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THE BIGGER PICTURE Body movements carry important information about a person’s emotions or mental
state and are essential in everyday communication. Enhancing machines’ ability to understand emotions
expressed through body language can improve communication between assistive robots and children or
elderly users, provide psychiatric professionals with quantitative diagnostic and prognostic assistance,
and bolster safety by preventing mishaps in human-machine interactions. This study develops a high-qual-
ity human motor element dataset based on the Laban movement analysis movement coding system and
utilizes that to jointly learn about motor elements and emotions. Our long-term ambition is to integrate
knowledge from computing, psychology, and performing arts to enable automated understanding and anal-
ysis of emotion and mental state through body language. This work serves as a launchpad for further
research into recognizing emotions through the analysis of human movement.

92800

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

Bodily expressed emotion understanding (BEEU) aims to automatically recognize human emotional expres-
sions from body movements. Psychological research has demonstrated that people often move using specific
motor elements to convey emotions. This work takes three steps to integrate human motor elements to study
BEEU. First, we introduce BoME (body motor elements), a highly precise dataset for human motor elements.
Second, we apply baseline models to estimate these elements on BoME, showing that deep learning methods
are capable of learning effective representations of human movement. Finally, we propose a dual-source so-
lution to enhance the BEEU model with the BoME dataset, which trains with both motor element and emotion
labels and simultaneously produces predictions for both. Through experiments on the BoLD in-the-wild
emotion understanding benchmark, we showcase the significant benefit of our approach. These results may
inspire further research utilizing human motor elements for emotion understanding and mental health analysis.

INTRODUCTION network models,® research on emotion recognition has increasingly

focused on bodily expressed emotion understanding (BEEU).”°

Recognizing human emotional expressions fromimages or videos is
a fundamental area of research in affective computing and com-
puter vision, with numerous applications in robotics and human-
computer interaction. With the development of the body lan-
guage dataset (BoLD), a large-scale, in-the-wild dataset for bodily
expressed emotion, and the corresponding benchmark deep neural

Gheck for
Updates

In contrast to the extensively studied facial expression recogni-
tion,"®'* BEEU aims to automatically recognize emotion expres-
sion from body movements. Emotion recognition through body
movements presents several advantages over reliance on facial in-
puts. First, in crowded scenes, a person’s facial area may be
obscured or lack sufficient resolution, but body movements and
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postures can still be reliably detected. Second, research has
shown that the body may be more diagnostic than the face for
emotion recognition.'® Third, facial areas may be inaccessible in
some applications due to privacy and confidentiality concerns.
Fourth, it may be difficult to fake subtle emotions through body
movements, whereas facial expressions can often be manipu-
lated. Finally, using body movements as an additional modality
can lead to more accurate recognition compared with relying
solely on facial images or videos.

Facial expression recognition studies often rely on the facial
action coding system (FACS) as an intermediate representa-
tion.*>'%"% This approach involves detecting action units (AUs),
which are defined as the movements of specific facial muscles
in FACS, and subsequently using these detections to recognize
emotions. This method is based on the fact that certain muscles
(AUs) contract to produce specific facial expressions, such as
the corrugator muscle contracting to frown and express anger.

Similarly, people use particular body muscles and skeletal
parts to communicate their emotions. For instance, individuals
may touch their heads with their hands when feeling sad, as illus-
trated in the first example of Figure 1. By describing specific
movements common to humans and the motor elements that
make up these movements, we can establish the relationship be-
tween these motor elements and bodily expressed emotion, mir-
roring the role of FACS in facial expression recognition.

Compared with facial muscle movements, motor elements are
often more readily detectable in a video of a person. In addition,
these motor elements are generally more clearly defined,
rendering them simpler for Al to recognize. Consequently, motor
elements can function as a suitable intermediate representation
for BEEU, bridging the gap between low-level movement features
(e.g., the velocity of human joints) and emotion category labels.

Although some previous studies on BEEU have incorporated
motor elements, there remains a gap in the utilization of deep
learning-based methods to construct the comprehensive repre-
sentation of human motion. One pioneering work by Camurri
et al.’® focused on dance movements and utilized handcrafted
features such as quantity of motion and contraction index to
represent motion descriptors and expressive cues. The ex-
tracted features were then inputted into various classifiers,
including multiple regression and support vector machines
(SVMs). Subsequent studies followed a similar pipeline, with
Luo et al.® employing only low-level movement features (e.g., ve-
locity and acceleration of human joints) and subsequently using
random forest for emotion classification. Supported by the Euro-
pean Union H2020 Dance Project,’” Niewiadomski et al.'® de-
signed handcrafted features to represent the lightness and
fragility of human movement, while Piana et al.'® constructed
multiple motion features from the 3D coordinates of human joints
and employed linear SVMs for classification. However, these
methods did not utilize deep neural networks to extract profound
learning representations, and handcrafted features often rely on
3D motion data (i.e., 3D coordinates of human joints) as input,
which can only be obtained within a lab-controlled environment,
thereby limiting their potential applications. A recent study?°
supported by the European Union H2020 EnTimeMent Project?’
employed a neural network for emotion recognition. However,
the method still requires the use of a motion capture system to
collect 3D motion data in a lab environment as input. Some other
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Figure 1. Example video clips from the BoME dataset

Three sample frames are shown for each clip. Instances of interest are
bounded by red boxes. The LMA motor elements annotated based on the
movement of the person in the red box are shown. Subfigures (A) to
(D) incorporate frames from the films “Wagner” (1983, directed by Tony
Palmer), “Heaven’s Garden” (2011, directed by Jong-han Lee), “REVIVAL -
Nigerian Nollywood Movie” (2000), and “The Priest Must Die 2 - Nigerian
Nollywood Movie” (2009), respectively.

deep learning-based approaches on BEEU’ utilized tech-
niques developed for video or action recognition, directly feeding
human movement videos into a video recognition network and
predicting emotion categories without considering the under-
standing of motor elements.

