of a random intercept-only model (as in the current 
analysis). 

At Level 3, the variables vary by district and apply to all individual 
cases and community areas assigned to this group. Therefore, they 
contain the subscript k as opposed to ijk or jk. At Level 3, the separate 
regression equations for the intercepts and slopes are defined as: 

ɣ00k = δ0 + δ4x3k + u00k (3)  

ɣ01k = δ2 + δ5x3k + u01k (4)  

ɣ10k = δ1 + δ6x3k + u10k (5)  

ɣ11k = δ3 + δ7x3k + u11k (6)  

where δ0 is the intercept shared by all individual cases; δ1, δ2, and δ3 are 
the main effects; δ4, δ5, and δ6 are two-way interactions; and δ7 is a 
three-way interaction. 

In our specific modeling, the outcome variable of the three-level 
hierarchy yijk is defined as the change in the ridership over the base
line. After the specification testing, the final model takes the specific 
form as shown in Eqs. (7)–(15). The model includes a random intercept 
β0jk and two main effects (non holidayijk and peak hourijk) at Level 1, 
shown in Eq. (7). Level 2 brings in contextual variables used to explain 
variability in ridesourcing demand via cross-level interactions. That is, 
we model the intercept and slopes explicitly and include Level 1 and 
Level 2 independent variables interacted to describe variation in the 
intercept. Eqs. (8)–(10) show the random intercept ɣ00k and the cross- 
level interaction terms (percent whitejk × peak hourijk and 
percent transitjk × disruption sourceijk). Level 2 also specifies β1jk and β2jk 

which represent the parameter slopes with ɣ10k and ɣ20k. Level 3 in
cludes the random intercept δ0 and one district-level interaction 
(north quadk × shuttleijk) that is found to generate variability in ride
sourcing (Eq. (11)), with the remaining parameters δ1 and δ2 denoting 
the fixed slope coefficients. The disturbance parameters are included at 
the community u0jk and district levels u00k (Eqs. (14)–(15)).  

Level 1 Model: station effects 

yijk = β0jk + β01k,non holiday non holidayijk + βpeak hourpeak hourijk + εijk (7)   

Level 2 Model: random intercept & cross-level interactions at commu
nity level 

Table 1 
Descriptive statistics of the variables considered in this study.  

Variable name (unit) Minimum Maximum Mean Standard deviation Data source 

Station-level factorsa (continuous) 
Air temperature (degrees Fahrenheit)  11.00  85.45  53.83  18.10 (ISU, 2019) 
Disruption duration (hours)  1.00  7.00  2.49  1.52 (CTA, 2019) 
Number of bus stations  0.00  129.00  36.17  28.83 (CTA, 2019) 
Number of Divvy stations  0.00  30.00  4.02  5.54 (Divvy, 2020) 
Number of ridesourcing trips  0.00  5581.00  635.57  1001.46 (Chicago Data Portal, 2019) 
Number of stations impacted  1.00  15.00  8.46  4.16 (CTA, 2019) 
Precipitation (inches)  0.00  0.04  0.00  0.01 (ISU, 2019) 
Station ridership (in thousands of riders)  0.65  58.05  12.26  11.39 (CTA, 2019)  

Community area factors (continuous) 
Area (miles squared)  0.71  32.47  3.83  6.31 (CMAP, 2019) 
Median household income (in thousands of U.S. dollars)  19.80  104.35  55.44  28.40 (CMAP, 2019) 
Percentage of commuters taking transit  10.80  54.20  34.26  11.78 (CMAP, 2019) 
Percentage of residents who self-identify as white non-Hispanic  0.70  81.50  38.06  30.65 (CMAP, 2019) 
Percentage of zero-vehicle households  8.60  57.40  33.50  12.06 (CMAP, 2019) 
Population (in thousands of people)  2.44  100.47  40.57  25.64 (CMAP, 2019) 
Population density (in thousands of people per square mile)  0.38  32.73  16.52  9.64 (CMAP, 2019)   

