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a dynamical system that models the flow of diffeomorphism ft ∈ diff(R3). We overview 
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an operator splitting strategy for diffeomorphic shape matching. We showcase results for 
diffeomorphic shape matching of real clinical cardiac data in R3 to assess the performance 
of our methodology.
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1. Introduction

In (bio)medical imaging applications, the automatic matching of k-dimensional deformable shapes across subjects or 
multi-temporal data of individual patients is a critical step to aid clinical diagnosis [1–8]. From a mathematical point of view, 
this matching problem constitutes an inverse problem [3]: Given two (or more) shapes si ∈ S, i = 0, 1, in Rd representing 
an object/anatomy of interest, defined in some shape space S, we seek a plausible spatial transformation y ∈ Yad, Yad ⊆
{φ | φ : Rd → Rd} with d ∈ {2, 3} that establishes a point-wise correspondence between these objects [1,2]. Based on the 
problem specific notion of plausibility of an admissible transformation y, various continuum mechanical models emerged 
to restrict the space of admissible transformations Yad. In a variational setting, this prior knowledge on admissible maps 
y is typically prescribed through regularization functionals or constraints. Examples include models of elasticity [9–11] or 
incompressibility [12–16].

The preferred model typically depends on the application, of which there are many in medical imaging. Excellent ref-
erence works giving an overview of developments in this field are [1–7]. First, one may simply be interested in relating 
local information observed in two views of the same object. This can be helpful in assessing, for example, changes in tex-
ture or morphology that occurred over time due to the progression of a disease or treatment [8,17,18]. Moreover, one can 
integrate data acquired by multiple sensors (different imaging modalities) into a common reference frame (between imag-
ing sessions, the patient/organs move). Likewise, one can compensate for organ motion associated with breathing or the 
heart cycle [19–23]. Registration has also been used for the construction of atlases [8,24–28] and atlas-based segmenta-
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tion [29–31]. Aside from these examples of integrating data into a common frame of reference, one can use these tools 
to study changes in the (morphological) appearance of organs. This observation has lead to the notion of computational 
anatomy [19,32–38]. The results presented in this work fall into this category. Here, one uses the computed maps y (typ-
ically, diffeomorphisms) to derive features that might be useful to classify or characterize patients (e.g., diseased versus 
healthy) [18,39–45]. These features include geodesic distances, strain values, or local volume change associated with the 
computed map y (we specify this mathematically more rigorously below). One can either compare patients to one an-
other [46], or, likewise, individual patients to a standard reference template [24,25,27] and then—based on the derived 
features—try to classify them. Similarly, one can monitor a patient over time and use the computed maps between time 
frames to derive features that can be used to assess the progression or existence of a pathology. We consider both applica-
tions in the present work.

We limit Yad to infinite dimensional groups of diffeomorphisms G ⊆ diff(R3) in R3. This approach provides a rich 
mathematical framework for studying and quantifying shape variability in R3 through the lens of geodesics in the group of 
diffeomorphisms G. In the context of biomedical imaging, this area of research is—as mentioned above—typically referred to 
as computational anatomy [34–38]. The underlying mathematical framework for diffeomorphic shape matching is referred to 
as large deformation diffeomorphic metric mapping (LDDMM) [6,47–52] and builds upon the seminal works [53–55]. In [53–55]
it was shown that in an incompressible fluid, if ft(x), ft(x) := f (t, x), is the position at time t of a particle originating from 
initial location x, then the map t → ft(x) defines a geodesic in G for the metric defined by the kinetic energy of the fluid 
(see (2)). This observation has been used in numerous works to design variational optimal control formulations that allow 
us to match two shapes s0 and s1 by computing the “shortest” geodesic in G that connects them, i.e., maps s0 to s1.

1.1. Contributions

We provide an exposition of our work in the area of diffeomorphic shape matching, including the design of numerical 
algorithms [56–62] and their application to clinical problems [46,63–67]. In addition, we present an improved numerical 
implementation of the operator-splitting algorithm originally proposed in [61,62]. The work in [61,62] uses direct meth-
ods [68,69] to solve the optimality systems, i.e., matrices that appear in our optimality systems are formed and stored 
explicitly. Our new implementation is matrix-free. That is, we either implement matrix-vector products instead of forming 
matrices and/or exploit the block-structure of the matrix operators to reduce the memory footprint. Moreover, we consider 
a Schur complement (reduced-space) method [70] and use iterative algorithms to solve the individual subproblems that 
appear in our optimality system. Overall, we obtain a speedup of approximately 2× compared to our prior work [61,62]. 
In addition, the matrix-free implementation reduces the memory footprint of our method, which allows us to solve larger 
problems compared to our prior work.

1.2. Related work

We present numerical algorithms for solving optimal control problems for diffeomorphic shape matching and their appli-
cation to cardiac imaging. We refer the reader to [1,2,5,6] for a general introduction into numerical methods, applications, 
and formulations for image registration and diffeomorphic shape matching. There exists a plurality of mathematical and 
numerical frameworks to study shape variability; examples include [71–83]. The work presented in this manuscript builds 
upon the rich mathematical framework developed in [6,47–51,53–55,71,84,85]. In this framework, we define the shape space 
S as orbits of given template shapes under the action of the group of diffeomorphisms G. Our past work for the matching 
of smooth surfaces has been described in [56–60,62]. Likewise to [6,47–51], we consider a variational approach for solving 
for the diffeomorphism y ∈ G that maps one shape s0 ∈ S to another shape s1 ∈ S such that y ·s0 ≈ s1. These shapes si , 
i = 0, 1, are typically represented as curves, lines, or surfaces in Rd with d ∈ {2, 3} [57,86].

Our work in this area was initiated by a short exposition of the mathematical problem formulation [56]. This joint 
paper of Azencott and Glowinski represents the foundation for a series of papers of our group, spanning more than one 
decade [46,56–60,62,65–67]. In [57] Azencott, Glowinski, He, and co-authors build up on [56] and develop a first, efficient 
gradient descent algorithm for the considered optimal control formulation [56]. They applied their method to datasets of 
mitral valves, initiating a long-term collaboration between the Department of Mathematics at the University of Houston 
and the Houston Methodist Hospital. This collaboration has resulted in several joint publications over the years [46,62–67]. 
Improvements to the gradient descent (adjoint-based) methods and associated numerical strategies originally proposed 
in [57] led to several doctoral research projects [58–61]. This work culminated in the development of an operator-splitting 
strategy to solve the associated control problem [62]—a numerical technique that is equivalent to the Douglas–Rachford
splitting method [87–92]. This approach can be traced back to the seminal works of Glowinski and Marrocco [93] and 
Gabay and Mercier [94]. The present work describes our current numerical implementation of this approach, and showcases 
its application to real world problems in biomedical imaging.

Related work on adjoint-based, variational approaches for diffeomorphic registration of images by our group is de-
scribed in [15,16,95–102]. As opposed to the work considered here, these approaches directly operate on image intensi-
ties rather than shape representations derived from these data. Other work on numerical algorithms for the solution of 
variational shape matching problems (for images as well as surface representations) of other groups are, e.g., described 
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in [51,103–110]. The majority of existing works consider an optimize-then-discretize approach to solve the variational prob-
lem [15,16,51,95,96,107,109–113]. Aside from our work [57,62,96], discretize-then-optimize approaches for LDDMM can be 
found in [106,114]. The problem formulation as well as our discretization naturally leads to a reproducing kernel Hilbert 
space (RKHS) structure [115]. Exploiting an RKHS representation of smooth functions in the context of diffeomorphic shape 
matching (and associated problems) is a common strategy considered in numerous works [38,49,110,116–118]. As for the 
numerical solution of the variational optimization problem, many existing works consider (first order) gradient descent-type 
optimization algorithms; see, e.g., [51,103,107,109,119]. Higher order (quasi-)Newton algorithms have, e.g., been devel-
oped in [15,16,98,105,112]. Related work on operator-splitting algorithms for LDDMM (and related problems) can be found 
in [120,121]. Other recent works that do not explicitly derive optimality conditions based on variational principles but rely 
on automatic differentiation can be found in [79,118,122–124]. Lastly, we note that the success of machine learning in 
various scientific disciplines has led to several recent works that attempt to solve the inverse problem of diffeomorphic 
registration based on machine learning techniques [79,125–134].

1.3. Outline

We present our mathematical formulation and our numerical approaches in §2. The parameterization of diffeomorphic 
matching in terms of a time dependent velocity field v is presented in §2.1. The associated ODE constitutes the state 
equation for our nonlinear control problem. The variational problem formulation is described in §2.2. We present the nu-
merical discretization in §2.3. We describe our approach for numerical optimization in §2.4. We list quantitative measures of 
shape variability derived from diffeomorphic shape matching in §2.5. We report numerical experiments in §3 and conclude 
with §4.

2. Mathematical treatment and numerical methods

In the following sections, we describe the overall mathematical formulation and different numerical strategies to ap-
proach the problem. For easier access to the material, we provide an overview of our notation in Table 1.

Diffeomorphic shape matching can be formulated as follows: Given two k-dimensional shapes s0 ∈ S and s1 ∈ S in 
R3 with k ∈ {1, 2, 3} we seek an R3-diffeomorphism y ∈ diff(R3) such that y ·s0 = y(s0) = s1. This problem is ill-posed; 
it requires regularization for a numerical treatment [135]. In the following, we describe the mathematical formulation 
and different numerical strategies to solve the variational optimization problem presented below. One can either match 
biomedical imaging data by diffeomorphic image registration operating directly on image intensities (see, e.g., [15,51,95,96,
98,107,109,112]), or one can match shape representations extracted from these data (see Fig. 1). Here, we focus on the latter 
approach. In the present work, these shapes are represented as “surfaces.” The term “surface” denotes a compact smooth 2-
dimensional manifold with boundary, smoothly embedded in R3. The boundary of such a surface is a smooth 1-dimensional 
manifold smoothly embedded in R3, and—in all the cases considered here—is a connected finite union of smooth curves. 
We note that the general framework presented here applies (and has been applied) to curves, lines, or boundaries of solids 
embedded in R3. We parametrize the considered smooth surfaces with boundaries as finite sets of points in R3 (see §2.3).

2.1. Flows of diffeomorphisms

Let k := (k1, k2, k3) ∈ N3 denote a multi-index and ∂k denote the differential operator of order |k| = ∑3
i=1 ki . Moreover, 

let q ∈N , 1 ≤ p ≤ ∞, and u :R3 ⊇ � →R. Let

Cq(�) :=
{
u : � →R : ∂ku is continuous for |k| ≤ q

}
denote the space of q-times continuously differentiable functions on � ⊆ R3. Moreover, let

Wq,p(�) :=
{
u ∈ Lp(�) : ∂ku ∈ Lp(�) for 0 ≤ |k| ≤ q

}
denote the Sobolev space with norm

‖u‖q,p :=
{∑

0≤|k|≤q

(‖∂ku‖p
p
)1/p

if 1 ≤ p < ∞,

max0≤|k|≤q ‖∂ku‖∞ if p = ∞,

where ‖ · ‖∞ denotes the standard supremum norm. Using these definitions, we denote by Cq
0(�)3 ⊂ Cq(�)3 with q ∈ N

the completion of the space of vector fields of class Cq who along with their derivatives of order less than or equal to q
converge to zero at infinity. The space Cq

0(�)3 is a Banach space for the norm ‖u‖q,∞. Similarly, we define the Sobolev 
space Wq,p

0 (�)3 as a space that consists of elements with compact support on � ⊆ R3.
We introduce a pseudo-time variable t ∈ [0, 1], a suitable Hilbert space H of smooth vector fields in R3 (e.g., a RKHS; see 

§2.3.1), and parameterize diffeomorphisms using smooth vector fields v ∈V, V := L2([0, 1], H), t �→ vt := v(t, · ), vt ∈H . 
3
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Fig. 1. Illustration of the diffeomorphic shape matching problem. We display two shapes s0, s1 ∈ S with smooth boundaries ∂s0, ∂s1. We seek a diffeomor-
phic map y that, if applied to s0, makes the deformed template shape y ·s0 similar to the target shape s1, i.e., y ·s0 = y(s0) = s1.

Table 1
Notation and symbols.

Variable/Acronym Meaning

S shape space
H Hilbert space of R3 vector fields
Hd

σ RKHS of Rd vector fields parametrized by σ > 0 (we drop d for d = 1)
diff(R3) space of diffeomorphic mappings from R3 to R3

V space of L2-integrable (in time) smooth R3 vector fields
G group of diffeomorphisms; G⊆ diff(R3)

idR3 identity map in R3; idR3 (x) = x for any x ∈R3

s0 ∈ S template shape (shape to be deformed)
s1 ∈ S target/fixed shape
x0 = (xi0)

m0
i=1 ∈R3m0 vector of mesh points to represent s0

x1 = (xi1)
m1
i=1 ∈R3m1 vector of mesh points to represent s1

mi ∈N number of points for the parameterization of si , i = 0,1
n ∈N number of cells to discretize time interval [0,1]
v : [0,1] ×R3 →R3 time-dependent velocity field; vt := v(t, · )
f : [0,1] ×R3 → R3 diffeomorphic flow; ft := f (t, · )
y := f1 y : R3 → R3 diffeomorphic map at final time t = 1
t ∈ [0,1] pseudo-time variable
a ∈R3m0(p+1) discrete control variable (control vector)
x ∈R3m0(p+1) discrete state variable (state vector)
u ∈ R3m0(p+1) discrete dual variable corresponding to the state vector x
w ∈ R3m0(p+1) discrete dual variable corresponding to the control vector w
dist : S×S→R shape similarity measure
kin :V→ R kinetic energy/regularization functional
In = diag(1, . . . ,1) ∈Rn,n n × n identity matrix
en = (1, . . . ,1) ∈Rn 1-vector of size n × 1
⊗ Kronecker product (see (13))
� Hadamard product (see (21))

ADMM alternating direction method of multipliers
KKT Karush–Kuhn–Tucker (conditions)
LDDMM large deformation diffeomorphic metric mapping
RKHS reproducing kernel Hilbert space
PCG preconditioned conjugate gradient method

With this, we model the flow of R3-diffeomorphisms ft := f (t, · ) as the solution of the ordinary differential equation (the 
flow equation)

∂t ft = vt( ft) in (0,1],
f0 = idR3 ,

(1)

where idR3 : R3 → R3, idR3 (x) = x, is the identity transformation in R3 and the vector field vt tends to zero as x → ∞. 
More precisely, we assume that vt is an element of Cq

0(�)3 ⊇ H , as defined above, for any t ∈ [0, 1]. This assumption, 
along with suitable regularity requirements in time guarantees that (1) admits a unique solution, and that the flow ft is a 
diffeomorphism of � [6]. We refer to [6,50,57,85] for a more rigorous discussion. We have already specified above that v is 
L2-integrable in time. However, we note that L1-integrability is another option; see, e.g., [6]. The smoothness of vt ∈H is 
typically determined using a Sobolev norm ‖ · ‖q,p as defined above, where q defines the differentiability class and p the 
integrability order. This choice is motivated by the fact that the above result is true for vector fields v belonging to Banach 
or Hilbert spaces that are continuously embedded in C1

0(�)3. A common and natural choice for p is again p = 2. The choice 
of q depends on the dimension d of the ambient space � ⊆ Rd , where d ∈ {2, 3} in most applications. Based on the Sobolev 
embedding theorem (see, e.g., [136]), we can conclude that for p = 2 and q > d/2 + 1 the embedding Wq,2

0 (�) ↪→ C1(�̄) is 
compact. Since this embedding holds for all components of vt , we have that vt ∈H = Wq,2(�)3 with q > 5/2 for d = 3 is 
an admissible space that yields a diffeomorphic flow ft of smoothness class 1 ≤ r < q − 3/2, r ∈ N .
4
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The set of all admissible flows y := f1 at time t = 1 is a subgroup

G := { f1 :
1∫

0

‖vt‖H dt < ∞}

of Cr-diffeomorphisms in R3. This subgroup can be equipped with a right-invariant metric defined as the minimal path 
length of all geodesics joining two elements φ, ψ ∈ G. We refer, e.g., to [36,48,71,137] for a precise definition and mathe-
matically rigorous discussion. The geodesic distance between idR3 and a mapping φ corresponds to the square root of the 
kinetic energy

kin(v) := ‖v‖2L2([0,1],H)
=

1∫
0

‖vt‖2H dt (2)

subject to the constraint that φ is equal to the solution of (1) at time t = 1 for the energy minimizing velocity v . We denote 
this geodesic distance by ρG(idR3 , φ). We have,

ρG(idR3 , φ)2 := inf
v∈V

⎧⎨
⎩

1∫
0

‖vt‖2H dt : v ∈V, φ = f1, ∂t ft = vt( ft), f0 = idR3

⎫⎬
⎭ .