Inthis work, we introduce a novel paradigm for BEEU that incor-
porates motor element analysis. Our approach leverages deep
neural networks to recognize motor elements, which are subse-
quently used as intermediate features for emotion recognition.

A primary challenge inimplementing this approach is the limited
availability of extensive public image or video datasets suitable for
deep learning-based motor element analysis.**°%? To tackle this
issue, we created the BoME (body motor elements) dataset,
comprising 1,600 high-quality video clips of human movements.
We consider different human movements within a single video as
distinct clips. Each of these clips is annotated with precise,
expert-provided movement labels. We used the AVA video data-
set®® as the video source and applied the Laban movement anal-
ysis (LMA) system to describe the motor elements. LMA, which
originated within the dance community in the early 20th century,
has evolved into an internationally recognized framework for
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describing and comprehending human bodily motions. It charac-
terizes human movements into five categories: body, effort, space,
shape, and phrasing, and includes over 100 detailed motor ele-
ments. To balance the tradeoff between the number of LMA ele-
ments and the cost of annotation, we selectively included 11
emotion-related LMA elements. This decision was guided by pre-
liminary psychological research exploring the relationship be-
tween emotions and motor elements as described by LMA.>*2"
We designed a systematic procedure for dataset collection and
invited a certified movement analyst (CMA), an expert in LMA, to
annotate the presence of LMA elements in the human movement
clips. Figure 1 shows some examples of the BoME dataset.

Using the established BoME dataset, we examined whether
deep neural networks can learn an effective representation of hu-
man movement. We deployed several state-of-the-art video
recognition networks on BoME to estimate the LMA elements
and investigated the impact of factors such as video sampling
rate and pretraining datasets on network performance. The re-
sults showed that these methods, particularly the Video Swin
Transformer (V-Swin),® performed well on the BoME dataset,
indicating that deep neural networks could learn an appropriate
movement representation from BoME.

Finally, we conducted experiments to enhance BEEU by using
the BoME dataset as an additional source of supervision. We de-
signed a dual-branch, dual-task network called movement anal-
ysis network (MANet), whose branches produce predictions for
bodily expressed emotion and LMA labels, respectively. To
effectively utilize the movement representation in emotion recog-
nition, we integrated the LMA branch features into the emotion
branch. We also introduced a new bridge loss that enables
LMA prediction to supervise emotion prediction. Employing a
weak supervision strategy, we trained MANet on both the
BEEU benchmark BoLD and the BoME datasets. The BEEU re-
sults on the BoLD validation and test sets revealed that our
approach significantly outperformed all single-task baselines
(i.e., approaches that only consider BEEU).

RESULTS

Statistical analysis confirms the effectiveness of the
LMA motor elements
To improve the ability of deep neural networks to learn human
movement representation and subsequently enhance emotion
recognition, we created a high-precision motor element dataset
named BoME. This dataset consists of 1,600 human video clips,
each expertly annotated with LMA labels. To achieve a balance
between precision and utility, we annotated each clip with 11
LMA elements. Research has indicated that these elements
are associated with sadness and happiness and are relevant
for emotion elicitation and emotional expression, making them
valuable for understanding bodily expression.?*?° In addition,
annotating 11 elements is not an overly laborious task for LMA
experts, ensuring the quality of the dataset. Table 1 lists the 11
elements and their associated emotions, LMA categories, and
descriptions. The experimental procedures provides a compre-
hensive explanation of our choice of LMA elements and outlines
the methodology employed for dataset collection.

For each LMA element, we assigned a five-level label based on
the element’s duration and intensity in the clip, with level 0 indi-
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cating no presence and level 4 signifying maximum presence.
The distribution of the five levels for each LMA element is shown
in Figure 2. The head-drop element is relatively commonly present
in videos, while jump cases are rare. The five-level label can also be
interpreted as a binary label, with level 0 representing a negative la-
bel and non-zero levels denoting a positive label. On average, each
clip in the BoME dataset includes 3.2 positive LMA elements, with
a minimum of 1 and a maximum of 10 positive elements per clip.

To confirm the association of the LMA element labels in BoME
with specific emotions, the annotator assigned an emotion label
to each clip, which was limited to three categories: sadness,
happiness, and other emotions. Although emotion recognition
studies often require a larger number of emotional categories,
we restricted ourselves to these three categories to validate
the effectiveness of the LMA element labels.

For each human clip in BOME, we assigned a binary value (0 or
1) to the sadness and happiness emotion categories based on
the emotion label, as well as a five-level label (ranging from
0 to 4) for each LMA element. Using these values, we calculated
the correlation between LMA elements and the two emotion cat-
egories—sadness and happiness—encompassing all the sam-
ples marked with these two emotions within the dataset. The
correlations are visually depicted in Figure 3. We discovered
that sink and head-drop were strongly positively correlated
with sadness, while light weight, up, and rise exhibited significant
positive correlations with happiness. These results align with
previous psychological studies.?*?° Conversely, jump and rota-
tion did not demonstrate a substantial correlation with either
sadness or happiness, which could be attributed to the relatively
small sample size for these elements. In addition, based on the
emotion labels, we found that instances of sadness accounted
for 59.9% of the BoME dataset, while cases of happiness ac-
counted for only 22.2%. This imbalance may stem from the
fact that sadness is more easily recognizable to human annota-
tors compared with other emotion categories.

Deep neural networks are capable of estimating LMA
motor elements

To examine the potential of deep learning methods to learn an
effective representation of human movement, we applied deep
neural networks to estimate LMA elements on the BoME dataset.
We randomly divided the dataset into a training set consisting of
1,448 samples and a test set containing 152 samples. The original
LMA element labels had five levels, but levels 3 and 4 had limited
sample sizes, as demonstrated in Figure 2. This posed a challenge
for models to accurately estimate the LMA elements. Furthermore,
deep neural networks may struggle to precisely determine the
duration of each element in a clip, unlike LMA experts. To simplify
the task, we treated the LMA element estimation problem as a
multi-label binary classification task, with level 0 being designated
as a negative label and all non-zero levels as positive labels.