Variable name (binary) Number of 1’s Percentage of 1’s Data source 

Station-level factorsa (discrete) 
Deployment of shuttle bus: 1 if yes; 0 otherwise  71 63 % (CTA, 2019) 
Disruption cause: Medical emergency: 1 if yes; 0 otherwise  65 58 % (CTA, 2019) 
Disruption source: same station. 1 if direct effect (i.e., occurring at the same station)  30 27 % (Google, 2019) 
Disruption source: different station. 0 if indirect effect (i.e., occurring at a different station)  81 73 % (Google, 2019) 
Holiday occurrence: 1 if yes; 0 otherwise  8 7 % (CTA, 2019) 
Late night (after 10 PM): 1 if yes; 0 otherwise  6 5 % (CTA, 2019) 
Peak hour indicator: 1 if yes; 0 otherwise  24 21 % (CTA, 2019) 
Weekday indicator: 1 if yes; 0 otherwise  71 63 % (CTA, 2019)  

District-level factors (discrete) 
Airport: 1 if present; 0 otherwise  7 6 % (Google, 2019) 
District: North side: 1 if yes; 0 otherwise  50 45 % (CTA, 2019)  

a Station-level variables are for the affected stations considering the 28 disruptions. 
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β0jk = ɣ00k + ɣ01kxpercent white,jk × xpeak hour,ijk
+ɣ02, xpercent transit,jk × xdisruption sourceijk + u0jk

(8)  

β1jk = ɣ10k (9)  

β2jk = ɣ20k (10)    

Level 3 Model: random intercept & cross-level interaction at district 
level 

ɣ00k = δ0 + δNorthShuttlenorth districtk × shuttleijk + u00k (11)  

ɣ10k = δ1 (12)  

ɣ20k = δ2 (13)  

u0jk ∼ N
(
0, σ2

d

)
(14)  

u00k ∼ N
(
0, σ2

e

)
(15) 

It is important to note that the cross-level interactions explain a 
significant amount of variance of ridesourcing demand changes in 
addition to that already explained by the station-level equations. 

3.4. Equity analysis 

A social equity perspective is applied in the interpretation of the 
model findings to examine the question of “mobility resilience for 
whom?” This is achieved through population segmentation and the 
identification of statistically significant determinants related to spatial 
differences in socioeconomic characteristics like race and income, which 
is in line with the research methodologies of many scholars in the field of 
mobility inequity (Biehl et al., 2018; Brown, 2019a,b; Ghaffar et al., 
2020; Hughes & MacKenzie, 2016; Marquet, 2020; Soria & 

Stathopoulos, 2021; Wang & Mu, 2018). Although this study does not 
include alternative ways of considering distributional effects through a 
synthetic estimator, like the Gini Index, this would be a valuable area of 
research for the future that would support practical application and 
policy design. 

4. Results and discussion 

4.1. Neighborhood differences in adaptive ridesourcing during 
disruptions: descriptive analysis 

Exploratory analysis shows that adaptive ridesourcing response is 
not uniform across the city. Two different poles are exemplified in Fig. 6. 
Fig. 6.a shows a significant surge in the use of ridesourcing following a 
no-notice rail transit disruption. This high-impact North district case in 
Lakeview at the Belmont station (i.e., the source location of the 
disruption) occurred on a Monday in December during morning peak 
hours and was caused by a train striking a person. The baseline ride
sourcing demand for this time and location is 807 rides, meaning the 
disruption is associated with a statistically significant surge in ride
sourcing trips totaling 2883, which corresponds to a 257 % increase. 

Fig. 6.b shows a similar disruption event occurring in an under- 
resourced West district neighborhood with limited shifting to on- 
demand services. This low-impact disruption in East Garfield Park at 
the Kedzie station (i.e., the source location) resembles the Belmont 
disruption in that it occurred during weekday morning peak hours and 
was caused by a person on the tracks. However, the baseline ride
sourcing demand for this time and location is a fraction of that at Bel
mont: only 89 rides. The number of ridesourcing rides during the 
disruption event is lower than the baseline of 76 (an insignificant 
decrease of 15 %). This observed difference in the disruption response is 
likely related to more pervasive racial and economic inequities, along 
with differences in transit accessibility. Specifically, Lakeview has a 

Fig. 3. Map of Chicago showing rail transit lines and disruption events within community area and district boundaries. Insert represents the Loop (i.e., the central 
business district). 
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median household income of $86,119, and 79 % of its residents are 
white, while East Garfield Park has a median household income of 
$23,116 and 5.6 % of its residents are white. To systematically examine 
different patterns of ridesourcing demand shifts prompted by transit 
disruptions across Chicago, we turn to our MLM model results. 