The geodesic distance between two diffeomorphic maps φ and ψ is given by ρG(idR3 , φ ◦ψ−1)2. Similarly, we can measure 
the distance between two shapes s0, s1 ∈ S in terms of the kinetic energy associated with the energy minimizing vt that 
gives rise to the diffeomorphic flow ft that maps the shape s0 to the shape s1. That is, we measure the distance between 
two shapes s0 and s1 as the smallest-cost deformation that maps s0 to s1. Using the geodesic distance ρG introduced above 
we obtain

ρS(s0, s1) := inf
φ∈G

{
ρG(idR3 , φ) : s1 = φ ·s0

}
. (3)

Consequently, to compare two shapes s0 and s1, we have to find the energy minimizing velocity v for kin in (2) that 
parameterizes the map that maps s0 to s1. This is exactly the inverse problem we seek to solve in the present work. 
More precisely, we seek y ∈ G such that s1 = y · s0, where y := f1 is the end point at t = 1 of the geodesic ft , t ∈ [0, 1]
satisfying (1).

2.2. Variational problem formulation

We consider diffeomorphic shape matching as a variational, optimal control problem. We relax the hard constraint 
y · s0 = s1 by introducing a distance functional dist : S × S → R that quantifies the proximity between y · s0 and s1. We 
model the diffeomorphism y to be generated by some time dependent flow of smooth R3-vector fields vt , as prescribed by 
the dynamical system in (1). We arrive at the nonlinear optimal control problem [51,57,85]

minimize
( ft )∈F, v∈V

dist( f1 ·s0, s1) + reg(v)

subject to ∂t ft = vt( ft) in (0,1],
f0 = idR3 .

(4)

We specify the distance measure in (4) in §2.3.3. The regularization functional reg :V→ R corresponds to the kinetic 
energy in (2); more details can be found in §2.3.2.

Remark 1. We note that the formulation above has been extended to the matching of finite sequences of shapes [56,62,108]. 
For simplicity, we omit this case here.

2.3. Numerical discretization

We consider a discretize-then-optimize approach. Other works using a discretize-then-optimize approach for LDDMM 
are described in [96,106,114]. For a discussion of tradeoffs between discretize-then-optimize and optimize-then-discretize ap-
proaches we refer to [138].

In our work, we model the surfaces s0 (template shape) and s1 (target shape) by a mesh of points x0 = (xi0)
m0
i=1 ∈ R3m0

and x1 = (xi1)
m1
i=1 ∈ R3m1 in R3, respectively. We subdivide the time horizon [0, 1] into n equispaced cells of size h = 1/(n+1)

on a nodal grid. The associated discrete time points are denoted by t j := ( j − 1)h, j = 1, . . . , n + 1. We denote the state and 
5
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control vectors of our problem by x(t j) = (xi(t j))m0
i=1 ∈ R3m0 and a(t j) = (ai(t j))m0

i=1 ∈ R3m0 with j = 1, . . . , n + 1, respec-
tively. The control ai(t j) ∈ R3 are coefficients associated with the ith state vector xi(t j) ∈ R3 at time t j ; they parameterize 
the continuous velocity field v (see §2.3.1 for details). We rearrange the vectors x(t j) and a(t j) for j = 1, . . . , n + 1 in 
lexicographical orderings

x := (x(t1), . . . , x(tn+1)) ∈R3m0(n+1) and a := (a(t1), . . . ,a(tn+1)) ∈R3m0(n+1), (5)

respectively, to be able to present the discretized version of the optimal control problem in (4) in a compact format.

Remark 2. We note that our implementation allows for matching shape representations discretized with a varying number 
mi ∈ N of points (x j

i )
mi
j=1, i ∈ {0, 1}, despite the fact that the numerical experiments included in this study are performed 

for meshes xi with an identical number of discretization points mi .

2.3.1. Reproducing kernel Hilbert space representation
RKHS are a key element of diffeomorphic shape matching [38,49,57,110,116–118]. As we have stated above, we assume 

that vt are smooth vector fields on R3. To guarantee this we have introduced an adequate Hilbert space H , as outlined 
in §2.1. Assuming that the Hilbert space H of R3 vector fields is continuously embedded into Cq

0(�)3, � ⊆ R3, for some 
q ≥ 1, there exists a constant c > 0 such that

‖vt‖q,∞ ≤ c‖vt‖H
for some vt ∈H , where ‖ · ‖H denotes the Hilbert norm on H with associated inner product 〈 · , · 〉H . From this it follows 
that H is an RKHS. Since H is a Cartesian product space for vector fields in R3, the construction of the associated RKHS 
is slightly more involved than in the scalar case. In particular, we have to assume that the kernel ker : R3 × R3 → R3,3

is matrix valued. Based on the Riesz representation theorem we know that there exists a matrix valued kernel function 
such that for all z, a ∈ R3 the vector field ker( ·, z)a belongs to H and 〈ker( ·, z)a, vt〉H = aTvt(z) for vt ∈H . Using this 
construction, it is possible to reduce the minimization in (4) from an infinite-dimensional, nonparametric variational prob-
lem to a parametric one. This can be accomplished using an RKHS argument similar to the so called kernel trick in kernel 
methods [115,139,140]. Since the distance between the deformed shape f1 ·s0 and s1 only depends on f at time t = 1 and 
we parameterize the template shape s0 as a set of a few select points {xi0}m0

i=1 (see §2.3), it suffices to compute trajectories 
for these select points xi , i = 1, . . . , m0, that satisfy the flow equation (1), i.e., ∂t xi = vt(xi). It follows that for an optimal 
velocity v we have that the squared norm ‖vt‖H is minimal over all ‖u‖2H with u(xi) = vt(xi) for all t ∈ [0, 1]. Therefore, 
we have that vt is of the form [57,139]

vt(z) =
m0∑
i=1

ker(xi(t), z)ai(t) for all z ∈R3

with ker : R3 × R3 → R3,3 as defined above. With this, we reduced the search for v ∈ L2([0, 1], H) to a set of time 
dependent, unknown coefficients a(t) = (ai(t))m0

i=1 in R3.
Next, we specify more concretely the implementation details. We simplify the RKHS construction by modeling the ker-

nel as a scalar function kerσv : R3 × R3 → R parameterized by σv > 0. The matrix representation introduced above is, 
equivalently, given by ker(·, ·) = kerσv (·, ·)I3, I3 := diag(1, 1, 1) ∈ R3,3. With this, we obtain

vt(z) =
m0∑
i=1

kerσv (x
i(t), z)ai(t) for all z ∈R3, (6)

where the coefficients a(t) = (ai(t))m0
i=1 ∈ R3m0 , m0 ∈ N , are associated with the state vector x(t) = (xi(t))m0

i=1 ∈ R3m0 . An-
other key feature of this construction is that we can specify the kernel ker instead of defining the space H [6,115].
The choice of the kernel kerσv is crucial, since it uniquely determines the associated RKHS. We consider a Gaussian kernel 
defined as

kerσv (u,u′) = 1(√
2πσv

)3 exp

(
−1

2
‖u − u′‖2/σ 2

v

)
(7)

for any u, u′ ∈ R3. This kernel is symmetric, positive definite and yields a metric that is invariant under rotation and 
translation. (We note that other kernels have been considered [116].) The Hilbert space H3

σv
of smooth vector fields in R3

is defined as

H3
σv

:= {
w : w( · ) =∑m0

i=1 kerσv (x
i, · )ai, ai ∈ R3, xi ∈R3, m ∈N

}
. (8)

We note that the Sobolev embedding hypothesis stated earlier in this work is satisfied if we model the space H using the 
self-reproducing Hilbert space H3

σ for any q > 5/2.

v
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Fig. 2. Left block: Spy plot for the m0 × m0 kernel matrix K in (14) for different choices of the bandwidth σv as a function of the mean edge length h̄. 
The plots have been generated for an exemplary mitral valve shape. The matrices are of size 1600 × 1600. The mean edge length h̄ is 1.2. We set σv = sh̄
with s ∈ {1/4, 1/2, 1, 2, 4}. We show the sparsity pattern for s = 1/2 (left), s = 1 (middle) and s = 2 (right). The number of nonzero entries (more precisely, 
entries with a value below 1 × 10−16) is 42 966 (1.68%; s = 1/4; not shown), 157 988 (6.17%; s = 1/2), and 523 740 (percentage: 20.46%; s = 1), 1 470 372
(57.44%; s = 2), and 2 559 418 (99.97%; s = 4; not shown), respectively. Right block: Visualization of the entries of the kernel matrix K for σv = 2h̄ (left: 
values for the entries (Kij)i j ; right: logarithmic scale). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

2.3.2. Discretized kinetic energy
The norm on H3

σv
in (8) is defined by the square root of

‖
m0∑
l=1

kerσv ( · , xl)al‖2H3
σv

=
m0∑
k=1

m0∑
l=1

kerσv (x
k, xl) 〈ak,al〉R3 , (9)

where 〈 · , · 〉R3 denotes the standard inner product in R3, and al ∈ R3 are coefficient vectors associated with the mesh 
points xl ∈ R3. We use a left Riemann summation [141] to discretize the integration in time that appears in (2). With this, 
the discrete version of the kinetic energy in (2) is given by

kinh(a) := h
n∑
j=1

hilb(t j), (10)

where h = 1/(n+1) denotes the size of the cells of the temporal mesh [t1, . . . , tn+1] ∈Rn+1 and

hilb(t j) :=
m0∑
k=1

m0∑
l=1

kerσv (x
k(t j), xl(t j)) 〈ai(t j),al(t j)〉R3 .

Under the assumption that the controls a are ordered according to (5), we can rewrite (10) as

kinh(a) := haTBa, (11)

where B is a block-diagonal matrix of the form

B := B[x] = diag
(
B1[x], . . . , Bn+1[x]) ∈R3m0(n+1),3m0(n+1), B j[x] = I3 ⊗ K [x(t j)] ∈R3m0,3m0 , (12)

where ⊗ denotes the Kronecker product, i.e.,

A ⊗ B =
⎛
⎜⎝

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

⎞
⎟⎠ ∈Rmp,nq (13)

for any A ∈Rn,m , B ∈Rp,q , I3 = diag(1, 1, 1) ∈ R3,3, and K [x(t j)] are Gram matrices of the form

K [x(t j)] = (
Klk(x(t j))

)m0,m0

l,k=1 ∈Rm0,m0 , Klk(x(t
j)) := kerσv (x

l(t j), xk(t j)) ∈R, (14)

with xl(t j) ∈R3 and xk(t j) ∈R3 denoting the lth and kth entry of the state vector x at time point t j and kerσv : R3 ×R3 →
R as in (7). We illustrate the matrix B[x] for a particular shape x for different choices of the bandwidth σv in Fig. 2.

Remark 3. We note that the kernel matrices K in (14) that appear in the regularization operator B in (12) are functions of 
the state vector x(t j). This significantly complicates the optimization problem since we need to differentiate not only with 
respect to the control variable a but also the state variable x (and the dual variables) to derive the optimality conditions. 
To avoid this complication, we fix the kernel matrices that enter the regularizer in (11) by replacing K [x(t j)] by K [x(t0)] =
K [x0] for all j = 1, . . . , n. This approximation significantly simplifies the optimization problem: The regularization operator 
B does not change during optimization since it depends on the fixed (static) shape representation x0 and not on the state 
7
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variable x(t j) that is updated during the course of the optimization. We end up with a quadratic term that does not need 
to be differentiated with respect to the state vector x. We have seen that this approximation works well in practice, even if 
the shapes to be registered, i.e., the shapes parameterized by x0 and x1, differ significantly. (If the shapes are different, we 
expect the state vector x to change significantly. Consequently, the kernel entries in B are expected to change as we move 
from x0 to x1.) We note that the norm in (11) still depends on the dynamics of our problem, since the coefficients a in (11)
change in time.

2.3.3. Discrete distance measures between shapes
Before we discuss our framework, we note that several geometric distance measures have been proposed, based on 

different shape representations. They include representations as measures [49,57] (see also below), currents [142], or vari-
folds [86,143–145]. We refer to these papers for more details.