We evaluated the classification performance using two met-
rics: average precision (AP), or the area under the precision-
recall curve, and the area under the receiver operating character-
istic curve (AUC-ROC). We reported the mean average precision
(mAP) and mean AUC-ROC (mRA) across all categories of LMA
elements. Notably, we only used ten elements and excluded the
jump element due to the dataset containing an insufficient num-
ber of samples (only 11) for jump.
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Table 1. The 11 LMA elements coded in the BoME dataset

LMA element

LMA category

Description

Sadness passive weight effort

arms-to-upper-body body

sink shape

head-drop body

Happiness jump body

rhythmicity phrasing

spread shape

free flow effort

light weight effort

up and rise®

rotation space

space/shape

lack of active attitude toward weight,
resulting in sagging, heaviness, limpness,
or dropping

hands or arms touching any part of the
upper body (head, neck, shoulders,

or chest)

shortening of the torso and head and letting
the center of gravity drop downward, so the
torso is convex on the front

releasing the weight of the head forward
and downward, using the quality of
passive weight; dropping the head down
any type of jumping

rhythmic repetition of any aspect of the
movement, like bouncing, rocking,
bobbing, twisting, from side to side, etc.
when the mover opens his body to
become wider

lessening movement control, moving
like you “go with the flow”

moving with a sense of lightness and
buoyancy of the body or its parts; gentle
or delicate movement with very little
pressure and a sense of letting go upward
up means going in the upward direction in
the allocentric space. Rise means raising
the chest up by lengthening the torso
rotating a body part, or turning the entire
body around itself in space, like in a

Sufi dance

Psychological studies indicate that the first four elements are associated with sadness and the rest with happiness.
aUp and rise are two elements within the space and shape categories, respectively. We follow Shafir et al.* and Melzer et al.>® to merge them into one

element because these movements are affined, often occurring together.

As a natural initial attempt, we employed a range of deep
learning-based video recognition algorithms to estimate LMA el-
ements from video clips. These algorithms can be categorized
based on their input modality as either RGB based or skeleton
based. We illustrate the RGB-based and skeleton-based pipe-
line in Figure 4. We selected four representative video recogni-
tion approaches from recent years to benchmark the BoME da-
taset: temporal segment network (TSN),?° SlowFast,*° V-Swin,?®
and PoseC3D.%" The first three methods are RGB based, while
PoseC3D is skeleton based.

The performances of these four algorithms are compared in
Table 2. The following outlines the input processing and neural
network for each approach.

® TSN?° partitions a single input clip into multiple sub-clips,
selecting one random frame from each. Table 2 employs
three sampling rates—the input clip is segmented into 8,
16, or 24 sub-clips, resulting in 8, 16, or 24 frames. For
each frame, we cropped the human region from the entire
RGB image and resized the area to 224 x224 pixels. Re-
gion detection was facilitated using OpenPose.*” The pro-
cessed frames were subsequently fed into a 2D convolu-
tional neural network. We have chosen the widely used

4 Patterns 4, 100816, October 13, 2023

ResNet-50°° as our 2D convolutional network. Note that
while the original TSN incorporates both optical-flow im-
ages and RGB images as input, we exclusively used the
RGB input without optical-flow to ensure a fair comparison
with other RGB-based methods.

SlowFast®® samples 32, 48, or 64 frames from the entire
input clip, maintaining a temporal stride of 2 between
consecutive samples. Consistent with the TSN approach,
we cropped the human region from the entire RGB image
and resized the area to 224 x224 for each frame. The ex-
tracted and cropped RGB images were then input into a
3D convolutional network. We adopted a variant of the
3D convolutional ResNet-101° as the network, in accor-
dance with the original paper.

V-Swin”® employs the same input processing procedure as
SlowFast. However, V-Swin utilizes a 3D Transformer
network, adapted from the 2D Swin Transformer.>* We fol-
lowed the base-Swin setting as outlined in the original paper.
PoseC3D*" uniformly samples 48, 72, or 96 frames from the
entire input clip. Subsequently, 2D human pose inputs are
detected by OpenPose.? Finally, a 3D convolutional network
processes the human poses and generates predictions. We
adopted the network structure provided by MMaction2.°
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Figure 2. Distribution of the five-level labels for each LMA element
A total of 1,600 video clips have been labeled for 11 LMA motor elements that
are considered closely associated with happiness and sadness emotions.
Each element is annotated on a scale of zero to four, where zero denotes the
absence of the element (represented in blue), and four signifies its maximum
presence (represented in purple).

All presented methods can be trained from scratch or pre-
trained using various existing datasets. Pretraining refers to the
process of initially training a model on one dataset before fine-
tuning it on the target dataset, in this case, BoME. In Table 2,
we leveraged the image classification datasets ImageNet-1K/
ImageNet-22K*® and the video recognition dataset Kinetics-
400" for pretraining purposes. For other aspects, such as the
testing strategy, we followed the implementation guidelines pro-
vided by the MMaction2 codebase.*®

Our analysis of Table 2 yields several key insights. Firstly, pre-
training significantly enhances the performances of all four algo-
rithms. Specifically, pretraining with ImageNet leads to a notable
improvement compared with training from scratch, with gains of
5.72 mAP(%) and 6.48 mRA(%) for TSN, and 3.57 mAP(%) and
2.99 mRA(%) for V-Swin. Pretraining on Kinetics-400 produces
even more substantial improvements, with increases of 8.32,
10.07, 14.09, and 5.87 mAP(%) for TSN, SlowFast, V-Swin,
and PoseC3D, respectively. This is expected, as the Kinetics-
400 dataset is specifically designed for human activity classifica-
tion, and some human characteristic features can be transferred
to the LMA estimation task.

