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Urban rail transit networks provide critical access to opportunities and livelihood in many urban systems.
Ensuring that these services are resilient (that is, exhibiting efficient responses to and recovery from disruptions)
is a key economic and social priority. Increasingly, the ability of urban rail systems to cope with disruptions is a
function of a complex patchwork of mobility options, wherein alternative modes can complement and fill
occurring service gaps. This study analyzes the role of ridesourcing in providing adaptive mobility capacity that
could be leveraged to fill no-notice gaps in rail transit services, addressing the question of distributional impacts
of resilience. Using a natural experiment, we systematically identify 28 major transit disruptions over the period
of one year in Chicago and match them, both temporally and spatially, with ridesourcing trip data. Using
multilevel mixed modeling, we quantify variation in the adaptive use of on-demand mobility across the racially
and economically diverse city of Chicago. Our findings show that the gap-filling potential of adaptive ride-
sourcing during rail transit disruptions is significantly influenced by the station-, community-, and district-level
factors. Specifically, greater shifts to ridesourcing occur during weekdays, nonholidays, and more severe dis-
ruptions, in community areas that have higher percentages of white residents and transit commuters, and in the
more affluent North district of the city. These findings suggest that while ridesourcing appears to provide
adaptive capacity during rail disruptions, its benefits do not appear to be equitable for lower-income commu-
nities of color that already experience limited mobility options. Research implications for mobility operator
collaborations to support mobility as a service are discussed. This study builds a more comprehensive under-
standing of transit service resilience, variation in vulnerability, and the complementarity of ridesourcing to
existing transport networks during disruptions.

1. Introduction

Urban livability refers to the quality of life in urban communities and
the degree to which cities satisfy the needs and aspirations of their in-
habitants by providing physical and social well-being and supporting
meaningful existences (Kashef, 2016). One important component of
urban livability is a resilient mobility system that provides reliable ac-
cess to work, healthcare, food, recreation, and other life-sustaining
services (Renne et al., 2022). Ensuring resilience is challenging, how-
ever, because transportation systems rely on a complex web of fixed
assets and multiple dynamic components, including competing opera-
tors, fixed-schedule and on-demand modes, and operations across het-
erogeneous built and social environments. In some regions, rail transit
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serves as a backbone for urban mobility (Litman, 2007). As such, in
complex urban mobility systems, the ability of alternative modes to fill
no-notice gaps in transit services is of critical importance, and the
interplay between rail transit with other modes in the transportation
system is increasingly recognized as foundational to mobility resilience.

Unexpected disruptions, such as service interruptions due to acci-
dents, infrastructure breakdowns, and passenger distress, are common
occurrences in urban transit systems (Mo et al., 2022). The presence of
ridesourcing services in mobility portfolios introduces a novel oppor-
tunity to bolster mobility response and recovery. Recent work has begun
to highlight the need for more equitable resilience plans, noting that
impacts can vary across population groups and be tied to existing
vulnerability (Coleman et al., 2020; Dargin & Mostafavi, 2020). In this
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research, we consider the role of ridesourcing as an adaptive substitu-
tion strategy to fill gaps created by no-notice disruptions in fixed
guideway systems, such as rail transit services. Moreover, we analyze
socio-spatial variation in rail-to-ridesourcing substitution across com-
munities. Therefore, our discussion of resilience focuses on the dimen-
sion of redundancy, as well as the distributional impacts of resilience.
This is in line with other works that have emphasized the feature of
redundancy across spatially heterogeneous urban transport systems to
reduce the risk of service disruptions (e.g., Estévez-Mauriz et al., 2017).

Our research uses a natural experiment to study the resilience of
urban transit in Chicago. The natural experiment approach unlocks the
opportunity to study variation that naturally results from an event or
intervention beyond the researchers’ control (e.g., Lu et al., 2021; Wen
et al., 2017). By jointly studying naturally occurring disruptions in the
rail transit system with associated surges in ridesourcing demand, we
empirically capture the substitutability among competing modes. We
systematically identify 28 significant no-notice rail transit disruptions
over the period of one year (November 2018 through October 2019).
Then each event is temporally and spatially matched with ridesourcing
trip data from the City of Chicago. We estimate a multilevel mixed
(MLM) model to examine socio-spatial variation in ridesourcing demand
surges that are associated with transit disruptions across stations,
neighborhoods, and districts, while controlling for the time of day, day
of the week, and disruption location. The research design thereby cap-
tures spontaneous mobility resilience as travelers use ridesourcing as an
adaptation strategy to cope with disruptions to their travel.

The main contributions of this study are the insights it provides into:
(1) whether ridesourcing is used as a gap-filling mechanism during
unplanned rail transit disruptions in Chicago, (2) whether its utilization
for this purpose is equitably distributed across the city, especially in
terms of racial and economic representation, and (3) whether variation
in adaptive ridesourcing demand during disruptions is primarily
attributable to the station-, community-, or broader district-level factors.
This study contributes to an improved understanding of how riders
across different communities cope with disruptions. Furthermore, we
discuss how our findings can guide more equitable communication
strategies for transportation agencies and potential collaborations with
private, on-demand mobility service operators to treat mobility as a
service regardless of the specific transportation mode used.

Our research contributes to filling two main gaps in knowledge. First,
considering the resilience concept of redundancy, we analyze how the
complex multimodality of transportation systems contributes to
mobility resilience in terms of the interaction between public transit and
ridesourcing, rather than focusing on single-mode resilience. Second,
acknowledging the growing interest in equitable resilience, we provide
further insights on the socio-spatial variation in adaptive ridesourcing
during unplanned transit disruptions. Our analysis suggests that transit
riders in under-resourced areas may not be benefitting as much as more
privileged transit users from the same ridesourcing-based, mobility gap-
filling strategy.

The remainder of this paper is organized as follows. The next section
reviews related studies on the relationships between transit disruptions,
connections between rail transit and ridesourcing, and social equity. The
third section discusses the data sources, variable definitions, and model
specifications. The fourth section compares the results from the MLM
models and discusses the empirical findings. Research implications are
discussed in the fifth section. Finally, the conclusion is presented in the
sixth section.

2. Literature review
2.1. Mobility resilience
To study mobility resilience, we must consider how transit agencies

are preparing for, reacting to, and recovering from service disruptions
that impact the daily lives of individuals and businesses. Resilience is
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currently a key priority in national policy agendas and discourse (Na-
tional Academies of Sciences, Engineering, and Medicine, 2021a; U.S.
Chamber of Commerce, 2022). Mobility resilience refers to the adaptive
ability of a transportation system to maintain functionality despite a
disturbance (Walker et al., 2002; Walker et al., 2004). da Mata Martins
et al. (2019) define mobility resilience as the ability of travelers to
maintain their mobility without compromising their quality of life,
adaptable resilience as the possibility of adopting new mobility patterns
to maintain quality of life, and transformable resilience as the ability to
transform current mobility patterns into more adaptable ones. Current
research on mobility resilience covers a broad range of subjects, from
post-disaster recovery following extreme climate events (Chan &
Schofer, 2016; Donovan & Work, 2017; Ji et al., 2022) to disruption
preparation that takes into consideration network redundancies and
impacts on links and nodes (Capri et al., 2016; Fotouhi et al., 2017; King
& Shalaby, 2016; Leu et al., 2010; Serulle et al., 2011).

