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Abstract—In this study we extract the deep features and
investigate the compression of the Mg II k spectral line profiles
observed in quiet Sun regions by NASA’s IRIS satellite. The data
set of line profiles used for the analysis was obtained on April
20th, 2020, at the center of the solar disc, and contains almost
300,000 individual Mg II k line profiles after data cleaning. The
data are separated into train and test subsets. The train subset
was used to train the autoencoder of the varying embedding
layer size. The early stopping criterion was implemented on the
test subset to prevent the model from overfitting. Our results
indicate that it is possible to compress the spectral line profiles
more than 27 times (which corresponds to the reduction of the
data dimensionality from 110 to 4) while having a 4 DN (Data
Number) average reconstruction error, which is comparable
to the variations in the line continuum. The mean squared
error and the reconstruction error of even statistical moments
sharply decrease when the dimensionality of the embedding layer
increases from 1 to 4 and almost stop decreasing for higher
numbers. The observed occasional improvements in training for
values higher than 4 indicate that a better compact embedding
may potentially be obtained if other training strategies and longer
training times are used. The features learned for the critical four-
dimensional case can be interpreted. In particular, three of these
four features mainly control the line width, line asymmetry, and
line dip formation respectively. The presented results are the
first attempt to obtain a compact embedding for spectroscopic
line profiles and confirm the value of this approach, in particular
for feature extraction, data compression, and denoising.

Index Terms—Machine learning, Neural nets, Data compaction
and compression, Feature extraction or construction

I. INTRODUCTION

Solar spectral lines in the infrared, visible, and ultraviolet

ranges are powerful diagnostics for the solar atmosphere.
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Many of the spectral lines originate in the solar atmosphere

(the photosphere, chromosphere, and the chromosphere-corona

transition region) and reveal the state and processes in this

complex and highly dynamic region. The line profiles reflect

the distribution and dynamics of physical parameters (density,

temperature, macroscopic and turbulent velocities, etc.) as

functions of height in the solar atmosphere. Correspondingly,

analysis and interpretation of solar spectral lines becomes an

extremely important task for understanding physical processes

in the solar atmosphere.

With the launch of NASA’s Interface Region Imaging Spec-

trograph (IRIS, [1]), the diagnostics of the solar chromosphere

and transition region was significantly advanced. IRIS ob-

serves a variety of lines formed in these regions (Mg II k&h

2796 Å and 2803 Å , C II 1334 Å and 1335 Å , Si IV 1394 Å

and 1403 Å), each sensitive to certain ranges of temperatures

and, correspondingly, to certain atmospheric heights. In this

work, our analysis will be focused on the Mg II k line profiles.

It was previously demonstrated that Mg II k& h lines may

serve as diagnostic tools for probing parameters of the solar

atmosphere in the upper chromosphere [2], [3]. In addition to

a variety of physics-based modeling, analysis, and inversion

techniques, there have been several attempts to apply machine

learning for enhancing the physics knowledge obtained from

Mg II k line profiles. For example, more than 50000 repre-

sentative profiles (RP) of the Mg II k&h lines were computed

by applying clustering algorithms in an assortment of IRIS

observations [4]. The spectra were inverted using a physics-

based approach, and the inversion results were used to train a

deep learning model emulating the physics-based inversions.

Thus, the physical mode can be obtained in a few minutes

using a laptop or a desktop machine, which is ∼105-106 times

faster than the classic physics-based inversions. The typical
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Mg II k&h line profiles observed during solar flares were

identified using unsupervised clustering algorithms [5] and

linked the appearance of certain types of clusters to specific

physical processes occurring during solar flares (electron beam

injection properties and flare ribbon propagation).

While the application of machine learning in solar physics is

an expanding field [6], many questions are still not addressed.

One of them is the question of compact embedding (extraction

of the deep features) for spectral line profiles, which became

of interest to the community just recently [7]. Obtaining low-

dimensional representations of spectra may potentially help

address noise reduction, feature selection, and data compres-

sion and transmission problems. This manuscript describes an

attempt to apply compact embedding analysis to spectral lines.