Moreover, our results suggest that the sample rate at which
the input clip is extracted into frames may impact performance.
A higher density of frame samples within a clip may allow for
more information to be extracted, but may also hinder the
model’s ability to analyze such densely packed frames, leading
to a decrease in performance. TSN achieves the best perfor-
mance when the clip is split into 16 sub-clips. SlowFast and
V-Swin exhibit worse performance with denser sampling rates
than the default rate. PoseC3D performs optimally with a sam-
pling rate of 72 frames per clip, the densest among the four algo-
rithms. This may be because PoseC3D uses skeleton coordi-
nates as input, which may be easier for the neural network to
interpret compared with images.

Finally, our results show that V-Swin achieves the best perfor-
mance (53.67 mMAP(%) and 72.82 mRA(%)) among the four algo-
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Figure 3. Correlation among LMA elements and emotions
Emotion categories are written in bold. This confirms the association between
the selected LMA elements and the emotions of happiness and sadness.

rithms, with 32 samples per clip and pretraining on Kinetics-400.
Despite using only skeleton input, PoseC3D attains competitive
mAP performance compared with TSN and SlowFast.

Based on the mAP values, we have selected the best-perform-
ing model for each algorithm. Some qualitative examples of LMA
element estimation by different models, along with the ground
truth (i.e., the labels provided by the CMA), are shown in Figure 5.
We also conducted a breakdown analysis. Figure 6 presents the
precision-recall curves for various models across all the LMA el-
ements. Notably, V-Swin outperforms the other algorithms on
the light weight and rotation elements. PoseC3D performs
particularly well on the passive weight and arms-to-upper-
body elements, but poorly on the spread and rotation elements.

LMA enhances bodily expressed emotion understanding
Inthis subsection, we aim to achieve the ultimate goal of enhancing
BEEU by integrating LMA element labels. As aforementioned,
several psychological studies have demonstrated a strong corre-
spondence between the 11 LMA elements and emotion categories
sadness and happiness.”*2° Our previous statistical analysis has
confirmed this finding in the BOME dataset. Furthermore, we have
shown that deep neural networks can learn an effective body
movement representation from BoME. The optimal performance
for LMA element estimation on BoME is 53.67 mAP(%) and
72.72 mRA(%), which is significantly higher than the best results
achievedin BEEU (19.30 mAP(%) and 66.94 mRA(%)) on the bodily
expression benchmark BoLD. This s likely due to the fact that LMA
elements have a more objective definition than emotion cate-
gories, as the presence of LMA elements in a human clip depends
solely onthe body movement, whereas emotion labels may also be
influenced by the annotators’ emotional state. In summary,
emotion and LMA element labels are related, and LMA element la-
bels are easier for deep neural networks to learn. Thus, incorpo-
rating the human movement features learned from BoME into
BEEU presents a promising approach.

To achieve our goal of improving BEEU, we need to train and
test on the BEEU benchmark dataset BoLD, using the BoME
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Figure 4. RGB-based and skeleton-based pipelines for estimating the LMA elements

(A) The RGB-based pipeline extracts frames from the input clip, crops the target human, and feeds the resultant frames into a neural network.
(B) The Skeleton-based pipeline leverages the 2D/3D human pose extracted from the frames as the input for a neural network.

This figure incorporates frames from the film “Wagner” (1983, directed by Tony Palmer).

dataset as an additional training source. In this set of experi-
ments, we jointly trained on the BoLD training set and the entire
BoME dataset, and then evaluated the model on the BoLD vali-
dation and test sets. It is worth noting that BEEU on BoLD, like
LMA estimation, involves multi-label binary classification tasks.
We have also adopted mAP and mRA as evaluation metrics.

Figure 7 illustrates the proposed method involving the creation
of a dual-branch, dual-task neural network, named MANet. We
adopt the same input processing technique as SlowFast and
V-Swin from the previous subsection. By sampling 48 frames
from the input clip and subsequently employing OpenPose® to
detect the human region within these frames, we crop and resize
the area to 224 x224 as input, resulting in an input shape of 48 x
224 x 224. The processed frames then fed into the neural
network.

We have implemented two essential design elements in the
neural network to enable LMA annotations to support BEEU.
First, as shown in Figure 7, we designed a dual-branch network
structure that allowed the model to produce LMA and emotion
predictions concurrently. We employed Swin blocks (i.e., archi-
tecture building blocks in V-Swin®®) to construct the MANet’s
backbone, followed by the emotion branch and the LMA branch.
The LMA branch extracts LMA features from the backbone’s
output and utilizes a linear classifier to generate the LMA output.
Second, we incorporated a fusion operation by combining the
LMA branch features with the emotion features, enabling the

6 Patterns 4, 100816, October 13, 2023

emotion predictions to be informed by human movement fea-
tures. In the emotion branch, the fused features are fed into a
linear classifier to yield the emotion output. We provide more de-
tails of the model structure in the experimental procedures.

We employed various loss functions to supervise the training
of MANet. As both emotion and LMA predictions involve multi-la-
bel binary classification tasks, we utilized the multi-label binary
cross-entropy loss to compute emotion loss and LMA loss by
comparing their respective outputs with ground truth labels.
Furthermore, we introduced the bridge loss to create a connec-
tion between LMA and emotion prediction based on the relation-
ship between LMA and specific emotion categories (i.e.,
sadness and happiness). Importantly, we used a threshold ¢ in
bridge loss to control the extent of LMA prediction supervision
over emotion prediction.

Moreover, we utilized a weakly supervised training approach to
enable joint training despite the fact that some BoLD samples lack
LMA labels and some BoME samples are missing emotion labels.
Comprehensive information on the loss function design and
training procedure can be found in the experimental procedures.

