
Safe Control of Euler-Lagrange Systems with Limited Model
Information

Yujie Wang and Xiangru Xu

Abstract— This work presents a new safe control framework
for Euler-Lagrange (EL) systems with limited model infor-
mation, external disturbances, and measurement uncertainties.
The EL system is decomposed into two subsystems called
the proxy subsystem and the virtual tracking subsystem. An
adaptive safe controller based on barrier Lyapunov functions
is designed for the virtual tracking subsystem to ensure the
boundedness of the safe velocity tracking error, and a safe
controller based on control barrier functions is designed for
the proxy subsystem to ensure controlled invariance of the safe
set defined either in the joint space or task space. Theorems that
guarantee the safety of the proposed controllers are provided.
In contrast to existing safe control strategies for EL systems,
the proposed method requires much less model information
and can ensure safety rather than input-to-state safety. Simu-
lation results are provided to illustrate the effectiveness of the
proposed method.

I. INTRODUCTION

Safe-by-design control has received increasing interest
because of its broad applications. Control Barrier Functions
(CBFs) and Barrier Lyapunov Function (BLFs) are two
widely investigated barrier type functions that can provably
ensure safety expressed as the controlled invariance of a
given set [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].
By integrating the CBF constraint into a convex quadratic
program (QP), a CBF-QP-based controller is capable of
serving as a safety filter that minimally alters possibly unsafe
control inputs. In contrast, BLFs are Lyapunov-like functions
defined in given open sets, such that they can ensure safety
and stability simultaneously.

Euler-Lagrange (EL) systems, which represent a large
number of mechanical systems including robot manipulators
and vehicles, have been extensively investigated in the liter-
ature [11], [12], [13], [14]. Recently, the safe control of EL
systems attracted significant attention because of the broad
application of robotic systems in safety-critical scenarios,
such as human-robot interaction. Many CBF-based control
strategies have been developed for EL systems [15], [16],
[17]. Although these methods are demonstrated by both
theoretical analysis and simulation/experimental results, they
rely on model information of the EL system (i.e., the exact
forms of the inertia matrix, the Coriolis/centripetal matrix,
and the gravity term), which is hard to obtain precisely in
practice. Few research has been devoted to the safe control
of EL systems with limited model information [18], [19].
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Fig. 1. Illustration of the proposed proxy-CBF-BLF control design scheme
for safe control design of EL systems in the joint space. The original EL
system is decomposed into the proxy subsystem and the virtual tracking
subsystem. The safe velocity for the virtual tracking subsystem is generated
by the proxy subsystem. A CBF-QP-based controller is designed for the
proxy subsystem to ensure safety, while an adaptive BLF-based control law
is proposed for the virtual tracking subsystem to constrain the safe velocity
tracking error.

In [18], a novel CBF that integrates kinetic energy with
the classical form is proposed, resulting in reduced model
dependence and less conservatism; however, this method
does not take account of external disturbances, which are
ubiquitous in practical applications. In [19], a safe velocity
is designed based on reduced-order kinematics and tracked
by a velocity tracking controller; nevertheless, only input-to-
state safety [20, Definition 3] rather than safety is ensured
when the model information is unavailable, and the safe
velocity is required to be differentiable. On the other hand,
various BLF-based controllers have been developed for EL
systems [9], [10], whereas these approaches require the
desired trajectory to stay inside the safe set and impose
relatively strict structural requirements on safety constraints.

In this work, we propose a new control strategy for
EL systems with limited model information, external dis-
turbances, and measurement uncertainties. The original EL
system is decomposed into two subsystems: the proxy sub-
system, which is a double integrator with a mismatched
bounded disturbance, and the virtual tracking subsystem,
which corresponds to the dynamical model of the EL system.
A CBF-based controller is designed for the proxy subsystem
to generate the safe velocity, while an adaptive BLF-based
controller is developed for the virtual tracking subsystem to
track the safe velocity and ensure the boundedness of the
tracking error. See Fig. 1 for illustration, where the symbols
will be introduced in Section III. Compared with existing
results, the proposed method has four main advantages as
shown in the following:

1) The proposed method does not rely on any model
information except for the upper bound of the inertia
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matrix’s norm, which implies that even the bounds of
the Coriolis-centrifugal and gravity matrices are not
required in control design because such bounds are
estimated by adaptive laws online.

2) The closed-loop system is guaranteed to be safe, in-
stead of input-to-state safe, in the presence of external
disturbances and measurement uncertainties.

3) The safe velocity’s differentiability, which is important
for velocity tracking control design, is guaranteed, and
calculating its derivative is straightforward.

4) The proposed method takes measurement uncertainties
into account, allowing its use in robots where precise
angular velocity measurements are not available.

