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We present a numerical method to simulate nonequilibrium Floquet steady states of one-dimensional peri-
odically driven many-body systems coupled to a dissipative bath, based on a matrix product operator ansatz
for the Floquet density matrix in frequency space. This method enables access to large systems beyond the
reach of exact simulations, while retaining the periodic micromotion information. An excited-state extension of
this technique allows computation of the dynamical approach to the steady state. We benchmark our method
with a driven-dissipative Ising model and apply it to study the possibility of stabilizing prethermal discrete
time-crystalline order by coupling to a cold bath.
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Controlling quantum systems with time-periodic (Floquet)
external driving fields offers a powerful toolkit to engi-
neer interactions, symmetry breaking, and topology that are
not present in the undriven system [1]. Floquet driving can
also produce intrinsically nonequilibrium phenomena such
as dynamical phases, particularly time crystals and Floquet
topological phases [2,3], with properties that would be im-
possible in static equilibrium. However, for isolated systems,
persistent energy absorption from the external ordinarily pro-
duces runaway heating to a featureless state [4,5] that is
locally indistinguishable from an infinite temperature ensem-
ble. Thus, to stabilize dynamical phases in closed Floquet
systems, one usually considers systems with many-body lo-
calization (MBL) [6] that fail to thermalize, or work in a
prethermal regime [7–13] where Floquet states can live up to
an exponentially long timescale τheat ∼ e�/� in the ratio of
driving frequency �, to the local bandwidth �. Both of these
approaches have substantial limitations. First, MBL requires
synthesizing strong disorder, and is fundamentally incompat-
ible with many interesting phenomena such as non-Abelian
symmetries and anyons [14], Goldstone modes [15], long-
range interactions, and (at least as a matter of principle if
not practice) in dimensions higher than one [16]. Second,
no experimental system is truly isolated from its environ-
ment, which restricts MBL-protected order to transient times.
Realizing prethermal quantum phases requires preparing a
low-temperature state of the prethermal Hamiltonian which
is typically hard to even calculate, let alone prepare its ground
state (e.g., adiabatic state preparation generally fails in Flo-
quet settings [17]).

From experience with solid-state physics, it is natural to
look to dissipation from a cold bath to cool a Floquet sys-
tem close to its prethermal ground state. For fast, weakly
heating drives, rigorous bounds on prethermalization [7–13]
establish a large separation of timescales between the drive
period τ = 2π/�, and the heating time τheat. This suggests
an ample range of parameter space to couple the system to a

bath weakly enough to avoid disrupting the interesting Floquet
dynamics, while cooling towards the prethermal ground state
at a rate much higher than the drive-induced heating. On the
other hand, coupling a system to a bath can enhance drive-
induced heating, by broadening spectral lines in the system to
enable off-resonant drive-induced excitations that cause the
system to heat [18]. To explore the balance between these
competing processes and establish whether dissipation can
stabilize dynamical orders in an appropriately designed range
of drive, bath, and system-bath coupling parameters, requires
a controlled calculation method that can simultaneously treat
strong driving, interactions, and open system dynamics.

However, solving the long-time nonequilibrium steady
state (NESS) of a generic Floquet-Lindblad equation [19–22]
(FLE) is a challenging task, even for one-dimensional sys-
tems. Similar to solving the Schrödinger equation, the cost
of exact treatment grows exponentially with respect to the
system size, but with a double exponent due to simulating
density matrices rather than pure states. Quantum trajectory
sampling methods [23–25] reduce the memory cost, but may
incur exponential-in-system-size sampling overheads.

In one dimension (1D), matrix product states (MPS) and
operators (MPOs) provide an effective way of representing
systems with limited spatial entanglement—a class that in-
cludes not only ground states of gapped systems [26] but
also thermal mixed states [27]. One class of MPO approaches
[28–31], in combination with time-evolving block decimation
(TEBD) methods, allows studying the NESS via long-time
dynamics. Such real-time approaches can suffer from the long
relaxation time to the NESS, for example, in the presence of
long-time hydrodynamic tails, and weakly dissipative systems
may also feature a rapid growth of entanglement in the tran-
sient regime that cannot be captured by a low bond-dimension
MPO [32–35], presenting a short-time barrier to accessing the
NESS through time evolution.