Table 3 presents the results of the ablation study. The first set
of experiments evaluates the impact of the model structure on
performance. The method without the dual-branch and fusion
components refers to training emotion labels using only the orig-
inal V-Swin architecture. In this case, the performance is 19.97
mAP(%) and 67.16 mRA(%) on the BolLD validation set.
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Table 2. Benchmarking the BoME dataset with four deep learning-based methods

Method Type Pretrain mAP (%) mRA (%) Samples FLOPs (x10° Param. (x106)
TSN RGB based Scratch 40.71 60.42 8 x 1 7.3 23.5
TSN RGB based ImageNet-1K 46.43 66.90 8 x 1 7.3 23.5
TSN RGB based Kinetics-400 49.03 68.58 8x1 7.3 23.5
TSN RGB based Kinetics-400 51.02 69.91 16 x 1 7.3 235
TSN RGB based Kinetics-400 50.58 70.35 24 x 1 7.3 23.5
SlowFast RGB based Scratch 39.20 59.28 1x 32 174 62.0
SlowFast RGB based Kinetics-400 49.27 69.23 1x32 174 62.0
SlowFast RGB based Kinetics-400 48.62 68.19 1x48 260 62.0
SlowFast RGB based Kinetics-400 47.70 68.12 1 x 64 347 62.0
V-Swin RGB based Scratch 39.58 59.33 1% 32 282 88.1
V-Swin RGB based ImageNet-1K 43.15 62.32 1% 32 282 88.1
V-Swin RGB based ImageNet-21K 48.88 66.49 1% 32 282 88.1
V-Swin RGB based Kinetics-400 53.67 72.82 1% 32 282 88.1
V-Swin RGB based Kinetics-400 50.78 69.55 1x48 423 88.1
V-Swin RGB based Kinetics-400 46.79 64.42 1x 64 564 88.1
PoseC3D skeleton based Scratch 38.88 58.45 1x 48 15 3.0
PoseC3D skeleton based Kinetics-400 44.75 61.75 1 x 48 15 3.0
PoseC3D skeleton based Kinetics-400 50.30 64.72 1x72 22 3.0
PoseC3D skeleton based Kinetics-400 46.93 64.93 1% 96 29 3.0

“Samples” means number of sub-clip X number of frames per sub-clip in training when sampling one input clip. “FLOPs” represent the computational
complexity of a neural network. “Param.” determines the network’s size and capacity to learn. The numbers highlighted in bold represent the best

performance in each method.

Incorporating the dual-branch structure, but omitting fusion,
does not significantly improve performance compared with the
original V-Swin. However, the fusion operation leads to a 0.46
mAP(%) and 0.60 mRA(%) increase over the original V-Swin.
This suggests that multi-task training and feature fusion are
both necessary for improving BEEU. The effectiveness of the
bridge loss is also analyzed. As detailed in the experimental pro-
cedures, the initial version of the bridge loss does not incorpo-
rate the threshold ¢, and its performance does not differ signifi-
cantly from the model without the loss. However, by adding €
and setting it to 0.9, the bridge loss leads to a significant
improvement of 0.82 mAP(%) and 0.56 mRA(%). Thus, the final
MANet model consists of the bridge loss, dual-branch structure,
and fusion operation, yielding an overall mAP increase of 6.4%
(from 19.97 to 21.25). Qualitative examples of bodily expression
estimation using the final model and two baselines are shown in
Figure 8.

The central idea of the bridge loss is to use LMA prediction to
supervise the prediction of sadness and happiness. To further
investigate the impact of the bridge loss on these two emotion
categories, we present precision-recall curves for sadness and
happiness in Figure 9 for the final model and two baselines.
These results show that the bridge loss leads to a significant
improvement in sadness, with an increase of 8.75 AP(%) and
9.06 AP(%) over baseline-1 and baseline-2, respectively. There
is also a notable improvement in the happiness category. In
addition, Table S1 provides an analysis across all emotion
categories.

Table 4 presents a comparison of MANet’s performance with
that of previous state-of-the-art methods on the BoLD validation

and test sets. Our study re-implemented the state-of-the-art
emotion work by Beyan et al.?® We achieved this using the public
code they provided, applied specifically to the BoLD dataset. We
collected performance data for other competitive models from
their papers or from the ARBEE work.® Results from the table
show that MANet outperforms the approach by Pikoulis et al.*®
by 1.95 mAP(%) and 1.38 mRA(%) on the BoLD validation set.
On the test set, the single model of MANet delivers comparable
performance with the model ensembles of Pikoulis et al. Employ-
ing the same ensemble strategy, the mAP of MANet surpasses
the work of Pikoulis et al.®® by 5.6%. The superior performance
of MANet is attributed to its use of BOME as an additional source
of training data, despite its smaller size (approximately one-
sixth of the BoLD training set). Compared with Beyan et al.,*°
our method exhibits substantially better performance. The differ-
ence in performance may arise from two factors. First, our study
focuses on in-the-wild data, whereas Beyan et al. concentrates
on lab-collected data, leading to a domain gap. Second, Beyan
et al. relied on 3D motion capture data, which is not available for
the BoLD dataset. Instead, we used OpenPose®? to extract 2D
pose data as input, which may have reduced the performance
of Beyan et al. Despite these differences, Beyan et al.’s state-
of-the-art emotion work still outperforms some other skeleton-
based methods.

DISCUSSION

In this study, we present BoME, an innovative dataset grounded
in LMA for human motor elements. We showcase the effective-
ness of deep neural networks in capturing human movement
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Figure 5. Example LMA element estimation results on the BoME dataset

Five frames sampled from each clip are shown. The predicted LMA elements that are also in the ground truth list are shown in green. The figure incorporates
frames from the films, listed from top to bottom, “Por mi Hermana” (2013), “Town in Danger - Nigerian Nollywood Movie” (2003), “Charly” (1968, directed by
Ralph Nelson), and “The Black Velvet Gown” (1991, directed by Norman Stone), respectively.

representation through the utilization of this dataset. Further-
more, we propose MANet, a cutting-edge dual-branch model
designed for the understanding of bodily expressed emotions.
This model harnesses the supervisory information provided by
BoME, employing a specialized model architecture, a custom
loss function, and a weakly supervised training strategy. As a
result, MANet surpasses existing approaches in the domain
of BEEU.

