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Nodal Load Profiles with Significant
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Abstract—It is of imperative interests for regional transmission
organizations (RTOs) to effectively extract actual load profiles
at transmission nodes with significant behind-the-meter solar
generation, which remains a gap in the existing technology
paradigm. This paper proposes an explicit yet efficient linear es-
timator to disaggregate actual load profiles at transmission buses
with significant behind-the-meter (BTM) solar generations. The
proposed estimator is based on disaggregating (i.e., extracting)
at locations close to transmission buses under consideration. To
overcome the lack of ground truth and validate the performance
of the proposed algorithms, we first propose semi-supervised
mechanisms with parameter tuning as well as unsupervised
clustering and leverage the unique characteristics of zero-crossing
points in BTM solar peaking behaviors, which we refer to as
Zone-to-Node (Z2N) methods. Next, we further propose a bi-level
Node-to-Node (N2N) framework that improves the overall disag-
gregation performances compared to Z2N. Numerical results are
presented using real-world data at PJM Interconnection.

Index Terms—behind-the-meter solar, load disaggregation,
load modeling

I. INTRODUCTION

High penetration of renewable energy resources, especially
the widespread installation of solar generation, have imposed
opportunities and challenges to transmission grid operators,
such as regional transmission organization (RTOs) on system
operation, planning, and control. Due to its inherently volatile
nature, high penetration of solar generation can impose unfore-
seen, significant challenges to both supply (e.g., recent 2020
San Fernando disturbance in California [1] and 2021 Odessa
disturbances in Texas [2]) and demand (e.g., recent near-zero
net system demand by the California ISO on April 16, 2023),
which justifies the imminent needs of granular nodal load and
solar generation profiles across transmission networks.

From transmission grid operators’ view, solar penetration
can be categorized according to its impacts on the generation
capacity (e.g., front-of-the-meter (FOM)) and net demands
(e.g., behind-the-meter (BTM)). FOM solar resources have
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Need for BTM Data: Transmission Outage Analysis
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Fig. 1: Real-world example at PJM that needs actual load profiles: the peak
load time of the entire RTO (the top line) could be one hour after the peak
load time of a transmission bus (the middle line), whose actual load curve is
unknown due to BTM solar (the bottom line) and self-managed loads [5]

.

direct access to transmission networks. As of the end of 2022,
there were over 10,000 projects in the U.S. representing 1,260
GW of renewable generation capacity (including 947 GW
of solar), 680 GW of storage capacity, and 457 GW of co-
located hybrid capacity (mostly solar-plus-storage) waiting for
transmission access [3]. Moreover, BTM resources represent
small-scale installations physically located ”behind” utility
meters (feeders) or substation telemetry (nodes), i.e., without
sub-metering of individual installations and thus unobservable
to system operators. For instance, Australia has reported a
total capacity of 8.03 GW BTM solar as of April 2019 [4]
and California Energy Commission has estimated over 40,000
GWh annual BTM solar energy by 2030.

Compared to distribution networks, the impact of signif-
icant BTM solar on transmission grids has generally been
overlooked. As a real-world example, Fig. 1 shows a post-
outage transmission analysis by PJM Interconnection (PJM),
in which system operators need to know the actual peak time at
a specific transmission bus (also interchangeably called trans-
mission node) for resource planning and dispatching. However,
the metered single-bus (i.e., nodal) load profile (the bottom
line, which is available to grid operators) is the aggregation of
significant BTM solar (the bottom line) and actual demands
(the middle line, which is desired but unknown) and could be
of negative values for hours. Therefore, it is of critical practice
for grid operators to “disaggregate” actual load profiles at
transmission nodes from such aggregated nodal measurements
for system reliability under high penetration of BTM solar.

However, it is not practical nor economical to install me-
tering devices throughout the transmission network. Instead,
extracting and analyzing power consumption profiles from
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aggregated, metered waveforms without the installation of
any extra metering devices, i.e., non-intrusive load disag-
gregation [6]–[8], has the technical potential to alleviate the
aforementioned challenges. In the existing literature, with the
proliferation of advanced metering infrastructure (AMI), a
significant amount of recent efforts have been dedicated to
non-intrusively disaggregate load and BTM solar profiles in
distribution networks from aggregated AMI readings (e.g.,
smart meters). Specifically, the state-of-the-art largely aims at
extracting BTM solar generation (instead of load) profiles from
metered (aggregated) power consumption waveforms,