4.2. Empirical model specification 

Preliminary model exploration was done using standard regression 
models. Pitfalls of using ordinary least squares (OLS) regression to 
analyze group-level effects with clustered data have been documented 
(Moulton, 1990). Specifically, standard errors will tend to be too low, 
resulting in Type 1 errors of spurious significant effects (Maas & Hox, 
2004). For this analysis, the MLM model was chosen as it is better suited 

to answer our research questions about partitioning variance at different 
levels and exploring (clustered) community variance in ridesourcing 
substitution. Three MLM models are estimated: (1) a basic intercept 
model, (2) a station-level analysis, and (3) a model accounting for cross- 
level effects. For model building, each of the hypothesized predictors 
measured at the station level are tested first independently and then 
jointly. 

To model explanatory variables, we follow the block entry approach 
consisting of the gradual addition of covariates level by level (Cohen 
et al., 2014), following the plan outlined in Fig. 5. Data preparation and 
merging were done using R 3.5.0 (R Core Team, 2021), with modeling 
done in Stata using the mixed function for multilevel mixed-effects linear 
regression (StataCorp, 2019). 

Table 2 
Twenty-eight unplanned rail transit disruptions in Chicago (Nov. 2018–Oct. 2019).  

Number Date Day Start 
time 

End 
time 

District Disruption source: station 
name 

Impacted span Stations 
impacted 

Peak 
hour 

Shuttle 
bus  

1 11/06/ 
18 

Tuesday 5:00 6:00 West Western Pulaski to Racine  5  ✓  

2 11/12/ 
18 

Monday 13:30 16:30 North Rosemont Harlem to O’Hare  4  ✓  

3 11/26/ 
18 

Monday 9:00 12:15 West Cicero 54th/Cermak to Pulaski  2 ✓   

4 12/06/ 
18 

Thursday 17:00 18:00 Central Jackson Jackson  1 ✓   

5 12/12/ 
18 

Wednesday 5:00 8:30 South 63rd 47th to 95th/Dan Ryan  7  ✓  

6 12/17/ 
18 

Monday 8:00 10:00 North Belmont Addison to Fullerton  5 ✓ ✓  

7 01/12/ 
19 

Saturday 12:30 14:00 South 47th 63rd to Sox-35th  4  ✓  

8 01/20/ 
19 

Sunday 9:00 10:30 North Jarvis Belmont to Howard  14  ✓  

9 02/14/ 
19 

Thursday 13:00 16:00 West Clinton Ashland to Washington/ 
Wabash  

6  ✓  

10 03/12/ 
19 

Thursday 21:00 3:00 North Rosemont Jefferson Park to O’Hare  5  ✓  

11 04/10/ 
19 

Wednesday 19:00 2:00 North O’Hare O’Hare to Rosemont  2 ✓ ✓  

12 05/01/ 
19 

Wednesday 7:20 8:20 North North/Clybourn Cermak-Chinatown to 
Fullerton  

5 ✓   

13 05/06/ 
19 

Monday 16:00 18:00 North Argyle Argyle  1 ✓   

14 05/12/ 
19 

Sunday 14:00 16:00 North Bryn Mawr Addison to Howard  14    

15 06/06/ 
19 

Thursday 11:00 16:30 South 47th Ashland/63rd to Roosevelt  10  ✓  

16 06/10/ 
19 

Monday 9:00 10:00 North O’Hare O’Hare to Rosemont  2 ✓   

17 06/12/ 
19 

Wednesday 19:20 20:20 North North/Clybourn Cermak-Chinatown to 
Fullerton  

11 ✓   

18 06/20/ 
19 

Thursday 10:15 13:30 South 35th/Archer Halsted to Midway  7  ✓  

19 06/25/ 
19 

Tuesday 7:30 8:45 West Kedzie-Homan Kedzie-Homan  1 ✓   

20 06/27/ 
19 

Thursday 12:30 15:00 South 69th 63rd to 95th/Dan Ryan  5  ✓  

21 09/07/ 
19 

Saturday 14:00 15:15 North Belmont Fullerton to Kimball  15    

22 09/24/ 
19 

Tuesday 9:00 10:30 North Sedgwick Sedgwick  1 ✓   

23 09/26/ 
19 

Thursday 1:00 4:00 North Rosemont Harlem to O’Hare  4    

24 09/26/ 
19 

Thursday 17:45 22:00 North Jarvis Belmont to Howard  14 ✓   

25 10/05/ 
19 

Saturday 22:45 2:15 North Granville Belmont to Howard  14    

26 10/08/ 
19 

Tuesday 15:15 16:15 South 63rd Roosevelt to 95th/Dan 