This study employs 11 distinct LMA elements known to be
related to sadness and happiness to enhance BEEU. With the
LMA system encompassing over 100 elements, there is consid-
erable potential for additional elements to contribute to emotion
recognition. To build upon this work, we suggest two main ave-
nues for future endeavors. First, it is recommended to expand
the dataset and enrich it with more annotations, incorporating
a broader range of LMA element labels and emotion labels. Sec-
ond, we anticipate that further research in the fields of psychol-
ogy and affective computing could reveal valuable insights into
the relationships between LMA elements and emotions. Such
advancements would ultimately enhance BEEU research and
facilitate a deeper understanding of human emotions as ex-
pressed through movement.

This work has established that LMA contributes significantly to
the task of BEEU. LMA could potentially enhance other com-
puter vision tasks as well, such as general human action recog-
nition. It is evident that certain LMA elements are associated with
specific human actions. For instance, in sports activities like ten-
nis, players swing their rackets, and swimmers exhibit distinct
strokes. The LMA system utilizes various labels to describe these
actions. Similarly, in human social activities, certain actions,
such as shaking hands, are characteristic, and the LMA system
can assist in recognizing them. However, as mentioned earlier,
this would necessitate additional LMA element annotation, as
the current 11 elements are not sufficient. In the future, we
may consider expanding the LMA annotation labels to facilitate
the analysis of a broader range of human activities.

Our exploration of LMA and emotion recognition holds signif-
icant potential for practical applications across various domains,
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particularly those where explanation and understanding are
crucial or preferred. One such area is the medical field, particu-
larly in the care of mental health patients. By monitoring patients’
body movement patterns, healthcare professionals can be
alerted about a need to directly observe their emotional states
and an explanation can be given. This approach could improve
efficiency in patient care. Another notable application is in ro-
botics and human-computer interaction. Empowering robots
with the ability to recognize human emotions through body
movements, and to adapt their models based on repeated ob-
servations of an individual’s movements, paves the way for
more informed interaction decisions grounded in the individuals’
emotional states. With LMA motor element recognition, a robot
can incorporate different types of movement into its decision-
making process due to the diverse emotional significance each
carries. This advancement fosters a more personalized, natural,
and empathetic human-robot interaction experience. A recent
review article discusses additional example applications of
improved BEEU.®

In summary, incorporating LMA elements has effectively
enhanced BEEU and shows promise for further advancements
in the future.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Request for information and resources used in this article should be addressed
to Dr. James Wang (jwang@ist.psu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The BoME dataset, along with the model training and evaluation code, are
available at Mendeley Data: https://doi.org/10.17632/gbhpdkf8pg.1. They
are also available at GitHub: https://github.com/ChenyanWu/BoME. All the
code used in the experiments was implemented with PyTorch. We developed
the code based on the open-source codebase MMaction2. Part of the code
includes the BoLD dataset as the training set. BoLD is publicly available at
URL: http://cydar.ist.psu.edu/emotionchallenge.
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Figure 6. Precision-recall curves for various models on 10 LMA elements
The x axis represents the recall and the y axis represents the precision. The AP (average precision) score of the corresponding model is indicated in parentheses

after the model name in the legend.

Selecting motor element labels

To characterize motor elements, we adopted the LMA, the most extensively
developed system for encoding human movement. Rudolf von Laban (1879-
1958), a renowned dance artist, choreographer, and movement theorist,
spearheaded the development of LMA in the early 20th century to analyze
and record body movements in dance, theater, education, and industry. The
LMA system comprises over one hundred motor elements, organized into
four main categories. The body category lists moving body parts (such as
the head and arms) and some basic actions (such as jumping and walking).
The space category represents the body’s spatial direction when moving,
including vertical (up, down), sagittal (forward, backward), and horizontal (right
side/left side). The shape category describes how the body changes its shape,
including whether it encloses or spreads, rises or sinks. The effort category
specifies the mover’s inner attitude toward the movement and is expressed

in the quality of the movement. It is comprised of four factors: weight, space,
time, and flow. Weight-effort refers to the amount of force applied by the
mover, with a spectrum ranging from strong (applying high force) to light
(applying weak force). Space-effort ranges from direct to indirect, indicating
whether the mover moves directly toward a target in space or indirectly.
Time-effort ranges from sudden to sustain, denoting the movement’s acceler-
ation. Flow-effort ranges from bound to free flow, expressing the level of con-
trol exerted over the movement. LMA also includes the phrasing category,
which describes how the motor elements change over time.

Several studies have demonstrated that certain LMA elements are strongly
associated with emotions, particularly sadness and happiness. Shafir et al.**
found that specific LMA elements, when present in a movement, can elicit
four fundamental emotions, including sadness and happiness, among others.
Melzer et al.”® identified LMA elements that allow movements to be classified
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Figure 7. The framework of the proposed MANet

MANet takes processed frames from video clips as input. The network is composed of a backbone and two distinctive branches—the LMA and emotion
branches. Both branches ingest the output of the backbone, extract relevant features, and subsequently yield separate LMA and emotion outputs. Of note, within
the emotion branch, a fusion operation takes place, integrating the emotion features with the LMA features. The network training is facilitated by the application of

three loss functions: LMA, bridge, and emotion.

as expressing one of these four fundamental emotions. The association be-
tween happiness and certain LMA elements was also validated by van Geest
et al.*® Furthermore, another experiment by the Shafir group, conducted by Gi-
lor for her Master’s thesis, studied LMA elements used for expressing sadness
and happiness. These studies provide compelling evidence that certain LMA
elements can evoke or be recognized as conveying sadness and happiness.
Our work builds upon these psychological findings and, following Shafir
et al.>* and Melzer et al.,”® we selected 11 LMA elements associated with
sadness and happiness (see Table 1) as the labels for the BOME dataset. All
experiments presented in this paper are based on these motor elements.