The experiment shows that one needs only 4 dimensions to

represent the studied data set. Section II describes the data set

of Mg II k line profile observations, data cleaning, and nor-

malization procedures. Section III illustrates the architecture

of a neural network used to obtain a compact embedding of

the line profiles. Analysis of reconstruction errors for different

embedding layer dimensionalities is discussed in Section IV.

An interpretation of the results is summarized in Section V

followed by conclusions in Section VI.

II. DATA

We utilize IRIS observations of the quiet Sun taken on April

20, 2020 from 08:32:00 UT - 09:56:00 UT at the center of

the solar disk. The observations were made in the sit-and-stare

mode (the mode when the slit of the spectrograph is always

in one position and “tracks” the solar features). During these

observations, IRIS obtained more than 300,000 individual

profiles of Mg II k lines sampled from the quiet Sun at different

time moments and positions along the slit. Some examples of

the obtained line profiles are presented in Figure 1. One can

notice that the Mg II k spectral line has a complex shape – it

typically has a double-peak structure with a central-reversal

signature if observed in quiet Sun regions. Both the locations

of the peaks and the central reversal represent valuable features

for diagnostics of the solar atmosphere [2]. It is important to

note that we consider only the Mg II k line-related part of the

observed spectra; it consists of intensity measurements at 110

wavelengths covering the 2794.9 Å – 2797.7 Å spectral range;

each wavelength represents a separate dimension.

The pool of obtained line profiles was cleaned. Any intensity

points beyond the 2794.9 Å – 2797.7 Å spectral range were

removed from the analysis. The line profiles with spikes

in the data (defined here as sudden increases of the inten-

sity of 1500 DN or more at a particular wavelength) and

measurements with negative intensity values were removed

from consideration. The 1500 DN threshold was defined as a

minimum possible threshold that keeps all the line profiles not

affected by spikes in the data set. The resulting 290940 Mg II k

line profiles were all normalized to the same number, which is

the maximum peak intensity observed across the line profiles.

The first 200000 normalized line profiles were assigned to

the train data subset and the remaining 90940 profiles to the

test data subset, giving an approximate partitioning of 70% to

30%.

III. AUTOENCODER CONFIGURATION AND TRAINING

For compression of spectroscopic line profiles we have

utilized an autoencoder-type neural network architecture. The

autoencoder is represented by a fully connected neural network

with the numbers of neurons in the subsequent layers set at

110 - 64 - 32 - 16 - nemb - 16 - 32 - 64 - 110. The network was

implemented in Python PyTorch [8]. Here nemb represents the

dimensionality of the embedding layer and is varied from 1

to 15. The Rectified Linear Unit (ReLU) activation function

was used for all neurons, and the Mean Squared Error (MSE)

was utilized as a loss function. A batch size of 20,000 samples

was used. Two network optimizers, “adam” [9] and stochastic

gradient descent, and three learning rates (0.001, 0.00033,

0.0001) were utilized to progress the training. We found that

introducing additional fully-connected layers into the network

or increasing the number of neurons in the layers does not

change the conclusions of this work.

To ensure the completeness of the training process and

prevent the network from overfitting, we have implemented

the early stopping criterion. Specifically, we assumed that

the training process of the network for the current setting

is complete if the MSE on the test subset is not improving

for more than 0.5% for two consequent training epochs.

The strategy was sequentially applied for each optimizer and

learning rate combination (with the learning rates arranged in

decreasing order). The entire training process was repeated

five times for each nemb to check how variations in the initial

neuron weight distribution affect the training.

Figure 1 illustrates the reconstructed Mg II k line profiles

and the corresponding training progress for nemb=4. The

network captures the main line profile features (the central-

reversal, the peak asymmetry, and the line continuum behavior

and features therein) relatively well, at least from a qualitative

perspective.

IV. RESULTS OF RECONSTRUCTION

The average MSE as a function of nemb (in the original

intensity units of data numbers, DN) is presented in Figure 2a.

One can notice that the MSE decreases sharply for nemb ≤ 4
and almost stops decreasing when nemb > 4. One can state

that there is no further progress in line compression for

nemb > 4 for the current training setting and autoencoder

architecture. The distribution of MSE for the case of nemb = 4
is presented in the upper-right panel of the same figure. For

the majority of the line profiles, the average deviation of the

reconstructed intensity from the original values was around

3 DN, which is comparable with the intensity variations of the

line continuum signal.