Ryan  

10  ✓  

27 10/30/ 
19 

Wednesday 15:00 16:00 North Howard Belmont to Howard  14    

28 10/31/ 
19 

Thursday 16:15 18:30 Central Harrison Cermak-Chinatown to 
Fullerton  

11  ✓  
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Fig. 4. Overview of analysis framework for the hierarchical multilevel mixed model of ridesourcing shifts during transit disruptions. Station-level disruptions are 
nested within community areas, which in turn are nested within districts. 

C

Level 1: Station level factors

Level 2: Community area factors

Level 3: City quadrant factors

Cross-level 
interactions

Fig. 5. Multilevel model variables. Considered variables are listed for each level.  
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4.2.1. Basic model specification 
The results of three MLM models are shown in Table 3. These models 

include significant fixed effects and explanatory features, and all pa
rameters are significant to a 98.9 % level of confidence or greater except 
for the model constants. Station-level (Level 1) fixed effects (i.e., non- 
holiday disruption and peak hours disruption) have some resemblance with 
the standard regression parameter for non-holiday while peak hours 
(which is also included in cross-level interactions) has the opposite sign. 
Three explanatory features reflect the context surrounding the station, 
namely two cross-level (station- and community-level) random effects 
(i.e., percent white during peak hours and percent transit commuters at the 
source of disruption) and one district-level effect (i.e., shuttle deployment 
in the North district). 

The empty reference MLM model (Model 1) partitions the variance at 
each aggregation level without including any explanatory variables. 
This null model is used to calculate the intraclass correlation (ICC), also 
known as the variance partition coefficient, for the three levels of 
analysis (Snijders & Bosker, 1999). Thereby, Model 1 provides an esti
mate of a baseline variance of the ridesourcing demand shifts attributed 
to factors beyond the immediate station (i.e., community- and district- 

level factors). The intra-community correlation reveals that the largest 
share of variation in ridesourcing demand (43 %) is related to 
community-level factors while the station level explains 37 % of the 
variance. 

4.2.2. Model with station effects 
In Model 2, with station-level variables, the district random intercept 

(and thereby ICC) is insignificant, while the variance is partitioned be
tween the station (44 %) and community area levels (56 %). Owing to 
high variable collinearity, only two fixed-effect explanatory variables 
related to the timing of the disruption and a constant are included in 
Model 2. These statistically significant effects result in a significant 
improvement in the model fit as measured by the deviance difference 
(836.99–822.10 = 14.89, exceeding the critical χ2 of 5.99 with alpha set 
at 0.05) and AIC reduction. 

4.2.3. Model with community effects 
Along the same lines, in Model 3, when adding cross-level effects by 

including variables measured at the community area level, the variance 
explained clearly shifts toward the community area variables. Despite 

Fig. 6. Ridesourcing trips during disruptions (solid line) compared to baseline (dotted line) at (a) the Belmont station in the North district and (b) the Kedzie station 
in the West district. Disruption duration is indicated by a border. The y-axes are scaled according to baseline ridesourcing trips (10:1). 