Let S be the set of all compact, smooth 3D-surfaces properly embedded in R3 with piecewise smooth boundaries. Let 
B denote the space of bounded Borel measures on R3 endowed with the Hilbert norm ‖ · ‖Hσ associated with the scalar 
inner product

〈μ,μ̃〉Hσ :=
∫
R3

∫
R3

kerσ (x, x̃)dμ(x)dμ̃(x̃) (15)

for any μ, μ̃ ∈B, where kerσ :R3 ×R3 →R>0 denotes any smooth, symmetric, translation invariant and bounded positive 
definite kernel parameterized by σ > 0. (We are going to consider Gaussian kernels as defined in (7); hence the dependence 
on the parameter σ .) We can identify each submanifold s regularly embedded in R3 with Borel measure μ ∈B induced on 
s by the Lebesgue measure of R3. The corresponding squared distance between two bounded Borel subsets s and s̃ with 
measures μ and μ̃, respectively, is then defined by

distHσ (s, s̃) = ‖μ − μ̃‖2Hσ
. (16)

As we have outlined in §2.3, we identify these surfaces as a mesh of points xi ∈ R3mi , i = 0, 1, respectively. In this 
setting, it is natural to represent the shapes si ∈ S as bounded positive Radon measures on R3, namely as weighted sums 
of Dirac measures δ(xki ), k = 1, . . . , mi , i = 0, 1, associated with the point sets xi ∈ Rm [49,56,57]. In particular,

μ0 =
m0∑
k=1

pk δ(xk0), μ1 =
m1∑
k′=1

qk′ δ(xk
′

1 ), (17)

with weights pk, qk′ ∈R. With this, we arrive at the discrete representation of the distance functional in (4) given by

disth(x0, x1) = α

2
‖μ0 − μ1‖2Hσs

. (18)

As stated above, the set of bounded Borel measures is endowed with the Hilbert scalar product in (15). The associated 
squared Hilbert norm ‖μ0 − μ1‖2Hσs

in (18) represents the Borel distance between the shapes s0 and s1, associated with 
the Gaussian kernels kerσs defined in (7) with an adequate choice for the parameter σs > 0. With the definition of the inner 
product in (15) and the distance in (16) we obtain

‖μ0 − μ1‖2Hσs
= 〈μ0 − μ1,μ0 − μ1〉Hσs

= 〈μ0,μ0〉Hσs
− 2〈μ0,μ1〉Hσs

+ 〈μ1,μ1〉Hσs
,

where the inner products 〈 · , · 〉Hσs
are, based on the representation of μi , i = 0, 1, in (17), given by

〈μ0,μ0〉Hσs
=
∫
R3

∫
R3

kerσs (x, x
′)dμ0(x)dμ1(x

′) =
m0∑
k=1

m0∑
k′=1

pkpk′ kerσs (x
k
0, x

k′
0 ), (19a)

〈μ0,μ1〉Hσs
=
∫
R3

∫
R3

kerσs (x, x
′)dμ0(x)dμ1(x

′) =
m0∑
k=1

m1∑
k′=1

pkqk′ kerσs (x
k
0, x

k′
1 ), (19b)

〈μ1,μ1〉Hσs
=
∫
R3

∫
R3

kerσs (x, x
′)dμ1(x)dμ1(x

′) =
m1∑
k=1

m1∑
k′=1

qkqk′ kerσs (x
k
1, x

k′
1 ), (19c)

respectively.
The parameter α > 0 in (18) is a weight that controls the contribution of the distance in (18) versus the contribution of 

the kinetic energy in (10). We discuss policies for selecting α in §2.4.4.
8
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Remark 4. We note that σv �= σs , in general. That is, σv is chosen to control the smoothness of the velocity v whereas 
σs controls the contribution of all points xlj ∈ R3 to the distance for a particular point xki ∈ R3 with i, j ∈ {0, 1} for all 
k, l = 1, . . . , m. We specify heuristic choices for the parameters σs and σv in §2.4.4.

Likewise to the kinetic energy in (11), we consider a matrix-vector representation to compactly represent the distance 
in (18). We have

disth(x0, x1) = α

2
(φ(x0, x0) − 2φ(x0, x1) + φ(x1, x1)) , (20)

with

φ(xi, x j) = 1

mim j

mi∑
k=1

mj∑
l=1

kerσs (x
k
i , x

l
j) = 1

mim j
eT
mim j

exp

(
− 1

2σs
S(d(xi, x j) � d(xi, x j))

)
,

where S := eT
3 ⊗ Imim j , S ∈ Rmim j ,3mim j , e3 = (1, 1, 1) ∈ R3, Imim j := diag(1, . . . , 1) ∈Rmim j ,mim j , exp :Rmim j →Rmim j is the 

pointwise exponential, ⊗ is the Kronecker product (see (13)), � is the Hadamard product defined as the elementwise/en-
trywise product of two matrices/vectors, i.e.,

(A � B)kl = (A)kl(B)kl, k, l = 1, . . . ,n, (21)

for any A, B ∈ Rn,n , and all-to-all distance vector d(xi, x j) := P1xi − P2x j ∈ R3mim j with permutation matrices P1 := I3 ⊗
Imi ⊗ em j , P1 ∈ R3mim j ,3mi , P2 := I3 ⊗ emi ⊗ Im j , P2 ∈ R3mim j ,3mj , respectively. The all-to-all distance vector d introduced 
above is a vector whose entries represent the difference between any point {xli}mi

l=1 of xi to any point {xkj}
mj

k=1 of x j with 
i, j ∈ {0, 1}.

Comparing the expression for φ in (20) to (19) reveals that we select uniform weights pk = 1/m0 and qk′ = 1/m1 for 
all k = 1, . . . , m0, k′ = 1, . . . , m1, respectively, for the weighted sums in (17). We use uniform weights for simplicity. Based 
on our past experience and the results reported in this work, this choice yields good performance in terms of convergence 
and shape matching accuracy. However, we note that it is certainly possible to use weights that are adaptive and depend 
on the parameterization of the shape. It remains subject to future work to explore if such an adaptive scheme is beneficial 
for the problems considered in our work. A simple modification we have implemented, that does not quite depend on 
the parameterization, is to increase the contribution of the points located on the boundary of the curved surface to the 
matching term (the boundaries of the mitral valve leaflets in our case; see Fig. 4 for an illustration). That is, we increase α
in (20) for points located on the boundary. We observed in our past work [62] that this leads to a more accurate matching 
close to the boundary. We omit these details for simplicity of presentation.

Remark 5. The permutation matrices Pl , l = 1, 2, are introduced to provide a compact representation of the computation 
of the all-to-all difference between the points of xi , x j , i, j = 0, 1, across all spatial dimensions, respectively. We note that 
the Kronecker product notation is only used for presentation purposes. In computation, tensor operations are used to avoid 
explicit formation of these large, sparse matrices.

2.3.4. Numerical time integration
We use an explicit Euler method to integrate (1) forward in time [56,57]. Using the RKHS representation in (6) to model 

vt we have

xl(t j+1) = xl(t j) + h
m0∑
k=1

kerσv (x
k(t j), xl(t j))ak(t j), l = 1, . . . ,m0, (22)

for the lth entry xl(t j+1) ∈ R3 of the state vector x = (x(t1), . . . , x(tn+1)) ∈ R3m0(n+1) at time t j+1, with uniform time step 
size h = 1/(n + 1). Using the lexicographical ordering in (5), we can represent (22) as

(
Gx Ga

)(x
a

)
= q

with state-control vector (x, a) ∈ R6m0(n+1) . The matrices Gx and Ga := Ga[x] are given by the lower block-bidiagonal and 
lower block-diagonal matrices
9
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Ga[x] = −h

⎛
⎜⎜⎜⎜⎝

0 · · · 0

B1[x] . . .
...

...
. . . 0

0 · · · Bn+1[x]

⎞
⎟⎟⎟⎟⎠ ∈R3m0(n+1),3m0(n+1) and

Gx =

⎛
⎜⎜⎜⎜⎝

I3m0 · · · 0

−I3m0

. . .
...

...
. . . I3m0

0 · · · −I3m0

⎞
⎟⎟⎟⎟⎠ ∈R3m0(n+1),3m0(n+1),

(23)

I3m0 = diag(1, . . . , 1) ∈R3m0,3m0 , respectively. The right hand side q ∈ R3m0(n+1) is given by

q =
(
x0
0

)
(24)

and B j[x] is as defined in (12).

Remark 6. Notice that the matrix Gx is a sparse matrix whereas the lower block-diagonal entries of Ga are, in general, dense 
(as a function of σv ; see Fig. 2). In our implementation, the matrices Gx and Ga (and the associated adjoint operators) are 
not assembled and/or stored; we implement matrix-vector products using the block matrices, instead. However, we assemble 
and store the matrices K [x(t j)] which imposes memory restrictions on our current implementation.

Remark 7. The explicit Euler scheme considered in this work is only first order accurate in time. Our methodology is 
modular in the sense that we can replace this scheme with any other (high-order) numerical time integration scheme (at 
the expense of computational complexity and runtime). In past work on a different problem formulation we observed that 
using higher-order time integration schemes for computing the diffeomorphic flow can be beneficial [96]. In particular, 
we observed that a fourth order Runge–Kutta method for numerical time integration is more expressive when it comes 
to modeling complex diffeomorphic flows [96]. In other past work, we consider second order accurate time integration 
schemes [15,95,97,98]. We did not observe issues in the present application with our first order scheme. Exploring high-
order schemes for numerical time integration remains subject to future work.

2.3.5. Discretized optimal control problem
If we put all building blocks described above together, we arrive the following discrete version of (4):

minimize
a, x

disth(Q x, x1) + kinh(a)

subject to
(
Gx Ga

)(x
a

)
= q.

(25)

Here, (x, a) ∈ R6m0(n+1) denotes the entire state-control trajectory, with x and a as in (5), discretized kinetic energy kinh
as in (10), discretized distance disth as in (20), matrix-operators Ga and Gx as in (23), and right-hand side q as in (24), 
respectively. Notice that we apply an observation operator Q to the state variable x, such that we compute the proxim-
ity between the solution of the state equation (equality constraint in (25)), i.e., the deformed shape at time tn+1 for a 
given control a, to the reference shape x1. More precisely, x(tn+1) = Q x, Q = (03m0 . . . 03m0 I3m0 ) ∈ R3m0,3m0(n+1) with zero 
matrices 03m0 = diag(0, . . . , 0) ∈ R3m0,3m0 and identity matrix I3m0 ∈ R3m0,3m0 , respectively.

2.4. Numerical optimization

In what follows, we describe different methods to solve (25) numerically.

2.4.1. Adjoint-based line search methods
In our past work, our group has developed several adjoint based first and second order numerical optimization algo-

rithms [57–60]. These approaches can be summarized by the iterative scheme [70,146]

a(k+1) = a(k) − t(k)s(k), k = 1,2, . . . , (26)

where k ∈N denotes the iteration index, a(k) ∈ R3m0 is the iterate, and s(k) := −B(k)g(k) represents the search direction with 
B(k) ∈ R3m0,3m0 , m0 ∈ N , reduced gradient ga,(k) ∈ R3m0 (with respect to the control variable a), and line search parameter 
t(k) > 0. We note that we consider a reduced space method in (26). That is, we only iterate on the reduced space of the 
control variable a. In full space or all-at-once methods, all unknowns of the problem (i.e., the state variable(s), the adjoint (or 
10
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dual) variable(s), and the control variable(s)) are updated simultaneously. This affects the structure and size of the vectors 
and matrices involved in the computations associated with (26), respectively. We refer, e.g., to [147–152] for more details. 
The choice of B(k) determines the type of algorithm [70,146]. If we set B(k) to I3m0 := diag(1, . . . , 1) ∈R3m0,3m0 , we obtain a 
gradient descent algorithm. If we select B(k) = (H (k))−1, where H (k) ∈ R3m0,3m0 is the Hessian matrix, we arrive at a Newton 
algorithm. Other options for the matrix B(k) include approximations to the Hessian, resulting in different flavors of quasi-
Newton methods. These methods vary in their rate of convergence, ranging from linear (gradient descent), to super-linear 
(quasi-Newton methods), to quadratic (Newton method) [70,146]. In the context of LDDMM (and related formulations), 
quasi–Newton algorithms have been considered in [15,16,98,112] (specifically, adjoint-based Gauss–Newton) and [105,118]
(BFGS; adjoint-based or automatic differentiation), respectively.

We omit additional details for the sake of brevity and refer to our past work [57–60]. We provide bits and pieces of 
the building blocks for these algorithms in the following sections, including derivative information of the variational opti-
mization problem (25). We note that we demonstrated in [62] that our (original) implementation of the splitting approach 
discussed below outperforms the Newton algorithm developed in our prior work [60] in terms of runtime. Our improved 
implementation presented in this work is about 2× faster and requires less memory, allowing for the solution of bigger 
problems than those considered in [62] due to a matrix-free implementation.

2.4.2. Operator splitting
In [62], we propose the use of an operator splitting strategy to solve the nonlinear control problem in (4). The con-

sidered approach is typically referred to as alternating direction method of multipliers (ADMM) [153–155]. It is equivalent to 
the Douglas–Rachford splitting method [87–92], which was initially developed to numerically solve PDEs [156]. In its modern 
form, this algorithm was introduced by Glowinski and Marrocco [93] and Gabay and Mercier [94]. Recent work of Glowinski 
and colleagues in the area of operator splitting includes [90,157–161]. We refer to [90] for a general exposition of oper-
ator splitting techniques and to [87,153,155,162] for a lucid discussion of operator splitting approaches in the context of 
optimization.

Problem formulation To concisely present the splitting algorithm developed in [62], we introduce the set

C :=
{(

x
a

)
∈R6m0(n+1) : [Gx Ga](x

a

)
= q

}
(27)

of state-control pairs (x, a) ∈ R6m0(n+1) that satisfy the dynamical system (constraint) in (25). Moreover, let indC :
R3m0(n+1) ×R3m0(n+1) → {0, ∞} denote the indicator function for the set C in (27), i.e.,

indC(x,a) :=
{
0 if (x,a) ∈ C,
∞ otherwise.

In addition, with slight abuse of notation, we define

disth(x,a) := disth(Q x, x1) and kinh(x,a) := kinh(a)

with discretized distance disth and discretized kinetic energy kinh as in (25), respectively. Using this notation allows us to 
better illustrate the derivation of the splitting strategy. We can rewrite (25) to obtain

minimize
a, x

disth(x,a) + kinh(x,a)

subject to
(
Gx Ga

)(x
a

)
= q

(28)

with variables (x, a) ∈ R6m0(n+1) . With the indicator function indC introduced above, we can represent the equality con-
strained optimization problem in (25) as an unconstrained optimization problem of the form

minimize
x,a

indC(x,a) + kinh(x,a) + disth(x,a). (29)

To derive our splitting approach, we consider the consensus form [153,162] of (29). The fundamental idea of the consensus 
form of operator splitting is to solve a coupled, multi-objective optimization problem (that is difficult to solve in its original 
form) by splitting it into multiple (easier) subproblems to be solved separately. These subproblems are then tied together 
by a constraint that enforces convergence to a single, consensus solution at the end of optimization. For the particular 
case of (29), we split the problem into two separate parts by introducing a second pair of state-control variables (x̃, ̃a) ∈
R6m0(n+1) . To ensure convergence to one solution, we introduce an equality constraint that enforces the state-control pairs 
(x, a) and (x̃, ̃a) to be equal—the consensus or consistency constraint. We obtain
11
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minimize
x,a

(
indC(x,a) + kinh(x,a)

)
+ disth(x̃, ã)

subject to

(
x
a

)
=
(
x̃
ã

)
.