Operationally, transportation resilience is difficult to define and
measure (National Academies of Sciences, Engineering, and Medicine,
2021b), and many metrics have been proposed, often centering on the
four Rs of resilience: robustness (i.e., maintaining operations while
withstanding stresses), resourcefulness (e.g., supply chain management,
communication, and mobilization of resources), rapidity (i.e., quickly
returning to normal operations, containing losses, and preventing
further degradation of the system), and redundancy (e.g., providing
backup resources and substitutability) (Adams et al., 2012; DiPietro
et al., 2014; Faturechi & Miller-Hooks, 2015; Gu et al., 2020; King et al.,
2020). In this study, we focus on disruption recovery by applying the
resilience dimension of redundancy, that is, the provision of backup
urban mobility resources for modal substitution. Recently, resilience
equity and its ties to vulnerability have attracted attention (Coleman
et al., 2020; Dargin & Mostafavi, 2020). From a social equity perspec-
tive, it is important to consider how spatial and temporal differences in
resilience can result in inequitable outcomes (Meerow & Newell, 2019).
Specifically, in this paper we examine the variation of resilient mobility
behavior across communities at three levels of aggregation to identify
potential resilience inequities.

2.2. Recovering from mobility disruptions: what do we know?

Understanding mode substitution for disruption recovery requires us
to ground our analysis in travel behavior surrounding transit disruptions
more broadly, followed by a focus on no-notice disruptions. We also
summarize the on-demand mobility literature in the context of disrup-
tions and user profiles to build a fuller understanding of the connections
between disruptions in fixed transit services and on-demand ridesourc-
ing behaviors.

2.2.1. Recovery from planned rail transit disruptions: decisions of travelers

The duration of planned transit service disruptions can span from
short-term (e.g., hours or days) to long-term (e.g., months or years)
(Arslan Asim et al., 2021). Planned, long-term rail transit disruptions
may include scheduled maintenance, infrastructure upgrades, and
strikes. For planned and long-term rail line or station closures, riders
have ample time to adjust their travel plans, whether temporarily or
permanently, including choice of departure time, route, and mode. The
impacts of long-term rail transit disruptions on travel behavior have
been widely studied over the past decades (Marsden & Docherty, 2013;
Pnevmatikou et al., 2015; Pu et al., 2017; Van Exel & Rietveld, 2001;
Zhu et al., 2017). Across Europe and the United States, the effects of
long-term transit disruptions have resulted in a permanent decline in
transit ridership (Van Exel & Rietveld, 2001; Zhu et al., 2017). In Chi-
cago, lengthy track operation disruptions have led to transit abandon-
ment by an estimated 4 % of riders (Mojica, 2008).

In general, mode-shifting behavior during long-term transit disrup-
tions has been shown to vary according to rider sociodemographics,
disruption type, and city-specific factors. More specifically, transit
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disruption responses during strikes include individual-specific factors (i.
e., car ownership, number of household members, available cars,
driver’s licenses, and income), context-specific factors (i.e., travel dis-
tance, travel time, travel cost, trip destination, and weather), and
journey-specific factors (i.e., public transport station accessibility and
trip purpose) (Nguyen-Phuoc et al., 2018). Li et al. (2020) found that the
uncertainty surrounding disruptions split riders into two classes of be-
haviors, namely uncertainty pessimists and uncertainty optimists.
Typically, during long-term disruptions, most travelers switch to per-
sonal vehicles (Van Exel & Rietveld, 2001; Zhu et al., 2017), but
disruption outcomes are often inequitable. For example, those less likely
to shift to a car during transit disruptions include women and lower-
income individuals, as well as workers with more flexible schedules
(Pnevmatikou et al., 2015). In Washington, D.C., long-term rail transit
disruptions are associated with increased bus ridership (Pu et al., 2017),
especially among lower-income riders (Zhu et al., 2017). In Chicago,
planned maintenance resulted in a minor share of rail riders shifting to
buses and the majority continuing to use rail transit (Mojica, 2008).
More recent smart card data analysis suggests that Chicago travelers use
a myriad of adaptation strategies (Mo et al., 2022).

Since 2020, the COVID-19 pandemic has resulted in long-term dis-
ruptions to transportation systems, including lasting reductions in public
transit ridership (Soria et al., 2023). A national U.S. study found that
locations with greater proportions of essential workers, African Ameri-
cans, Hispanics, older adults, and females, maintained higher transit
demand levels during COVID-19 (Liu, Miller, & Scheff, 2020; Liu, Palm,
et al., 2020). Ongoing work is finding interesting relationships between
pandemic transit disruptions and alternative mode use. During the
pandemic, bikeshare ridership was shown to increase (Chen et al., 2022;
Kim & Cho, 2022). Considering ‘post-pandemic’ travel (defined as “the
period during which COVID-19 is no longer a public health threat™), Loa
and Habib (2023) found a greater influence of sociodemographic factors
and level-of-service attributes for mode choice decisions than percep-
tions of risk and other pandemic-related factors.

2.2.2. Recovery from unplanned, short-term rail transit disruptions

Compared to the extensive body of research on planned, long-term
rail transit disruptions, research on the travel behavior effects of un-
planned, short-term disruptions is scant (Sun et al., 2016). Unplanned
service disruptions may be the result of extreme weather or natural di-
sasters, infrastructure failures (e.g., related to power, signaling, and
crossovers), vehicle breakdown (e.g., rolling stock issues), and service
interruptions or delays due to intrusions on rail tracks or medical
emergencies (e.g., debris, suicides, crossing incidents, etc.) (Arslan Asim
etal., 2021; Pender et al., 2013). A probabilistic model using smart card
data found five behavioral responses to unplanned rail transit disrup-
tions: using a bus, changing rail route, not changing rail route, not using
public transit, and not being affected (Mo et al., 2022). Important factors
influencing behavioral responses to no-notice disruptions include user
expertise, car availability, perception of service recovery time, available
transport services, time constraints, and the timing and location at
which communication about the disruption is received (Adelé et al.,
2019). In response to short-term disruptions, riders are more likely to
cancel their trips compared to long-term disruptions (Nguyen-Phuoc
et al., 2018).

2.3. Unexplored capacity: on-demand ridesourcing for mobility
resilience?

Ridesourcing offers a potential solution for urban passenger mobility
in ordinary travel settings, and a large body of research has investigated
its demographic and spatial use. However, little is known about the
ability of on-demand modes like ridesourcing to provide urban mobility
resilience during disruptions (Borowski & Stathopoulos, 2020). The
following sections summarize what is known about user patterns and
social inequities to guide the analysis of the role of ridesourcing
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2.3.1. Ridesourcing demand user and spatial profiles

Consistently, studies have shown that ridesourcing users tend to:
have a higher income (Sikder, 2019), be younger (Clewlow & Mishra,
2017; Rayle et al., 2016; Young & Farber, 2019), highly educated (Alemi
et al., 2018; Dias et al., 2017), full-time workers (Shamshiripour et al.,
2020), male (Zhang & Zhang, 2018), own fewer vehicles per household,
and live closer to transit stations (Deka & Fei, 2019). Looking at spatial
use patterns, recent analyses of large-scale ridesourcing trip data reveal
that several aggregate city-specific factors correlate with ridesourcing
trip counts. Greater ridesourcing usage is shown to be positively corre-
lated with the population density in Austin (Lavieri et al., 2018), Chi-
cago (Ghaffar et al, 2020), and Los Angeles (Brown, 2019b),
employment density in Austin (Lavieri et al., 2018), Chicago (Ghaffar
et al., 2020), Los Angeles (Brown, 2019b), and New York City (Correa
et al., 2017), and land-use diversity in Austin (Yu & Peng, 2019) and
Chicago (Ghaffar et al., 2020), as well as lower household income in Los
Angeles (Brown, 2019b) and zero-vehicle households and percentage
transit commuters in Chicago (Ghaffar et al., 2020).