To name but a few, [9] proposes to estimate the unob-
served amount of solar generations, which are modeled as
a function of local global horizontal irradiance (GHI), from
composite power flow measurements at the point of common
coupling. However, GHI measurements are not widely avail-
able, which limits its applicability. Moreover, the correlation
between monthly nocturnal and diurnal demand profiles and
the similarity among solar generation profiles are exploited to
disaggregate customer-level BTM solar using low-resolution
but widely available hourly AMI readings [10], in which a
maximum likelihood estimation based technique is proposed
to utilize hourly typical solar exemplars based on constructed
joint probability density functions of monthly nocturnal and
diurnal demands. Similarly, [11] uses solar and demand ex-
amplers to find the optimal BTM solar generation based on a
game-theoretic model. Finally, [12] proposes a mixed hidden
Markov model to model general load consumption behaviors
and estimate key parameters of BTM solar generations.

Besides aforementioned model-driven disaggregation tech-
niques, recent advances in machine learning have also been
extensively explored. Bayesian-dictionary-learning-based ap-
proaches are proposed in [13] to estimate the consumption of
each load from aggregate measurements without knowing the
ON/OFF status of each load. Moreover, [14] proposes an adap-
tive machine learning framework to transform available data
(e.g., weather, location of PV, and net loads by smart meters or
transformers) to estimate total (actual) load profiles and learn
specific load patterns. Similarly, a disaggregation algorithm
based on online training with multiple measurements include
disparate active and reactive power flow measurements, com-
plex bus voltage measurements, and residential smart meter
measurements at feeder level is developed in [15].

To our best knowledge, this work is the first effort to
investigate non-intrusive disaggregation of daily nodal load
profiles at transmission nodes with significant BTM solar,
which is yet to be addressed. Specifically, the objective of this
work is to disaggregate the actual nodal load profiles based
on the zonal load and proxy solar irradiance profiles, which
differs from the existing literature in the following aspects.

• The state-of-the-art is generally designed for distribution
networks and assumes the existence of actual BTM so-
lar measurements for supervised-learning-type validation.
However, such actual BTM solar or load profiles (i.e., the
ground truth) generally do not exist at transmission nodes,
which excludes the utilization of conventional supervised
learning techniques. Therefore, the main technical chal-
lenge that has not addressed in the literature is: without

Fig. 2: A real-world example: GHI and solar generation output are not always
aligned (data shown over one summer). Before reaching its max rated capacity,
output of this de-identified solar farm generally follows a linear relationship
with metered GHI. However, when GHI is sufficiently strong, solar output is
often lower than its rated capacity (often due to partial equipment issues).

the actual nodal load profiles as the ground truth, how
to evaluate the disaggregated profiles?

• Although the RTO’s zonal demand profiles are accurate,
available solar profiles are only proxy (i.e., measured from
a nearby location, not the considered location), which
would impose nonlinear differences between these proxy
solar profiles and the actual BTM solar generation [16].

• Nodal load profiles at transmission nodes are correlated in
a spatio-temporal manner, which has not been addressed
or utilized in the state-of-the-practice.

• Metered power outputs do not always linearly align with
the proxy solar irradiance, even at the same location as
illustrated by a de-identified solar farm (in PJM’s service
territory) in Fig. 2. These nonlinear errors have generally
been ignored in the literature.

The main innovations and contributions are listed as follows:
1) To alleviate the lack of ground truth, we propose ex-

plicit but yet effective mechanisms in a semi-supervised
manner. Based on observations from real-world data
and industry best-practices, we divide daily nodal net
injections into a nighttime portion (i.e., with no BTM
solar) and a daytime portion with significant solar BTM.
Consequently, we propose an ordinary least-squares
(OLS) based disaggregator as the first benchmark, which
does not depend on the metered GHI or solar power
outputs. Instead, it only assumes similar patterns be-
tween actual nodal/zonal load profiles in daytime and
nighttime, which is validated by real-world data.

2) To further reduce aforementioned errors caused by proxy
solar and seasonal patterns, we enhance the OLS-based
disaggregator by 1) first classifying daily profiles in an
unsupervised manner by the self-organizing map (SOM)
and then extending from temporal OLS to in-class OLS
disaggregation; and 2) parameter tuning by leveraging
the unique characteristics of sunrise and sunset times
(which are pre-defined based on GHI thresholds de-
termined from real-world data based on customized
applications). We refer such enhanced mechanisms as
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Sudden ramp up/down

Fig. 3: Illustration of 1) minute-level, normalized, and anonymized PJM data
[17] and 2) needs of actual nodal load profiles in daily RTO operations.

