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Abstract—In this study we extract the deep features and
investigate the compression of the MgIIk spectral line profiles
observed in quiet Sun regions by NASA’s IRIS satellite. The data
set of line profiles used for the analysis was obtained on April
20th, 2020, at the center of the solar disc, and contains almost
300,000 individual MgIIk line profiles after data cleaning. The
data are separated into train and test subsets. The train subset
was used to train the autoencoder of the varying embedding
layer size. The early stopping criterion was implemented on the
test subset to prevent the model from overfitting. Our results
indicate that it is possible to compress the spectral line profiles
more than 27 times (which corresponds to the reduction of the
data dimensionality from 110 to 4) while having a 4 DN (Data
Number) average reconstruction error, which is comparable
to the variations in the line continuum. The mean squared
error and the reconstruction error of even statistical moments
sharply decrease when the dimensionality of the embedding layer
increases from 1 to 4 and almost stop decreasing for higher
numbers. The observed occasional improvements in training for
values higher than 4 indicate that a better compact embedding
may potentially be obtained if other training strategies and longer
training times are used. The features learned for the critical four-
dimensional case can be interpreted. In particular, three of these
four features mainly control the line width, line asymmetry, and
line dip formation respectively. The presented results are the
first attempt to obtain a compact embedding for spectroscopic
line profiles and confirm the value of this approach, in particular
for feature extraction, data compression, and denoising.

Index Terms—Machine learning, Neural nets, Data compaction
and compression, Feature extraction or construction

I. INTRODUCTION

Solar spectral lines in the infrared, visible, and ultraviolet
ranges are powerful diagnostics for the solar atmosphere.
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Many of the spectral lines originate in the solar atmosphere
(the photosphere, chromosphere, and the chromosphere-corona
transition region) and reveal the state and processes in this
complex and highly dynamic region. The line profiles reflect
the distribution and dynamics of physical parameters (density,
temperature, macroscopic and turbulent velocities, etc.) as
functions of height in the solar atmosphere. Correspondingly,
analysis and interpretation of solar spectral lines becomes an
extremely important task for understanding physical processes
in the solar atmosphere.

With the launch of NASA’s Interface Region Imaging Spec-
trograph (IRIS, [1]), the diagnostics of the solar chromosphere
and transition region was significantly advanced. IRIS ob-
serves a variety of lines formed in these regions (MgIlké&h
2796 A and 2803 A, CII 1334 A and 13354, SiIV 1394 A
and 1403 A), each sensitive to certain ranges of temperatures
and, correspondingly, to certain atmospheric heights. In this
work, our analysis will be focused on the Mg Il k line profiles.
It was previously demonstrated that MgIlk&h lines may
serve as diagnostic tools for probing parameters of the solar
atmosphere in the upper chromosphere [2], [3]. In addition to
a variety of physics-based modeling, analysis, and inversion
techniques, there have been several attempts to apply machine
learning for enhancing the physics knowledge obtained from
Mgllk line profiles. For example, more than 50000 repre-
sentative profiles (RP) of the Mg Il k&h lines were computed
by applying clustering algorithms in an assortment of IRIS
observations [4]. The spectra were inverted using a physics-
based approach, and the inversion results were used to train a
deep learning model emulating the physics-based inversions.
Thus, the physical mode can be obtained in a few minutes
using a laptop or a desktop machine, which is ~10°-10° times
faster than the classic physics-based inversions. The typical
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MgIlk&h line profiles observed during solar flares were
identified using unsupervised clustering algorithms [5] and
linked the appearance of certain types of clusters to specific
physical processes occurring during solar flares (electron beam
injection properties and flare ribbon propagation).