Relationships of ridesourcing with competing transport options, like
public transit, are less clear. Some evidence suggests that public trans-
port demand is reduced when competing with the door-to-door business
model of ridesourcing (Clewlow & Mishra, 2017). In Chicago, Marquet
(2020) finds that ridesourcing is used to travel between areas that are
already highly accessible by transit, suggesting the potential to com-
plement transit due to market density. Soria and Stathopoulos (2021)
note that the link between ridesourcing and transit varies across cities
and space and can be either competing or complementary, warranting
continued research to pinpoint the evolving and location-specific mode
connections. Overall, evidence indicates that ridesourcing is related to
rider privilege and that most rides take place in the dense and accessible
urban core (Lewis & MacKenzie, 2017; Soria & Stathopoulos, 2021).

2.3.2. Social inequity concerns related to on-demand mobility

The question of demographic or spatial exclusion related to on-
demand mobility platforms has attracted significant attention (Pan-
gbourne et al., 2020). The ridesourcing business model has been accused
of providing limited accessibility to several rider groups, namely; rural
populations, under-banked households, individuals without smart-
phones, individuals with disabilities, lower-income groups, or other
historically marginalized communities (Daus Esq, 2016). Specifically,
the reliance on smart-phone access and skills may generate accessibility
inequalities (Shaheen et al., 2017). Ridesourcing companies continue to
grapple with problems of the digital divide, rider discrimination, data
privacy, and workers’ rights (Jin et al., 2018).

Prior research has shown evidence that ridesourcing service quality
differs according to race, ethnicity, and income, which raises important
equity concerns. Ge et al. (2016) point to patterns of discrimination in
ridesourcing practices. In Seattle, longer wait times for ridesourcing
services at night were observed in areas with higher percentages of
racial minorities (Hughes & MacKenzie, 2016). A similar trend of longer
ridesourcing wait times has been observed for communities of color in
Chicago (CNT, 2019). In New York City, ridesourcing pickup rates were
lower in lower-income areas (Correa et al., 2017; Jin et al., 2019). By
contrast, other recent research instead argues that ridesourcing is closer
than traditional taxis to eradicating racial and ethnic inequities in ser-
vice quality (Brown, 2019a). In Atlanta, the estimated wait times of
UberX and UberBLACK were not significantly correlated with either race
or income (Wang & Mu, 2018).

Looking at broad spatial ridership patterns for the case of Chicago,
research confirms a greater concentration of rides in the more affluent
North and Central districts of the city (Brown, 2019b; Ghaffar et al.,
2020; Soria et al., 2020). Fewer ridesourcing trips are generated in areas
that are predominantly Hispanic or African American, lower income, or
have lower rates of car ownership (Marquet, 2020). Similarly, solo
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ridesourcing demand is lower in areas where socioeconomic disadvan-
tage is concentrated (Soria & Stathopoulos, 2021). These findings mirror
research on another on-demand mobility platform; Divvy bikeshare
uptake is lower in the less affluent, majority African American, South
district of Chicago (Biehl et al., 2018).

2.3.3. Linking on-demand mobility to disruptions

Only recently has research begun to consider the role of ridesourcing
in addressing resilience in the context of no-notice transit service dis-
ruptions. Borowski and Stathopoulos (2020) found that ridesourcing
may be used to connect with transit during no-notice urban evacuations.
One study of ridesourcing during unplanned subway disruptions in
Toronto suggests less frequent shifts to ridesourcing in disadvantaged
neighborhoods and inequitable bus bridging services (Liu, Miller, &
Scheff, 2020; Liu, Palm, et al., 2020). For Chicago, stated preference
survey research on ridesourcing usage during transit disruptions shows
that millennial status, higher level of education, smartphone access, and
prior ridesourcing experience is associated with a shift to ridesourcing
(Rahimi et al., 2020). Another stated preference investigation shows
that the preference for on-demand ridesourcing during no-notice
mobility disruptions is shaped by identity factors, such as the in-
tersections of race, gender, and class identities (Borowski & Statho-
poulos, 2020).

The present study builds on earlier work investigating the role of
bikesharing as a gap-filling mechanism during longer-term transit dis-
ruptions wherein a temporary increase in bikeshare demand during
transit strikes and maintenance projects was noted, suggesting the
ability of on-demand transportation modes to improve mobility resil-
ience (Fuller et al., 2012; Kaviti et al., 2020; Pu et al., 2017; Saberi et al.,
2018). In this study, we focus on shifts to ridesourcing during un-
planned, short-term transit service disruptions. While similar research
has been conducted in Toronto (Liu, Miller, & Scheff, 2020; Liu, Palm,
et al., 2020), our work is among the first to investigate mobility resil-
ience in the context of Chicago with its unique transit and sociodemo-
graphic patterns.

2.4. Literature takeaways

Acute shocks and chronic stressors are likely to continue to worsen in
urban areas due to climate change and aging infrastructure. In this
context, transit agencies face the risk of exacerbated ridership aban-
donment following unplanned service disruptions. This study examines
an untapped potential of emergent, on-demand modes to mitigate the
negative impacts of no-notice transportation system shocks, thereby
boosting mobility resilience. However, this potential is not without
shortcomings. Although the interest in equity is growing, its relationship
with mobility resilience remains understudied (Mattsson & Jenelius,
2015). Here we carefully consider the equity context of on-demand
mobility usage to guide our selection and interpretation of station-,
community-, and district-level predictor variables. We use an MLM
modeling analysis to examine spatially determined variation in resil-
ience across the city. This research fills current gaps in the literature
related to the question of “resilience for whom” while considering
multimodal aspects of resilience. In this study, which is among the first
to use a natural experiment to examine ridesourcing behavioral re-
sponses to no-notice, short-term transit disruptions, we hypothesize that
adaptive ridesourcing will be associated with traditionally privileged
sociodemographics and resource access.

3. Data and model
3.1. Case study context
In this study, we analyze the equity of ridesourcing for mobility

resilience in Chicago. Notably, Chicago is home to the second largest
transit network in the U.S. with the Chicago Transit Authority (CTA)
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serving 3.5 million riders (CTA, 2020a) with nearly 16 million rail
transit rides each month (CTA, 2020b). While unequal access to essential
resources is common in many U.S. cities, Chicago contends with his-
torically rigid, spatially defined, social and economic inequality that is
frequently linked to race. For example, the income disparity between
white households and racial minority households is wider in Chicago
than it is across the nation (Asante-Muhammed, 2017). Additionally,
urban mobility systems typically contend with multiple layers of
inequality in mobility investments and service access that determine
service quality for different population segments (Lowe, 2014). Chicago
is subject to urban mobility inequities both in terms of inferior service
provisions (e.g., poor mobility accessibility or lack of pedestrian-friendly
infrastructure) and disproportionate negative impacts (e.g., biased
policing) in low-income communities (Barajas, 2021; Krapp, 2020).
Fig. 1 shows the spatial distributions in 2019 for Chicago’s 77
community areas of: (a) median household income, (b) percentage of
people of color, (c) percentage of transit commuters, (d) population
density, (e) total ridesourcing trips, and (f) percentage of active mode
commuters. These heatmaps confirm the following three observations.
First, there is a narrowly concentrated demand for ridesourcing and
active mobility commuting in the Central district of the city, repre-
senting the urban core from which the rail transit network expands
radially (e and f). Second, there is a greater concentration of population
and transit commuting in the North district (c and d). Third, the distri-
bution of income is largely opposite of the majority non-white racial
breakdown (a and b). Fig. 2 shows the layout of the Chicago Transit
Authority rail network with community area boundaries for comparison.