Zone-to-Node (Z2N) methods.
3) To fill the gap in evaluating the performance of the pro-

posed nodal profile disaggreator’s performance without
full ground truth, we utilize three distance functions
based on spatial area difference, the Kullback–Leibler
divergence, and the Kantorovich–Rubinstein metric to
measure 1) the relative amount of daily solar and 2) the
total difference between the disaggregated and metered
nighttime nodal profiles. Furthermore, with the quantita-
tive capability to evaluate disaggregation outcomes, we
can further ensemble the three proposed disaggregation
techniques by the voting mechanism.

4) Finally, we also investigated challenges to Z2N meth-
ods in cases where BTM dominates and the metered
nodal load profile is negative and consequently propose
a bi-level Node-to-Node (N2N) architecture to further
enhance the efficiency and robustness of the proposed
nodal load disaggregator.

The remaining of this paper is organized as follows. Sec-
tion II formulates the proposed non-intrusive disaggregation
problem for nodal load profiles and presents observations
from real-world data that are aligned with industry best
practice. Sections III proposes the proposed semi-supervised
scheme with OLS disaggregation algorithms with three per-
formance enhancement techniques: 1) parameter tuning using
sunset/sunrise events; 2) unsupervised clustering based on
SOM and consequently in-class OLS, and 3) a bi-level N2N ar-
chitecture to alleviate errors when metered nodal load profile is
negative. Moreover, Section V adopts three distance functions
to evaluate the performance of the proposed disaggregation
algorithms and discusses numerical validation results. Finally,
Section VI draws conclusions and future work.

II. PROBLEM FORMULATION

A. Problem Motivation, Definition, and Illustration

The example shown in Fig. 1 can be further illus-
trated in Fig. 3, which plots pre-processed, normalized, and
anonymized PJM load profiles at two nearby transmission
nodes (same substation) with similar, short distances to a
nearby solar farm (i.e., FOM). A sample plot of the weekly

Fig. 4: Validation of the proposed affine relationship between daytime
nodal/zonal and nighttime nodal/zonal actual load profile differences

.

data between July 1 and July 3, 2020 presents the total demand
of an anonymized RTO zone (in black), a node with significant
BTM solar (in blue), and another node with dominating BTM
solar generation (in green). The reported solar irradiance
profile at a nearby solar farm is also shown (in brown).

It can be observed that on both illustrated nodes, the actual
nodal load profiles are unknown due to BTM solar. On
the third day with strong solar irradiance, node 2 presented
negative demands. Consequently, the actual peak demand
hours at both nodes are unknown. Furthermore, high penetra-
tions of BTM solar could cause unexpected, abrupt ramping
up/down in metered nodal demands. Recent advancements
in transmission grids operation and control by RTOs have
investigated multi-scale issues in the existing energy/ancillary
service co-optimization scheme with system-wide constraints
and proposed granular solutions such as nodal reserves [18]
and nodal reliability [19], for which actual nodal load and
BTM solar profiles are necessary since nodal profiles in
general do not follow system-wide profiles as shown above.

Moreover, since there generally do not exist telemetry or
data sources for actual nodal load profiles, available data
sources for estimating (i.e., disaggregating) actual nodal load
profiles include only zonal demand profiles, proxy solar pro-
files, and other nearby nodes, which motivate the proposed
techniques in this work.

It can be observed in Fig. 3 that, without BTM solar at
nighttime, both nodes follow similar patterns as the zonal
load profile in terms of their curve shapes (e.g., peak hours,
ramping rates, and difference in peak p.u. values). In order
to utilize nighttime data (i.e., no BTM solar and thus can be
considered as the “ground truth” for verification purposes),
an important hypothesis is that for each node, its actual
load profile during daytime would statistically “align with”
the learned pattern on how the nighttime bus load profiles
follow the zonal load. To validate this assumption, Fig. 4
shows real-world data representing 493 selected, de-identified
nodes within PJM service territory. The horizontal and vertical
axes denote each transmission node’s normalized, total daily
difference (i.e., area differences) between nighttime nodal and
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zonal load profiles as well as between daytime nodal and zonal
load profiles, respectively. Note that the presented data (from
2018) in Fig. 4 was selected based on the following criteria:

1) There was no BTM solar on a specific day so that we
can compare the differences between nodal and zonal
load profiles at daytime and nighttime;

2) Data is recent as RTO load patterns change rapidly
on a yearly basis with the ever-growing penetration of
distributed energy resources, electrified transportation,
and self-managed loads.

Consequently, it can be observed in Fig. 4 that the proposed
assumption is general valid as most of the data points are
bounded with in the range of ±5% error, which is widely
acceptable in RTO operations.