To overcome these limitations, for time-independent
systems, recent works [33,34] directly target an MPO
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representation of a NESS that is variationally optimized
through density matrix renormalization group (DMRG)-type
methods [36], while there are also Floquet DMRGs targeting
eigenstates in closed (e.g., MBL) systems [37,38]. In this
Letter, we extend this technique to open Floquet systems,
dubbed the open-system Floquet DMRG (OFDMRG). The
central idea will be to reduce the time-dependent Floquet
problem to an effective time-independent one in an extended
(frequency) space. Frequency-space methods are widely used
in various analytic and numerical approaches to Floquet prob-
lems [38,39]. Here, we adapt this representation in a form
convenient for performing MPS calculations. Importantly,
the method retains information not only about the NESS at
stroboscopic times, but also the micromotion within a pe-
riod, which can be required to observe certain dynamical
phases, such as Floquet topological insulators and symmetry-
protected topological phases [2]. We benchmark our method
with a driven-dissipative Ising model and also use it to explore
the dissipative stabilization of a discrete time crystal (DTC) by
coupling it to a cold bath.

Frequency-space MPO representation. Consider the evo-
lution of the density matrix ρ(t ) of a periodically driven 1D
quantum system coupled to a Markovian bath described by the
Floquet-Lindblad equation (FLE),

∂tρ =L(t )[ρ] = −i[H (t ), ρ]

+
∑

α

(

Lα (t )ρL†
α (t ) −

1

2
{L†

α (t )Lα (t ), ρ}
)

, (1)

where H (t + τ ) = H (t ) and Lα (t + τ ) = Lα (t ) are respec-
tively the periodic Hamiltonian and jump operators.

Floquet’s theorem enables one to write solutions to
the FLE in terms of quasieigenmodes of the Lindbladian
L(t ) as ρ(t ) =

∑

n ρne−λt ein�t , where λ is the (complex)
quasieigenvalue and � = 2π/τ is the driving frequency (see
Supplemental Material [40] Sec. I). Inserting this expression
into Eq. (1) reduces the time-dependent FLE into an effec-
tively time-independent equation, L̂[ρ̂] = −λρ̂ for extended
ρ̂ =

∑

n ρn ⊗ |n〉〉 residing in an enlarged (frequency) space
H2 × Z (intuitively, the extra Z factor keeps track of how
many drive quanta the system has absorbed or released),
where the extended Lindbladian is given by

L̂
nm[ρm] = −in�ρnδnm − i[Hn−m, ρm] +

∑

α

Dnm
α [ρm],

Dnm
α [ρm] = Ln−k

α ρmL†,k−m
α −

1

2

{

L†,n−k
α Lk−m

α , ρm
}

, (2)

where Hn and Ln
α are Fourier coefficients of H and Lα with fre-

quency n�, respectively, and throughout this Letter repeated
Fourier indices are implicitly summed.

We are targeting models with high-frequency drives and
weak system-bath couplings to model whether a system can
be cooled close to a prethermal ground state. Here, we expect
ρ0 to be approximately thermal, and hence exhibit an area-law
operator entanglement [27] permitting efficient representation
as an MPO. We further assume that, at high frequencies, the
linear potential −in� in frequency space leads to localization
near n = 0 characterized by a rapid decay of |ρn|/|ρ0| with
n (see Supplemental Material [40] Sec. II for a convergence
check), so that we can cut off the infinite frequency index

= M

n

M M =

=

n

m

FIG. 1. Graphical representation of vectorized MPOs |ρn〉〉 (up-
per) and effective local Lindbladian L̂nm

i (lower) in frequency space.
Blue circles and black single/double lines respectively represent the
tensor and bond/physical indices in the Hilbert space, while the
purple circle and red wavy lines represent the tensor and Fourier
indices in frequency space. Green lines represent the virtual bonds,
where each MPO block is diagonal in the frequency space.