3.2. Data and variable description

This analysis draws on data fusion of six data sources. The ride-
sourcing dataset obtained from the City of Chicago data portal is freely
available for download and consists of over 152 million trips by Uber,
Lyft, and Via spanning the period of November 2018 through October
2019 (Chicago Data Portal, 2019). This dataset provided our “Number of
ridesourcing trips” variable. Five additional datasets were used to
extract explanatory variables for our analysis, including seven socio-
demographic variables from the Community Data Snapshot (CMAP,
2019), 11 variables related to service quality, ridership, location, and
timing extracted from the Chicago Transit Authority (CTA, 2019), one
station count variable from the bikesharing Station Map and Data
(Divvy, 2020), three disruption source variables from Google News for
Chicago, IL (Google, 2019), and two weather variables from Iowa
Environmental Mesonet (ISU, 2019). Table 1 lists all the variables
resulting from this data fusion. Variables are grouped by station level
when available or community level and further grouped by discrete or
continuous nature.

3.2.1. Community area sociodemographics

The City of Chicago comprises 77 community areas that can be
further aggregated into four districts (i.e., North, Central, South, and
West). For reasons of privacy, individual-level data on ridesourcing trip-
makers, such as sociodemographics and residential locations of rail and
ridesourcing riders, are not publicly available (City of Chicago, 2020).
Therefore, we follow the practice of using aggregated measurements of
community sociodemographics to represent sociodemographic variables
of interest (Liu, Miller, & Scheff, 2020; Liu, Palm, et al., 2020). While
this practice can mask variation in rider characteristics, it is currently
the best option available to researchers.

3.2.2. Disruption-based ridesourcing demand

Twenty-eight CTA rail transit disruptions lasting a minimum of 1 h
are identified as having occurred from November 2018 through October
2019 using a Google News search for the phrase “CTA disruption”. The
timespan for our study was truncated to a single year due to the major
impacts of the COVID-19 pandemic on public transit and ridesourcing
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Median Income ($) Percent POC (%)

30,000 60,000 90,000

Population Density Total Ridesourcing
(per sq. mi) Trips

10,000 20,000 30,000

(d)

5,000,000 15,000,000 0

Percent Commute
by Transit (%)

Percent Commute
Active Modes (%)

Fig. 1. Heatmaps showing the spatial distribution by Chicago community area (2019) of: (a) median household income, (b) percent population of color, (c) percent
commute by transit, (d) population density, (e) total ridesourcing trips, and (f) percent commute by active (walk and bike) modes.

ridership beginning in early 2020. Fig. 3 highlights the locations of these
transit disruption sources at the station, community, and district levels,
and it can be observed that all CTA lines experienced disruptions during
this period. Table 2 lists the disruption events and identifies their lo-
cations, impacted stations, whether the disruption occurred during peak
travel hours, and whether a shuttle bus was deployed by CTA to assist
riders according to the associated report.

3.2.3. Baseline ridesourcing demand

To generate a robust four-day ridesourcing demand baseline, trip
counts during the disruption period are averaged across the same day of
the week and the time of day (i.e., the specified disruption period) as the
disruption for two weeks prior to the event and two weeks following, as
in Liu, Miller, and Scheff (2020), and Liu, Palm, et al. (2020). This was
done to account for station accessibility and seasonality. Each ride-
sourcing trip is included in the analysis if the starting location is within a
0.25-mile radius of a disrupted transit station. This frequently used
walking estimate (Younes et al., 2019; Zhao et al., 2003) is applied to
account for riders who source rides on their way to or from the impacted
transit station, such as to facilitate ridesourcing pick-up by avoiding the
potential crowds surrounding the disrupted station.

3.3. Multilevel mixed model specification

To address the research question of ridesourcing surges prompted by
transit disruptions, we control not only for the immediate station attri-
butes where the disruption occurs, but also for community area and
district-level factors in an MLM structure as shown in Fig. 4. MLM
models provide a mechanism for analyzing datasets where events (in
this case, station disruptions) are nested within higher-order spatial
contexts and correctly account for the hierarchical nesting of data and

effects happening at different levels (Goldstein, 2003; Julian, 2001;
Wampold & Serlin, 2000). In the past, MLM or hierarchical models have
been used to represent the structure of social relations within personal
networks (Carrasco & Miller, 2009), temporal changes in bikeshare trips
(El-Assi et al., 2017), and transit demand between origin-destination
station pairs (Iseki et al., 2018). Here we use the multilevel analysis to
identify the factors associated with systematic variations in ridesourcing
demand during transit disruptions at the station, community area, and
city district levels. We can thereby examine explanatory variables at
each level of the data hierarchy, and in doing so, control for the com-
munity area effects on station ridership variations.

The advantage of using the multilevel structure is the ability to es-
timate the variability in results that can be attributed to the neighbor-
hood (e.g., community area) effects rather than only to the individual
station effects. By carefully controlling variable inclusion at the appro-
priate level, the model considers the correlations between observations
within the same group (i.e., a given community area) as distinct from the
correlations between groups (Jones & Duncan, 1996). In contrast, a
standard one-level regression model would ignore group-level distinc-
tions (e.g., different commuting patterns in different communities) and
group-level correlations (e.g., similar patterns of use among stations in
the same community related to the income level of riders). A useful way
to think of MLM models is as a structure positioned between two
modeling extremes when groupings are known: fully pooled and fully
unpooled specification (Gelman & Hill, 2007). A fully pooled model
treats group-level variables as individual variables, thereby ignoring
group-level distinctions. The opposite extreme, a fully unpooled model,
asserts that the groups are so completely different that they cannot be
associated in the same model. The MLM model offers a compromise
between these perspectives by modeling individual-level fixed effects as
well as distributional assumptions on the random effects.
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Fig. 2. Map of the Chicago Transit Authority rail network and community area boundaries.

Fig. 5 highlights each variable tested in the modeling along with the
inclusion strategy for each level of analysis. The dependent variable is
the number of ridesourcing trips compared to the baseline demand two
weeks prior and two weeks following the disruption (i.e., individual
station observations). Covariates related to the disruption cause,
context, and timing are included as explanatory variables at the station
level, in line with Mojica (2008) and Pu et al. (2017). Some variables
were tested in the model at multiple levels. For example, during model
development, the temperature and precipitation variables (measured for
the city at weather stations) were included at various levels, but they
were only significant at the station level. This makes sense given the
expectation that weather impacts station-level decision-making (Chan &
Schofer, 2014). The slight discrepancy that weather data is aggregated
at the city level and included in the model at the station level does not
present any major issue given the lack of micro-climates in the city of
Chicago, and thus, the weather is not a unique characteristic of a com-
munity area or district. Future micro-climate studies using localized
forecasts are encouraged, but the weather in Chicago lacks variation at
the station level.

We further investigate whether the fact that stations are nested
within community areas and major districts plays a role in ridesourcing
demand shifts. A comparable disruption can likely generate different
mode-shifting effects depending on where it is located, owing to the
different composition of travelers and the availability of alternative
modes. Specifically, the broader context is controlled for by including
sociodemographic and mobility factors measured at the community
level, which are then in turn aggregated to the district level of analysis.
We apply group mean centering for community area variables (Enders &
Tofighi, 2007) to facilitate the interpretation of the cross-level

interactions. It is worth noting that since the disruptions we measure
result from a natural experiment, we are unable to control exhaustively
for all combinations of factors that are at play within and between
community areas. Therefore, we include random intercept effects at
each of the lower-nested group levels to partition the unexplained
variability effects on the dependent variable.

Conceptually, the model can be articulated as regression equations
occurring at different levels where each group-level coefficient has its
own regression equation. Following Gill and Womack (2013), the gen-
eral three-level structure is defined in Eq. (1) as:

Yijk = ﬂ(]jk +ﬂ|jkx1ijk + ik @

where i represents the station, j represents the community area, and k
represents the district. fy; is the (random) intercept measuring average
ridesourcing use (defined in Eq. (2) when i = 0), and X% is a predictor,
such as the average daily transit use measured at the station level, while
Phji is the (random) slope depicting the relationship between the station-
level variables and the change in ridesourcing demand (as defined in Eq.
(2) when i = 1). The error term e relates to station-level effects.