B. Problem Formulation

Given a daily metered (aggregated) nodal load profile in the
format of real power x = (x1, . . . , xT ), i.e., a timed sequence
of T power consumption data points indexed by t, the problem
to investigate in this paper is to determine its corresponding
actual (disaggregated) nodal load profile p = (p1, . . . , pT ),
i.e., “load disaggregation”. The metered nodal load profiles
are called aggregated as, at the considered transmission buses,
each metered nodal load profile consists an unknown level of
BTM solar generation s. In other words, the metered nodal
load profile x available to RTO can be considered as a sum
of the BTM solar s and the actual nodal load p, which needs
to be “disaggregated”, both of which are unknown, i.e.,

x = p− s

or x(t) = p(t)− s(t), ∀t = 1, . . . , T
(1)

In this paper we follow the convention and assign positive
values as net injections into the grid. In addition to the
availability of real-world x, to achieve feasible solutions, we
further assume the availability of two extra sources of data: the
zonal load profile z = (z1, . . . , zT ) (e.g., the total demand of
an RTO’s regional service territory or a specific RTO zone) and
a proxy solar irradiance profile r = (r1, . . . , rT ) (e.g., metered
solar irradiance at a nearby location to the transmission bus
under consideration). Revisiting the illustrative example shown
in Fig. 3, the green and blue, black, and red lines represent two
different x curves at two transmission buses with significant
and even dominating BTM solar, their corresponding zonal z,
and their proxy solar r.

Considering that there does not exist any technique or
methodology for load disaggregation at the transmission buses
level, without the ground-truth, this paper adopts linearized
formulations to represent the similarity between zonal and
nodal load profiles as an affine relationship with a constant
load component and an unknown stochastic difference that
are small compared to the normalized load values, which has
been justified in distribution networks [16], [20] and by RTO
best practices. Formally, the following formulations are made:

1) The actual nodal load profile p follows the zonal load
profile data z in an affine manner subject to a constant

weight Cl, a constant load component pc, and an un-
known, stochastic load mismatch error ϵ, i.e.,

p = Cl · z+ pc + ϵ

or p(t) = Clz(t) + pc + ϵ(t), ∀t = 1, . . . , T
(2)

2) Adjacent buses have similar solar irradiance profiles that
are close to the proxy solar generation profile ϕ, and the
BTM solar generation s is an affine function of the proxy
solar generation profile ϕ subject to a constant Cs and
an unknown, stochastic mismatch error ζ, i.e.,

s = Cs · ϕ+ ζ

or s(t) = Csϕ(t) + ζ(t), ∀t = 1, . . . , T
(3)

Consider a single transmission bus, we would like to disag-
gregate its metered (aggregated) nodal load profile x(t) into
its actual nodal load profile p(t) and BTM solar s(t), i.e.,

x(t) = p(t)− s(t),

s.t. p(t) = Clz(t) + pc + ϵ(t)

s(t) = Csϕ(t) + ζ(t)

(4)

With the proposed assumption discussed in Section II.A and
illustrated in Fig. 4, i.e.,

∥pzonal,nighttime,pnodal,nighttime∥ ≈ ∥pzonal,daytime, p̂nodal,daytime∥ (5)

where p̂ denotes disaggregated nodal load profiles from x and
∥·, ·∥ denotes any distance function. The proposed nodal load
disaggregation problem can be formulated by minimizing the
difference between nighttime metered and disaggregated nodal
load profiles:

argmin ∥pnodal,nighttime, p̂nodal,nighttime∥ (6)

In this formulation, profiles x, z, and ϕ are known, and
thus the problem to solve can be considered as linearized
regression. Note that the proposed formulation only depends
on metered data such as zonal load profile and night-time
nodal profile, while proxy solar profiles are only utilized to
determine sunset and sunrise times to segment the daytime
and nighttime halves. This is a major distinction compared
to the existing literature. The learning process is carried out
on the daytime halves with ϕ(t) and z(t) are considered as
known as well as best fitting parameters Cs, Cl, and pc to be
learned. Note that the two transposition errors ϵ and ζ can be
combined as one without affecting the results [16].

III. PROPOSED DISAGGREGATION ALGORITHMS

A. Baseline: Ordinary Least-Squares
As discussed above, the lack of actual load profiles at

transmission buses (i.e., without BTM solar) excludes the
possibility of adopting existing supervised learning techniques.
Based on the aforementioned observations made from real-
world data and operational domain knowledge, this paper
proposes to divide each daily load profiles into two parts:

1) Nighttime portion of the load profile: with no solar
generations and thus not impacted by BTM solar, i.e.,
closely follow the zonal load pattern;

2) Daytime portion of the load profile: with significant
solar BTM generations, the actual load profile (though
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Fig. 5: Overview of the proposed OLS-based disaggregation.

unknown) would be statistically similar to the learned
pattern on how the nighttime nodal load profiles follow
the zonal load.