The remainder of this paper is organized as follows.
In Section II, preliminaries and the problem statement are
introduced; in Section III, the joint space safe control strategy
is presented; in Section IV, the task space safe control
scheme is shown; in Section V, numerical simulation results
are presented to validate the proposed method; and finally,
the conclusion is drawn in Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

Throughout the paper, we denote by R>0 and R≥0 the sets
of positive real and nonnegative numbers, respectively. We
denote ∥ · ∥ the 2-norm for vectors and the induced 2-norm
for matrices. We denote by σmin(A) the smallest eigenvalue
of a square matrix A. We consider the gradient ∂h

∂x ∈ Rn×1

as a row vector, where x ∈ Rn and h : Rn → R is a function
with respect to x.

A. Control Barrier Functions & Barrier Lyapunov Functions

CBFs and BLFs are two types of barrier functions that are
widely used to ensure the controlled invariance of a given
set [1], [6]. Our approach aims to combine the advantages
of both CBFs and BLFs, which are briefly reviewed below.

1) Control Barrier Functions: Consider a control-affine
system given as ẋ = f(x)+g(x)u where x ∈ Rn is the state,
u ∈ U ⊂ Rm is the control input, and f : Rn → Rn and
g : Rn → Rn×m are locally Lipchitz continuous functions.
Define a safe set C = {x ∈ Rn : h(x) ≥ 0} where h is a
continuously differentiable function. The function h is called
a (zeroing) CBF of relative degree 1, if there exists a constant
γ > 0 such that supu∈U [Lfh(x) + Lgh(x)u+ γh(x)] ≥ 0
where Lfh(x) = ∂h

∂xf(x) and Lgh(x) = ∂h
∂xg(x) are Lie

derivatives [2]. In this paper, we assume there is no constraint
on the input u, i.e., U = Rm. The following result that
guarantees the forward invariance of C is given in [2].

Lemma 1: [2, Corollary 7] If h is a (zeroing) CBF on Rn,
then any Lipschitz continuous controller u : Rn → U such
that u(x) ∈ K(x) ≜ {u ∈ U | Lfh(x)+Lgh(x)u+γh(x) ≥
0} will guarantee the forward invariance of C, i.e., the safety
of the closed-loop system.
By including the CBF condition into a convex QP, the
provably safe controller is obtained by solving a CBF-QP
online. The time-varying CBF and its safety guarantee for a
time-varying system are discussed in [21].

2) Barrier Lyapunov Function: In contrast to CBFs, BLFs
are positive definite functions that are more tightly connected
with Lyapunov functions.

Definition 1: [6, Definition 2] A barrier Lyapunov func-
tion is a scalar function V (x), defined with respect to the
system ẋ = f(x) on an open region D containing the origin,
that is continuous, positive definite, has continuous first-
order partial derivatives at every point of D, has the property
V (x) → ∞ as x approaches the boundary of D, and satisfies
V (x(t)) ≤ b for any t > 0 along the solution of ẋ = f(x)
for x(0) ∈ D and some positive constant b.

The following lemma is used for BLF control design to
guarantee that constraints on the output or state are satisfied.

Lemma 2: [6, Lemma 1] For any positive constants ka1
,

kbi , let Z1 ≜ {z1 ∈ R : −ka1
< z1 < kb1} ⊂ R

and N ≜ Rl × Z1 ⊂ Rl+1 be open sets. Consider the
system η̇ = h(η, t) where η ≜ [w, z⊤1 ] ∈ N , and h :
R≥0 ×N → Rl+1 is piecewise continuous in t and locally
Lipschitz in z, uniformly in t, on R≥0 × N . Suppose that
there exist functions U : Rl → R≥0 and V1 : Z1 →
R≥0, continuously differentiable and positive definite in their
respective domains, such that V1(z1) → ∞ as z1 → −ka1

or
z1 → kb1 , and γ1(∥w∥) ≤ U(w) ≤ γ2(∥w∥), where γ1 and
γ2 are class K∞ functions. Let V (η) ≜ V1(z1)+U(w), and
z1(0) belong to the set z1 ∈ (−ka1 , kb1). If the inequality
V̇ ≤ ∂V

∂η h ≤ 0 holds, then z1(t) remains in the open set
z1 ∈ (−ka1

, kb1), ∀t ∈ [0,∞).

B. Euler-Lagrange Systems

Consider an EL system given as follows [12], [22]:
q̇ = ω, (1a)
ω̇ = M−1(q) (τ − C(q, ω)ω −G(q) + τd) , (1b)

where q ∈ Rn is the generalized coordinate, ω ∈ Rn

is the generalized velocity, τ ∈ Rn is the control input,
τd : R≥0 → Rn is the external disturbance, M : Rn →
Rn×n is the inertia matrix, C : Rn × Rn → Rn×n is the
Coriolis/centripetal matrix, and G : Rn → Rn is the gravity
term. We assume that the exact knowledge of the velocity ω
is not known, and denote the measured generalized velocity
as ω̂ (e.g., in some application scenarios, ω is obtained by nu-
merically differentiating q such that it may be contaminated
by measurement noise); therefore the velocity measurement
uncertainty can be defined as

ξ = ω − ω̂.