(30)

As indicated in (30), we have split the objective in (28) into two separate parts, with different variables. The first part 
contains the indicator function for the set C (i.e., the model for the discretized ODE constraint) and the kinetic energy. 
The second part encodes the mismatch term. The equality constraint states that these terms are “in consensus.” Using this 
formulation, we can derive an iterative scheme as follows. We use the method of Lagrange multipliers to solve (30). We 
introduce the dual variables (ν, ω) ∈ R6m0(n+1) for the equality constraint (x, a) −(x̃, ̃a) = 0 in (30). With this, the augmented 
Lagrangian for the problem in (30) is given by

Lρ(x,a, x̃, ã, ν,ω) =
(
indC(x,a) + kinh(x,a)

)
+ disth(x̃, ã) +

(
ν
ω

)T ((
x
a

)
−
(
x̃
ã

))
+ ρ

2

∥∥∥∥
(
x̃
ã

)
−
(
x
a

)∥∥∥∥
2

2
,

where ρ > 0 is a parameter. Let (x̃(1), ̃a(1)) ∈ R6m0(n+1) and (ν(1), ω(1)) ∈ R6m0(n+1) denote our initial guess for the state-
control pair (x̃, ̃a) ∈ R6m0(n+1) and the associated dual variables (ν, ω) ∈ R6m0(n+1) at iteration k = 1, respectively. We can 
now minimize the Lagrangian Lρ over each individual pair of primal variables, while the value for the other pair of primal 
variables as well as the dual variables remain fixed. We obtain(

x(k+1)

a(k+1)

)
= argmin

x,a
Lρ(x,a, x̃(k), ã(k), ν(k),ω(k))

(
x̃(k+1)

ã(k+1)

)
= argmin

x̃, ã
Lρ(x(k+1),a(k+1), x̃, ã, ν(k),ω(k))

(
ν(k+1)

ω(k+1)

)
=
(

ν(k)

ω(k)

)
+ ρ

((
x̃(k+1)

ã(k+1)

)
−
(
x(k+1)

a(k+1)

))
.

We can observe that the dual variables of this problem correspond to a scaled running sum of the consensus error [153]. 
We combine the linear and quadratic terms in the augmented Lagrangian to derive the proximal version of the scheme 
stated above. Dropping constant terms from the augmented Lagrangian Lρ in each step, we obtain(

x(k+1)

a(k+1)

)
= argmin

x,a

(
indC(x,a) + kinh(x,a) +

(
ν(k)

ω(k)

)T (
x
a

)
+ ρ

2

∥∥∥∥
(
x̃(k)

ã(k)

)
−
(
x
a

)∥∥∥∥
2

2

)
,

(
x̃(k+1)

ã(k+1)

)
= argmin

x̃, ã

(
disth(x̃, ã) −

(
ν(k)

ω(k)

)T (
x̃
ã

)
+ ρ

2

∥∥∥∥
(
x̃
ã

)
−
(
x(k+1)

a(k+1)

)∥∥∥∥
2

2

)
,

(
ν(k+1)

ω(k+1)

)
=
(

ν(k)

ω(k)

)
+ ρ

((
x̃(k+1)

ã(k+1)

)
−
(
x(k+1)

a(k+1)

))
.

We rescale the dual variables to obtain (u(k), w(k)) := ((1/ρ)ν(k), (1/ρ)ω(k)), and pull the linear terms into the quadratic 
terms. Then, the iterative scheme for successively updating the primal and dual variables (x, a), (x̃, ̃a), (u, w), is given by(

x(k+1)

a(k+1)

)
= argmin

x,a

(
indC(x,a) + kinh(x,a) + ρ

2

∥∥∥∥
(
x
a

)
−
(
x̃(k)

ã(k)

)
−
(

u(k)

w(k)

)∥∥∥∥
2

2

)
, (31a)

(
x̃(k+1)

ã(k+1)

)
= argmin

x̃, ã

(
disth(x̃, ã) + ρ

2

∥∥∥∥
(
x̃
ã

)
−
(
x(k+1)

a(k+1)

)
+
(

u(k)

w(k)

)∥∥∥∥
2

2

)
, (31b)

(
u(k+1)

w(k+1)

)
=
(

u(k)

w(k)

)
+
(
x̃(k+1)

ã(k+1)

)
−
(
x(k+1)

a(k+1)

)
, (31c)

with iteration index k = 1, 2, . . .. We can represent (31) more concisely in its proximal form as(
x(k+1)

a(k+1)

)
= proxγ (indC+kinh)

(
x̃(k) + u(k), ã(k) + w(k)

)
,

(
x̃(k+1)

ã(k+1)

)
= proxγ disth

(
x(k+1) − u(k),a(k+1) − w(k)

)
,

(
u(k+1)

w(k+1)

)
=
(

u(k)

w(k)

)
+
(
x̃(k+1)

ã(k+1)

)
−
(
x(k+1)

a(k+1)

)
,
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where γ := 1/ρ . Compared to the optimization problem in (29), we now have to tackle two optimization problems. We see 
below that they are significantly simpler than the original, coupled problem in (29). The first optimization problem for (x, a)
in (31a) solely involves the kinetic energy kinh in (10) (along with the indicator function for the set of state-control pairs C
in (27)). We refer to this subproblem as the kinetic energy subproblem. The second optimization problem for (x̃, ̃a) in (31b)
solely involves the kernel distance disth in (20); it minimizes the distance between the deformed shape x(tn+1) = Q x (i.e., 
the solution of the state equation for a candidate a) and the reference shape x1. We refer to this optimization problem as 
the distance subproblem. The update in (31c) involves the residual of the primal variables (x, a) and (x̃, ̃a) at iteration k + 1. 
As we converge to the solution of the original problem, (x, a) and (x̃, ̃a) converges to the same vectors and, consequently, 
we expect the dual variables (u, w) to vanish at optimality. Evaluating (31c) is prosaic, but solutions to (31a) and (31b) are 
nontrivial. We discuss our approaches for each of these subproblems next.

Kinetic energy subproblem At each iteration of our splitting algorithm, we solve (31a) by setting up and solving the linear 
system associated with the first order KKT conditions. To this end, we form the Lagrangian for the quadratic, equality 
constrained optimization problem associated with the implicit, unconstrained formulation in (31a): Given current estimates 
(u(k), w(k)) and (x̃(k), ̃a(k)) find (x, a) such that

minimize
x,a

haTBa + ρ

2

∥∥∥∥
(
x
a

)
−
(
x̃(k)

ã(k)

)
−
(

u(k)

w(k)

)∥∥∥∥
2

2

subject to
(
Gx Ga

)(x
a

)
= q.

(32)

As stated above, we use the method of Lagrange multipliers to handle the equality constraint. We have

L(x,a, ν) = haTBa + ρ

2

∥∥∥∥
(
x
a

)
−
(
x̃(k)

ã(k)

)
−
(

u(k)

w(k)

)∥∥∥∥
2

2
− νT(Gaa + Gxx− q),

where ν ∈ Rñ , ñ := 3m0(n + 1) represents the vector of Lagrangian multipliers. Differentiating the Lagrangian with respect 
to each block of variables, we can derive the first order KKT optimality conditions for (32). These state that the optimal 
variables (aopt, xopt, νopt) satisfies the block linear system⎛

⎝ B + ρ Iñ 0 −(Ga)T

0 ρ Iñ −(Gx)T

Ga Gx 0

⎞
⎠
⎛
⎝aopt

xopt

νopt

⎞
⎠=

⎛
⎝ ã(k) + u(k)

x̃(k) + w(k)

q

⎞
⎠ .

To solve this KKT system numerically, we perform the change of variables (aopt, xopt) = (a + pa, x + px). We obtain the 
linear system⎛

⎝ B + ρ Iñ 0 (Ga)T

0 ρ Iñ (Gx)T

Ga Gx 0

⎞
⎠
⎛
⎝−pa

−px

νopt

⎞
⎠=

⎛
⎝ ga

gx

c

⎞
⎠ (33)

with ga = Ba +ρ(a − ã(k) −u(k)), ga ∈ Rñ , gx = ρ(x − x̃(k) − v(k)), gx ∈Rñ , and c = Gaa +Gxx −q, c ∈Rñ . In exact arithmetic, 
the solution to this linear system gives the step (pa, px) that sums with our current approximation to the solution (a, x) to 
get the solution (aopt, xopt) that satisfies the first order optimality conditions. Here, the vectors ga and gx correspond to the 
gradient of (32) with respect to a and x, respectively, and c corresponds to the linear constraint. This system is (in exact 
arithmetic) symmetric positive semi-definite. (See Fig. 3.)

There are several options to solve the linear system (33). The matrix on the left hand side of (33) is highly structured 
and sparse. Additionally, for the fixed kernel matrices we use, this matrix does not change during the optimization. These 
traits make direct factorization approaches [68,69] feasible for smaller problems; we considered a symmetric indefinite fac-
torization [70, p. 454f.] (i.e., an LDLT factorization [163,164]) in our prior work [62]. Since we fix the block matrices, this 
factorization needs to be computed only once (at the beginning of the algorithm). This trick provides significant computa-
tional gains. On the downside, the factorization is computational demanding for fine discretizations and quickly results in 
excessive memory pressure since we need to form and store (33) and its factorization.

Another option is the Schur–complement method—a projection based approach [70, p. ]. This method projects the prob-
lem onto the space of Lagrangian multipliers, resulting in the linear system

GM−1GTν = GM−1g − c (34)

with

G := (
Ga Gx

) ∈Rñ,2ñ, M :=
(
B + ρ Iñ 0

0 ρ I

)
∈R2ñ,2ñ, g :=

(
ga

gx

)
∈R2ñ.
ñ
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Fig. 3. Illustration of the KKT matrix in (33). We show the matrix on the left and the individual blocks on the middle and right. The matrices are constructed 
for two representative shapes from our mitral valve databases with m0 =m1 = 1 600.

We solve this equation iteratively using a preconditioned conjugate gradient method (PCG). After solving for ν , the step 
updates are recovered by evaluating(

pa

px

)
= M−1 (GTν − g

)
.

Remark 8. We make several remarks about the Schur–complement method we use here. First, we reiterate that the block 
matrices used above do not need to be computed explicitly but can be accessed via function calls to matrix-vector mul-
tiplication with a vector. This extends to M and its inverse, both of which are block diagonal. We compute matrix-vector 
products with the inverse of this matrix in a block-wise fashion. This requires the inversion of the 2(n + 1) diagonal blocks. 
The first n + 1 of these blocks are of the form hB j + ρ I3m0 for j = 1, . . . , n + 1 with B j as in (12). These matrices are 
symmetric positive definite, and for small problems their Cholesky factors can be used to compute and store their inverses 
across all operator splitting iterations. For larger problems, explicit inversion may prove infeasible. This is a limitation of the 
current implementation, and the inversion of these blocks for larger problems represents future work. The remaining n + 1
blocks are identity matrices scaled by the factor ρ , so their inversion is trivial.

We also note that solving (34) to a low tolerance using an iterative method results in steps (pa, px) that do not yield the 
exact solution (aopt, xopt) satisfying the optimality conditions. In practice, the solution only represent an update resulting in 
a new iterate, (a(k+1), x(k+1)) = (a(k) + pa, x(k) + px). Balancing accuracy and computational load, we set the tolerance for the 
PCG to 1 × 10−4 with an upper bound of 100 iterations.

Lastly, we note that our (modified) PCG implementation allows us to deal with optimization problems that tackle systems 
with matrices that are not positive definite. That is, we have added a condition that checks for negative curvature. We refer 
to, e.g., [70, p. 168f.] for details.

Preconditioner for reduced space KKT system We have designed a block preconditioner for (34). First, we note that

GM−1GT = Ga(B + ρ Iñ)
−1(Ga)T + ρ−1Gx(Gx)T.

Using block matrix operations, we then see that the matrix has block tridiagonal form with

GM−1GT = 1

ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I3m0 −I3m0

−I3m0 L1 −I3m0

−I3m0 L2 −I3m0

. . .
. . .

. . .

−I3m0 Ln−1 −I3m0−I3m0 Ln

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈R3m0(n+1),3m0(n+1),

where L j = h2B j(B j + ρ I3m0)
−1(B j)T + 2ρ I3m0 for j = 1, . . . , n. For the preconditioner, we drop the off diagonal identity 

blocks and invert to get

P−1 = diag
(
I3m0 , L

1, . . . , Ln
)−1 ∈R3m0(n+1),3m0(n+1)
14
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as a left preconditioner. We note that P−1 is block diagonal, so the computation of the inverse requires only the inverses 
of the component blocks. These can be computed offline using a Cholesky factorization and reused throughout the opti-
mization. Furthermore, the matrix does not need to be computed explicitly and can be accessed as a function call to a 
matrix-vector product.

Distance subproblem Next, we develop a numerical method to solve subproblem (31b). The associated unconstrained opti-
mization problem is as follows: Given current estimates (x(k+1), a(k+1)), (u(k), w(k)) find (x̃, ̃a) such that

minimize
x̃, ã

disth(x̃, ã) + ρ

2

∥∥∥∥
(
x̃
ã

)
−
(
x(k+1)

a(k+1)

)
+
(

u(k)

w(k)

)∥∥∥∥
2

2
. (35)

Notice that the only variable appearing in the distance functional is xn+1 = x(tn+1) ∈ R3m0 , i.e., the “transported” 
shape/state variable at the terminal time point tn+1 = 1. The remaining variables are included only in the mismatch term 
involving a 2-norm. Consequently, we can compute the minimizer for these variables explicitly as

ã(k+1) = a(k+1) − w(k) and x̃(k+1)(t j) = x(k+1)(t j) − u(k)(t j) for j = 1, . . . ,n.