By including Level 2 and 3 explanatory variables in the model, we
uncover broader area effects. The Level 2 formulation includes variables
aggregated at the community area level. This can be thought of as being
equivalent to how student educational performance may be affected by
their classroom teacher in a way that is distinct from the effects of their
individual factors or from more aggregate school-level effects. At Level
2, the general regression equation is defined as:

Bie = Yior + YiuXoje + i 2)
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Table 1
Descriptive statistics of the variables considered in this study.
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Variable name (unit) Minimum Maximum Mean Standard deviation Data source

Station-level factors” (continuous)

Air temperature (degrees Fahrenheit) 11.00 85.45 53.83 18.10 (ISU, 2019)

Disruption duration (hours) 1.00 7.00 2.49 1.52 (CTA, 2019)

Number of bus stations 0.00 129.00 36.17 28.83 (CTA, 2019)

Number of Divvy stations 0.00 30.00 4.02 5.54 (Divvy, 2020)

Number of ridesourcing trips 0.00 5581.00 635.57 1001.46 (Chicago Data Portal, 2019)
Number of stations impacted 1.00 15.00 8.46 4.16 (CTA, 2019)

Precipitation (inches) 0.00 0.04 0.00 0.01 (ISU, 2019)

Station ridership (in thousands of riders) 0.65 58.05 12.26 11.39 (CTA, 2019)

Community area factors (continuous)

Area (miles squared) 0.71 32.47 3.83 6.31 (CMAP, 2019)

Median household income (in thousands of U.S. dollars) 19.80 104.35 55.44 28.40 (CMAP, 2019)

Percentage of commuters taking transit 10.80 54.20 34.26 11.78 (CMAP, 2019)

Percentage of residents who self-identify as white non-Hispanic 0.70 81.50 38.06 30.65 (CMAP, 2019)

Percentage of zero-vehicle households 8.60 57.40 33.50 12.06 (CMAP, 2019)

Population (in thousands of people) 2.44 100.47 40.57 25.64 (CMAP, 2019)

Population density (in thousands of people per square mile) 0.38 32.73 16.52 9.64 (CMAP, 2019)

Variable name (binary) Number of 1’s Percentage of 1's Data source
Station-level factors” (discrete)

Deployment of shuttle bus: 1 if yes; 0 otherwise 71 63 % (CTA, 2019)
Disruption cause: Medical emergency: 1 if yes; 0 otherwise 65 58 % (CTA, 2019)
Disruption source: same station. 1 if direct effect (i.e., occurring at the same station) 30 27 % (Google, 2019)
Disruption source: different station. 0 if indirect effect (i.e., occurring at a different station) 81 73 % (Google, 2019)
Holiday occurrence: 1 if yes; 0 otherwise 8 7 % (CTA, 2019)
Late night (after 10 PM): 1 if yes; O otherwise 6 5% (CTA, 2019)
Peak hour indicator: 1 if yes; 0 otherwise 24 21 % (CTA, 2019)
Weekday indicator: 1 if yes; 0 otherwise 71 63 % (CTA, 2019)
District-level factors (discrete)

Airport: 1 if present; 0 otherwise 7 6 % (Google, 2019)
District: North side: 1 if yes; O otherwise 50 45 % (CTA, 2019)

# Station-level variables are for the affected stations considering the 28 disruptions.

where i = 0,1 and the random intercept fy; is a function of Yo, which
is the grand mean of the ridesourcing demand surges across the stations
in the community (defined below in Eq. (3)). The subscript jk denotes
the distinct community area impacts. The y random effects coefficient
has numbered subscripts; the first denotes the intercept (0) or slope (1),
while the second subscript denotes the independent variable. Departures
from this average intercept represented by X, are the community-level
predictors with y,;, denoting the random slope for the community-level
predictors (Eq. (4)), and ugy is the unique effect associated with the
communities assumed to have a multivariate normal distribution. The
random slope f;; is a function of y;; representing the average effect of
the station-level predictors (i.e., the slope over all stations shown in (Eq.
(5))). Departures from the slope (i.e., random effects) over the station
predictors are represented by the y;; coefficient (Eq. (6)) that would be
removed in the case of a random intercept-only model (as in the current
analysis).

At Level 3, the variables vary by district and apply to all individual
cases and community areas assigned to this group. Therefore, they
contain the subscript k as opposed to ijk or jk. At Level 3, the separate
regression equations for the intercepts and slopes are defined as:

Yook = o + 64Xz + thoor 3
Yoie = 62 + 8sx3 + Uoi “@
Yioe = 61 + Xz + ro )
Yine = 63 + 673 +uy 1 (6)

where &y is the intercept shared by all individual cases; &1, 52, and 53 are
the main effects; &4, 65, and J¢ are two-way interactions; and §; is a
three-way interaction.

In our specific modeling, the outcome variable of the three-level
hierarchy yy is defined as the change in the ridership over the base-
line. After the specification testing, the final model takes the specific
form as shown in Egs. (7)-(15). The model includes a random intercept
Pojk and two main effects (non,holidayijk and peak_houry) at Level 1,
shown in Eq. (7). Level 2 brings in contextual variables used to explain
variability in ridesourcing demand via cross-level interactions. That is,
we model the intercept and slopes explicitly and include Level 1 and
Level 2 independent variables interacted to describe variation in the
intercept. Egs. (8)-(10) show the random intercept y,y, and the cross-
level interaction  terms (percent_whitej, x peak_hour and
percent_transity, x disruption_sourcey ). Level 2 also specifies fy and fi;
which represent the parameter slopes with y,q, and y,q. Level 3 in-
cludes the random intercept 6 and one district-level interaction
(north_quad, x shuttle;;) that is found to generate variability in ride-
sourcing (Eq. (11)), with the remaining parameters §; and 52 denoting
the fixed slope coefficients. The disturbance parameters are included at
the community ug; and district levels ugor (Eqs. (14)—(15)).

Level 1 Model: station effects

()

Yiik = Bojx T+ Botknon _notiday NON-hOLAQY ik + Proat_nowrPEAK-hOUT 3 + Eijk

Level 2 Model: random intercept & cross-level interactions at commu-
nity level
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/}Q,’k = Yoox T Yo1xXpercent_whitejk X Xpeak_hour.ijk

8
+Y02-, Xpercent_transit jk xdismprion_xawce,-/k + Uoj ®
B = Yo ©)
Bajx = Yoo 10)

Level 3 Model: random intercept & cross-level interaction at district

level
Yook = 00 + Snormsmunenorth_districty x shuttle + uoox an
Yior = 61 a2)
Yoor = 62 as)
ug ~ A(0,0%) a4
oo ~ (0, 67) (15)

It is important to note that the cross-level interactions explain a
significant amount of variance of ridesourcing demand changes in
addition to that already explained by the station-level equations.

3.4. Equity analysis

A social equity perspective is applied in the interpretation of the
model findings to examine the question of “mobility resilience for
whom?” This is achieved through population segmentation and the
identification of statistically significant determinants related to spatial
differences in socioeconomic characteristics like race and income, which
is in line with the research methodologies of many scholars in the field of
mobility inequity (Biehl et al., 2018; Brown, 2019a,b; Ghaffar et al.,
2020; Hughes & MacKenzie, 2016; Marquet, 2020; Soria &

Stathopoulos, 2021; Wang & Mu, 2018). Although this study does not
include alternative ways of considering distributional effects through a
synthetic estimator, like the Gini Index, this would be a valuable area of
research for the future that would support practical application and
policy design.