beyond |n| = Nc, and that each ρn has a low bond-dimension
MPO representation ∀n. The validity of the assumptions can
be checked a posteriori. We note that the Fourier index n

can be regarded either as a global index, or distributed to
each MPO by introducing virtual bonds which formally re-
quire each MPS block diagonal in the frequency space, i.e.,
no interplay between different frequency space sectors (see
Fig. 1 for a graphical representation). It is further convenient
to vectorize the density matrices ρn → |ρn〉〉 using the Choi
isomorphism |ψ〉〈φ| → |ψ ⊗ φ〉〉, so that we regard the MPO
as an MPS with a squared physical dimension,

|ρn〉〉 =
∑

{μi}

Mn
μ1

· · · Mn
μL

|μ1 · · ·μL〉〉, (3)

where each Mn is a d2 × χ × χ tensor, d is the on-site Hilbert
space dimension, μi ∈ {1 . . . d2} labels a basis of physical
states for the vectorized density matrix, i = 1 . . . L label sites
of the 1D chain, and χ is the bond dimension.

After the vectorization, L̂nm in Eq. (2) becomes a linear
operator acting on |ρm〉〉, which can be similarly represented
in an MPO form with two Fourier components n, m,

L̂
nm =

∑

{μi,νi}

v
LW nm

μ1ν1
· · ·W nm

μN νN
v

R|μ1 · · ·μN 〉〉〈〈ν1 · · · νN |,

(4)

where each W nm is a d2 × d2 × χO × χO tensor, χO are the
operator bond dimensions, and v

L,R impose boundary condi-
tions.

Open-system Floquet DMRG (OFDMRG). In conventional
MPS-DMRG for closed systems, one minimizes the variation
energy 〈ψ |H |ψ〉 for each local MPS tensor, which relies heav-
ily on the Hermiticity of H . A natural generalization [33] to
open systems would be to minimize 〈〈ρ|L†L|ρ〉〉, however, the
MPO for L†L has a square of the bond dimension of that for
L, adding significant overhead [34]. In an alternative approach
[34], instead of variationally searching for the local MPS, one
can solve the zero eigenvector for the local effective Lind-
bladian Li obtained by contracting all indices for 〈〈ρ|L|ρ〉〉,
except those for a single site i, so that sites j 	= i form an
environment for site i.
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Here, we adapt this approach directly to the frequency-
space representation of ρ and L̂, seeking to approximately
prepare the NESS satisfying L̂nm

i |ρm〉〉 = 0 by sweeping
through a sequence of local eigenvalue problems for Mm

μi

(see Fig. 1), using an implicitly restarted Arnoldi method
based non-Hermitian eigensolver implemented in the ARPACK

library [41]. Working in frequency space requires impos-
ing additional constraints on the solutions. Physical states
satisfy Tr ρ(t ) = 〈〈I|ρ(t )〉〉 = 1∀t , which demands Tr ρn =
〈〈I|ρn〉〉 = δn0, where |I〉〉 is the maximally mixed state. We
enforce this condition by penalizing violations by modifying
how the extended Lindbladian acts on vectors as L̂ → L̂′ with

L̂
′nm|ρm〉〉 =[L̂nm − P0|I〉〉〈〈I|(1 − δn0)δnm]|ρm〉〉

− P1 exp(−|Tr ρ0|2/δ2)|ρn〉〉, (5)

where P0, P1, δ are penalty parameters. In practice, we start
with several warm-up sweeps with proper penalty parame-
ters (P0 = P1 = 1000 and δ = 0.01 in our implementation) to
avoid local minima violating the trace constraint, and then
remove the penalty for further DMRG sweeping (see Sup-
plemental Material [40] Secs. II and III for a discussion on
convergence and positivity of density matrices).