The remaining problem for x̃ at time tn+1 with z := x̃n+1 is

minimize
z

disth(z, x1) + ρ

2
‖z − x(k+1)(tn+1) + v(k)(tn+1)‖22 (36)

We solve the unconstrained optimization problem in (36) at each outer iteration using a matrix-free Newton–Krylov 
method [70]. This requires first order (gradient) and second order (curvature) derivative information. The derivatives of the 
squared-norm are straightforward to obtain and therefore omitted. The first and second derivative of the distance as defined 
in (20) with respect to an arbitrary vector z ∈ R3m0 is formally given by

dzdist
h(z, x1) = α

2
dz (φ(z, z) − 2φ(z, x1) + φ(x1, x1)) = α

2
(dzφ(z, z) − 2dzφ(z, x1))

and

dzzdist
h(z, x1) = α

2
(dzzφ(z, z) − 2dzzφ(z, x1)) ,

respectively. Starting with the second term of the sum, the first derivative of φ with respect to the vector z ∈R3m0 is given 
by

dzφ(z, x1) = − 1

m0m1σ
2
s
PT
1D

TST exp

(
− 1

2σ 2
s
S(d(z, x1) � d(z, x1))

)
∈R3m0 ,

where D := diag(d(z, x1)) denotes a diagonal matrix with the entries of the vector d(z, x1) on the main diagonal. The second 
derivative is given by the 3m0 × 3m0 matrix

dzzφ(z, x1) = 1

m0m1σ
4
s
PT
1D

TST diag

(
exp

(
− 1

2σ 2
s
S (d(z, x1) � d(z, x1))

))
SDP1

− 1

m0m1σ
2
s
PT
1 diag

(
ST exp

(
− 1

2σ 2
s
S(d(z, x1) � d(z, x1))

))
P1,

The derivatives for φ(z, z) are computed similarly with the exception that the all-to-all distance vector d (see §2.3.3 for 
the definition), becomes d(z, z) = P1z − P2z = (P1 − P2)z. Thus, the first and second derivative for φ(z, z) are given by the 
vector

dzφ(z, z) = − 1

m2
0σ

2
s

(P1 − P2)
TDTST exp

(
− 1

2σ 2
s
S(d(z, z) � d(z, z))

)
∈R3m0

and the 3m0 × 3m0 matrix

dzzφ(z, z) = 1

m2
0σ

4
s

(P1 − P2)
TDTST diag

(
exp

(
− 1

2σ 2
s
S(d(z, z) � d(z, z))

))
SD (P1 − P2)

− 1

m2
0σ

2
s

(P1 − P2)
T diag

(
ST exp

(
− 1

2σ 2
s
S(d(z, z) � d(z, z)

))
(P1 − P2)

with D := diag(d(z, z)), respectively.
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Remark 9. It is inefficient to store the Hessian pieces dzzφ(z, z) and dzzφ(z, x1) explicitly. Instead, they are passed as func-
tion handles, evaluating their product with a given vector z.

The Newton step s(k) ∈R3m0 at outer iteration k is given by

H (k)s(k) = −g(k), x̃(k+1)(tn+1) = x̃(k)(tn+1) + t(k)s(k), (37)

where H := dzzφ(z, z) +dzzφ(z, x1) ∈R3m0,3m0 , g := dzφ(z, z) +dzφ(z, x1) ∈R3m0 are the Hessian and gradient of the objec-
tive function with dzzφ(z, z), dzzφ(z, x1), dzφ(z, z) and dzφ(z, x1) as defined above, and t(k) > 0 is a line search parameter. 
We use a backtracking line search subject to the Armijo condition [70,146]. The solution to this linear system at iteration 
k is the search direction s(k) for x̃ at time tn+1 = 1. We solve the linear system H (k)s(k) = −g(k) in (37) iteratively using a 
matrix-free PCG method. We use a quadratic forcing sequence to compute the tolerance εPCG for the PCG method. The term 
forcing sequence refers to an adaptive strategy for selecting the tolerance of iterative methods used to solve for the search 
direction s(k) in (37) that is commonly used in large scale optimization problems. Instead of solving (37) at every iteration k
to high accuracy (i.e., to machine precision, as we would do when considering direct methods), we choose a tolerance that 
is proportional to the norm of the gradient g(k) . This way, we gradually increase the accuracy for the computation of the 
search direction s(k) . Since the overall rate of convergence may not benefit from an accurate estimate of s(k) far away from 
an optimal point, this allows us to significantly reduce the computational burden. Assuming (optimal) quadratic conver-
gence of our Newton–Krylov solver, we set εPCG to εPCG = min

(‖g(k)‖2/‖g(0)‖2, τPCG
)
, with τPCG = 1/4. If we were to assume 

superlinear convergence we can slightly relax this tolerance by replacing ‖g(k)‖2/‖g(0)‖2 with its square root. We note that 
other options for selecting τPCG exist. We refer, e.g., to [70,165] for additional details. Notice that the normalization with 
respect to the initial gradient ‖g(0)‖2 at iteration k = 0 is not the standard textbook approach. Based on our past experience 
with solving large scale inverse problems, we prefer this choice since it allows us to avoid issues with the scaling of the 
gradient g .

2.4.3. Stopping criteria
We now discuss the stopping criteria for the operator-splitting iteration introduced in (31). We separate this discus-

sion into two parts: a discussion of the algorithm convergence of the operator-splitting iteration and a discussion of the 
convergence of the mapped template shape to the reference shape.

We monitor the convergence of the splitting algorithm using the primal and dual residuals rprim and rdual, which are 
given by

r(k)prim =
(
a(k)

x(k)

)
−
(
ã(k)

x̃(k)

)
and r(k)dual = ρ

((
ã(k)

x̃(k)

)
−
(
ã(k−1)

x̃(k−1)

))
, (38)

respectively. Here, the primal residual monitors the convergence of variables to a consensus solution, while the dual residual 
monitors the convergence to a fixed solution across iterations. Both residuals can be shown to converge to zero [155]. Thus, 
a suitable criteria for convergence of the splitting method in (31) is to stop when the norms of rprim and rdual falls below 
some tolerance εl , l ∈ {prim, dual}, respectively. Guidelines for selecting εprim and εdual are provided in [153,155].

While these criteria assess the convergence of the optimization algorithm, we are ultimately interested in matching 
the template shape x0 to the reference shape x1. Consequently, we add an additional convergence criteria that evaluates 
the discrepancy between the deformed template shape x at tn+1 and the reference shape x1. We consider the Hausdorff 
distance [57,62]. For two generic shapes x = (x1, . . . , xm0 ) ∈ R3m0 and z = (z1, . . . , zm1 ) ∈ R3m1 , the Hausdorff distance is 
defined as

distH (x, z) = max {dH (x, z),dH (z, x)} , (39)

where dH (x, z) = maxi∈{1,...,m0}
{
min j∈{1,...,m1} ‖xi − z j‖2

}
. In practice, we use the 95th percentile of the Hausdorff distance 

to guard against outliers. From a mathematical point of view, this censoring is not required. However, we consider this con-
fidence interval to account for the fact that in practical applications we cannot expect the data to be represented accurately, 
due to measurement errors, noise, and a limited resolution as well the modeling errors in their representation. Additional 
sources of errors stem from our problem formulation along with the numerical discretization. Consequently, we do not ex-
pect the matching to be perfect everywhere. Adding a 95% confidence interval allows us to account for these inaccuracies. 
We terminate the algorithm if this censored Hausdorff distance falls below a user defined threshold εhaus > 0. Moreover, 
we monitor the update of the Hausdorff distance across five consecutive iterations. Lastly, to safeguard against excessive 
runtimes, we terminate the optimization if the number of iterations exceeds a user defined upper bound niter .

In summary, the stopping conditions are

(C1) distH (Q x(k), x1) < εhaus, (40a)

(C2)
∑4

j=0 |δhaus( j)| < εhaus/103, (40b)

(C3) ‖r(k) ‖2 < εprim, (40c)
prim
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Table 2
Algorithmic parameters. We select these parameters empirically. We describe some of the policies 
we have developed to select them in §2.4.4.
Symbol Meaning Value

n number of time steps (time-discretization) 5
α parameter controlling the contribution of the distance (20) 1
σv bandwidth of Gaussian kernel for parameterization of v (see (6) see (42)
σs bandwidth of Gaussian kernel for kernel distance (20) see (43)
ρ operator-splitting parameter (see (31)) 1

stopping conditions

εprim stopping tolerance for primal residual 1× 10−3

εdual stopping tolerance for dual residual 1 × 10−3

εhaus tolerance for censored Hausdorff distance in (39) see (44)
niter maximum number of iterations 100

(C4) ‖r(k)dual‖2 < εdual, (40d)

(C5) k > niter, (40e)

with δhaus( j) := distH (Q x(k− j), x1) − distH (Q x(k−( j+1)), x1). We terminate the algorithm if

(C1) ∨ (C2) ∨ (C3) ∨ (C4) ∨ (C5). (41)

We overview the entire algorithm in Algorithm 1.

Algorithm 1 Pseudo algorithm for operator splitting approach. We summarize the values and heuristic/empirical policies to 
select algorithmic and problem specific parameters in Table 2.
1: Input: x0, x1, a(0) = 0
2: Parameters: niter , εl > 0, l ∈ {prim, dual, haus}, ρ > 0, α > 0, σv , σs > 0, n ∈N
3: k ← 0
4: while ¬ stop do
5:

(
x(k+1),a(k+1)

)← given (u(k), w(k)
)
and ( x̃(k), ã(k)

)
solve kinetic energy subproblem (32)

6:
(
x̃(k+1), ã(k+1)

)← given ( x(k+1),a(k+1)
)
, (u(k), w(k)

)
solve distance subproblem (35)

7:

(
u(k+1)

w(k+1)

)
←

(
u(k)

w(k)

)
+
(
x̃(k+1)

ã(k+1)

)
−
(
x(k+1)

a(k+1)

)
8:

(
r(k+1)
prim , r(k+1)

dual

)
← evaluate (38)

9: k ← k + 1
10: stop ← evaluate (41)
11: end while
12: Output: a(k)

Remark 10. We can use various measures to assess the proximity between geometric structures. In the present case, we are–
in essence–interested in matching point clouds. To measure the proximity between points in R3, the Hausdorff distance is a 
natural choice since it has an intuitive geometric interpretation. This is not the case for the kernel distance we consider for 
optimization. Due to its geometric interpretation, we prefer using the Hausdorff distance as a stopping criterion. Conversely, 
while the use of the Hausdorff distance to measure the proximity of the deformed shape y ·s0 and the target shape s1 may 
seem natural, it poses significant challenges in the context of variational optimization (from a theoretical and a practical 
point of view); it is not smooth with respect to small perturbations of the compared shapes. The kernel distance is. As such, 
we prefer it for optimization. A more detailed discussion can, e.g., be found in [57].

2.4.4. Parameter choices
We have to select several parameters. We summarize these parameters in Table 2. This section includes a brief descrip-

tion of each of those parameters and details how they were selected for our numerical experiments.

Number of time steps The number of cells n ∈ N used to discretize the time interval [0, 1] into n + 1 time steps has to be 
selected as a trade-off between accuracy requirements and computational complexity. In our implementation, it affects the 
discretization of the kinetic energy and the ODE constraint in (4). As stated in §2.3.2, we compute the integral with respect 
to time using a left Riemann summation [141]. As stated in §2.3.4, we discretize the ODE using the forward Euler method. 
It follows that the error associated with the time integration is of order h = 1/(n +1). Consequently, a finer discretization in 
time increases the numerical accuracy in a linear way. Increasing the number of time steps increases the computational cost 
of the problem. Thus, although the kinetic energy and the discretization of the ODE both benefit from a finer discretization, 
this is tempered by the need to keep a computationally tractable size for n. If we register two arbitrary shapes (e.g., shapes 
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representing organs of two distinct individuals), we have to select an adequate number of time steps. For the experiments 
in this paper, we set n = 5. We found empirically that n = 5 yields a good trade off between computational complexity and 
accuracy requirements in the considered application. Another scenario we consider in the present work is the diffeomorphic 
matching of a time series of smooth shapes si , i = 0, . . . , n f − 1. In this case, we, e.g., monitor (for an individual patient) 
the motion of an organ of interest in time. (In our case, the motion of the leaflets of mitral valves during the cardiac cycle.) 
Consequently, the data consists of a fixed number of frames n f . The task is to reconstruct the motion between the individual 
frames (or, e.g., from frame at pseudo-time t = 0 (first frame) to frame at pseudo-time t = 1 (last frame)). In this case, we 
also have to select an adequate number of time steps for the discretization. We select to set n equal to the number of 
frames n f .

Weight for distance measure The problem also requires the selection of the parameter α > 0. This parameter balances the 
two terms of the objective functional in (4): the kinetic energy enforces smoothness of the velocity and the distance term 
which enforces the matching between the deformed template shape and the reference shape. Selecting this parameter is a 
much researched topic in the field of inverse problems, and common selection methods include generalized cross-validation, 
L-curve, Morozov’s discrepancy principle, or the unbiased predictive risk estimator method; see e.g. [166–169]. In [15,57]
we have developed parameter-continuation schemes to select appropriate values for the hyperparameters that balance the 
kinetic energy (regularization) and the distance measure. The basic idea is to solve a family of optimization problems 
parameterized by the weight α, starting with small values for α. Consequently, in a first step we essentially optimize 
the kinetic energy (i.e., we basically solve a convex, quadratic optimization problem). We can expect quick convergence. 
Subsequently, we increase α to improve the matching. We use the solution from the former step as an initialization (“warm 
start”). For simplicity of our numerical study presented here, we do not consider this scheme.

Standard deviation for kernel matrices The parameterization of the velocity as elements of an RKHS in (6) as well as the 
kernel distance in (20) require the selection of the scale parameters/bandwidths σv > 0 and σs > 0, respectively. If the scale 
parameter σv increases, the smoothness of the optimal diffeomorphic deformation increases. While smooth deformations 
are desirable, too large values for σv may lead to a poor matching quality. Conversely, σs controls how many points in a local 
neighborhood N(xi0) := {z ∈ R3 : ‖xi0 − y‖22 ≤ r, r > 0, xi0 ∈ x0}, i ∈ {1, . . . , m0}, of radius r > 0 of a point xi0 ∈ x0 influence 
the movement of point xi0 of the template shape x0. If σs is chosen too small, the Gaussian kernels are too narrow; few 
points contribute locally to the distance functional in (20) and, thus, a point xi0 may not move towards points in the target 
shape x1. In contrast, choosing σs too large means the Gaussian kernels are too wide. This causes individual points xi0 to be 
affected by too many points. This increases the difficulty of optimization, and may result in a poor matching quality, as well. 
Consequently, policies to control the selection of these parameters are important; we select policies that take into account 
the geometry of the problem. In particular, they consider the average distance between points in the point cloud (or mesh 
size) and strike a balance between local and global matching of shapes.

We consider criteria similar to the ones proposed in [57]. Recall that the shapes si , i = 0, 1, are parameterized as a set 
of points/landmarks xi ∈ R3mi . For these sets of points xi , we can compute a triangulation to approximate the surface of si . 
We select σv to be proportional to the mean edge length h̄0 of the Delaunay triangulation of the template shape x0. That 
is, let E(xi0) denote a set of all points x j

0, j �= i, of x0 that share an edge with xi . Then,

h̄0 := mean

(m0⋃
i=1

{
‖x j

0 − xi0‖22 : x j
0 ∈ E(xi0), j = 1, . . . ,m0

})
.