While the application of machine learning in solar physics is
an expanding field [6], many questions are still not addressed.
One of them is the question of compact embedding (extraction
of the deep features) for spectral line profiles, which became
of interest to the community just recently [7]. Obtaining low-
dimensional representations of spectra may potentially help
address noise reduction, feature selection, and data compres-
sion and transmission problems. This manuscript describes an
attempt to apply compact embedding analysis to spectral lines.
The experiment shows that one needs only 4 dimensions to
represent the studied data set. Section II describes the data set
of Mgllk line profile observations, data cleaning, and nor-
malization procedures. Section III illustrates the architecture
of a neural network used to obtain a compact embedding of
the line profiles. Analysis of reconstruction errors for different
embedding layer dimensionalities is discussed in Section IV.
An interpretation of the results is summarized in Section V
followed by conclusions in Section VI

II. DATA

We utilize IRIS observations of the quiet Sun taken on April
20, 2020 from 08:32:00 UT - 09:56:00 UT at the center of
the solar disk. The observations were made in the sit-and-stare
mode (the mode when the slit of the spectrograph is always
in one position and “tracks” the solar features). During these
observations, IRIS obtained more than 300,000 individual
profiles of Mg IT k lines sampled from the quiet Sun at different
time moments and positions along the slit. Some examples of
the obtained line profiles are presented in Figure 1. One can
notice that the MgIl'k spectral line has a complex shape — it
typically has a double-peak structure with a central-reversal
signature if observed in quiet Sun regions. Both the locations
of the peaks and the central reversal represent valuable features
for diagnostics of the solar atmosphere [2]. It is important to
note that we consider only the MgIIk line-related part of the
observed spectra; it consists of intensity measurements at 110
wavelengths covering the 2794.9 A —2797.7 A spectral range;
each wavelength represents a separate dimension.

The pool of obtained line profiles was cleaned. Any intensity
points beyond the 2794.9A — 2797.7A spectral range were
removed from the analysis. The line profiles with spikes
in the data (defined here as sudden increases of the inten-
sity of 1500DN or more at a particular wavelength) and
measurements with negative intensity values were removed
from consideration. The 1500 DN threshold was defined as a
minimum possible threshold that keeps all the line profiles not
affected by spikes in the data set. The resulting 290940 Mg 1T k
line profiles were all normalized to the same number, which is
the maximum peak intensity observed across the line profiles.
The first 200000 normalized line profiles were assigned to
the train data subset and the remaining 90940 profiles to the

test data subset, giving an approximate partitioning of 70% to
30%.

III. AUTOENCODER CONFIGURATION AND TRAINING

For compression of spectroscopic line profiles we have
utilized an autoencoder-type neural network architecture. The
autoencoder is represented by a fully connected neural network
with the numbers of neurons in the subsequent layers set at
110-64-32-16 - nemp - 16 - 32 - 64 - 110. The network was
implemented in Python PyTorch [8]. Here n,; represents the
dimensionality of the embedding layer and is varied from 1
to 15. The Rectified Linear Unit (ReLU) activation function
was used for all neurons, and the Mean Squared Error (MSE)
was utilized as a loss function. A batch size of 20,000 samples
was used. Two network optimizers, “adam” [9] and stochastic
gradient descent, and three learning rates (0.001, 0.00033,
0.0001) were utilized to progress the training. We found that
introducing additional fully-connected layers into the network
or increasing the number of neurons in the layers does not
change the conclusions of this work.

To ensure the completeness of the training process and
prevent the network from overfitting, we have implemented
the early stopping criterion. Specifically, we assumed that
the training process of the network for the current setting
is complete if the MSE on the test subset is not improving
for more than 0.5% for two consequent training epochs.
The strategy was sequentially applied for each optimizer and
learning rate combination (with the learning rates arranged in
decreasing order). The entire training process was repeated
five times for each n,,, to check how variations in the initial
neuron weight distribution affect the training.

Figure 1 illustrates the reconstructed MgIlk line profiles
and the corresponding training progress for ne,p=4. The
network captures the main line profile features (the central-
reversal, the peak asymmetry, and the line continuum behavior
and features therein) relatively well, at least from a qualitative
perspective.