Furthermore, we assume that τd, ξ, and ξ̇ are all bounded.
Assumption 1: The disturbance τd satisfies ∥τd∥ ≤ D0

where D0 > 0 is a positive constant.
Assumption 2: The measurement uncertainty ξ and its

derivative ξ̇ are bounded as ∥ξ∥ ≤ D1 and ∥ξ̇∥ ≤ D2, where
D1 and D2 are positive constants.

Note that Assumption 1 is extensively used in the robust
control literature, and numerous state estimation techniques
have been developed to ensure that the state estimation error
is bounded.

The system given in (1) has the following properties that
will be exploited in the subsequent control design [23].
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Property 1 (P1): The matrix M is positive definite, sym-
metric, and satisfies

λ1∥q∥2 ≤ q⊤M(q)q ≤ λ2∥q∥2, ∀q ∈ Rn, (2)

where λ1, λ2 are positive constants.
Property 2 (P2): The matrices C(q, ω) and G(q) satisfy

∥C(q, ω)∥ ≤ ζc∥ω∥, ∥G(q)∥ ≤ ζg, ∀q, ω ∈ Rn, (3)

where ζc and ζg are positive constants.

C. Problem Statement

In this work, we consider provably safe control design
for an EL system given in (1) with limited information.
Specifically, we assume that the matrices M,C,G in (1)
are unknown and satisfy inequalities (2) and (3) but only
λ2 is known. With such an EL system, the first problem we
aim to solve is to design a feedback controller based on the
knowledge of q and ω̂ to ensure the safety of the system in
the joint space.

Problem 1: Consider an EL system described by (1)
where the matrices M,C,G are unknown, and a joint space
safe set Cq defined as

Cq = {q ∈ Rn : h(q) ≥ 0}, (4)

where h is a twice differentiable function. Suppose that
Assumptions 1 and 2 hold with D0, D2 unknown, and
M,C,G satisfy inequalities (2) and (3) with constant λ2

known and constants λ1, ζc, ζg unknown. Design a feedback
control law τ(q(t), ω̂(t), t) such that the closed-loop system
is always safe with respect to Cq , i.e., h(q(t)) ≥ 0,∀t ≥ 0.

The second problem we aim to solve is about designing a
safe controller in the task space.

Problem 2: Consider an EL system described by (1)
where the matrices M,C,G are unknown, and the forward
kinematics of the EL system:

p = f(q), (5)

where p ∈ Rk denotes the variable of the task space and f :
Rn → Rk represents a continuously differentiable function
with k ≤ n. Consider a task space safe set Cp defined as

Cp = {p ∈ Rp : h(p) ≥ 0}, (6)

where h is a twice differentiable function. Suppose that
Assumptions 1 and 2 hold with D0, D2 unknown, and
M,C,G satisfy inequalities (2) and (3) with constant λ2

known and constants λ1, ζc, ζg unknown. Design a feedback
control law τ(p(t), q(t), ω̂(t), t) such that the closed-loop
system is safe with respect to Cp, i.e., h(p(t)) ≥ 0,∀t ≥ 0.

The main difficulty of Problems 1 and 2 lies in the
limited information of the EL system: λ1, D0, D2, ζc, ζg
are assumed to be unknown in control design. The proposed
controller in this work is highly robust to model uncertainties
and can be easily transferred between different EL systems
without re-designing the control laws. Existing safe control
design approaches for EL systems are not applicable to solve
the problems in this work because they rely on the exact
forms of M , C, G or the values of λ1, D0, D2, ζc, ζg; see
[13], [14], [15], [16], [17], [18], [19] for more details.

III. JOINT SPACE SAFE CONTROL

In this section, a novel proxy-CBF-BLF-based method will
be presented to solve Problem 1 for the EL system with
limited information, external disturbances, and measurement
uncertainties. We will show the main idea of the method
in Subsection III-A, propose an adaptive BLF-based control
design approach for the virtual tracking subsystem in Sub-
section III-B, and a CBF-based control design strategy for
the proxy subsystem in Subsection III-C.

A. Method Overview
The main idea of our method is to decompose an EL

system into two subsystems, called the proxy1 subsystem and
the virtual tracking subsystem, and use the CBF and BLF to
design safe controllers for the two subsystems, respectively,
such that the overall controller will ensure the safety of the
EL system (see Fig. 1 for illustration).