4. Results and discussion

4.1. Neighborhood differences in adaptive ridesourcing during
disruptions: descriptive analysis

Exploratory analysis shows that adaptive ridesourcing response is
not uniform across the city. Two different poles are exemplified in Fig. 6.
Fig. 6.a shows a significant surge in the use of ridesourcing following a
no-notice rail transit disruption. This high-impact North district case in
Lakeview at the Belmont station (i.e., the source location of the
disruption) occurred on a Monday in December during morning peak
hours and was caused by a train striking a person. The baseline ride-
sourcing demand for this time and location is 807 rides, meaning the
disruption is associated with a statistically significant surge in ride-
sourcing trips totaling 2883, which corresponds to a 257 % increase.

Fig. 6.b shows a similar disruption event occurring in an under-
resourced West district neighborhood with limited shifting to on-
demand services. This low-impact disruption in East Garfield Park at
the Kedzie station (i.e., the source location) resembles the Belmont
disruption in that it occurred during weekday morning peak hours and
was caused by a person on the tracks. However, the baseline ride-
sourcing demand for this time and location is a fraction of that at Bel-
mont: only 89 rides. The number of ridesourcing rides during the
disruption event is lower than the baseline of 76 (an insignificant
decrease of 15 %). This observed difference in the disruption response is
likely related to more pervasive racial and economic inequities, along
with differences in transit accessibility. Specifically, Lakeview has a
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Table 2
Twenty-eight unplanned rail transit disruptions in Chicago (Nov. 2018-Oct. 2019).
Number  Date Day Start End District  Disruption source: station Impacted span Stations Peak Shuttle
time time name impacted hour bus

1 11/06/ Tuesday 5:00 6:00 West Western Pulaski to Racine 5 v
18

2 11/12/ Monday 13:30 16:30 North Rosemont Harlem to O’Hare 4 v
18

3 11/26/ Monday 9:00 12:15 West Cicero 54th/Cermak to Pulaski 2 v
18

4 12/06/ Thursday 17:00 18:00 Central Jackson Jackson 1 v
18

5 12/12/ Wednesday  5:00 8:30 South 63rd 47th to 95th/Dan Ryan 7 v
18

6 12/17/ Monday 8:00 10:00 North Belmont Addison to Fullerton 5 v v
18

7 01/12/ Saturday 12:30 14:00 South 47th 63rd to Sox-35th 4 v
19

8 01/20/ Sunday 9:00 10:30 North Jarvis Belmont to Howard 14 v
19

9 02/14/ Thursday 13:00 16:00 West Clinton Ashland to Washington/ 6 v
19 Wabash

10 03/12/ Thursday 21:00 3:00 North Rosemont Jefferson Park to O’Hare 5 v
19

11 04/10/ Wednesday ~ 19:00 2:00 North O’Hare O’Hare to Rosemont 2 v v
19

12 05/01/ Wednesday ~ 7:20 8:20 North North/Clybourn Cermak-Chinatown to 5 v
19 Fullerton

13 05/06/ Monday 16:00 18:00 North Argyle Argyle 1 v
19

14 05/12/ Sunday 14:00 16:00 North Bryn Mawr Addison to Howard 14
19

15 06/06/ Thursday 11:00 16:30 South 47th Ashland/63rd to Roosevelt 10 v
19

16 06/10/ Monday 9:00 10:00 North O’Hare O’Hare to Rosemont 2 v
19

17 06/12/ Wednesday 19:20 20:20 North North/Clybourn Cermak-Chinatown to 11 v
19 Fullerton

18 06/20/ Thursday 10:15 13:30 South 35th/Archer Halsted to Midway 7 v
19

19 06/25/ Tuesday 7:30 8:45 West Kedzie-Homan Kedzie-Homan 1 v
19

20 06/27/ Thursday 12:30 15:00 South 69th 63rd to 95th/Dan Ryan 5 v
19

21 09/07/ Saturday 14:00 15:15 North Belmont Fullerton to Kimball 15
19

22 09/24/ Tuesday 9:00 10:30 North Sedgwick Sedgwick 1 v
19

23 09/26/ Thursday 1:00 4:00 North Rosemont Harlem to O’Hare 4
19

24 09/26/ Thursday 17:45 22:00 North Jarvis Belmont to Howard 14 v
19

25 10/05/ Saturday 22:45 2:15 North Granville Belmont to Howard 14
19

26 10/08/ Tuesday 15:15 16:15 South 63rd Roosevelt to 95th/Dan 10 v
19 Ryan

27 10/30/ Wednesday  15:00 16:00 North Howard Belmont to Howard 14
19

28 10/31/ Thursday 16:15 18:30 Central ~ Harrison Cermak-Chinatown to 11 v
19 Fullerton

median household income of $86,119, and 79 % of its residents are
white, while East Garfield Park has a median household income of
$23,116 and 5.6 % of its residents are white. To systematically examine
different patterns of ridesourcing demand shifts prompted by transit
disruptions across Chicago, we turn to our MLM model results.

4.2. Empirical model specification

Preliminary model exploration was done using standard regression
models. Pitfalls of using ordinary least squares (OLS) regression to
analyze group-level effects with clustered data have been documented
(Moulton, 1990). Specifically, standard errors will tend to be too low,
resulting in Type 1 errors of spurious significant effects (Maas & Hox,
2004). For this analysis, the MLM model was chosen as it is better suited

to answer our research questions about partitioning variance at different
levels and exploring (clustered) community variance in ridesourcing
substitution. Three MLM models are estimated: (1) a basic intercept
model, (2) a station-level analysis, and (3) a model accounting for cross-
level effects. For model building, each of the hypothesized predictors
measured at the station level are tested first independently and then
jointly.

To model explanatory variables, we follow the block entry approach
consisting of the gradual addition of covariates level by level (Cohen
et al., 2014), following the plan outlined in Fig. 5. Data preparation and
merging were done using R 3.5.0 (R Core Team, 2021), with modeling
done in Stata using the mixed function for multilevel mixed-effects linear
regression (StataCorp, 2019).
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in the West district. Disruption duration is indicated by a border. The y-axes are scaled according to baseline ridesourcing trips (10:1).

Table 3
Multilevel mixed model results.
Model 1 Model 2 Model 3

Fixed part Coef. z value P> |z Coef. z value P> |z Coef. z value P> |z
Non-holiday 541 2.97 0.003 599 3.58 0.000
Peak hour 408 4.11 0.000 353 4.22 0.000
Constant —53.2 -0.39 0.700 54.1 0.97 0.332 91.8 1.53 0.125
Cross-level interactions
Peak hour * Percent white 12.3 2.69 0.007
Disruption source: same station * Percent transit commuters 18.4 2.54 0.011
District-level interactions
North district * Shuttle 321 3.66 0.000
Fit statistics
Log-likelihood —836.991 —822.099 —809.572
LR test 12.170 7.150 17.100
Prob > y2 0.002 0.028 0.000
AIC 1681.983 1672.508 1637.144
Pseudo R? 0.340 0.330
Intraclass correlation
Level 3: District 20 % 0% 0%
Level 2: Community area 43 % 56 % 73 %
Level 1: Station 37 % 44 % 27 %

4.2.1. Basic model specification

The results of three MLM models are shown in Table 3. These models
include significant fixed effects and explanatory features, and all pa-
rameters are significant to a 98.9 % level of confidence or greater except
for the model constants. Station-level (Level 1) fixed effects (i.e., non-
holiday disruption and peak hours disruption) have some resemblance with
the standard regression parameter for non-holiday while peak hours
(which is also included in cross-level interactions) has the opposite sign.
Three explanatory features reflect the context surrounding the station,
namely two cross-level (station- and community-level) random effects
(i.e., percent white during peak hours and percent transit commuters at the
source of disruption) and one district-level effect (i.e., shuttle deployment
in the North district).