IV. RESULTS OF RECONSTRUCTION

The average MSE as a function of ng,,; (in the original
intensity units of data numbers, DN) is presented in Figure 2a.
One can notice that the MSE decreases sharply for nemp < 4
and almost stops decreasing when ne,,, > 4. One can state
that there is no further progress in line compression for
Nemp > 4 for the current training setting and autoencoder
architecture. The distribution of MSE for the case of ne,, = 4
is presented in the upper-right panel of the same figure. For
the majority of the line profiles, the average deviation of the
reconstructed intensity from the original values was around
3 DN, which is comparable with the intensity variations of the
line continuum signal.

In addition to the MSE, we also consider the reconstruction
of the statistical moments of the spectral lines. In this study,
the n-th statistical moment of the line profile is defined as:
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Fig. 1. Examples of the original (blue) and reconstructed (orange) MgIIk line profiles from the test subset for the case of an embedding layer size of 4
neurons. Lower right panel illustrates the corresponding autoencoder training process (mean squared error, MSE, as a function of the epoch number).
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Where A is a wavelength point and I()) is the intensity at
that wavelength. Typically, the first statistical moment serves
as a proxy of for line Doppler shift, the second one as a
proxy for the line width, etc. These characteristics are used
in spectroscopic studies [10]. Therefore, it is important to
analyze the accuracy of the reconstruction for these moments.
In this work, the statistical moments are computed only for the
2795.68 A-2796.96 A spectral range, which covers the Mg ITk
line but removes most of the contribution from the continuum.
The errors of reconstruction of the statistical moments
are presented in Figure 2c,d. As one can see in the lower-
right panel, the even statistical moments experience the same
behavior as MSE does: the error of reconstruction of these
line moments improves for n..,,, < 4 and stops decreasing for
Nemd > 4. The considered moments have an average relative
error of the reconstruction of < 2%, and the error decreases
for higher moments.

Surprisingly, the situation is different for the odd line profile
moments. First, the odd (asymmetric) line moments experience
significantly higher average errors, although, starting from us,
the reconstruction error is below 40% on average (Fig. 2c¢).
Second, the reconstruction errors for the odd statistical mo-
ments does not decrease with increasing ne., as strongly as
was observed for the even components (except the p; case,
which also had a ~ 50% reconstruction error even for high
nemb)~

V. DISCUSSION. SPECIAL CASE OF Ngpmp=4.

As mentioned in Section I, finding a compact embedding of
spectroscopic line profiles has several important applications.
In this work we consider, in particular, compression of the 110-
dimensional MgIIk line profile into the ne.,, = [1; 15] space
and analyze the resulting reconstruction error. One of the key
results of such analysis is that the reconstruction error (in terms
of MSE or the even statistical moments) does not decrease for
Nemp > 4 (Fig. 2). Such behavior may have two explanations.
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Fig. 2. Average error of the line profile reconstruction as a function of the embedding layer dimensionality. The upper-left panel shows the mean squared
error (MSE) of the line profile intensity reconstruction, and the corresponding histogram of the distribution of such errors is presented in the upper right panel.
The lower-left panel presents the relative mean error of the reconstruction of the odd statistical moments and the lower-right panel that of the even moments.

The first is that the entire physics of the line formation may
be expressed in four free parameters (e.g., the temperature,
density, the macroscopic and turbulent velocities in case of the
homogeneous thermal media). Another possible explanation
is that different neural network architectures and training
strategies might achieve better performance of the autoencoder
for nemp > 4. Because there was a specific architecture of the
network and a specific training strategy considered, this is a
very probable scenario. One also can see that, for ne,p, = 8
and nemp = 14, there were breakthroughs for some particular
trials. Specifically, one of the trials demonstrated a ~20%
improvement of MSE for n.,, = 8, and one of the trials
demonstrated a 55% improvement of MSE for ne,,,, = 14. As
one can see, it may possible to have better compressions of line
profiles, but that will require more computational resources.

To understand better the meaning of the parameters that the
autoencoder learned for the n.,,;, = 4 case, we conduct the
following experiment on the embedding space. We calculate

the means and the standard deviations for all parameters
(dimensions) of the embedding space for the line profiles in the
test data set. Next, we vary one of the four dimensions in the
range of the mean £ two standard deviations, while keeping
the other three parameters fixed and equal to their mean values.
The result of the experiment is presented in Figure 3.