The proxy subsystem is given as:
q̇ = µ+ eq + ξ, (7a)
µ̇ = ν, (7b)

where µ is the virtual safe velocity with µ(0) = ω̂(0), eq is
the virtual velocity tracking error defined as

eq = ω̂ − µ, (8)
and ν is the virtual control input to be designed. Note that
(7) is equivalent to (1a) augmented with an integrator.

The virtual tracking subsystem is given as:
ėq = M(q)−1(τ − C(q, ω)ω −G(q) + τd)− ξ̇ − ν (9)

where τ is the control input to be designed and ν is from
the proxy subsystem (7).

With this decomposition, Problem 1 can be solved by
accomplishing two tasks shown as follows.

Task 1: For the virtual tracking subsystem (9), design a
controller τ to guarantee

∥eq(t)∥ < L,∀t ≥ 0, (10)
where L > 0 is an arbitrary positive constant.

Task 2: For the proxy subsystem (7), design a control law
ν to ensure h(q(t)) ≥ 0,∀t ≥ 0, under the assumption that
∥eq(t)∥ < L,∀t ≥ 0.

Remark 1: In [19], a safe velocity is designed based on
reduced-order kinematics, which is similar to (7a) in our
proxy subsystem. However, including an additional integrator
as shown in (7b) is important because µ̇, which is equal to
ν, is required in the virtual tracking subsystem (9) and L
can be selected to be arbitrarily small, thereby reducing the
potential conservatism of the safe controller (see Remark 4).
Nevertheless, the added integrator will result in a system with
a mismatched virtual disturbance, eq + ξ; a new CBF-based
safe control scheme will be proposed for such a system in
Section III-C.

B. BLF-based Control For the Virtual Tracking Subsystem
In this subsection, an adaptive BLF-based controller will

be presented to accomplish Task 1. The BLF-based method
is suitable for this task because it does not rely on the bounds
of the unknown parameters and the external disturbances.

1The term “proxy” is inspired by proxy-based sliding mode control [24]
and haptic rendering [25].
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The following theorem presents a controller τ for the
virtual tracking subsystem to ensure ∥eq(t)∥ < L,∀t ≥ 0.

Theorem 1: Consider the virtual tracking subsystem (9)
where the matrices M,C,G are unknown. Suppose that
Assumptions 1 and 2 hold with D0, D2 unknown, and
M,C,G satisfy inequalities (2) and (3) with constant λ2

known and constants λ1, ζc, ζg unknown. Suppose that the
controller τ is designed as

τ = −λ2eqN (11)
where

N =k1+
(θ̂1φ)

2

θ̂1φ∥eq∥+ϵ1
+

θ̂22

θ̂2∥eq∥+ϵ2
+

∥ν∥2

∥eq∥∥ν∥+ϵ
, (12a)

˙̂
θ1 = −γθ θ̂1 +

∥eq∥φ
L2 − ∥eq∥2

, (12b)

˙̂
θ2 = −γθ θ̂2 +

∥eq∥
L2 − ∥eq∥2

, (12c)

and φ = (∥ω̂∥+D1)
2, with positive constants ϵ, ϵ1, ϵ2, γθ >

0, k1 > Λ
L2 , and Λ = ϵ + ϵ1 + ϵ2. If θ̂1(0), θ̂2(0) > 0, then

∥eq(t)∥ < L for any t ≥ 0.
Proof: Due to the page limit, we only present a sketch

of the proof at here. The detailed proof can be found in [26].
Define θ1 = ζcλ

−1
1 and θ2 = λ−1

1 (ζg +D0) +D2, which
are unknown parameters because λ1, ζc, ζg, D2 are unknown.
Define a candidate BLF as

V =
1

2
log

(
L2

L2 − ∥eq∥2

)
+

1

2
θ̃21 +

1

2
θ̃22, (13)

where θ̃1 = θ1− θ̂1, θ̃2 = θ2− θ̂2. It can be proved that under
the control law (11) and the adaptive law (12), the derivative
of V in the open set ZL ≜ {eq ∈ Rn | ∥eq∥ < L} satisfies

V̇ ≤ −κV +K, (14)
where κ = min

{
2k1 − 2Λ

L2 , 2γθ
}

and K = Λ
L2 +

γθ

2 (θ21+θ22).
Thus, V (t) is bounded, which implies ∥eq(t)∥ < L for any
t ≥ 0, according to Lemma 2.

C. CBF-based Control For the Proxy Subsystem
In this subsection, a CBF-based control law is presented to

solve Task 2. Note that designing a CBF-based controller for
accomplishing Task 2 is challenging because the term eq+ξ
is considered as a bounded mismatched disturbance to the
proxy subsystem and its derivative, ėq + ξ̇, is not necessarily
bounded.