The creation of the BoME dataset

To create the BOME dataset, we followed the same process as the BoLD data-
set by using movies from the AVA dataset™ as our data source. This has two
advantages. First, real-world video recordings often have limited body move-
ments, but movies provide a rich variety of visual features. Second, we can
match video clips from the BoLD dataset, which have emotion category labels,
for joint training and emotion modeling.

The films of the AVA dataset are sourced from YouTube, and all associated
copyrights are retained by the original content creators. In addition, the Com-
mon Visual Data Foundation (CVDF) hosts these videos.*' During our research,
we retrieved the videos from the CVDF using their GitHub repository.”’ The
CVDF offers a stable and reliable platform for researchers. In adherence to
copyright regulations and the procedures established by the AVA dataset,
our BoME dataset includes only the YouTube IDs of the films. This allows users
to access the corresponding videos from either YouTube or the CVDF using
these identifiers. It should be noted that, while the videos in this dataset are in-
tended to comply with YouTube’s guidelines, which strictly prohibit explicit
content such as violence and nudity, users should remain aware of the poten-

Table 3. Ablation on the architecture and bridge loss

Dual-branch Fusion Bridge loss mAP (%) mRA (%)
= = = 19.97 67.16
I - - 19.94 67.34
I I - 20.43 67.76
I v w/o ¢ 20.42 66.88
I v e=07 19.78 67.44
v v e=0.8 20.55 67.43
v v e=0.9 21.25 68.32
v % e=0.99 20.67 67.57

Evaluation is done on the BoLD validation set.
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tial presence of harmful or sensitive material. Despite the diligent oversight
from both YouTube and our team, occasional oversights may occur, resulting
in the inclusion of such content. Users are advised to exercise discretion while
accessing these videos.

To segment the long movies from the AVA dataset into clips, we employed
the kernel temporal segmentation approach,“” consistent with BoLD. The se-
lection of clips was carried out by the LMA annotator, adhering to certain
criteria: (1) the human subject in the clip must display clearly discernable emo-
tions, specifically sadness or happiness, as our study is focused on the 11 mo-
tor elements associated with these two emotions according to previous
research. (2) The clip should be brief, with fewer than 300 frames in total, since
longer clips may contain expressions of multiple emotions, making it difficult to
attribute each LMA label to the correct emotion. (3) We excluded clips in which
the human subject did not display any movement. After careful screening, we
ultimately chose 1,600 clips to form the BOME dataset. In the BOME dataset,
we supply the initial and terminal frame numbers for each clip, enabling users
to precisely locate these segments within the context of the original film.

Because each video may contain multiple people, we need to identify
which person to annotate. We adopted the method proposed by Luo et al.®
for human identification. Specifically, we leveraged the pose estimation
network OpenPose® to extract the coordinates of the human joints, which al-
lowed us to determine a bounding box around the person’s body. By imple-
menting a tracker on this bounding box, we assigned a unique identification
number to the same person in all frames of the video clip, enabling consistent
annotation across the entire duration of the clip.

We enlisted the assistance of an LMA expert to provide annotations for the
study. This expert is a member of a team that has received specialized training
in LMA coding for scientific research and has already coded numerous hours
of movements for previous quantitative studies using the same standard anno-
tation pipeline as in our research.

The annotator was instructed to ensure that the sound in the clips was
turned off during annotation to prevent any influence from auditory cues,
such as tone of voice or background music, which could impact the perceived
emotion. Instead, the annotator was to focus solely on the observed move-
ments. Each clip was watched multiple times by the annotator to code all 11
variables, which are the 11 motor elements that have been linked to motor ex-
pressions of sadness and happiness in previous psychological studies. The
annotator coded some of the variables during each viewing and repeated
the process until all variables were coded. The annotator then watched the
clip one last time to verify the accuracy of the annotations. If the LMA expert
was uncertain about the correct coding, she was instructed to move and
match what she saw in the clip with her own body movement and even inten-
sify it when necessary until it became clear which motor elements constituted
the movement.

The LMA expert used a standardized and consistent rating scale of 0-4 to
code each motor element, taking into account both its duration (i.e., the
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Figure 8. Example bodily expressed emotion understanding results on the BoLD validation set

Categorical emotion labels are predicted based on a video clip of a person. Five frames sampled from each clip are shown. The predicted emotion labels that are
also in the ground truth list are shown in blue. Baseline-1 is the original V-Swin without dual-branch and fusion. Baseline-2 is the MANet model without the bridge
loss. Ours is the final model of MANet. We also present the predicted LMA elements in green. Baseline-1 does not provide LMA predictions because it only
outputs emotion prediction. The figure incorporates frames from the films, listed from top to bottom, “Return of the Tiger” (1978, directed by Jimmy Shaw),
“Ragin’ Cajun” (1990, directed by William Byron Hillman), “Eye of the Stranger” (1993, directed by David Heavener), and “Teheran Incident” (1979, directed by

Leslie H. Martinson).

percentage of clip duration during which the motor element was observed) and
intensity. To determine the duration score, the following criteria were used.

o 0: the motor element was not observed in the clip.

o 1:the motor element was rarely observed, appearing for up to a quarter
of the clip duration.

o 2:the motor element was observed a few times, appearing for up to half
of the clip duration.

e 3: the motor element was often observed, appearing for up to three-
quarters of the clip duration.

e 4: the motor element was observed for most or all of the clip duration.

If the intensity of the motor element was low, 1 was subtracted from the
duration score. Conversely, if the intensity was high, 1 was added to the dura-
tion score. However, the maximum score could not exceed 4.