Table 3 
Multilevel mixed model results.   

Model 1 Model 2 Model 3 

Fixed part Coef. z value P > |z| Coef. z value P > |z| Coef. z value P > |z| 

Non-holiday    541  2.97  0.003 599  3.58  0.000 
Peak hour    408  4.11  0.000 353  4.22  0.000 
Constant −53.2 −0.39 0.700 54.1  0.97  0.332 91.8  1.53  0.125 
Cross-level interactions          
Peak hour * Percent white       12.3  2.69  0.007 
Disruption source: same station * Percent transit commuters       18.4  2.54  0.011 
District-level interactions          
North district * Shuttle       321  3.66  0.000 
Fit statistics          
Log-likelihood −836.991   −822.099   −809.572   
LR test 12.170   7.150   17.100   
Prob > χ2 0.002   0.028   0.000   
AIC 1681.983   1672.508   1637.144   
Pseudo R2    0.340   0.330   
Intraclass correlation          
Level 3: District 20 %   0 %   0 %   
Level 2: Community area 43 %   56 %   73 %   
Level 1: Station 37 %   44 %   27 %    
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the Level 3 district random intercept collapsing to zero, removing this 
variance component from the analysis causes a significant reduction in 
overall model fit. 

The main takeaway from the variance controls is that factors 
occurring across different community areas are the most decisive in 
shaping ridesourcing demand shifts during rail transit disruptions. In 
other words, the ICC calculation shows the community area context is 
the main source of differences in ridership-shifting strategies. We 
interpret this to mean that significant latent neighborhood effects are 
influencing adaptive ridesourcing behavior. These neighborhood effects 
likely vary as a function of community culture related to car, transit, and 
ridesourcing ridership, socioeconomic and political factors, and trans
portation agency strategies. 

4.3. Model results 

4.3.1. Station-level analysis: local effects of disruptions 
The model constant suggests a moderate average increase of 54 

ridesourcing trips (or 15.6 %) during a transit disruption, compared to 
the baseline. To contextualize this finding, the average baseline ride
sourcing ridership is 347 trips across the Chicago community areas 
covered in the disruption analysis. This value represents the ridesourc
ing demand that would occur for the same station and timespan without 
the disruption. With this baseline in mind, the timing of the disruption is 
revealed to be highly impactful. On average, when a disruption occurs 
on a weekday (excluding holidays), ridesourcing trips increase by 541 
from baseline (a 156 % increase). When a transit disruption occurs 
during peak hours, ridesourcing demand increases by 408 rides from 
baseline (a 118 % surge). 

These observed citywide trends are likely related to the less flexible 
trips that occur during peak hours and weekdays. This is not surprising 
considering that business and commuting trips are more likely to be 
shifted to another mode than canceled, as shown for planned disruptions 
(Van Exel & Rietveld, 2009) and unreliable metro services (Pnevmati
kou et al., 2015). Furthermore, peak hour disruptions have been shown 
to enhance perceptions of uncertainty (Li et al., 2020). Our findings for 
on-demand ridesourcing shifts are novel given that previous research in 
this area has been dominated by car substitution and bus replacement. 

4.3.2. Community context effects 
In Model 3, we examine the role that the disrupted station’s sur

rounding context plays in determining the transfer of ridership from 
transit to ridesourcing during no-notice disruptions. Model 3 reveals a 
significant impact of two community area level factors: racial composi
tion and percent transit commuters. The addition of these cross-level fac
tors leads to significant improvements in goodness-of-fit measured by 
the deviance difference and AIC. The positive effect on the interaction 
term for the percentage of white residents in the community area with a 
dummy variable for peak-hour travel (a coefficient of 12.3 additional 
trips) suggests an added effect of racial composition in the local area on 
the previous peak-hour effect findings. Namely, the peak-hour impact 
(353 added trips) is amplified when disruptions occur in communities 
with higher shares of white residents. The implied effect is that a 
disruption occurring in a community area with a 1 % higher share of 
white residents would result in a boost of 120 (or 3.46 %) ridesourcing 
trips compared to the average peak-hour baseline. This finding adds to 
existing evidence that ridesourcing provides greater benefits to privi
leged user groups (Zhang & Zhang, 2018). Given that communities of 
color in Chicago are more likely to be underserved in job accessibility, 
transit supply, and on-demand mobility access, we believe this finding is 
likely a reflection of gaps in access to resources in areas with lower 
shares of white residents rather than of a lower willingness to use 
ridesourcing during disruptions, but further research is warranted to 
gain a deeper understanding. 