An overview of the proposed OLS-based disaggregation is
shown in Fig. 5. Firstly, raw data is processed with simple
moving average (SMA) applied to the x and its corresponding
proxy solar ϕ, which could effectively reduce the impact
of fluctuations in the raw data (especially in solar) on the
accurate estimation of the parameters of large multivariate
time series [21]. Secondly, prepared daily profiles are divided
into day-time and night-time portions for training and vali-
dation, respectively. Finally, the multi-equation disaggregation
model can be estimated equation-by-equation by ordinary least
squares (OLS) [22], which is a type of linear least squares
technique for estimating unknown parameters and provides
minimum-variance, mean-unbiased estimation when the errors
have the same finite variances but serially uncorrelated. Note
that such assumptions are reasonable approximations in the
proposed problem since the demand profiles on different nodes
are uncorrelated but the solar irradiance profiles in a local
region can be considered to be homoscedastic.

The proposed OLS-based architecture shown in Fig. 5 is
considered to be semi-supervised [23], which generally refer to
learning methods that are based on a small amount of labeled
data with a large amount of unlabeled data during training,
which align with the proposed problem in this paper. Specif-
ically, the daytime profiles can be considered as “unlabeled”
while the nighttime profiles can be considered as “labeled” as
they are actual load profiles without BTM solar and utilized
as (partial) ground truth. Compared to the conventional semi-
supervised literature, the disaggregation problem considered
in this paper is more balanced in terms of the ratio of labelled
and unlabelled data, which would avoid many known issues
caused by unbalanced data [24].

B. First Performance Enhancement via Parameter Tuning at
Zero-crossing Points

Another important observation is that, though either the
daytime or nighttime portions are complete in information

(e.g., daytime portions lack ground-truth and nighttime por-
tions lack BTM solar), two special data points that can be
considered as possessing full information (i.e., both ground-
truth and BTM solar since they are at the intersection of
both) are the sunrise and sunset (i.e., zero-crossing) points,
with sunrise time denotes the event from zero BTM solar at
nighttime to positive BTM solar at daytime and the sunset
time represents the event from positive BTM solar at daytime
to zero BTM solar at nighttime. These two zero-crossing points
can be considered as boundary conditions and are utilized in
this work to further tune model parameters.

Specifically, for any consecutive N days, revisit Eqn. (2)
and denote the disaggregated load profile of the nth day by
pn(t) = Cn

l z
n(t) + pnc + ϵn(t), ∀t = 1, . . . , T, n = 1, . . . , N

and the the sunrise and sunset times of the nth day by trn and
tsn, respectively. To reduce the regression error, the proposed
parameter tuning is implemented by introducing two auxiliary
parameters a and b into pn(t) and consequently minimizing
the sum of differences between p and x at sunset and sunrise
times, i.e., ∀t = 1, . . . , T and ∀n = 1, . . . , N ,

pn(t) = (Cn
l + a)zn(t) + pnc + ϵn(t) + b (7a)

s.t.
N∑

n=1

pn(trn) =
N∑

n=1

xn(trn) (7b)

N∑
n=1

pn(tsn) =
N∑

n=1

xn(tsn) (7c)

Note that parameters a and b are unknown parameters
that can be uniquely calculated by two boundary conditions
Eqns. (7b) and (7c) with respect to sunrise time tr and sunset
time ts in a linear manner, with tr and ts determined based
on thresholds calculated using proxy solar profiles, which are
the cross-zero points of the proxy solar profile. Note that tr
and ts can be considered as boundary conditions between
daytime and nighttime halves, and thus difference between
p and x at tr and ts are (theoretically) zero, which are
interpreted in Eqns (7b) and (7c). Parameters a and b can
then be solved in a straightforward manner from these two
simultaneous equations without the need of utilizing recurrent
techniques.

An illustrative example of performance enhancement with
the proposed parameter tuning at sunrise and sunset times
is shown in Fig. 6. It can be observed that due to the lack
of ground truth at daytime, at highlighted time periods the
disaggregated nodal load profiles (red dashed line) deviates
from the metered (aggregated) nodal load profile (blue solid
line) and almost coincide with the zonal load (black solid line),
which is caused by the inherent characteristics of OLS. As a
clear comparison, it can be observed that with the proposed
parameter tuning at sunrise and sunset times, such deviation
have been corrected and the disaggregated nodal load profile
retains similar patterns as the zonal load and remain close to
the metered (aggregated) nodal load profiles.
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Fig. 6: Illustration of performance enhancement with the proposed parameter
tuning at sunrise and sunset times.