Dynamical approach to the NESS. The MPO-based method
can be naturally extended to solve long-lived decaying modes
of the Floquet Lindbladian, with Re λ > 0, by a similar ap-
proach to excited-state DMRG [42]. To explore this, we
first review some basic properties of the (extended) Lind-
bladian: (i) The Lindbladian has a biorthonormal basis,
where left and right eigenvectors are defined by L̂|ρR

α 〉〉 =
λα|ρR

α 〉〉 and L̂†|ρL
α 〉〉 = λ∗

α|ρL
α 〉〉 and satisfy the orthogonal re-

lations 〈〈ρL
α |ρR

β 〉〉 = δαβ . (ii) The corresponding eigvenvalues
{λα=0,1,...} can be sorted as 0 = λ0 > Re λ1 � Re λ2 � · · ·
(we assume that the zero eigenvalue is not degenerate in the
following discussion). In particular, |ρL

0 〉〉 = |I〉〉 due to the
trace preservation of the Lindblad operator. (iii) The complex
eigenvalues must occur in a pair of complex conjugates since
when ρ is an eigenvector, ρ† is also an eigenvector.

Based on the properties of the Lindbladian and in anal-
ogy to the Hamiltonian case [42], one can define L̂1 = L̂ −
w|I〉〉〈〈I| (L̂†

1 = L̂† − w|ρss〉〉〈〈ρss|), where w is the penalty
energy for the vector not orthogonal to the zeroth left (right)
eigenvector. For large enough w, the solved eigenvalue with
the largest real part will give the first right (left) eigenvector
|ρR

1 〉〉 (|ρL
1 〉〉). In principle, this procedure can be done recur-

sively to the nth eigenvector by adding n projectors, however,
for the pair of eigenvectors whose eigenvalues are in complex
conjugate pairs λ = a ± ib, they cannot be distinguished by
their real part. Thus, we focus only on the first decaying
mode by targeting the largest real part of eigenvalues, which
dominates the approach to the steady state at long times.

Benchmark: Driven-dissipative Ising chain. We first bench-
mark our OFDMRG method in a driven-dissipative Ising
model on a length L spin-1/2 chain with Pauli operators
{Xi,Yi, Zi} for sites i = 1 . . . L with the Hamiltonian

H (t ) =
∑

i

[p(t )(−JZiZi+1 + hZi ) + q(t )gXi], (6)

FIG. 2. NESS of driven-dissipative Ising chain with
(J, h, g, γ , ω) = (1.0, 0.5, 1.0, 1.0, 5.0). (a) Time-dependent
expectation values of magnetization 〈Z6〉 for a system size L = 11,
with χ = 36, compared with the master equation evolution result.
The period-averaged error (inset) decays rapidly with Nc to the
numerical accuracy of the eigensolver. (b) Spatial correlations
〈Z6Z6+x〉 for a larger chain with L = 21, using (Nc, χ ) = (4, 20).

where p(t ) = (1 − sin ωt )/2, q(t ) = (1 + sin ωt )/2, and
time-independent majority-rule jump operators

Li = √
γ [2| ↑↑↑〉〈↑↓↑ | + | ↑↑↓〉〈↑↓↓ |

+ | ↑↓↓〉〈↑↑↓ | + (↑↔↓)]. (7)

To compare our method with the exact evolution of the
Lindblad master equation implemented in QUTIP [43], we sim-
ulate a chain with an array length L = 11. We find excellent
convergence in the central magnetization 〈Z6〉 to the exact
solution with increasing frequency-space cutoff Nc, achieving
a residual error ∼10−4 for Nc ∼ 5 that is consistent with the
residual error in the zero-eigenvalue solver of OFDMRG and
the order of magnitude of Schmidt components at the bond-
dimension cutoff (see Supplemental Material [40] Sec. II).
The OFDMRG method also extends straightforwardly to
larger systems with polynomial-in-L scaling. For example, in
Fig. 2 we show spatial correlations for a size L = 21, which
would require enormous computational resources to compute
exactly.