Additionally, a novel effect is found related to the proportion of transit 
commuters in the community area and the disruption source: same station. 

Overall, every percentage unit increase in transit commuting in the 
community area results in 18 additional ridesourcing trips (or a 5.2 % 
increase). However, this effect is only observed at the station where the 
incident causing the disruption occurred. We speculate that transit 
commuters more readily shift to ridesourcing services when they expe
rience and receive information about the disruption directly. In other 
words, riders at the source of the disruption are likely to have more 
information regarding the nature of the disruptive event (e.g., from 
official sources and other riders), which will likely factor into their 
travel adaptation strategy. In areas with less transit commuting, we 
speculate that there is presumably less collective experience with transit 
disruptions and therefore a higher likelihood of shifting to private modes 
due to limited opportunities for word-of-mouth information sharing and 
social influence and thereby greater individualization of adaptive 
mobility strategies. 

Despite a lack of unexplained systematic differences related to the 
district level beyond Model 1, a model search was conducted to explore 
additional impactful cross-level interactions that incorporate indicator 
variables for the four districts of the city. The resultant model suggests 
an unexpected finding. In the North district, when a shuttle bus is 
deployed, ridesourcing trips increase by 321 instances (or 92.5 %) from 
baseline. The deployment of replacement bus services for added transit 
capacity to assist riders during rail disruptions is a common agency 
response (Pender et al., 2013), but there appears to be an unanticipated 
(although not surprising) effect of this strategy: a boost in ridesourcing 
requests. We interpret this unexpected increase in ridesourcing to be 
related to the signaling effect of this action, namely, riders could 
perceive bus deployment as a strong cue for the severity of the disrup
tion and thus its expected duration. For context, the North district is 
home to the largest share of disruptions in our dataset (16 of 28 or 57 %). 
The North district maintains heavy transit demand by commuters 
(shown previously in Fig. 1.d), as well as higher income levels among 
these commuters (Fig. 1.b), factors which likely contribute to a greater 
shift toward ridesourcing in this area. 

5. Discussion and implications: enhancing collaborations for 
resilient mobility 

The findings in this analysis show that sudden disruptions in urban 
rail transit are often accompanied by a surge in demand for ridesourcing. 
This spontaneous mode-shifting behavior invites more organized sup
port of collaborations to enhance mobility resilience. Specifically, this 
discovery presents opportunities for transit operators to establish more 
formal, a priori arrangements with ridesourcing services to invoke quick 
phase-in of the latter to fill short-term gaps resulting from transit 
disruptions. 

Bringing these two transportation service competitors to the table to 
facilitate the integration of services can be challenging given the 
adversarial relationship often observed (Monahan & Lamb, 2022). 
However, it is not without precedent, such as for special needs riders or 
low-density markets and feeder services where traditional transit ser
vices may not be cost-effective. Deakin et al. (2020) describe several 
such cases, among which is the 2015 RIDE collaboration between Boston 
Massachusetts Bay Transportation Authority (MBTA) and ridesourcing 
companies to provide paratransit, as well as Livermore-Amador Valley 
Transportation Authority’s Go Dublin! collaboration with ridesourcing 
agencies to replace low-volume, fixed-route bus services. Yet, in cases of 
short-term disruptions to mainline services, it may be a more complex 
management decision to divert passengers to ridesourcing. 