Since in Task 2 we assume ∥eq∥ < L holds, which is
ensured by Theorem 1, the term eq + ξ is bounded as

∥eq + ξ∥ < D1 + L. (15)
The following theorem provides a CBF-based controller ν

that ensure h(q(t)) ≥ 0,∀t ≥ 0.
Theorem 2: Consider the proxy subsystem given in (7)

and a joint space safe set Cq defined in (4). Suppose that
h(q(0)) > 0, ∥eq(t)∥ < L for any t ≥ 0, and there exist
positive constants λ, γ, β > 0 such that

(i) ∂h
∂q (q(0))µ(0)−

1
2β

∥∥∥∂h
∂q (q(0))

∥∥∥2− β(D1+L)2

2 +λh(q(0)) ≥
0;
(ii) the set Kq

BF (q, µ) = {u ∈ Rn : Ψ0 + Ψ1u ≥ 0} is not
empty for any q ∈ Cq and µ ∈ Rn, where

Ψ0 = Mµ− ∥M∥ (D1 + L) + γh̄, (16a)

Ψ1 =
∂h

∂q
, (16b)

with M = µ⊤Hh − 1
β

∂h
∂qHh + λ∂h

∂q , Hh = ∂2h
∂q2 denotes the

Hessian, and h̄ = ∂h
∂q µ− 1

2β

∥∥∥∂h
∂q

∥∥∥2 − β(D1+L)2

2 + λh.
Then, any Lipschitz continuous control input ν ∈ Kq

BF (q, µ)
will make h(q(t)) ≥ 0 for any t ≥ 0.

Proof: First, we show that ν ∈ Kq
BF (q, µ) =⇒

h̄(t) ≥ 0 for any t ≥ 0. Note that Condition (i) indicates
that h̄(q(0), µ(0)) ≥ 0. Meanwhile, one can observe that ˙̄h
can be expressed as
˙̄h =

∂h

∂q
ν +

(
µ⊤Hh − 1

β

∂h

∂q
Hh + λ

∂h

∂q

)
(µ+ eq + ξ)

=
∂h

∂q
ν +Mµ+M(e+ ξ)

(15)
≥ Ψ1ν +Mµ− ∥M∥ (D1 + L).

Selecting ν ∈ Kq
BF (q, µ) yields ˙̄h ≥ −Ψ0 + Mµ −

∥M∥ (D1 + L) = −γh̄, which indicates h̄(q(t), µ(t)) ≥
0,∀t ≥ 0 because h̄(q(0), µ(0)) ≥ 0. Since

ḣ+ λh =
∂h

∂q
(µ+ eq + ξ) + λh

≥ ∂h

∂q
µ− 1

2β

∥∥∥∥∂h∂q
∥∥∥∥2 − β

2
∥eq + ξ∥2 + λh

(15)
≥ ∂h

∂q
µ− 1

2β

∥∥∥∥∂h∂q
∥∥∥∥2 − β(D1 + L)2

2
+ λh

= h̄(q, µ) ≥ 0,
one can conclude that h(q(t)) ≥ 0,∀t since h(q(0)) ≥ 0.

The safe virtual controller proposed in Theorem 2 is
obtained by solving the following CBF-QP:

min
ν

∥ν − νd∥2 (17)

s.t. Ψ0 +Ψ1ν ≥ 0,
where Ψ0,Ψ1 are given in (16) and νd is any given nominal
control law.

The safe feedback control law τ(q(t), ω̂(t), t) to the EL
system (1) consists of the control law τ given in (11) and the
control law ν given in (17). By Theorems 1 and 2, the safe
controller will ensure that the closed-loop system is always
safe with respect to Cq , i.e., h(q(t)) ≥ 0 for all t ≥ 0.

Remark 2: The nominal control law νd can be designed
as νd = −α1Eq − α2Eµ + q̈d, where Eq ≜ q − qd, Eµ ≜
µ − q̇d, qd denotes the reference trajectory, and α1, α2 ∈ R
are selected such that

σmin

([
0n×n In×n

−α1In×n −α2In×n

])
≜ −α < −1

2
.

Define a Lyapunov candidate function as V = 1
2ε

⊤ε, where
ε = [E⊤

q E⊤
µ ]⊤. Since V̇ satisfies

V̇ = ε⊤
[

0n×n In×n

−α1In×n −α2In×n

]
ε+ E⊤

q (eq + ξ)

≤ − (2α− 1)V +
(D1 + L)2

2
,

the tracking error is uniformly ultimately bounded [27].
Remark 3: Suppose that q∗ is the unique zero of Ψ1 in

Cq . We claim that if
H∗

h ≜ Hh(q
∗) ≻ aIn×n, h∗ ≜ h(q∗) > 0, (18)

where a is an arbitrary positive constant, then one can always
find γ, β, λ > 0 such that Condition (i) and (ii) in Theorem
2 hold true. Indeed, one can easily select β and λ such
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that Condition (i) is fulfilled. Meanwhile, from (16) one can
observe that Ψ∗