C. Second Performance Enhancement by Unsupervised Clas-
sification and In-class OLS

The proposed OLS-based architecture shown in Fig. 5 is
based on the moving averaging pre-process and parameter
regression utilizing data from consecutive days. However, a
notable issue is that consecutive days at difference seasons
might differ significantly in their daily solar irradiance and
demand profiles, which in turn could inherently cause error
to the consecutive-days-based OLS disaggregation. Therefore,
we propose to first classify daily profiles into clusters in an
unsupervised manner and then, for any day under consid-
eration, perform OLS disaggregation using daily data from
within its corresponding cluster. Note that the classification
is unsupervised as there is no prior knowledge in how many
clusters there are and/or what features to adopt. Consequently,
the classification is purely inherently data-driven without any
labels, i.e., unsupervised.

1) Feature Selection: In the existing literature of load
modeling and/or forecasting, available data is typically split
by different seasons, into weekdays and weekends, or into
holidays and normal days. Most existing literature cluster data
into consecutive days, and limited efforts have been devoted
to cluster data on a daily base. Reference [25] adopts the daily
bases clustering for solar prediction based on clustered GHI
data, which is a single variable prediction problem utilizing
only the GHI data.

This work performs unsupervised classification in three
steps: 1) ensemble features from different aspects; 2) feature
selection by computation; and 3) feature selection by per-
formance. To start with features, daily zonal load and solar
generation profiles of the first three quarters of 2020 are plotted
in Fig. 7 to seek potential features from seasonal, quarterly, or
monthly patterns in either the zonal load or solar irradiance.
The following observations can be made:

• In Q2 and Q3, both sunrise and sunset occur at around
the same time. Moreover, sunrise time in Q2 and Q3 is
generally earlier than Q1, while the sunset time in Q2
and Q3 is generally later than Q1;

• The peak value of daily solar is similar in Q1 and Q2,
which is lower than Q3’s peak daily solar;

Fig. 7: Comparison of seasonal load and solar profiles: (Top) Q1 of 2020,
(Middle) Q2 of 2020, and (Bottom) Q3 of 2020.

• In Q2 and Q3, the variance in daily solar profiles is
generally smaller than Q1;

• In Q1, zonal loads have two peaks (morning and evening),
which is consistent through out the season. Similarly,
zonal load profiles in Q3 are also consistent with one
evening peak. It can be observed that Q2 has combined
features of Q1 and Q3, with a possible interpretation that
Q2 is seasonal transition from Q1 to Q3.

To summarize, the observations made from seasonal load
and solar patterns can be interpreted as two challenges: (1)
diversity of daily profiles in the same season and (2) similarity
among daily profiles from different seasons. Consequently,
classification by only seasons is insufficient for the purpose
of performance enhancement in the proposed OLS-based
disaggregation algorithm. Instead, this work ensembles the
following 14 features that are potentially suitable for clustering
daily load and solar profiles by their inherent characteristics:

• Solar related features: (1) peak daily solar (in p.u.), (2)
total daily solar generation (in p.u.), (3) sunrise time, (4)
sunset time, (5) peak daily solar time, (6) solar generation
at noon (in p.u.);

• Load related: (7) peak load (in p.u.), (8) minimum load
(in p.u.), (9) total daily load (in p.u.), (10) peak load time,
(11) minimum load time, (12) load at noon (in p.u.);

• Crest factors: (13) load crest factor (peak load/minimum
load), (14) efficiency crest factor (peak load/peak solar).

In order to quantitatively determine an optimal subset of the
proposed features without bias, a linear-time feature selection
algorithm called Relief [26] is adopted to estimate each
feature’s contributing proportion and reduce the number of
features by selecting only statistically relevant features. Specif-
ically, Relief is a filter-method feature selection approach
that is widely used as the benchmark to score and rank (the
weights of) individual features. The contributing proportions
of the proposed 14 features are listed in Table I. It can be
observed that the sunrise and sunset times present signifi-
cantly higher proportions than other features, followed by the
maximum and minimum load times, which aligns with the
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TABLE I: Feature selection by seasonal patterns

Feature Proportion
Peak daily solar (in p.u.) 0.0466
Total daily solar generation (in p.u.) 0.0453
Peak daily load (in p.u.) 0.0530
Minimum daily load (in p.u.) 0.0418
Total daily load (in p.u.) 0.0590
Load crest factor (peak load/minimum load) 0.0185
Efficiency factor (peak load/peak solar) 0.0315
Sunrise time 0.2423
Sunset time 0.2044
Peak daily load time 0.0724
Minimum daily load time 0.0916
Peak daily solar time 0.0214
Solar generation at noon (in p.u.) 0.0313
Load at noon (in p.u.) 0.0404

characteristics of the seasonal label as the zonal demand is
closed related to activities caused by sunrise and sunset events.