In addition to the MSE, we also consider the reconstruction

of the statistical moments of the spectral lines. In this study,

the n-th statistical moment of the line profile is defined as:

µn =

(
∫

∞

−∞
(λ − λ0)

nI(λ)dλ
∫

∞

−∞
I(λ)dλ

)1/n

, (1)
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Fig. 1. Examples of the original (blue) and reconstructed (orange) Mg II k line profiles from the test subset for the case of an embedding layer size of 4
neurons. Lower right panel illustrates the corresponding autoencoder training process (mean squared error, MSE, as a function of the epoch number).

λ0 =

∫

∞

−∞
λI(λ)dλ

∫

∞

−∞
I(λ)dλ

, (2)

Where λ is a wavelength point and I(λ) is the intensity at

that wavelength. Typically, the first statistical moment serves

as a proxy of for line Doppler shift, the second one as a

proxy for the line width, etc. These characteristics are used

in spectroscopic studies [10]. Therefore, it is important to

analyze the accuracy of the reconstruction for these moments.

In this work, the statistical moments are computed only for the

2795.68 Å-2796.96 Å spectral range, which covers the Mg II k

line but removes most of the contribution from the continuum.

The errors of reconstruction of the statistical moments

are presented in Figure 2c,d. As one can see in the lower-

right panel, the even statistical moments experience the same

behavior as MSE does: the error of reconstruction of these

line moments improves for nemb ≤ 4 and stops decreasing for

nemb > 4. The considered moments have an average relative

error of the reconstruction of ≤ 2%, and the error decreases

for higher moments.

Surprisingly, the situation is different for the odd line profile

moments. First, the odd (asymmetric) line moments experience

significantly higher average errors, although, starting from µ5,

the reconstruction error is below 40% on average (Fig. 2c).

Second, the reconstruction errors for the odd statistical mo-

ments does not decrease with increasing nemb as strongly as

was observed for the even components (except the µ1 case,

which also had a ∼ 50% reconstruction error even for high

nemb).

V. DISCUSSION. SPECIAL CASE OF nemb=4.

As mentioned in Section I, finding a compact embedding of

spectroscopic line profiles has several important applications.

In this work we consider, in particular, compression of the 110-

dimensional Mg II k line profile into the nemb = [1; 15] space

and analyze the resulting reconstruction error. One of the key

results of such analysis is that the reconstruction error (in terms

of MSE or the even statistical moments) does not decrease for

nemb > 4 (Fig. 2). Such behavior may have two explanations.
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Fig. 2. Average error of the line profile reconstruction as a function of the embedding layer dimensionality. The upper-left panel shows the mean squared
error (MSE) of the line profile intensity reconstruction, and the corresponding histogram of the distribution of such errors is presented in the upper right panel.
The lower-left panel presents the relative mean error of the reconstruction of the odd statistical moments and the lower-right panel that of the even moments.

The first is that the entire physics of the line formation may

be expressed in four free parameters (e.g., the temperature,

density, the macroscopic and turbulent velocities in case of the

homogeneous thermal media). Another possible explanation

is that different neural network architectures and training

strategies might achieve better performance of the autoencoder

for nemb > 4. Because there was a specific architecture of the

network and a specific training strategy considered, this is a

very probable scenario. One also can see that, for nemb = 8
and nemb = 14, there were breakthroughs for some particular

trials. Specifically, one of the trials demonstrated a ∼20%

improvement of MSE for nemb = 8, and one of the trials

demonstrated a 55% improvement of MSE for nemb = 14. As

one can see, it may possible to have better compressions of line

profiles, but that will require more computational resources.

To understand better the meaning of the parameters that the

autoencoder learned for the nemb = 4 case, we conduct the

following experiment on the embedding space. We calculate

the means and the standard deviations for all parameters

(dimensions) of the embedding space for the line profiles in the

test data set. Next, we vary one of the four dimensions in the

range of the mean ± two standard deviations, while keeping

the other three parameters fixed and equal to their mean values.

The result of the experiment is presented in Figure 3.

As one can see, sometimes the meaning of the dimensions

learned by the autoencoder could be intuitively interpreted.