We have

σv = τv 2
−1/2 h̄0, (42)

where τv > 0 is a user selected parameter.
The bandwidth of the distance is selected to be proportional to the Hausdorff distance between the shapes x0 and x1

according to

σs = max
(
h̄1, τs distH (x0, x1) /2

)
, (43)

where 1 ≤ τs ≤ 2 is a user defined parameter, distH is the Hausdorff distance (39) and h̄1 is the average mesh size of 
the target shape x1. We note that we observed numerical issues if σs is at the order of or below the average mesh size 
of the target shape (the computed search direction is no longer a descent direction and the convergence of the solver 
deteriorates). This is the reason for the lower bound in (43). We conduct numerical experiments to illustrate the behavior 
of our methodology for different choices of τv and τs , respectively.

Remark 11. One possibility to make the selection of the bandwidth completely automatic is to use a parameter continuation 
in σv and σs (or τv and τs , respectively; i.e., a multiscale approach). The question on how to combine this multiscale strategy 
with a parameter continuation in α remains subject to future work.
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Stopping tolerances As can be seen in condition (C1) of (40), the stopping tolerance for the censored Hausdorff distance is 
selected proportional to the average mesh size h̄1 of the discretized target shape x1. We use

εhaus = τhaush̄1, τhaus > 0. (44)

We found τhaus = 1/2 yields a good trade-off between accuracy and runtime requirements. The condition (C2) monitors the 
change of the Hausdorff distance across five iterations. That is, if we do not make significant progress in five consecutive 
iterations we terminate the solver. To avoid additional parameters, we select the distance updates as a fraction of the 
tolerance εhaus used for the Hausdorff distance.

Since we are mostly interested in driving the mismatch between the data to zero, the remaining tolerances are treated 
as safeguards to avoid excessive computations. We select them as stated in Table 2.

2.5. Quantitative measures of shape variability

After computing the optimal diffeomorphic map f opt = ( f optt ) (state variable) that approximately minimizes (4) and by 
that matching two surfaces s0, s1 ∈ S, the terminal R3-diffeomorphism y := f opt1 = f opt(t = 1, ·) is a smooth invertible 
map from s0 onto a smooth surface y · s0 = y(s0) ≈ s1. In a Riemannian setting, we can—according to (3)—compute the 
distance between two arbitrary shapes si , i = 0, 1, by evaluating the kinetic energy (2) for a minimizer vopt = (voptt ) of (2)
that parameterizes the diffeomorphic flow ft that maps s0 to s1. We refer to [36,48,71,137] for a rigorous mathematical 
treatment. Intuitively, this corresponds to the minimal energy required to map s0 to s1. Clearly, even in exact arithmetic we 
can only hope to compute an approximation to this distance, since the considered control problem is high-dimensional after 
discretization, nonconvex, and nonlinear. Moreover, the computation of the distance is also affected by the implementation 
choices we made. Aside from numerical tolerances or numerical accuracy of the carried out computations, any changes of 
the parameterization of the curved shapes, any reparametrization of these shapes, or any changes in the RKHS structure for 
the parameterization of the velocity yields different results. Moreover, computing geodesic distances between two shapes—
even if we assume that the shapes s0, s1, are in the orbit associated with the group action of the diffeomorphisms generated 
here—assumes an exact matching, i.e., y ·s0 = s1. Given the issues described above as well as perturbations introduced by 
discretization and measurement errors, this assumption does not hold in practice. We can only hope for an approximate 
matching y · s0 ≈ s1. Lastly, the minimal kinetic energy involves averages of squared velocities, and hence only provides 
a global dissimilarity between s0 and s1. Strain analysis of f , which we now outline as in [46,62], generates the spatial 
distribution of local distortions between s0 and s1.

Let x ∈ s0 denote any fixed point and let x̃ = y(x), where y = f1 again denotes the terminal diffeomorphism at t = 1. 
(For simplicity, we limit this exposition to the terminal diffeomorphism; the computation naturally translates to all time 
points t of the flow ft ). Moreover, let Tx and Tx̃ denote the tangent spaces of the initial shape s0 and the deformed 
shape s̃0 at x and x̃, respectively, endowed with local surface metrics. Since y ∈ G is a smooth bijection, the differential 
of y is an invertible linear map J x : Tx → Tx̃ , J x ∈ R2,2. Let u ∈ Tx denote any tangent vector with ‖u‖ = 1. With this, 
we can define the directional strain at x associated with the map y in the direction of u as the dilation/contraction factor 
qdir(x, u) = ‖ J xu‖. Let J∗x : Tx̃ → Tx denote the adjoint operator of J x . Moreover, let λi

x > 0, i = 1, 2, with λ1
x ≤ λ2

x denote 

the eigenvalues of J∗x J x � 0, with 
√

λi
x , i = 1, 2, equal to the minimal and maximal directional strains at x, respectively. To 

avoid anisotropies associated with the definition of qdir , we consider the isotropic strain qiso defined as

qiso(x) =
(∏2

i=1 λi
x

)1/2 =√|det( J x)|,
instead. It corresponds to the local isotropic change of length for the tangent vector. We note that qiso has a simple geometric 
interpretation. For fixed x ∈ s0, and any open patch px ⊂ s0 around x, define the ratio of surface areas

arearel(px) = area(y(px))

area(px)
.

Then, arearel tends to the square of qiso at x when the diameter of px tends to 0. This observation allows us to compute 
strain directly from the triangulation after discretization of s0. Since qiso is a dimensionless quantity of average dilation/con-
traction around x, we convert it into an “isotropic strain intensity” defined as

piso(x) = |qiso(x) − 1|.
In [62] we have used measures derived from the kinetic energy and strain intensity to study differences between datasets 

of normal and diseased patients. In [46], we have extended this idea by exploiting these quantitative measures of shape 
variability as features for the automatic classification of shapes and shape deformations based on random forests. Here, we 
merely consider isotropic strain as a visual tool to evaluate complex diffeomorphic deformations.
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Fig. 4. Main anatomical structures for a representative mitral valve dataset. We show a Delaunay triangulation of the mitral valve surface. We highlight the 
main anatomical regions: the posterior leaflet (teal color), the anterior leaflet (red color), and the coaptation line (gold). Each leaflet is discretized by a grid 
of 800 points, resulting in a total of 1,600 points per 3D surface. We show the Delaunay triangulation of this mesh. (Figure modified from [46].)

3. Numerical experiments

In the following, we report results for the numerical software developed by our group for solving the diffeomorphic 
shape matching problem formulated in (4). The application is cardiac imaging, and, in particular, surface representations of 
mitral valves of individual patients extracted from image sequences.

3.1. Data

For a total of 150 patients, transesophageal echocardiography provides dynamic 3D views of their mitral valves at rates 
of roughly 25 frames per heart cycle with potential mitral valve complications. Computerized segmentation of these 3D 
images extracts twenty-five 3D snapshots of the mitral valve surface. For time frame t , the extracted surface displays the 
anterior and posterior leaflets of the mitral valve as smooth surfaces discretized by a grid of 800 points per leaflet. Conse-
quently, each 3D surface is discretized by 1 600 points per frame. These data were prepared and annotated by our longtime 
collaborators at the DeBakey Heart and Vascular Center of the Houston Methodist Hospital. During each heart cycle, the 
leaflets close the mitral valve at mid-systole (t = tms) and open the mitral valve at end-systole (t = tes). The two leaflets 
define a deformable connected 3D-surface bounded by a flexible ring (the “annulus”). At t = tms, the leaflets are in full 
contact along the coaptation line in order to tightly close the mitral valve. The leaflets open the mitral valve progressively 
until end-systole, then remain fully open during diastole, and start closing again at beginning of systole. When the mitral 
valve is open, the coaptation line is split into two curved boundary segments sharing the same endpoints. We show the 
main anatomical regions of these data in Fig. 4.

In previous studies [57,62,66,67,170], diffeomorphic shape matching of the mitral valve leaflets between t = tms and 
t = tes (a problem referred to as “multi-frame registration” below) was developed and systematically implemented in order 
to first reconstruct the smooth deformation t → ft of the mitral valve leaflets between mid systole and end systole. We 
then computed the intensities and spatial distribution of the tissue strain induced by mitral valve deformation between 
mid systole and end systole (see §2.5). This research project aimed to provide cardiologists with patient specific displays of 
mitral valve leaflet strain intensities as a potential aid to evaluate/compare mitral valve clinical cases [66,67,170]. In a recent 
followup paper, we develop diffeomorphic deformation techniques for automatic classification of soft smooth shapes [46]. 
We have used the described database of 3D mitral valve snapshots as a benchmark to implement and test methodology for 
automatic classification of smooth surfaces; more precisely, to discriminate patients diagnosed with mitral valve regurgitation
from normal cases. In the present work, we consider these 3D mitral valve snapshots to study the numerical performance 
of our improved numerical solver for the operator splitting problem described above.

3.2. Bandwidth selection

We perform experiments to study the effect of the parameters τs and τv for the bandwidth σs of the kernel distance 
in (20) and σv for the parameterization of the velocity in (6), respectively. We observe that these parameters have a signif-
icant effect on the performance of our method. To obtain comparable results, we execute the solver for a fixed number of 
niter = 100 iterations; i.e., we neglect all convergence criteria in (40) with the exception of the upper bound on the number 
of iterations. This also allows us to explore adequate values for the tolerances for the stopping conditions listed in (40) for 
the considered problem (registration of mitral valve data). Notice that these experiments are different from our previously 
reported results [62]. In [62] we performed the registration in a single patient in time (frame-to-frame). Here, we fix the 
frame to the time point corresponding to mid-systole and register two data sets from different patients. We expect this to 
be a more challenging problem due to an expected increase in shape variability across patients.

Setup We limit the exposition in the main text to a single patient. We provide additional results in Appendix B. The overall 
performance for these additional patients is consistent with the results reported here. We vary the scaling τs in (42) for the 
RKHS representation of the bandwidth σv of the Gaussian kernel in (6) between 3 and 8. More precisely, we select values 
for τv in {3, 4, 6, 8}. For values smaller than 3 and values larger than 8 we observed a deterioration of the performance of 
our solver. For each choice of τv we change the scaling τs in (43) for the bandwidth σs of the kernel distance in (20). More 
precisely, we select values for τs in {3/4, 1, 2, 4, 6}. Likewise to τv , we observed a deterioration of the performance of our 
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Fig. 5. Results for the matching of two mitral valve surfaces acquired from two different patients from our database. The results shown here correspond to 
the run with τs = 1 and τv = 6 reported in Table 3 (row 12). The top row (from left to right) shows the original template shape s0 and the target shape 
s1 (Delaunay triangulations), the associated meshes in overlay before registration (template shape x(t = 0) = x0 in red and target shape x1 in teal) and 
after registration (deformed template shape x(t = 1) in red and target shape x1 in teal), and the computed strain intensity values overlaid on the target 
shape. The first two views in the top row show the entire mitral valve in their initial configuration (both leaflets). The first two views in the bottom row 
(point-wise distances from the template to the target shape) show the mitral valve from the top. For these two views one can identify the coaptation line 
that separates both leaflets; the coaptation line appears as a ridge between the anterior and posterior leaflet (see Fig. 4 for an illustration). The bottom 
row shows (on the left) the point-wise distance from the template to the target shape before (at pseudo-time t = 0) and after (at pseudo-time t = 1) 
registration. The values are normalized with respect to the mean edge length of the target shape (i.e., values of 1.0 are equal to the average edge length). 
We also show the computed trajectory for 75% of the points (randomly chosen; left: vector field only; right: vector field overlaid on the template shape 
x(t = 0) = x0). The circle shows a closeup of the computed vector field (zoomed view).

methodology if we selected parameters outside the range [3/4, 6] for the considered data sets. Moreover, for τs = 1/2 the 
estimate for the bandwidth σs is below h̄1 = 1.3.

Results We visualize results for the considered dataset in Fig. 5. These results correspond to the parameter choices τv = 6
and τs = 1. In particular, we show the original template shape s0 and the target shape s1 in the top left corner (the surfaces 
are approximated from the meshes x0 and x1 through a Delaunay triangulation). In the middle block of the first row in Fig. 5
we show the template shape x(t = 0) = x0 and the reference shape before and after diffeomorphic shape matching. We can 
observe that the distance between the mesh points is initially large and becomes significantly smaller after diffeomorphic 
registration. The rightmost plot of the top row in Fig. 5 shows the associated isotropic strain intensity (see §2.5). We can 
observe for this particular patient pair that the strain is on average larger on the anterior leaflet than the posterior leaflet. 
The bottom row shows the point-wise distance of each mesh point from the template to the target shape before (left) and 
after (right) diffeomorphic shape matching. Notice that the color map captures a different range of values before and after 
matching. On the right of the bottom row we illustrate the computed diffeomorphism (trajectory of the points x0, i.e., the 
state variable x(t)) for 75% of the points on the template shape selected at random. We provide two illustrations, one (left) 
that only shows the vector field and (right) the vector field together with the template shape x0 = x(t = 0) in faint gray. We 
also show a closeup of the computed trajectory on the right.

Overall, the most important observations of this experiment are: (i) Although the shapes are drastically different, we 
obtain a good matching quality, with pointwise distances below 1/2 of the target mesh resolution. (ii) The computed diffeo-
morphism (trajectory) is quite complicated.

In Table 3 we summarize the overall performance of our solver for the considered values for τv and τs , respectively. We 
report the final (censored) Hausdorff distance (after diffeomorphic matching) in the third column from the left. We also 
report (in brackets) the percentage the obtained distance is with respect to the original Hausdorff distance of 3.0. We also 
report the absolute and relative values of the norm of the primal and dual residuals in columns four and five. The last 
column shows the runtime for the solver in seconds (for 100 iterations).

The most important observations are: (i) We can reduce the distance by up to 70% for the choices τv = 4 and τv = 6 for 
τs ∈ {3/4, 1}, respectively. (ii) The performance of our methodology in terms of registration quality (Hausdorff distance) as 
well as runtime is much more sensitive to the choice of τs compared to τv . (iii) The final norms of the residuals are only 
slightly affected by the choices for τv and τs .

In Fig. 6 we illustrate the convergence behavior of our solver. The horizontal axis is the iteration count of the splitting 
method (outer iteration index k) for all plots. We show (from left to right) (i) the trend of the Hausdorff distance (normalized 
by the initial distance at iteration 1), (ii) the trend of the updates of the Hausdorff distance, (iii) the trend of the relative 
primal residual, and (iv) the trend of the relative dual residual.