5.1. Opportunities 

If transit operators like the CTA were to envision their task as sup
porting mobility rather than stop-to-stop service, the objective would 
become to find the best way to get travelers to their destinations effi
ciently, whether that is letting the market work untouched, providing 
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shuttle services, or inviting ridesourcing operators to help fill gaps. By 
actively communicating the nature of the disruption and anticipated 
needs, transit agencies could engage – and even support – ridesourcing 
companies in providing adaptive, gap-filling services to address no- 
notice disruptions and thereby reduce the delays experienced by 
transit riders. The flexibility of ridesourcing services offers on-call 
availability to provide extra capacity by replacing or supplementing 
shuttle buses, depending on the nature of the disruption. 

Advance agreements between the transit operator and ridesourcing 
services would make the transition between the two when a disruption 
occurs quicker and more efficient for transit passengers. As an example, 
the LA Metro in the Los Angeles region was able to leverage a preexisting 
collaboration with the ridesourcing company Via by expanding their 
role from providing first- and last-mile services to private, point-to-point 
trips to accommodate essential travel during the COVID-19 pandemic 
(Grossman, 2020). Agreements should define the circumstances that will 
activate collaboration, as well as standards for messaging about dis
ruptions, such as including information like location, expected duration, 
and passenger volumes based on train loadings. This exemplifies the 
ability of public-private partnerships to increase mobility resilience to 
unplanned disruptions. 

5.2. Challenges 

A first potential challenge is the existence of surge pricing when 
demand spikes, which is likely to occur in the case of a peak period 
transit disruption. This would be particularly burdensome for low- 
income transit riders. Incident-specific subsidies for these fill-in ride
sourcing trips might offer a solution, but several issues need to be 
resolved to make this work. First, such subsidies would need to apply to 
all riders, since there is no means of testing at the farebox (or point of 
sale) to know who really needs them. Second, the level of subsidy would 
need to be scaled to the circumstance (e.g., how widespread is the 
disruption?). Lastly, a way to isolate the subsidy in time and space needs 
to be defined, and a mechanism for linking passengers experiencing the 
disruption (who should be subsidized) to the ridesourcing trip would be 
needed. All these capabilities would be required to assure the fair and 
efficient use of public resources and to make ridesourcing subsidies 
palatable to transit agency leadership. Ultimately, these important de
tails would provide the basis for formal agreements between transit 
providers and ridesourcing companies. An additional challenge relates 
to the different standards of operation. Notably, transit providers are 
required to ensure fair service to all individuals in accordance with Title 
VI and the Americans with Disabilities Act, while ridesourcing services 
are not currently held to the same standards. 

In sum, while collaborations between transit providers and ride
sourcing companies may provide a way to decrease disruption response 
time and assist a greater number of affected travelers, these collabora
tions are not without challenges. A summary of the advantages and 
challenges related to the multimodal integration of transit agencies and 
ridesourcing companies for seamless adaptation is provided in Table 4. 

6. Conclusions 

6.1. Summary of findings 

Given the current climate crisis and urbanization, both acute shocks 
and chronic stressors of all kinds are multiplying in cities, and disrup
tions are occurring with increased frequency and severity. This study 
examines the effects of no-notice rail transit disruptions on mode- 
shifting strategies. Specifically, we examine the role of ridesourcing as 
an adaptive substitution strategy to fill gaps created by rail disruptions. 
This study uses a natural experiment to systematically identify and then 
temporally and spatially match 28 major transit disruptions with ride
sourcing trip data for the City of Chicago. An MLM model is used, where 
the multilevel structure is designed to account for variation in rail-to- 

ridesourcing shifts and to identify whether determinants are local or 
occurring due to neighborhood differences. 

The analysis yields the following main findings and implications:  

(1) There is evidence of significant localized surges in ridesourcing 
demand following sudden rail transit disruptions, highlighting 
that there is spontaneous mobility resilience in the system. The 
observed demand substitution is strongest during peak-hour and 
weekday travel, suggesting that ridesourcing provides selective 
mobility redundancy in relation to mandatory and time-sensitive 
travel. 