0 ≜ Ψ0(q
∗, µ) = µ⊤H∗

hµ − ∥µ⊤H∗
h∥(D1 +

L) + γλh− β(D1+L)2

2 satisfies

Ψ∗
0 ≥ a∥µ∥2−∥H∗

h∥(D1+L)∥µ∥+γλh∗− β(D1+L)2

2

= a

(
∥µ∥ − ∥H∗

h∥(D1 + L)

2a

)2

+ γλh∗ − Ξ

≥ γλh∗ − Ξ,

where Ξ =
∥H∗

h∥
2(D1+L)2

4a + β(D1+L)2

2 . It is obvious that
selecting γ ≥ Ξ

λh∗ will yield Ψ0 ≥ 0, such that Kq
BF

is not empty when q = q∗, which shows the correctness
of the claim. Furthermore, it is obvious that if Ψ1 has
finite zeros in Cq and each zero satisfies (18), then one can
always select appropriate γ, λ, β such that Conditions (i) and
(ii) of Theorem 2 are satisfied. Nevertheless, it should be
noticed that (18) is not the unique criterion for verifying the
conditions in Theorem 2. Developing systematic methods to
design h satisfying these conditions will be our future work.

Remark 4: The bound L for ∥eq∥ as given in (10) should
be carefully selected to achieve a trade-off between the
control performance and the maximum magnitude of the
control input. If L is selected to be very small, the control
input tends to be significant because the state is more likely
to approach the boundary of the output constraint; if L is
chosen to be large, unnecessary conservatism (i.e., the system
only operates in a subset of the original safety set) may be
introduced because in Theorem 2 the worst-case of eq + ξ is
considered.

If the proxy subsystem is not augmented with an additional
integrator, the requirement of L would be more restrictive,
i.e., L ≥ |ω̂(0)− µ(q(0))| is required. In practice, this may
necessitate the selection of a larger L, which could result
in unnecessarily conservatism. Meanwhile, L is used in the
design of µ to guarantee safety, which implies that µ(q(0))
implicitly relies on L. Thus, in some cases, it may be difficult
to find an appropriate L that satisfies L ≥ |ω̂(0)− µ(q(0))|.

IV. TASK SPACE SAFE CONTROL

In this section, we will utilize the idea presented in the
preceding section to solve the task space safe control problem
for the EL system with limited information, external distur-
bances, and measurement uncertainties. The proxy subsystem
in task space is more complicated to control than that in
joint space; therefore, a different CBF-based control scheme
is proposed.

Invoking (5), one can see
ṗ = J(q)ω = J(q)(ω̂ + ξ), (19)

where J = ∂f
∂q denotes the Jacobian [22]. Substituting (19)

into (1) yields
ṗ = J(q)(ω̂ + ξ), (20a)
˙̂ω = M−1(q)(τ − C(q, ω)ω −G(q) + τd)− ξ̇. (20b)

System (20) can be decomposed into the proxy subsystem
and the virtual tracking subsystem similar to Section III. The
proxy subsystem is given as:

ṗ = J(q)η + J(q)(ep + ξ), (21a)
η̇ = υ, (21b)

where η is the virtual state with η(0) = ω̂(0), ep ≜ ω̂ − η,
and υ denotes the virtual control input to be designed. The
virtual tracking subsystem is given as:

ėp = M−1(τ − C(q, ω)ω −G(q) + τd)− ξ̇ − υ. (22)
Note that system (22) corresponds to system (9), for which
the adaptive BLF-based controller developed in Theorem
1 is still applicable. On the other hand, the CBF-based
controller presented in Theorem 2 is inapplicable to the proxy
subsystem given in (21) because (21) is different from (7).
We will design a new CBF-based safe control law for (21)
to ensure the forward invariance of Cp. To that end, we first
design a nominal tracking controller for the proxy subsystem
(21) based on backstepping [28] as shown in the following
proposition.

Proposition 1: Consider the proxy subsystem (21) and
a desired trajectory pd. Suppose that ∥ep∥ < L and the
Jacobian J has full row rank, i.e., there exists J† such that
JJ† = Ik×k. If the desired control input υd is designed as

δ = J†
(
−l1ϵd + ṗd −

∥J∥2

2
ϵd

)
, (23a)

υd = −l2ϵη+
∂δ

∂p
Jη+

∂δ

∂t
− 1

2

∥∥∥∥∂δ∂pJ
∥∥∥∥2 ϵη−J⊤ϵd,(23b)

where ϵd = p− pd, ϵη = η − δ, and l1, l2 > 0 are arbitrary
positive constants, then the tracking error ϵd is uniformly
ultimately bounded.