2) Unsupervised Classification by the Self-organizing Map:
As discussed above, statistically selecting features by their
relevance to seasons (i.e., in a supervised manner) aligns with
seasonal inherent characteristics but not necessarily addresses
neither the diversity within each season nor the similarity
among different seasons as shown in Fig. 7. Therefore, in
this work we propose to utilize unsupervised clustering of
the available daily zonal load and solar profiles with respect
to different subgroups of the proposed features. Specifically,
we propose to adopt the time adaptive extension of the self-
organizing map (SOM) [27], also known as the Kohonen map.
The SOM is an unsupervised artificial neural network (ANN)
trained by competitive learning (rather than error-correction
learning methods such as gradient descent). Trained with high-
dimensional data, the output of an SOM is a low-dimensional
(typically two-dimensional), discretized grid of neurons. Each
nueron is assigned a feature vector of the same dimension as
the input data. The advantages of the SOM are three-fold:

• Clustering by nature: an SOM does not require a priori
information on the number of clusters; instead, an SOM
represents as clusters with respect to the relative distances
among feature vectors. In other words, input feature
vectors in proximal clusters have more similar values than
feature vectors in distal clusters;

• Dimension reduction: the training process of an SOM is
to represent a high-dimensional input feature space by a
low-dimensional mapped space;

• Outcome visualization: a trained SOM could visualize
boundaries among clusters to illustrate variances within
each cluster and distances among different clusters.

Necessary concepts are introduced as follows [7].
2.a) Neurons and Their Assigned Values: Consider an SOM
with K neurons with l-dimensional training data consists of
feature vectors xq = [xq1, xq2, xq3, . . . , xql]. Each neuron ni

is assigned with [28] : 1) a time-invariant topological position
(i.e., an x − y coordinate in the 2-D output grid); 2) a time-
varying parametric weight (also called reference, model, or
codebook) vector mi = [mi1,mi2,mi3, . . . ,mil] of the same
dimension as the input data; 3) a predefined function which
defines a neighborhood (e.g., a circle or a square in 2-D)

centered at the neuron. All neurons compete to respond to the
input data but only one neuron wins at each time. Denoted by
the subscript c, the winning neuron is called the Best Matching
Unit (BMU):

c = argmin
i

{∥∥xq −mi

∥∥} (8)

where ∥ · ∥ is a distance function, typically the Euclidean

dE
(
mi,xq

)
=

√√√√ l∑
k=1

(mik − xqk)
2 (9)

2.b) The Batch SOM Training Algorithm There are two
types of training algorithms for the SOM: sequential and batch.
Sequential training takes one single input vector of data at each
training step and then updates, and the batch training presents
all input data to the neuron grid before any updates are made at
each training step. The batch SOM training algorithm proceeds
as follows [28]:

1. Initialize weight vectors mi;
2. Partition the input data set into the Voronoi regions of

the weight vectors, i.e., each input vector xq belongs to
the region of its closest neuron ni;

3. Update mi according to

mi(t+ 1) =

∑N
q=1 hq,c(t)xq∑K
q=1 hq,c(t)

(10)

where c is the BMU of the input vector xq, hq,c(t) is the
neighborhood function, and K is the number of neurons;

4. Return to step 2 and repeat until stopping criteria is met.
As a result, feature vectors with similar values are mapped

to neurons positioned close to one another and form a cluster.
Numerical comparison has been conducted using many

different combinations of features to train the SOM, and three
examples are illustrated in Fig. 8. It can be observed that

• Clustering performance differs significantly among dif-
ferent feature groups;

• The middle SOM has the best performance in terms of
relatively balanced numbers of points in each of the four
clusters as well as clear boundaries among clusters, for
which 4 selected features include peak daily solar, total
daily solar, peak daily load, and minimum daily load;

• Cluster 0 contains the most number of input feature
vectors, while cluster 3 contains the least;

Moreover, the values of total amount of daily solar irradi-
ance descends from clusters 0 to 3, which indicates that cluster
0 has the strongest solar generation profile (while cluster 3 has
the weakest), which corresponds to features mostly from Q2
and Q3 and aligns with seasonal patterns.