(2) Characteristics of the community area where the transit disrup
tion is located are responsible for most of the variation in 
observed ridesourcing substitution. Greater shifts to ridesourcing 
occur in community areas that have higher percentages of white 
residents, especially during peak-hour disruptions, suggesting 
potential spatial inequities in the capacity for mobility adap
tiveness and thus community resilience. 

(3) To address the negative impacts of transit disruptions on rider
ship, transit agencies may consider investing in partnerships 
oriented toward mobility as a service. If transit operators like the 
CTA were to adopt a policy of delivering end-to-end service 
despite unplanned disruptions, they would maintain re
sponsibility for providing transportation alternatives when ser
vice disruptions occur. Our research suggests a potential role for 
on-demand ridesourcing to address no-notice transit service 
disruptions. 

6.2. Limitations 

Some caveats warrant discussion. First, modeling was based on the 
identification of transit disruptions and shuttle bus deployment gathered 
from a systematic search of local news sources. As such, these data were 
aggregated at the station level, and it was assumed that a given 
disruption lasted the same duration at every impacted station. Second, 
our approach to analyzing mode-switching behavior was based on a 
spatial delimitation of a 0.25-mile radius around each impacted station, 
but mode-shifting behaviors may have occurred across a broader time- 
space domain, including travelers who learned of the disruption prior 
to departure. Third, sociodemographics were spatially aggregated, 
which may mask individual-level rider characteristics. Since individual 
ridership data were not available, we could not analyze multimodal 
adaptive strategies for individual travelers. 

Despite these limitations, based on conversations with a CTA rail 
transit agency professional and considering the challenges of data 
availability and accessibility, our method of data aggregation was the 
best option available to us. Acknowledging the limitations associated 
with the use of a natural experiment, our research contributes new in
sights that would be difficult to gauge using small-scale stated response 
data. Specifically, we capture the circumstances of the disruptions that 
lead to real-world shifts to ridesourcing. Thereby the findings of this 

Table 4 
Summary of advantages and challenges of transit-ridesourcing integration.  

Transit 
ridesourcing 
integration 

Advantages Challenges 

Collaboration Increases coordination and 
communication between 
operators 

Contrasting expectations and 
standards of operators; 
Conflicting operator goals 

Performance Provides more seamless 
service integration 

Differences in regulation and 
standards for operators 

User experience Improves the user 
experience for riders; Speeds 
up disruption recovery 

User barriers, including 
difficulty for less tech-savvy 
demographics to navigate 
integrated mobility systems ( 
Butler et al., 2020)  
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study shed light on which communities effectively shift to adaptive on- 
demand mobility during a disruption and which communities must rely 
on other alternatives. 

6.3. Future work 

Based on our findings, we suggest two main avenues for future 
research. First, to address the outlined limitations of spatiotemporal 
data, further collaborative research should aim for a more nuanced 
analysis of transit riders’ behavioral adaptations to better understand 
socioeconomic determinants of mobility resilience. For example, 
matching individual-level ridership data by ridesourcing pickup loca
tions with spatiotemporal bus and rail ridership data would reveal more 
detailed insights into individual user multimodal adaptive mobility 
strategies. Related to this, an interesting area of future research is to 
examine the potential impacts of rail transit disruptions on ridesourcing 
demand in neighboring areas to explore spatial and temporal spillover 
effects, perhaps by applying a methodology similar to that seen in Soria 
and Stathopoulos (2021). Such an investigation would provide insights 
into what happens to service quality and pricing when disruptions are 
publicized and ridesourcing drivers are pulled to the source of a 
disruption. This could have important implications for already- 
underserved areas where existing gaps in service may be exacerbated. 

Second, we encourage the expansion of this investigation using more 
qualitative analysis. There is a need for further understanding of the 
adaptative decision-making process that riders use to cope with un
planned travel disruptions. This includes more precise identification of 
risk perceptions, communication about disruptions, circumstances of 
travel, and attitudes related to emerging ridesourcing options. One po
tential recommendation is to use latent variable modeling to better 
capture rider perceptions surrounding the use of ridesourcing as an 
adaptive mobility strategy and enable more tailored transportation 
policies to foster equitable disruption recovery. 
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