The most important observations are the following: (i) The smaller τs the more accurate the matching. The results for 
τs = 3/4 and τs = 1 are quite similar. (ii) Increasing τv improves the registration accuracy; the optimal accuracy is obtained 
for τv = 6. (In Table 3 we saw that for τv = 8, the accuracy decreases again.) (iii) The updates for the Hausdorff distance 
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Table 3
Performance for different choices of the scaling parameters τv and τs that control the bandwidth σv

and σs of the RKHS parameterization and the kernel distance, respectively. The results are for two 
representative patients from our database. The average mesh size h̄1 of the target shape is 1.3. We 
select τv in {3, 4, 6, 8} and τs in {3/4, 1, 2, 4, 6}. The initial (censored) Hausdorff distance for this dataset 
is 3.0. We report (from left to right) the final Hausdorff distance (after matching; absolute value and 
percentage of initial value in brackets), the (relative) norm of the primal residual, the (relative) norm 
of the dual residual, and the runtime of the solver (in seconds).

τv τs final distance (%) residuals runtime

primal (relative) dual (relative)

3 0.75 1.2 (38.97) 4.5×10−3 (3.6×10−4) 5.4×10−1 (4.3×10−2) 100.4
1 1.2 (39.36) 2.9×10−3 (2.1×10−4) 4.8×10−1 (3.5×10−2) 83.4
2 1.5 (48.66) 2.1×10−3 (1.5×10−4) 3.8×10−1 (2.7×10−2) 68.9
4 2.1 (70.68) 2.1×10−3 (2.1×10−4) 3.0×10−1 (3.0×10−2) 63.8
6 2.5 (85.00) 1.9×10−3 (2.8×10−4) 2.8×10−1 (4.2×10−2) 62.4

4 0.75 0.9 (30.38) 5.9×10−3 (4.7×10−4) 5.9×10−1 (4.7×10−2) 91.3
1 0.9 (31.38) 4.0×10−3 (2.9×10−4) 5.2×10−1 (3.8×10−2) 82.9
2 1.2 (40.64) 2.8×10−3 (2.0×10−4) 4.2×10−1 (3.0×10−2) 69.3
4 1.9 (63.04) 2.8×10−3 (2.9×10−4) 3.5×10−1 (3.6×10−2) 61.8
6 2.3 (78.46) 2.5×10−3 (3.8×10−4) 3.4×10−1 (5.2×10−2) 60.7

6 0.75 0.9 (30.43) 7.6×10−3 (6.1×10−4) 6.8×10−1 (5.4×10−2) 92.4
1 0.9 (31.00) 5.0×10−3 (3.6×10−4) 6.1×10−1 (4.5×10−2) 78.3
2 1.1 (38.34) 3.3×10−3 (2.3×10−4) 4.9×10−1 (3.5×10−2) 78.8
4 1.7 (56.93) 3.2×10−3 (3.2×10−4) 4.1×10−1 (4.1×10−2) 65.6
6 2.2 (72.29) 2.7×10−3 (4.1×10−4) 4.1×10−1 (6.2×10−2) 64.2

8 0.75 1.0 (33.19) 8.6×10−3 (6.9×10−4) 7.5×10−1 (6.0×10−2) 94.1
1 1.0 (33.86) 6.4×10−3 (4.7×10−4) 6.7×10−1 (4.9×10−2) 86.1
2 1.2 (41.49) 3.5×10−3 (2.5×10−4) 5.2×10−1 (3.7×10−2) 75.4
4 1.7 (56.72) 3.0×10−3 (3.0×10−4) 4.0×10−1 (4.1×10−2) 64.8
6 2.1 (70.46) 2.6×10−3 (4.0×10−4) 4.0×10−1 (6.1×10−2) 59.5

Fig. 6. Performance for different choices of the scaling parameters τv and τs that control the bandwidth σv and σs of the RKHS parameterization and the 
kernel distance, respectively. The results are for two representative patients from our database. The average mesh size h̄1 of the target shape is 1.3. The 
results correspond to the first, second and third block in Table 3. From top to bottom (row 1 through 3) we report results for τv = 3, τv = 4 and τv = 6. 
Each plot shows results for τs ∈ {3/4, 1, 2, 4, 6} (see legend). The first column shows the trend of the Hausdorff distance with respect to the number of 
iterations (normalized with respect to the initial value). Notice that we do not minimize the Hausdorff distance in our optimization but the kernel distance 
in (20). The second column shows the update of the Hausdorff distance per iteration. The third and fourth column shows the norm of the primal and dual 
residual versus the iteration count. These residuals are normalized with respect to the residual obtained at iteration 2.

decrease with increasing iterates. (iv) The norms of the residuals decrease (almost) monotonically across all choices of 
parameters τs and τv . (v) The trend of the residual norms is only slightly affected by the choices of the parameters τs and 
τv , respectively.
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Fig. 7. Results for diffeomorphic matching between the two mitral valve surface snapshots acquired from a single patient at mid systole and end systole 
(first patient in Table 4). We set τs = 1 and τv = 6. The top row (from left to right) shows the template shape s0 (mitral valve at mid-systole; Delaunay 
triangulation) and the target shape s1 (mitral valve at end-systole; Delaunay triangulation), the associated meshes in overlay before registration (template 
shape x(t = 0) = x0 in red and target shape x1 in teal) and after registration (deformed template shape x(t = 1) in red and target shape x1 in teal), and the 
computed strain intensity values overlaid on the target shape. The first two views in the top row show the entire mitral valve in their initial configuration 
(both leaflets). The first two views in the bottom row (point-wise distances from the template to the target shape) show the mitral valve from the top. 
For these two views one can identify the coaptation line that separates both leaflets; the coaptation line appears as a ridge between the anterior and 
posterior leaflet (see Fig. 4 for an illustration). The bottom row shows (on the left) the point-wise distance from the template to the target shape before 
(at pseudo-time t = 0) and after (at pseudo-time t = 1) registration. The distance values are normalized with respect to the mean edge length of the target 
shape (i.e., values of 1.0 are equal to the average edge length). We also show the computed trajectory for 75% of the points (randomly chosen; left: vector 
field only; right: vector field overlaid on the template shape x(t = 0) = x0). The circle shows a closeup of the computed vector field (zoomed view).

3.3. Multi-frame registration

We report results for the registration across time of successive mitral valve surface snapshots acquired between mid-
systole and end-systole for one individual patient. That is, we are given data at different points in time and try to compute 
the diffeomorphic flow from the first frame at mid systole through all data to the last frame at end systole. All available 
frames enter the kernel distance (i.e., we sum over all frames). This setup is equivalent to the one considered in [57,62]. 
The real time duration of this typical 25 frames sequence is less than half a second.

Remark 12. We note that the mitral valve changes topology as we go from mid-systole to end-systole. That is, the mitral 
valve opens. This constitutes a significant problem when trying to compute a diffeomorphism that maps corresponding 
points to one another and preserves the integrity of the considered anatomy. Based on our parameterization of the curved 
surface, we compute a diffeomorphism that takes us from one set of points to the other. However, it is not guaranteed that 
we do not match points situated on one leaflet to those on another. One simple fix to this problem is to register the leaflets 
of the mitral valves individually. Our data has the anatomical annotations to do so (see Fig. 4). In fact, our software supports 
this, and we have tested this strategy to classify patient data [46]. In the present work, we are solely interested in studying 
the performance of the proposed solver. As such, we consider the entire mitral valve data and do not register the leaflets 
individually. Since the boundaries of individual leaflets are well identified even when the mitral valve is closed, one can 
mitigate the initial topology change by using high weights for leaflet boundary points in the surface matching terms (see 
§2.3.3 for a discussion).

On a more general note, using diffeomorphic registration in problems where the topology changes and/or structures are 
not present in both datasets to be registered is a delicate problem, and an active area of research. We refer to [171–177] for 
examples for medical images and [143,144,178,179] for work on shape representations that attempt to deal with this issue.

Setup We use the parameter values for our surface matching solver as suggested by our results in Table 2.
More precisely, we set the weight for the kernel distance is set to α = 1. The scaling parameters τs and τv are set to 1 

and 6, respectively (based on the observations from our prior numerical experiments reported in §3.2). The parameter ρ is 
set to 1. The tolerances for the primal and dual residual are εprim = 1 × 10−3 and εdual = 1 × 10−3, respectively. The scaling 
for the tolerance of the censored Hausdorff distance is τhaus = 1/2. We limit the maximum number of iterations to 100 (not 
actually reached).

The main difference compared to the experiments reported in the former section is that we now have several 3D-image 
data available to control our diffeomorphic registration results: multiple frames that monitor the heart cycle of an individual 
patients. We compute the diffeomorphism that flows the first shape at time t = 0 (mid-systole) through all these data until 
we reach the final shape at t = 1 (end-systole). See [62] for additional details.
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Table 4
Results for diffeomorphic matching between mid systole and end systole mitral valve surface snapshots for 20 rep-
resentative patients in our database. All run times are reported in seconds. We report (first four columns from left 
to right): (i) the run id (different patients in each row), (ii) the number of outer iterations of our splitting algo-
rithm, (iii) the final censored Hausdorff distance after diffeomorphic matching (% of original distance in brackets), 
and (iv) the overall time to solution (TTS). In the fifth and the sixth column we report run times for the distance 
subproblem. In particular, we report (v) the runtime spent on solving the distance subproblem (percentage of TTS 
in brackets) and (vi) the time spent on the solving for the search direction (Newton step; percentage of time for 
overall solution of distance subproblem in brackets). The seventh, eighths and ninths column report run times for 
the kinetic energy subproblem. In particular, we report (vii) time spent on the setup of the KKT system, (viii) time 
spent on solving the kinetic energy subproblem (percentage of TTS in brackets), and (ix) time spent on solving the 
KKT system (percentage of time for overall solution of kinetic energy subproblem in brackets).
run iter distance TTS distance subproblem kinetic energy subproblem

solve (%) newton (%) setup solve (%) solve KKT (%)

1 25 0.7 (43) 87.6 50.9 (58) 50.9 (100) 1.8 36.5 (42) 34.8 (95)
2 12 0.6 (44) 52.0 32.5 (63) 32.5 (100) 1.7 19.4 (37) 18.7 (96)
3 70 0.7 (60) 153.7 92.3 (60) 92.3 (100) 1.5 61.0 (40) 57.4 (94)
4 49 0.7 (31) 158.7 109.9 (69) 109.8 (100) 1.5 48.5 (31) 46.0 (95)
5 46 0.7 (34) 136.7 81.6 (60) 81.6 (100) 1.7 54.8 (40) 52.0 (95)
6 5 0.5 (60) 19.6 12.4 (63) 12.4 (100) 1.4 7.2 (37) 6.9 (96)
7 5 0.5 (43) 24.9 14.9 (60) 14.9 (100) 1.7 10.0 (40) 9.7 (97)
8 23 0.4 (40) 114.4 86.5 (76) 86.5 (100) 1.5 27.7 (24) 26.0 (94)
9 13 0.6 (42) 47.8 31.4 (66) 31.3 (100) 1.4 16.4 (34) 15.7 (96)

10 45 0.6 (48) 81.1 51.1 (63) 51.1 (100) 1.2 29.7 (37) 27.8 (93)
11 6 0.6 (46) 26.6 18.0 (68) 18.0 (100) 1.4 8.5 (32) 8.2 (96)
12 67 0.7 (31) 264.0 157.5 (60) 157.4 (100) 2.0 106.2 (40) 101.4 (95)
13 11 0.5 (47) 50.7 31.7 (62) 31.6 (100) 1.8 18.9 (37) 18.3 (96)
14 14 0.5 (41) 67.6 41.1 (61) 41.1 (100) 1.8 26.4 (39) 25.4 (96)
15 33 0.7 (44) 174.1 103.1 (59) 103.0 (100) 2.2 70.8 (41) 67.7 (96)
16 51 0.7 (40) 230.7 129.2 (56) 129.2 (100) 2.4 101.2 (44) 96.9 (96)
17 9 0.5 (39) 58.7 41.5 (71) 41.5 (100) 1.7 17.2 (29) 16.6 (97)
18 58 0.6 (56) 204.4 115.2 (56) 115.2 (100) 1.9 88.9 (43) 84.7 (95)
19 41 0.7 (36) 176.6 102.0 (58) 101.9 (100) 2.1 74.4 (42) 71.4 (96)
20 24 0.5 (59) 75.2 47.5 (63) 47.5 (100) 1.5 27.5 (37) 26.2 (95)

Results We show a representative registration result in Fig. 7. The setup of this figure is exactly the same as for the results 
reported in Fig. 6. We refer to §3.2 for an explanation of the layout of this figure. The observations are similar to those we 
have made in §3.2.

In addition, we report performance results for 20 patients from our database in Table 4. For each patient, we report the 
following quantities of interest (from left to right; all times are reported in seconds): (i) The number of outer iterations 
of our splitting algorithm. (ii) The Hausdorff distance after diffeomorphic shape matching and the associated percentage of 
the original Hausdorff distance (in brackets). (iii) The time-to-solution (TTS; runtime of the solver). (iv) The overall time 
spent on solving the distance subproblem and the percentage this amounts to with respect to the time-to-solution (in 
brackets). (v) The overall time spent on computing the Newton steps during the solution of the distance subproblem. We 
also provide (in brackets) the percentage this computation amounts to with respect to the time needed to solve the distance 
subproblem. (vi) The time spent to setup the KKT system for the kinetic energy subproblem. (vii) The overall time spent 
on solving the kinetic energy system and the percentage this amounts to with respect to the time-to-solution (in brackets). 
(viii) The overall time spent on solving the KKT system and the percentage this amounts to with respect to the solution of 
the distance subproblem (in brackets).

The most important observations are: (i) We can see that we can reduce the distance by up to 60% compared to the 
original distance between the shape at t = 0 and t = 1. This gain is smaller than for the multi-patient case, but we also 
(generally) start with a smaller initial distance between the surfaces to be matched. This is also reflected by the smaller 
Hausdorff distance after diffeomorphic matching compared to the best results reported in Table 3. (ii) The time until con-
vergence ranges from about 25 seconds up to about 250 seconds (depending on the dataset). (iii) On average, we spend 
about 60% of the total runtime on solving the distance subproblem and about 40% of the runtime on solving the kinetic 
energy subproblem. (iv) The runtime in each subproblem is dominated by solving the optimality conditions/computing the 
search direction; the percentages are on average at the order of almost 100% for the distance subproblem and about 95% 
for the kinetic energy subproblem.