Dissipatively stabilizing a discrete time crystal (DTC). Hav-
ing benchmarked the performance of the OFDMRG approach,
we now turn to the question of whether a prethermal dynam-
ical phase can be stabilized by coupling to a cold bath. As an
example, we study a model for a prethermal DTC model [11]
coupled to a thermal bath. For the system part, we consider
one-dimensional Ising model driven by periodic π pulses with
generic perturbation breaking the Z2 symmetry, which serves
as a prototypical model for the prethermal DTC [11]

H (t ) =
∑

i

[

π

2

∑

n

δ(t − nτ )Xi − JZiZi+1 + hZi f (t ) + gXi

]

,

(8)

where f (t ) = (1 − cos �t ). Various disordered and/or long-
range interacting incarnations of this Hamiltonian have been
studied in previous theoretical studies and implemented ex-
perimentally in a variety of systems [2,3] to study MBL and
prethermal mechanisms for stabilizing DTC order in (approx-
imately) closed systems.

Here, we introduce dissipation by coupling each spin,√
γ Xi ⊗ Bi, where γ is the coupling strength and Bi are

bath operators corresponding to a separate ohmic bath with a
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spectral function J (ε) = ε
ε0

e−|ε|/ωc/(1 − e−βε ), where β =
1/T is the inverse temperature of the bath, ε0 is a characteristic
energy scale, and ωc is the local bandwidth of the bath, which
will play an important role in controlling the steady state [44].
We compute the effective time-dependent jump operators for
this model using a Born-Markov approximation (see Supple-
mental Material [40] Sec. IV), and then truncate these to a
finite range of (2r + 1) sites to incorporate into the OFDMRG
procedure.

The singular δ train has an unbounded Fourier spectrum,
which would be long range in frequency space. However,
for models with smooth f (t ) satisfying f (0) = 0, we can
cure this by transforming them into a rotating frame of the
δ-function Xπ pulses. In the rotating frame the periodicity is
doubled to 2τ , but there is a dynamical symmetry: H (t + τ ) =
XH (t )X with X =

∏

i Xi. In the DTC phase [2,3], this dynam-
ical symmetry is spontaneously broken, resulting in persistent
period-doubled oscillations, and manifesting in long-range
mutual information between distant spins [45]. However,
unlike the long-range interacting prethermal DTC model
realized recently in trapped-ion experiments [46], such spon-
taneous symmetry breaking is forbidden in any short-range
interacting 1D system that thermalizes to a finite temperature.
Instead, one expects the length scales and timescales for these
signatures to diverge if the system is successfully cooled to
a prethermal ground state. The criterion of cooling near the
prethermal ground is also required to realize dynamical Flo-
quet topological phases (in any dimension), whose properties
rely crucially on quantum coherence and entanglement.

Our goal is to assess whether and under what conditions
the resulting NESS resembles a low-temperature Floquet-
Gibbs state with extended range DTC correlations. To this
end, we compute (i) the NESS entropy Sss = −Tr(ρss log ρss),
and (ii) the NESS DTC spatial correlation length ξ defined
by fitting the averaged correlation function 〈Z j+xZ j〉 to the
form e−x/ξ [shown in Fig. 3(b)]. The NESS results are com-
pared to properties of a thermal state ρthermal = 1

Z
e−βD, where

D =
∑

i[−JZiZi+1 + g(1 − 8ch2/�2)Xi] with some constant
c from f (t ) is the effective Floquet Hamiltonian obtained by
performing a high-frequency (van Vleck) expansion to the
second order. By comparing the system entropy Sss to the
thermal entropy of D, we can extract an effective inverse tem-
perature βeff = 1/Teff [shown in Fig. 3(a)]. D takes the form
of a transverse-field Ising model with an ordered ground
state, and the characteristic energy scale to make a local
spin-flip excitation of D is 4J , which results in enhanced
drive-induced heating when �/2 ≈ 4J , and hence enhanced
Teff . We also compare results to solutions to an approximate
Floquet rate equation (FRE) [22,47,48] (for L = 11) obtained
from a Fermi-Golden rule treatment bath-induced transition
rates between eigenstates of the effective system Hamiltonian
D in a rotating frame, which neglects off-diagonal coherences
in the system density matrix (see Supplemental Material [40]
Sec. V). As the driving frequency increases beyond 8J , this
heating is suppressed, and the system’s βeff asymptotes to that
of the bath (note that simulating colder temperatures requires
keeping a larger spatial extent r to the ab initio computed jump
operators), and ξ increases towards the thermal correlation
length of ρthermal at the bath temperature. Importantly, the
Floquet-Gibbs state arises only when the local bath bandwidth