For example, dimension #3 is mostly responsible for the line

profile asymmetry, dimension #4 is mostly responsible for the

central-reversal feature depth, and dimension #2 significantly

affects the line profile width. The meaning of dimension #1 is

less clear, but it seems to control the line profile continuum

with some effect on the line profile itself. Overall, it is very

intriguing that the features learned by the network for the

nemb = 4 case can be interpreted and explained, to a certain

degree, relatively simply. We would like to note that the

optimal embedding layer dimensionality of nemb = 4 and the
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Fig. 3. Variations of the decoded line profiles as results of perturbations of the embedding space. Black curves correspond to the line profiles reconstructed
from the average embedding parameters. Red and orange curves correspond to the situation when one of the embedding parameters is one standard deviation
larger or smaller than the average. The perturbed parameter is indicated in the plot title.

interpretation of the derived features are done for the Mg II k

line formed at the quiet Sun and should not be assumed by

default for any other line profile or line formation conditions

without testing.

Another application where autoencoders are often used

is noise reduction. Figure 1 demonstrates that: the recon-

structed line profiles (orange curves) look much smoother

in comparison to the original line profiles (blue curves).

Moreover, one can notice the small absorption feature on

the left wing of the Mg II k line. This absorption is es-

pecially visible in Fig. 1b,c. This feature corresponds to

the Mn I 2795.64 Å spectral line profile (see IRIS techni-

cal notes, https://iris.lmsal.com/itn26/introduction.html). It is

again remarkable how the network captures it from the noisy

spectroscopic data. Possibilities to reveal such weak spectral

signatures from noisy data may also be utilized in the future.

Finally, a relatively good reconstruction of the Mg II k line

profile with the nemb = 4 setting may have several practical

applications, especially in situations where the data flow

capabilities are limited. Compressing the data on deep space

missions may result in more data samples transmitted to the

ground via limited telemetry bandwidth. Low dimensionality

of the embedding space allows one to perform a similarity

search-based data retrieval — one can search data sets based

on compact embedding instead of the entire data volume.

Finally, line profile denoising, as we saw, may be useful for

extracting weak signals in the continuum variations or weak

spectroscopic signatures from noisy data.

VI. CONCLUSIONS

In this paper we have studied the compact embedding of

spectroscopic observations of the quiet Sun in the Mg II k line
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by NASA’s IRIS satellite using the fully-connected autoen-

coders. The key outcomes of this study are as follows:

• It is possible to compress the data more than 27 times

(i.e., to reduce the data dimensionality from 110 to 4)

while having only a 4 DN reconstruction error on average.

The reconstruction error is somewhat comparable to the

variations of the measurements in the line continuum

observed for the line profiles;

• The average error of reconstruction of the MSE and even

statistical moments of the line profiles decreases sharply

for the nemb ≤ 4 and barely drops for nemb > 4.

Reconstruction of the odd statistical line moments does

not demonstrate such dependence on the dimensionality

of the embedding layer (except for the µ1 statistical

moment);

• Some occasional improvements of the autoencoder train-

ing were observed for nemb > 4, e.g., reducing MSE

by ∼20% for nemb = 8 and by 55% for nemb = 14.

However, these results were observed only twice among

more than 100 runs, indicating that obtaining a better

embedding requires, probably, longer training times and

another training/architecture strategy;

• The features learned for the nemb = 4 case can be

supported with an intuitively-understandable interpreta-

tion if variations in the embedding space are considered.

Three of the identified features were found to be mostly

responsible for defining the line width, asymmetry, and

line dip formation respectively.

In the presented study we considered only the Mg II k

line profiles observed at a quiet Sun disc center region with

a certain configuration of the observing instrument (expo-

sure and resolution). While we expect that the techniques

of compression of line profiles may be extended to other

line profiles, this will require a detailed assessment. The

presented work considered a particular architecture of the

neural network, a particular way of varying the embedding

layer dimensionality, and a certain methodology to train the

network. Using other architectures such as the convolutional

neural networks and variational autoencoders [11], as well as

other training strategies, may help to better compress the line

profiles and will be investigated later. Nevertheless, the work

illustrates the potential of line-profile compact embedding for

both operational and scientific purposes.
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