As one can see, sometimes the meaning of the dimensions
learned by the autoencoder could be intuitively interpreted.
For example, dimension#3 is mostly responsible for the line
profile asymmetry, dimension#4 is mostly responsible for the
central-reversal feature depth, and dimension#2 significantly
affects the line profile width. The meaning of dimension#1 is
less clear, but it seems to control the line profile continuum
with some effect on the line profile itself. Overall, it is very
intriguing that the features learned by the network for the
nemp = 4 case can be interpreted and explained, to a certain
degree, relatively simply. We would like to note that the
optimal embedding layer dimensionality of n..,;, = 4 and the
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interpretation of the derived features are done for the Mg Il k
line formed at the quiet Sun and should not be assumed by
default for any other line profile or line formation conditions
without testing.

Another application where autoencoders are often used
is noise reduction. Figure 1 demonstrates that: the recon-
structed line profiles (orange curves) look much smoother
in comparison to the original line profiles (blue curves).
Moreover, one can notice the small absorption feature on
the left wing of the Mgllk line. This absorption is es-
pecially visible in Fig. 1b,c. This feature corresponds to
the MnI2795.64 A spectral line profile (see IRIS techni-
cal notes, https://iris.lmsal.com/itn26/introduction.html). It is
again remarkable how the network captures it from the noisy
spectroscopic data. Possibilities to reveal such weak spectral
signatures from noisy data may also be utilized in the future.

Finally, a relatively good reconstruction of the MgIlk line
profile with the n.,,, = 4 setting may have several practical
applications, especially in situations where the data flow
capabilities are limited. Compressing the data on deep space
missions may result in more data samples transmitted to the
ground via limited telemetry bandwidth. Low dimensionality
of the embedding space allows one to perform a similarity
search-based data retrieval — one can search data sets based
on compact embedding instead of the entire data volume.
Finally, line profile denoising, as we saw, may be useful for
extracting weak signals in the continuum variations or weak
spectroscopic signatures from noisy data.

VI. CONCLUSIONS

In this paper we have studied the compact embedding of
spectroscopic observations of the quiet Sun in the MgIIk line
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by NASA’s IRIS satellite using the fully-connected autoen-
coders. The key outcomes of this study are as follows:

o It is possible to compress the data more than 27 times
(i.e., to reduce the data dimensionality from 110 to 4)
while having only a 4 DN reconstruction error on average.
The reconstruction error is somewhat comparable to the
variations of the measurements in the line continuum
observed for the line profiles;

o The average error of reconstruction of the MSE and even
statistical moments of the line profiles decreases sharply
for the nemp < 4 and barely drops for nempy > 4.
Reconstruction of the odd statistical line moments does
not demonstrate such dependence on the dimensionality
of the embedding layer (except for the p; statistical
moment);

o Some occasional improvements of the autoencoder train-
ing were observed for nemp > 4, e.g., reducing MSE
by ~20% for nemp = 8 and by 55% for nepp = 14.
However, these results were observed only twice among
more than 100 runs, indicating that obtaining a better
embedding requires, probably, longer training times and
another training/architecture strategy;

e The features learned for the ne,,p, = 4 case can be
supported with an intuitively-understandable interpreta-
tion if variations in the embedding space are considered.
Three of the identified features were found to be mostly
responsible for defining the line width, asymmetry, and
line dip formation respectively.

In the presented study we considered only the MglIlk
line profiles observed at a quiet Sun disc center region with
a certain configuration of the observing instrument (expo-
sure and resolution). While we expect that the techniques
of compression of line profiles may be extended to other
line profiles, this will require a detailed assessment. The
presented work considered a particular architecture of the
neural network, a particular way of varying the embedding
layer dimensionality, and a certain methodology to train the
network. Using other architectures such as the convolutional
neural networks and variational autoencoders [11], as well as
other training strategies, may help to better compress the line
profiles and will be investigated later. Nevertheless, the work
illustrates the potential of line-profile compact embedding for
both operational and scientific purposes.
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