Model structure of MANet

As illustrated in Figure 7, the network consists of a single backbone followed
by two branches: the emotion branch and the LMA branch. The backbone is
responsible for extracting image features from the input frames, and it strictly
adheres to the first three stages of V-Swin.”® Each stage comprises multiple
3D Swin Transformer blocks, the structure of which is detailed in the V-Swin
paper.”® We employed the base setting of V-Swin, which includes 2, 2, and
18 blocks in the first three stages, respectively. The LMA branch utilizes two
3D Swin Transformer blocks to process the output from the backbone and
obtain the LMA features. Subsequently, a linear classifier within the LMA
branch generates the LMA prediction. Similarly, the emotion branch employs

two 3D Swin Transformer blocks to extract the emotion features. Following
this, the emotion features and the LMA features are added through a feature
fusion operation. The fused features are then input into a linear classifier, which
ultimately produces the emotion output.

Loss functions of MANet
As depicted in Figure 7, MANet is trained by optimizing three loss functions:
emotion loss, LMA loss, and bridge loss.

The emotion output is represented as a vectory = [yo,¥1,...,yn], with N de-
noting the number of emotion categories (26 for BoLD). Similarly, the LMA
output is expressed as z = [2g,21,...,Zum], With M representing the number of
LMA elements (10 for BoME). We apply the sigmoid function to y;, indicated
as o(y;), to determine the probability that the input sample encompasses the
i label. The same is applied to z;.

Let the ground truth emotion and LMA labels be y = [y, V1, ..., Yy} and Z =
[Z0,Z1,...,2n]. For any y;, the value is either 1 or 0, indicating whether the /™"
label is true or false for the sample. The same is applied to Z;.

We calculated the emotion loss and LMA loss by computing the cross-en-
tropy between the ground truth and output predictions as follows:

L:Emolion

= Fna) (1 - 70t~ (),
L"LMA

S Fne@)+ (1 - B)in(l — o(z).

Previously, we established that the first four LMA elements were associated
with sadness, while the remaining elements were associated with happiness.

Figure 9. Precision-recall curves for sadness
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Table 4. Comparison with the state of the art on the BoLD
validation and test set

Set Method Year mAP (%) mRA (%)

Validation ~ TSN*° 2018 18.55 64.27
Filntisis et al.® 2020 16.56 62.66
Pikoulis et al.*® 2021 19.30 66.94
Beyan et al.>* 2021 15.86 62.63
MANet 2023  21.25 68.32

Test 13D%° 2017 15.37 61.24
TSN*® 2018  17.02 62.70
ST-GCN“O° 2018  12.63 55.96
Filntisis et al.® 2020 17.96 64.16
random forest®® 2020  13.59 57.71
Pikoulis et al.*®* 2021 21.87 68.29
Beyan et al.>*® 2021 16.73 62.17
MANet 2023 2211 67.69
MANet* 2023  23.09 69.23

The numbers highlighted in bold represent the best performance in the
validation or test set.

®Represents model ensembles.

PRepresents skeleton-based method.

Utilizing this information, we developed the bridge loss to guide the prediction
of sadness and happiness. Specifically, forz = [zg,z1,...,zu], we selected the
maximum predictions among the sadness- and happiness-related LMA ele-
ments, denoted as max {z;}{_ , and max {z;}}". 5, respectively. By calculating
the softmax of two values, we obtained the probabilities for sadness and

happiness. Formally, we have,

emax (@i},
Psadness =~ .
emax {zi}j_ 4 Lgmax {zi}iZs
emax {z; )f{ 5
Phappiness =

emax @}y pgmax (z}ls

The variables phappiness @Nd Psadness are considered as probabilities from the
perspective of LMA predictions. Let the st and h'" elements of vector y denote
sadness and happiness, respectively. By applying the softmax function to y,
and ys, we derived the probabilities of happiness and sadness from the emotion
output, represented as e’ /(" +e¥s) and es /(e +e’*), respectively. Subse-
quently, we leveraged Phappiness aNd Psadness t0 supervise e /(e” +e’) and
e’ /(e +e¥+) through the implementation of the soft cross-entropy loss:

e ers

L = - n—-— — In——7— .
Bridge phappmess evh +evs Psadness evh+evs

Occasionally, the happiness-sadness probability from the LMA branch may
not be accurate, hindering its ability to supervise y, andys. To address this issue,
we introduced a threshold €. Only when Ppappiness OF Psadness €xceeded e would
we compute the cross-entropy loss. Formally, this can be represented as:

e
eYn4eVs
e

n )
eYn+eVs

EBridge = - 1(phappiness > E)'ﬂ

-1 (psadness > f)'

where 1(P) is the indicator function, equating to 1 if the condition P is true and
0 otherwise. An ablation study was conducted to evaluate the performance of
different Lgrgge Values, as shown in Table 3. The results suggest that the
e-controlled loss function leads to improved performance, with e = 0.9
achieving the best results.

Weakly supervised training for MANet
We have utilized both the BoME and BoLD datasets for the joint training of

MANet to recognize emotion and LMA labels. These datasets share acommon
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subset of 705 clip samples. The rest of the BOME samples are exclusive to
LMA labels, whereas the remaining samples in the BoLD set contain only
emotion labels. Consequently, drawing inspiration from the work of Wu
et al.,”® we adopted a weakly supervised training methodology, enabling us
to effectively leverage data that lack either emotion or LMA labels.

In particular, we employed the coefficient ugmetion, Set to either 0 or 1, to
indicate the presence or absence of an emotion label in a sample. Likewise,
the coefficient u yan was used for the LMA label. During training, all
datasets were combined and shuffled together. We utilized the coefficients
A1 and A, to balance the three loss components. The total loss was calculated
as follows:

L = temotion Lemotion + A1 kimaLima + A2[/Bridge¢

in practice, we set 14 = 0.25and 1, = 0.1.

Throughout the training process, the network was trained for 50 epochs,
with data augmentation techniques such as flipping and scaling applied to
both the BoME and BoLD datasets. The learning rate was set at 5e—3, and
the optimization algorithm employed was SGD. Two NVIDIA Tesla V100
GPUs were used to conduct a single experiment, which took approximately
8 h to complete.
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