The empty reference MLM model (Model 1) partitions the variance at
each aggregation level without including any explanatory variables.
This null model is used to calculate the intraclass correlation (ICC), also
known as the variance partition coefficient, for the three levels of
analysis (Snijders & Bosker, 1999). Thereby, Model 1 provides an esti-
mate of a baseline variance of the ridesourcing demand shifts attributed
to factors beyond the immediate station (i.e., community- and district-
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level factors). The intra-community correlation reveals that the largest
share of variation in ridesourcing demand (43 %) is related to
community-level factors while the station level explains 37 % of the
variance.

4.2.2. Model with station effects

In Model 2, with station-level variables, the district random intercept
(and thereby ICC) is insignificant, while the variance is partitioned be-
tween the station (44 %) and community area levels (56 %). Owing to
high variable collinearity, only two fixed-effect explanatory variables
related to the timing of the disruption and a constant are included in
Model 2. These statistically significant effects result in a significant
improvement in the model fit as measured by the deviance difference
(836.99-822.10 = 14.89, exceeding the critical ¥2 of 5.99 with alpha set
at 0.05) and AIC reduction.

4.2.3. Model with community effects

Along the same lines, in Model 3, when adding cross-level effects by
including variables measured at the community area level, the variance
explained clearly shifts toward the community area variables. Despite
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the Level 3 district random intercept collapsing to zero, removing this
variance component from the analysis causes a significant reduction in
overall model fit.

The main takeaway from the variance controls is that factors
occurring across different community areas are the most decisive in
shaping ridesourcing demand shifts during rail transit disruptions. In
other words, the ICC calculation shows the community area context is
the main source of differences in ridership-shifting strategies. We
interpret this to mean that significant latent neighborhood effects are
influencing adaptive ridesourcing behavior. These neighborhood effects
likely vary as a function of community culture related to car, transit, and
ridesourcing ridership, socioeconomic and political factors, and trans-
portation agency strategies.

4.3. Model results

4.3.1. Station-level analysis: local effects of disruptions

The model constant suggests a moderate average increase of 54
ridesourcing trips (or 15.6 %) during a transit disruption, compared to
the baseline. To contextualize this finding, the average baseline ride-
sourcing ridership is 347 trips across the Chicago community areas
covered in the disruption analysis. This value represents the ridesourc-
ing demand that would occur for the same station and timespan without
the disruption. With this baseline in mind, the timing of the disruption is
revealed to be highly impactful. On average, when a disruption occurs
on a weekday (excluding holidays), ridesourcing trips increase by 541
from baseline (a 156 % increase). When a transit disruption occurs
during peak hours, ridesourcing demand increases by 408 rides from
baseline (a 118 % surge).

These observed citywide trends are likely related to the less flexible
trips that occur during peak hours and weekdays. This is not surprising
considering that business and commuting trips are more likely to be
shifted to another mode than canceled, as shown for planned disruptions
(Van Exel & Rietveld, 2009) and unreliable metro services (Pnevmati-
kou et al., 2015). Furthermore, peak hour disruptions have been shown
to enhance perceptions of uncertainty (Li et al., 2020). Our findings for
on-demand ridesourcing shifts are novel given that previous research in
this area has been dominated by car substitution and bus replacement.

4.3.2. Community context effects

In Model 3, we examine the role that the disrupted station’s sur-
rounding context plays in determining the transfer of ridership from
transit to ridesourcing during no-notice disruptions. Model 3 reveals a
significant impact of two community area level factors: racial composi-
tion and percent transit commuters. The addition of these cross-level fac-
tors leads to significant improvements in goodness-of-fit measured by
the deviance difference and AIC. The positive effect on the interaction
term for the percentage of white residents in the community area with a
dummy variable for peak-hour travel (a coefficient of 12.3 additional
trips) suggests an added effect of racial composition in the local area on
the previous peak-hour effect findings. Namely, the peak-hour impact
(353 added trips) is amplified when disruptions occur in communities
with higher shares of white residents. The implied effect is that a
disruption occurring in a community area with a 1 % higher share of
white residents would result in a boost of 120 (or 3.46 %) ridesourcing
trips compared to the average peak-hour baseline. This finding adds to
existing evidence that ridesourcing provides greater benefits to privi-
leged user groups (Zhang & Zhang, 2018). Given that communities of
color in Chicago are more likely to be underserved in job accessibility,
transit supply, and on-demand mobility access, we believe this finding is
likely a reflection of gaps in access to resources in areas with lower
shares of white residents rather than of a lower willingness to use
ridesourcing during disruptions, but further research is warranted to
gain a deeper understanding.

Additionally, a novel effect is found related to the proportion of transit
commuters in the community area and the disruption source: same station.
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Overall, every percentage unit increase in transit commuting in the
community area results in 18 additional ridesourcing trips (or a 5.2 %
increase). However, this effect is only observed at the station where the
incident causing the disruption occurred. We speculate that transit
commuters more readily shift to ridesourcing services when they expe-
rience and receive information about the disruption directly. In other
words, riders at the source of the disruption are likely to have more
information regarding the nature of the disruptive event (e.g., from
official sources and other riders), which will likely factor into their
travel adaptation strategy. In areas with less transit commuting, we
speculate that there is presumably less collective experience with transit
disruptions and therefore a higher likelihood of shifting to private modes
due to limited opportunities for word-of-mouth information sharing and
social influence and thereby greater individualization of adaptive
mobility strategies.

Despite a lack of unexplained systematic differences related to the
district level beyond Model 1, a model search was conducted to explore
additional impactful cross-level interactions that incorporate indicator
variables for the four districts of the city. The resultant model suggests
an unexpected finding. In the North district, when a shuttle bus is
deployed, ridesourcing trips increase by 321 instances (or 92.5 %) from
baseline. The deployment of replacement bus services for added transit
capacity to assist riders during rail disruptions is a common agency
response (Pender et al., 2013), but there appears to be an unanticipated
(although not surprising) effect of this strategy: a boost in ridesourcing
requests. We interpret this unexpected increase in ridesourcing to be
related to the signaling effect of this action, namely, riders could
perceive bus deployment as a strong cue for the severity of the disrup-
tion and thus its expected duration. For context, the North district is
home to the largest share of disruptions in our dataset (16 of 28 or 57 %).
The North district maintains heavy transit demand by commuters
(shown previously in Fig. 1.d), as well as higher income levels among
these commuters (Fig. 1.b), factors which likely contribute to a greater
shift toward ridesourcing in this area.

5. Discussion and implications: enhancing collaborations for
resilient mobility

The findings in this analysis show that sudden disruptions in urban
rail transit are often accompanied by a surge in demand for ridesourcing.
This spontaneous mode-shifting behavior invites more organized sup-
port of collaborations to enhance mobility resilience. Specifically, this
discovery presents opportunities for transit operators to establish more
formal, a priori arrangements with ridesourcing services to invoke quick
phase-in of the latter to fill short-term gaps resulting from transit
disruptions.

Bringing these two transportation service competitors to the table to
facilitate the integration of services can be challenging given the
adversarial relationship often observed (Monahan & Lamb, 2022).
However, it is not without precedent, such as for special needs riders or
low-density markets and feeder services where traditional transit ser-
vices may not be cost-effective. Deakin et al. (2020) describe several
such cases, among which is the 2015 RIDE collaboration between Boston
Massachusetts Bay Transportation Authority (MBTA) and ridesourcing
companies to provide paratransit, as well as Livermore-Amador Valley
Transportation Authority’s Go Dublin! collaboration with ridesourcing
agencies to replace low-volume, fixed-route bus services. Yet, in cases of
short-term disruptions to mainline services, it may be a more complex
management decision to divert passengers to ridesourcing.