4. Conclusions

We have presented and studied an improved matrix-free implementation of an operator splitting optimization algo-
rithm for the solution of variational optimal control formulations for diffeomorphic shape matching. As opposed to many 
other works in the field, we consider a discretize-then-optimize approach to solve this problem. The associated infinite-
dimensional variational problem is naturally recast as a finite-dimensional optimization problem in a RKHS. Our algorithmic 
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improvements yield a speedup at the order of 2× compared to our prior work in [62]. Moreover, we have reduced the 
memory pressure since we no longer explicitly form and store matrix operators as they appear in the optimality conditions 
of the individual subproblems. Aside from introducing these numerical developments, we have reported new results for 
the registration of smooth 3D surfaces acquired from different subjects (multi-subject registration) and for time series of 
smooth 3D surfaces acquired from individual patients (multi-frame registration). In addition, we have surveyed our prior 
work in this area, which spans a period of more than one decade, with work touching on the mathematical problem formu-
lation [56,57], algorithmic developments [57–62], clinical applications [65–67,170], as well as machine learning approaches 
for classification in shape space [46].

Our current and future work is targeted towards developing computational approaches for classification in shape space 
as well as improving computational throughput for algorithms for diffeomorphic shape matching and image registration. 
For the work described in the present paper we have identified several future research directions. An open problem is 
the tuning of hyper-parameters. The search for an adequate weight α for the shape distance can be performed based on a 
parameter continuation scheme [15,57,98]. However, an open question is how to most effectively combine this search with a 
multi-scale policy for selecting the parameters σv and σs , respectively. From a numerical perspective, several components of 
our solver can be improved. The most critical component is the implementation of the kernel matrices K . One possibility for 
improvements is to explore other, more efficient kernel representations [116]. An efficient implementation for the associated 
kernel operations is readily available in Python, and described in [180]. Moreover, although we have significantly reduced the 
memory footprint of our solver in the implementation described in this manuscript, we still store the kernel matrices and 
evaluate them using tensor algebra. Implementing more efficient kernel evaluations that are entirely matrix-free remains 
subject to future work. Lastly, our implementation is not deployed on any modern computing architectures. Porting our 
software to graphics-processing units may significantly improve the computational throughput [99,100].
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Appendix A. Hardware

Standard desktop computer: Mac Studio (Mac13,1) equipped with an Apple M1 Max 10-core CPU and 32 GB LPDDR5 
memory. The code is implemented in Matlab (R2022b, Release 9.13.0.2105380).

Appendix B. Additional numerical results

We report additional results for six additional patients selected from our database for the experiments performed in §3.2. 
We refer to §3.2 for more details about the setup of these numerical experiments. We report the final Hausdorff distance, the 
norm (absolute and relative) of the primal and dual residual and the runtime for different choices of the scaling parameters 
τs and τv for the bandwidth of the Gaussian kernels used in our kernel distance and the parameterization in a RKHS in 
Table B.5, Table B.6, and Table B.7, respectively. Each table contains results for a different pair of patients. In addition, 
we illustrate the convergence behavior of our solver in Fig. B.8, Fig. B.9, and Fig. B.10 associated with a subset of these 
experiments. Again, each figure corresponds to a different patient. The layout for the tables as well as the figures is the 
same as in §3.2.
A. Mang, J. He and R. Azencott Journal of Computational Physics 493 (2023) 112463
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Table B.5
Performance for different choices of the scaling parameters τv and τs that control the bandwidth σv

and σs of the RKHS parameterization and the kernel distance, respectively. The results concern the 
diffeomorphic matching of two mitral valve surfaces acquired at midsystole from two distinct patients 
(representative of our patients data base). The average mesh size h̄1 of the target shape is 1.2. We 
select τv in {3, 4, 6, 8}. We select τs in {3/4, 1, 2, 4, 6}. The initial (censored) Hausdorff distance for this 
dataset is 4.6. We report (from left to right) the final Hausdorff distance (after matching; absolute value 
and percentage of initial value in brackets), the (relative) norm of the primal residual, the (relative) 
norm of the dual residual, and the runtime of the solver (in seconds).

τv τs final distance (%) residuals runtime

primal (relative) dual (relative)

3 0.75 2.3 (50) 1.3×10−2 (6.9×10−4) 1.0×100 (5.3×10−2) 108
1 2.2 (49) 6.4×10−3 (3.0×10−4) 8.0×10−1 (3.8×10−2) 89
2 3.0 (67) 3.9×10−3 (1.9×10−4) 6.3×10−1 (3.0×10−2) 67
4 4.1 (89) 3.0×10−3 (2.9×10−4) 5.0×10−1 (4.7×10−2) 64
6 4.4 (96) 2.0×10−3 (4.2×10−4) 3.2×10−1 (6.7×10−2) 61

4 0.75 1.6 (36) 9.0×10−3 (4.7×10−4) 9.3×10−1 (4.8×10−2) 101
1 1.8 (38) 6.4×10−3 (3.1×10−4) 8.2×10−1 (3.9×10−2) 82
2 2.5 (54) 5.4×10−3 (2.6×10−4) 7.2×10−1 (3.4×10−2) 67
4 3.8 (83) 4.2×10−3 (4.0×10−4) 5.9×10−1 (5.6×10−2) 62
6 4.2 (92) 2.4×10−3 (5.0×10−4) 4.0×10−1 (8.3×10−2) 60

6 0.75 1.3 (29) 7.7×10−3 (4.0×10−4) 9.2×10−1 (4.8×10−2) 92
1 1.4 (31) 6.7×10−3 (3.2×10−4) 8.5×10−1 (4.1×10−2) 79
2 2.0 (45) 6.2×10−3 (2.9×10−4) 7.8×10−1 (3.7×10−2) 68
4 3.6 (78) 4.8×10−3 (4.5×10−4) 7.0×10−1 (6.6×10−2) 58
6 4.1 (89) 2.3×10−3 (4.7×10−4) 4.8×10−1 (1.0×10−1) 57

8 0.75 1.3 (30) 8.7×10−3 (4.5×10−4) 9.9×10−1 (5.2×10−2) 89
1 1.4 (31) 7.6×10−3 (3.6×10−4) 9.5×10−1 (4.5×10−2) 80
2 2.1 (45) 5.9×10−3 (2.8×10−4) 7.9×10−1 (3.8×10−2) 67
4 3.5 (77) 4.6×10−3 (4.4×10−4) 7.0×10−1 (6.7×10−2) 58
6 4.1 (89) 2.0×10−3 (4.1×10−4) 4.9×10−1 (1.0×10−1) 54

Fig. B.8. Performance for different choices of the scaling parameters τv and τs that control the bandwidth σv and σs of the RKHS parameterization and the 
kernel distance, respectively. The results are for two representative patients from our database. The average mesh size h̄1 of the target shape is 1.2. The 
results correspond to the first, second and third block in Table B.5. From top to bottom (row 1 through 3) we report results for τv = 3, τv = 4 and τv = 6. 
Each plot shows results for τs ∈ {3/4, 1, 2, 4, 6} (see legend). The first column shows the trend of the Hausdorff distance with respect to the number of 
iterations (normalized with respect to the initial value). Notice that we do not minimize the Hausdorff distance in our optimization but the kernel distance 
in (20). The second column shows the update of the Hausdorff distance per iteration. The third and fourth column shows the norm of the primal and dual 
residual versus the iteration count. These residuals are normalized with respect to the residual obtained at iteration 2.
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Table B.6
Performance for different choices of the scaling parameters τv and τs that control the bandwidth σv and 
σs of the RKHS parameterization and the kernel distance, respectively. The results are for two represen-
tative patients from our database. The average mesh size h̄1 of the target shape is 1.1. We select τv in 
{3, 4, 6, 8}. We select τs in {3/4, 1, 2, 4, 6}. The initial (censored) Hausdorff distance for this dataset is 3.2. 
We report (from left to right) the final Hausdorff distance (after matching; absolute value and percent-
age of initial value in brackets), the (relative) norm of the primal residual, the (relative) norm of the dual 
residual, and the runtime of the solver (in seconds).

τv τs final distance (%) residuals runtime

primal (relative) dual (relative)

3 0.75 1.0 (30) 3.0×10−3 (1.9×10−4) 5.3×10−1 (3.3×10−2) 94
1 1.1 (33) 2.7×10−3 (1.6×10−4) 5.1×10−1 (3.0×10−2) 81
2 1.7 (52) 2.2×10−3 (1.3×10−4) 3.9×10−1 (2.4×10−2) 74
4 2.5 (78) 2.5×10−3 (2.8×10−4) 3.5×10−1 (3.9×10−2) 66
6 2.8 (85) 1.9×10−3 (4.4×10−4) 3.3×10−1 (7.6×10−2) 63

4 0.75 0.8 (26) 4.3×10−3 (2.7×10−4) 6.4×10−1 (4.0×10−2) 88
1 0.9 (27) 3.8×10−3 (2.2×10−4) 6.0×10−1 (3.5×10−2) 79
2 1.3 (42) 2.9×10−3 (1.8×10−4) 4.6×10−1 (2.8×10−2) 75
4 2.2 (69) 3.1×10−3 (3.5×10−4) 3.9×10−1 (4.4×10−2) 65
6 2.7 (82) 2.6×10−3 (6.0×10−4) 4.0×10−1 (9.4×10−2) 61

6 0.75 0.9 (28) 6.8×10−3 (4.2×10−4) 7.6×10−1 (4.7×10−2) 91
1 0.9 (29) 4.9×10−3 (2.9×10−4) 6.9×10−1 (4.0×10−2) 81
2 1.3 (40) 3.4×10−3 (2.1×10−4) 5.2×10−1 (3.2×10−2) 69
4 2.0 (60) 3.4×10−3 (3.9×10−4) 4.4×10−1 (5.0×10−2) 61
6 2.5 (76) 3.0×10−3 (7.0×10−4) 4.7×10−1 (1.1×10−1) 58

8 0.75 1.0 (31) 8.4×10−3 (5.2×10−4) 8.0×10−1 (5.0×10−2) 97
1 1.1 (33) 6.4×10−3 (3.7×10−4) 7.4×10−1 (4.3×10−2) 84
2 1.4 (42) 3.3×10−3 (2.0×10−4) 5.4×10−1 (3.3×10−2) 69
4 1.9 (58) 3.3×10−3 (3.7×10−4) 4.5×10−1 (5.0×10−2) 61
6 2.4 (73) 3.0×10−3 (7.0×10−4) 4.7×10−1 (1.1×10−1) 58

Fig. B.9. Performance for different choices of the scaling parameters τv and τs that control the bandwidth σv and σs of the RKHS parameterization and the 
kernel distance, respectively. The results are for two representative patients from our database. The average mesh size h̄1 of the target shape is 1.1. The 
results correspond to the first, second and third block in Table B.6. From top to bottom (row 1 through 3) we report results for τv = 3, τv = 4 and τv = 6. 
Each plot shows results for τs ∈ {1/4, 1, 2, 4, 6} (see legend). The first column shows the trend of the Hausdorff distance with respect to the number of 
iterations (normalized with respect to the initial value). Notice that we do not minimize the Hausdorff distance in our optimization but the kernel distance 
in (20). The second column shows the update of the Hausdorff distance per iteration. The third and fourth column shows the norm of the primal and dual 
residual versus the iteration count. These residuals are normalized with respect to the residual obtained at iteration 2.
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Table B.7
Performance for different choices of the scaling parameters τv and τs that control the bandwidth σv and 
σs of the RKHS parameterization and the kernel distance, respectively. The results are for two represen-
tative patients from our database. The average mesh size h̄1 of the target shape is 1.2. We select τv in 
{3, 4, 6, 8}. We select τs in {3/4, 1, 2, 4, 6}. The initial (censored) Hausdorff distance for this dataset is 5.6. 
We report (from left to right) the final Hausdorff distance (after matching; absolute value and percent-
age of initial value in brackets), the (relative) norm of the primal residual, the (relative) norm of the dual 
residual, and the runtime of the solver (in seconds).

τv τs final distance (%) residuals runtime

primal (relative) dual (relative)

3 0.75 2.6 (47) 2.6×10−2 (8.4×10−4) 1.6×100 (5.2×10−2) 109
1 2.7 (47) 1.1×10−2 (3.3×10−4) 1.2×100 (3.5×10−2) 93
2 3.5 (62) 7.1×10−3 (2.3×10−4) 1.0×100 (3.3×10−2) 72
4 5.0 (90) 3.5×10−3 (3.7×10−4) 6.6×10−1 (7.0×10−2) 66
6 5.6 (99) 2.1×10−3 (6.7×10−4) 3.2×10−1 (1.0×10−1) 61

4 0.75 1.9 (35) 1.4×10−2 (4.4×10−4) 1.3×100 (4.1×10−2) 102
1 2.1 (37) 9.6×10−3 (2.8×10−4) 1.1×100 (3.2×10−2) 88
2 3.1 (55) 8.2×10−3 (2.7×10−4) 1.0×100 (3.4×10−2) 70
4 4.8 (85) 4.5×10−3 (4.8×10−4) 8.7×10−1 (9.3×10−2) 61
6 5.5 (98) 2.2×10−3 (7.1×10−4) 3.8×10−1 (1.2×10−1) 58

6 0.75 1.4 (25) 1.4×10−2 (4.4×10−4) 1.3×100 (4.3×10−2) 93
1 1.6 (29) 9.6×10−3 (2.8×10−4) 1.2×100 (3.5×10−2) 85
2 2.6 (46) 8.5×10−3 (2.8×10−4) 1.1×100 (3.6×10−2) 70
4 4.6 (82) 4.9×10−3 (5.3×10−4) 1.0×100 (1.1×10−1) 57
6 5.4 (97) 1.9×10−3 (6.2×10−4) 4.2×10−1 (1.3×10−1) 54

8 0.75 1.3 (24) 1.7×10−2 (5.5×10−4) 1.3×100 (4.4×10−2) 93
1 1.6 (28) 1.1×10−2 (3.3×10−4) 1.2×100 (3.6×10−2) 85
2 2.4 (44) 8.4×10−3 (2.8×10−4) 1.1×100 (3.6×10−2) 68
4 4.5 (81) 4.9×10−3 (5.2×10−4) 1.0×100 (1.1×10−1) 57
6 5.4 (96) 1.6×10−3 (5.2×10−4) 4.1×10−1 (1.3×10−1) 49

Fig. B.10. Performance for different choices of the scaling parameters τv and τs that control the bandwidth σv and σs of the RKHS parameterization and 
the kernel distance, respectively. The results are for two representative patients from our database. The average mesh size h̄1 of the target shape is 1.2. The 
results correspond to the first, second and third block in Table B.7. From top to bottom (row 1 through 3) we report results for τv = 3, τv = 4 and τv = 6. 
Each plot shows results for τs ∈ {0.75, 1, 2, 4, 6} (see legend). The first column shows the trend of the Hausdorff distance with respect to the number of 
iterations (normalized with respect to the initial value). Notice that we do not minimize the Hausdorff distance in our optimization but the kernel distance 
in (20). The second column shows the update of the Hausdorff distance per iteration. The third and fourth column shows the norm of the primal and dual 
residual versus the iteration count. These residuals are normalized with respect to the residual obtained at iteration 2.
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