FIG. 3. OFDMRG for the dissipative DTC model Eq. (8) for
J = 1, h = 0.5, ωc = 2, and unless otherwise specified, β = 2 and
r = 2. (a) Comparison between the effective temperature βeff of the
dissipative DTC model calculated by the OFDMRG method and
that from solving the Floquet rate equation (FRE), with L = 11,
g = 0.05, γ = 0.2, and (Nc, χ ) = (1, 16). (b) Correlation lengths
ξ of the dissipative DTC model for L = 31, g = 0.05, γ = 0.2,
and (Nc, χ ) = (1, 8). The correlation length for a thermal state of
the transverse-field Ising model (TFIM) with β = 2 is given as a
reference. (c) Comparison between the transient dynamics of 〈Z3〉
calculated by the OFDMRG method and by the exact evolution of
the master equation (ME) for L = 5, g = 0.2, γ = 2, β = 5, high fre-
quency (� = 10), and (Nc, χ ) = (2, 16). (d) Relaxation time of the
dissipative DTC model for L = 21, g = 0.2, γ = 2, and (Nc, χ ) =
(1, 16).

satisfies ωc � |�
2 − 4J|, so that bath-assisted drive-induced

heat absorption processes are suppressed (see Supplemental
Material [40] Secs. V and VI).

We further explore the long-time DTC dynamics, through
an asymptotic decay rate τrelax = −(Re λ1)−1 of period
doubled oscillations obtained by computing the first ex-
cited eigenstate |ρ1〉〉, as well as the explicit dynamics
of 〈Z j (t )〉 for |ρ(t )〉〉 = |ρss〉〉 + e−λ1t 〈〈ρI |ρ1〉〉|ρ1〉〉, which
captures the long-time dynamics from an initial product
state: ρI =

∏

i[sin π
8 | ↑〉 + cos( π

8 )| ↓〉][sin π
8 〈↑ | + cos( π

8 )〈↓
|]. As shown in Fig. 3(c), the dynamical results are compared
against exact master equation simulations (for L = 5, close
to the limit of a single workstation). We observe quantita-
tive agreement between the time-dependent dynamics of the
excited-state OFDMRG method with the master equation sim-
ulations, confirming that the long-time dynamics is indeed
dominated by the first decaying mode. Further, in Fig. 3(d),
we observe that the DTC timescale increases with driving
frequency � (for �/2 > 4J), asymptoting to a finite timescale
that increases as the bath is cooled.

Discussion and outlook. These results confirm the ex-
pectation that there is a parameter regime of large driving
frequency (� � 8J), moderate bath bandwidth (ωc � |�

2 −
4J|), and moderately weak system-bath coupling (e−J/� �
γ � J) where coupling the prethermal DTC model to a bath
successfully produces a Floquet-Gibbs-like state with temper-
ature close to that of the bath (see Supplemental Material [40]
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Secs. V and VI). Further, the OFDMRG method successfully
captures this behavior in system sizes that greatly exceed
those accessible by exact master equation simulations (here,
we simulated up to L = 31 on a single computer, which would
be limited to L � 6 for exact computation).

We expect this technique to be useful in designing ex-
perimental realizations of dissipatively stabilized dynamical
phases in solid-state devices and atomic quantum simulators.
The OFDMRG also permits a controlled means to assess the
validity of various approximation methods such as Floquet

rate equations and truncated Wigner approximation methods
[49,50] which could potentially be used beyond 1D. Natural
future targets for extending the OFDMRG method include
studying NESS of quasiperiodically driven systems [51–53]
(with multiple frequency-space directions), and incorporating
non-Markovian effects [54,55].
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