Proof: Define a Lyapunov candidate function as V1 =
1
2ϵ

⊤
d ϵd. The derivative of V1 satisfies
V̇1 = ϵ⊤d (Jδ + Jϵη + J(ep + ξ)− ṗd)

≤ ϵ⊤d (Jδ + Jϵη − ṗd) +
∥ϵd∥2∥J∥2

2
+

(D1 + L)2

2
(23a)
≤ −l1∥ϵd∥2 + ϵ⊤d Jϵη +

(D1 + L)2

2
.

Then, an augmented Lyapunov candidate function is de-
signed as V2 = V1 + 1

2ϵ
⊤
η ϵη , whose derivative can be

expressed as

V̇2 ≤ −l1∥ϵd∥2 + ϵ⊤η J
⊤ϵd +

(D1 + L)2

2

+ϵ⊤η

(
υd −

∂δ

∂p
J(η + ep + ξ)− ∂δ

∂t

)
≤ −l1∥ϵd∥2 + ϵ⊤η J

⊤ϵd + (D1 + L)2

+ϵ⊤η

(
υd −

∂δ

∂p
Jη − ∂δ

∂t

)
+

1

2
∥ϵη∥2

∥∥∥∥∂δ∂pJ
∥∥∥∥2

(23b)
≤ −l1∥ϵd∥2 − l2∥ϵη∥2 + (D1 + L)2.

Therefore, the tracking error ϵd is uniformly ultimately
bounded [27].

A CBF-based safe control law is proposed for the proxy
subsystem (21) in the following theorem.

Theorem 3: Consider the proxy subsystem (21) and
the set Cp defined in (6). Suppose that h(p(0)) ≥ 0,
∥ep(t)∥ < L, ∀t ≥ 0, and there exist constants λ, γ, β > 0
such that
(i) ∂h

∂p (p(0))J(q(0))η(0) − 1
2β

∥∥∥∂h
∂p (p(0))J(q(0))

∥∥∥2 −
β(D1+L)2

2 + λh(p(0)) ≥ 0;
(ii) the set Kp

BF (p, q, µ) = {u ∈ Rn : Ψ0 + Ψ1u ≥ 0} is
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not empty for any p ∈ Cp and η ∈ Rn, where

Φ0 =
∂h̄

∂q
(Jη + ω̂)−

∥∥∥∥∂h̄∂q J
∥∥∥∥ (D1 + L)

−
∥∥∥∥∂h̄∂q

∥∥∥∥D1 + γh̄, (24a)

Φ1 =
∂h

∂p
J, (24b)

with h̄ = ∂h
∂pJη − 1

2β

∥∥∥∂h
∂pJ

∥∥∥2 − β(D1+L)2

2 + λh.
Then, any Lipschitz continuous control input υ ∈ Kp

BF will
make h(p(t)) ≥ 0 for any t ≥ 0.

Proof: We only show the sketch of the proof due to
space limitation and the similarity of the proof to that of
Theorem 2. One can see that selecting υ ∈ Kp

BF ensures
˙̄h ≥ −γh̄; therefore, h̄(t) ≥ 0 for any t ≥ 0 since Condition
(i) implies h̄(p(0), q(0), η(0)) ≥ 0. Then, it can be proved
that h̄(t) ≥ 0 =⇒ h(t) ≥ 0 for any t ≥ 0.

Based on Proposition 1 and Theorem 3, the safe virtual
controller ν can be obtained by solving a CBF-QP:

min
ν

∥υ − υd∥2 (25)

s.t. Φ0 +Φ1υ ≥ 0,

where Φ0,Φ1 are given in (24) and υd is presented in (23).
The safe feedback control law τ(p(t), q(t), ω̂(t), t) to the

EL system (1) consists of the control law τ given in (11)
and the control law ν given in (25). By Theorems 1 and 3,
the control law τ(p(t), q(t), ω̂(t), t) will ensure the safety of
the closed-loop system with respect to Cp, i.e., h(p(t)) ≥ 0
for all t ≥ 0.

V. SIMULATION

In this section, numerical simulation results are presented
to demonstrate the effectiveness of the proposed method.
Consider a two-linked robot manipulator shown in [29],
whose dynamics can be described by (1). We emphasize that
M , C, and G are assumed to be unknown, and only λ2 = 5
in Property 1 and D1 = 0.2 in Assumption 2 are available
in our control design.