5.1. Opportunities

If transit operators like the CTA were to envision their task as sup-
porting mobility rather than stop-to-stop service, the objective would
become to find the best way to get travelers to their destinations effi-
ciently, whether that is letting the market work untouched, providing
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shuttle services, or inviting ridesourcing operators to help fill gaps. By
actively communicating the nature of the disruption and anticipated
needs, transit agencies could engage — and even support — ridesourcing
companies in providing adaptive, gap-filling services to address no-
notice disruptions and thereby reduce the delays experienced by
transit riders. The flexibility of ridesourcing services offers on-call
availability to provide extra capacity by replacing or supplementing
shuttle buses, depending on the nature of the disruption.

Advance agreements between the transit operator and ridesourcing
services would make the transition between the two when a disruption
occurs quicker and more efficient for transit passengers. As an example,
the LA Metro in the Los Angeles region was able to leverage a preexisting
collaboration with the ridesourcing company Via by expanding their
role from providing first- and last-mile services to private, point-to-point
trips to accommodate essential travel during the COVID-19 pandemic
(Grossman, 2020). Agreements should define the circumstances that will
activate collaboration, as well as standards for messaging about dis-
ruptions, such as including information like location, expected duration,
and passenger volumes based on train loadings. This exemplifies the
ability of public-private partnerships to increase mobility resilience to
unplanned disruptions.

5.2. Challenges

A first potential challenge is the existence of surge pricing when
demand spikes, which is likely to occur in the case of a peak period
transit disruption. This would be particularly burdensome for low-
income transit riders. Incident-specific subsidies for these fill-in ride-
sourcing trips might offer a solution, but several issues need to be
resolved to make this work. First, such subsidies would need to apply to
all riders, since there is no means of testing at the farebox (or point of
sale) to know who really needs them. Second, the level of subsidy would
need to be scaled to the circumstance (e.g., how widespread is the
disruption?). Lastly, a way to isolate the subsidy in time and space needs
to be defined, and a mechanism for linking passengers experiencing the
disruption (who should be subsidized) to the ridesourcing trip would be
needed. All these capabilities would be required to assure the fair and
efficient use of public resources and to make ridesourcing subsidies
palatable to transit agency leadership. Ultimately, these important de-
tails would provide the basis for formal agreements between transit
providers and ridesourcing companies. An additional challenge relates
to the different standards of operation. Notably, transit providers are
required to ensure fair service to all individuals in accordance with Title
VI and the Americans with Disabilities Act, while ridesourcing services
are not currently held to the same standards.

In sum, while collaborations between transit providers and ride-
sourcing companies may provide a way to decrease disruption response
time and assist a greater number of affected travelers, these collabora-
tions are not without challenges. A summary of the advantages and
challenges related to the multimodal integration of transit agencies and
ridesourcing companies for seamless adaptation is provided in Table 4.

6. Conclusions
6.1. Summary of findings

Given the current climate crisis and urbanization, both acute shocks
and chronic stressors of all kinds are multiplying in cities, and disrup-
tions are occurring with increased frequency and severity. This study
examines the effects of no-notice rail transit disruptions on mode-
shifting strategies. Specifically, we examine the role of ridesourcing as
an adaptive substitution strategy to fill gaps created by rail disruptions.
This study uses a natural experiment to systematically identify and then
temporally and spatially match 28 major transit disruptions with ride-
sourcing trip data for the City of Chicago. An MLM model is used, where
the multilevel structure is designed to account for variation in rail-to-
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Table 4
Summary of advantages and challenges of transit-ridesourcing integration.
Transit Advantages Challenges
ridesourcing
integration
Collaboration Increases coordination and Contrasting expectations and
communication between standards of operators;
operators Conflicting operator goals
Performance Provides more seamless Differences in regulation and

service integration
Improves the user
experience for riders; Speeds
up disruption recovery

standards for operators

User barriers, including
difficulty for less tech-savvy
demographics to navigate
integrated mobility systems (
Butler et al., 2020)

User experience

ridesourcing shifts and to identify whether determinants are local or
occurring due to neighborhood differences.
The analysis yields the following main findings and implications:

(1) There is evidence of significant localized surges in ridesourcing
demand following sudden rail transit disruptions, highlighting
that there is spontaneous mobility resilience in the system. The
observed demand substitution is strongest during peak-hour and
weekday travel, suggesting that ridesourcing provides selective
mobility redundancy in relation to mandatory and time-sensitive
travel.

Characteristics of the community area where the transit disrup-
tion is located are responsible for most of the variation in
observed ridesourcing substitution. Greater shifts to ridesourcing
occur in community areas that have higher percentages of white
residents, especially during peak-hour disruptions, suggesting
potential spatial inequities in the capacity for mobility adap-
tiveness and thus community resilience.

To address the negative impacts of transit disruptions on rider-
ship, transit agencies may consider investing in partnerships
oriented toward mobility as a service. If transit operators like the
CTA were to adopt a policy of delivering end-to-end service
despite unplanned disruptions, they would maintain re-
sponsibility for providing transportation alternatives when ser-
vice disruptions occur. Our research suggests a potential role for
on-demand ridesourcing to address no-notice transit service
disruptions.

(2

—

3

6.2. Limitations

Some caveats warrant discussion. First, modeling was based on the
identification of transit disruptions and shuttle bus deployment gathered
from a systematic search of local news sources. As such, these data were
aggregated at the station level, and it was assumed that a given
disruption lasted the same duration at every impacted station. Second,
our approach to analyzing mode-switching behavior was based on a
spatial delimitation of a 0.25-mile radius around each impacted station,
but mode-shifting behaviors may have occurred across a broader time-
space domain, including travelers who learned of the disruption prior
to departure. Third, sociodemographics were spatially aggregated,
which may mask individual-level rider characteristics. Since individual
ridership data were not available, we could not analyze multimodal
adaptive strategies for individual travelers.

Despite these limitations, based on conversations with a CTA rail
transit agency professional and considering the challenges of data
availability and accessibility, our method of data aggregation was the
best option available to us. Acknowledging the limitations associated
with the use of a natural experiment, our research contributes new in-
sights that would be difficult to gauge using small-scale stated response
data. Specifically, we capture the circumstances of the disruptions that
lead to real-world shifts to ridesourcing. Thereby the findings of this
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study shed light on which communities effectively shift to adaptive on-
demand mobility during a disruption and which communities must rely
on other alternatives.

6.3. Future work

Based on our findings, we suggest two main avenues for future
research. First, to address the outlined limitations of spatiotemporal
data, further collaborative research should aim for a more nuanced
analysis of transit riders’ behavioral adaptations to better understand
socioeconomic determinants of mobility resilience. For example,
matching individual-level ridership data by ridesourcing pickup loca-
tions with spatiotemporal bus and rail ridership data would reveal more
detailed insights into individual user multimodal adaptive mobility
strategies. Related to this, an interesting area of future research is to
examine the potential impacts of rail transit disruptions on ridesourcing
demand in neighboring areas to explore spatial and temporal spillover
effects, perhaps by applying a methodology similar to that seen in Soria
and Stathopoulos (2021). Such an investigation would provide insights
into what happens to service quality and pricing when disruptions are
publicized and ridesourcing drivers are pulled to the source of a
disruption. This could have important implications for already-
underserved areas where existing gaps in service may be exacerbated.

Second, we encourage the expansion of this investigation using more
qualitative analysis. There is a need for further understanding of the
adaptative decision-making process that riders use to cope with un-
planned travel disruptions. This includes more precise identification of
risk perceptions, communication about disruptions, circumstances of
travel, and attitudes related to emerging ridesourcing options. One po-
tential recommendation is to use latent variable modeling to better
capture rider perceptions surrounding the use of ridesourcing as an
adaptive mobility strategy and enable more tailored transportation
policies to foster equitable disruption recovery.
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