A. Joint Space Safe Control

In this subsection, simulation results of the joint space safe
control are presented. The reference trajectories are q1d =
q2d = 3 sin(t); four CBFs are selected as h1 = 2.5 − q1,
h2 = q1 + 2.5, h3 = 2 − q2, and h4 = q2 + 1, which
aim to ensure −2.5 ≤ q1 ≤ 2.5 and −1 ≤ q2 ≤ 2; the
control parameters are selected as β = 2, γ = 10, λ = 16,
ϵ = ϵ1 = ϵ2 = 0.01, L = 0.3, γθ = 1, and k1 = 0.1; the
initial conditions are q1(0) = q2(0) = 1 and q̇1(0) = q̇2(0) =
0; the measurement uncertainty and disturbance are selected
as ξ = [0.2 sin(2t) 0.2 sin(2t)]⊤ and τd = 10 sin(t), from
which one can see that Assumption 1 and 2 are satisfied. It
is easy to check that Conditions (i) and (ii) of Theorem 2 are
fulfilled with the given parameters and CBFs. The simulation
results are presented in Fig. 2.

From the simulation results one can see that the safety
of Cq is guaranteed as the trajectories of q1 and q2 always
stay inside the safe region whose boundaries are represented
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Fig. 2. Simulation results of the joint space safe control. From (a) and
(b) it can be seen that the proposed controller can ensure safety of Cq as
the trajectories of q1 and q2 never cross the boundary of the safe region
represented by the dash red lines, with good tracking performance inside
the safe region. Moreover, from (c) one can conclude that the adaptive BLF-
based controller developed in Theorem 1 is effective since the constraint on
eq is not violated.

by the dashed red line, and the reference trajectory is well-
tracked within the safe set. Moreover, from Fig. 2(c) one can
observe that ∥eq(t)∥ < L is satisfied for any t ≥ 0, which
indicates that the adaptive BLF-based controller proposed in
Theorem 1 is effective.

B. Task Space Safe Control
In this subsection, simulation results for task space

safe control are presented. The forward kinematics can
be expressed as [x y]⊤ = [l1 cos(q1) + l2 cos(q1 +
q2) l1 sin(q1) + l2 sin(q1 + q2)]

⊤ and the Jacobian is

J(q) =

[
−l1 sin(q1)− l2 sin(q1 + q2) −l2 sin(q1 + q2)
l1 cos(q1) + l2 cos(q1 + q2) l2 cos(q1 + q2)

]
.
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Note that the measurement uncertainties and disturbance are
the same as those in Section V-A such that Assumption
1 and 2 are satisfied. The CBF is h = 1 + x + y; the
initial conditions are x(0) = 1.8, y(0) = 0; the reference
trajectories are xd(t) = 1.5 cos(t), y(t) = 1.5 sin(t); and
the control parameters are selected as ϵ = ϵ1 = ϵ2 = 0.01,
L = 0.05, γθ = 1, β = 2, λ = 100, l1 = l2 = 40, γ = 500,
and k1 = 3.

-4 -2 0 2 4
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-2

0

2

4

Fig. 3. Simulation results of the task space safe control. One can observe
that proposed controller can ensure safety of Cp as the trajectories of x
and y always stay inside the safe region whose boundary is represented by
the dash red lines, and the tracking performance inside the safe region is
satisfactory.

VI. CONCLUSION

In this paper, a novel proxy CBF-BLF-based control
design approach is proposed for EL systems with limited
information by decomposing an EL system into the proxy
subsystem and the virtual tracking subsystem. A BLF-based
controller is designed for the virtual tracking subsystem to
ensure the boundedness of the safe velocity tracking error.
Based on that, a CBF-based controller is designed for the
proxy subsystem to ensure safety in the joint space or task
space. Simulation results are given to verify the effectiveness
of the proposed method. Future work includes conducting
experimental studies and generalizing the results to ensure
safety and stability simultaneously for EL systems.

REFERENCES

[1] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2017.

[2] X. Xu, P. Tabuada, A. Ames, and J. Grizzle, “Robustness of control
barrier functions for safety critical control,” in IFAC Conference on
Analysis and Design of Hybrid Systems, vol. 48, no. 27, 2015, pp.
54–61.

[3] M. Jankovic, “Robust control barrier functions for constrained sta-
bilization of nonlinear systems,” Automatica, vol. 96, pp. 359–367,
2018.

[4] Q. Nguyen and K. Sreenath, “Robust safety-critical control for dy-
namic robotics,” IEEE Transactions on Automatic Control, vol. 67,
no. 3, pp. 1073–1088, 2021.

[5] Y. Wang and X. Xu, “Observer-based control barrier functions for
safety critical systems,” in American Control Conference. IEEE,
2022, pp. 709–714.

[6] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov functions for the
control of output-constrained nonlinear systems,” Automatica, vol. 45,
no. 4, pp. 918–927, 2009.

[7] B. Ren, S. S. Ge, K. P. Tee, and T. H. Lee, “Adaptive neural control for
output feedback nonlinear systems using a barrier Lyapunov function,”
IEEE Transactions on Neural Networks, vol. 21, no. 8, pp. 1339–1345,
2010.
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