3) In-class OLS Disaggregation: The proposed feature se-
lection process and SOM-based classification can be integrated
into the semi-supervised, OLS-based disaggregation algorithm
represented in Fig. 5. The overall procedure is shown in
Fig. 9. Note that another important factor to address is how
to quantitatively evaluate the performance of disaggregation
outcomes without the ground truth, which will be presented
in Section IV.
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Fig. 8: Three examples of SOMs trained with different groups of features.

D. Third Performance Enhancement by Bi-level Node-to-Node
Formulations

The Z2N disaggregation techniques presented above can be
further extended to an N2N formulation, especially for cases
in which metered (aggregated) nodal load profiles are negative
due to dominating BTM solar. Specifically, the proposed N2N
architecture can be considered as bi-level formulation.
First level: picking one bus without dominating BTM solar as
a reference bus, whose metered (aggregated) nodal load profile
xbusref can be disaggregated into its corresponding actual nodal
load pbusref

and its proxy BTM solar sbusref by the proposed
Z2N disaggregation techniques presented above;
Second level: aiming at disaggregating other N buses in the
same region by applying node-to-node correlations between
individual target buses and the selected reference bus. Specif-
ically, the relation between the reference bus and the nth bus

Raw Data
Normalized, anonymized., minute level
Zonal: total demand of a PJM transmission zone
Bus: demand at a bus with significant BTM solar 
Solar: solar profile at a location nearby the bus

Data Segmentation
A. Segment raw data to daily profile
B. Segement daily profile to daytime and nighttime

Cluster 1 Cluster 2 Cluster 3

SOM

Feature Selection
Select most essential features for clustering process 

Ordinary Least Square Training

Ordinary Least Square Training

Quantization of Accuracy

Area 
Difference

Wassertein 
Distance

KL 
Distance

X-train = Zonal Load
Y-train = Solar,Bus

Generate coefficients and constant for the 
function of disaggregated bus load

Disaggregated bus load function with 
SOM

Nighttime data has no solar generation, 
considered as ground truth. Calculate the 
difference between disaggregated load and 
metered load, analyze the improvement.

Disaggregated bus load function without 
SOM 

Aggreate different clusters’ outcomes

Apply on nighttime data

Fig. 9: Overview of the disaggregation procedure utilizing feature selection
and unsupervised classification.

can be formulated as

xbusn = CRxbusref + pR (11)

where coefficients CR and pR can be learned by nighttime
portions (i.e., sunset to sunrise):

min σMSE :=

Ttr∑
t=Tts

(pbusn − xbusn)
2. (12)

Consequently, for daytime (i.e., sunrise to sunset), target
noden’s disaggregated nodal load profile follows the same
relation:

pbusn = CRpbusref
+ pR. (13)

The proposed bi-level N2N architecture can be summarized
by Algorithm 1. Moreover,

• In the first level (i.e., Z2N), daytime data is used for
training, while the second layer uses nighttime data for
training to obtain the N2N correlations;

• Unlike the first level, only the metered (aggregated) nodal
load profiles are needed in the second level, i.e., proxy
solar profile is not needed in the second level.

E. Quantile Regression for Comparison

For effective comparison of performance enhancements by
the proposed bi-level framework, another technique called
quantile regression (QR) [29] is also adopted to be com-
pared with OLS. It is widely acknowledged that in some
cases QR is more robust than OLS as OLS minimizes the
conditional mean while QR estimates the conditional quantiles
(i.e., median). The error of the QR model is represented by
y = f(x, βQR) + ϵ, where βQR is estimated by:

β̂QR = argmin
b

n∑
i:yi≥f(b,xi)

q |yi − f (b, xi)|

+
n∑

i:yi<f(b,xi)

(1− q) |yi − f (b, xi)|
(14)
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Raw Data

Normalized, anonymized., minute level

Solar: solar profile at a location nearby the buses

Zonal: total demand of a PJM transmission zone

Bus-ref Aggr: measured load at reference 

bus with significant BTM solar

Bus-n Aggr: measured load at bus-n other than

reference bus with significant BTM solar

Data Smoothing
Apply Moving average on transmission buses and solar

Data Segmentation

Segment the daily profile based on solar profile

Nighttime for training

Night Datalist of
switching
events

Switching Events

Daytime
Data

Daytime data 

for Training

Apply relation with Bus-n Disaggr

Disaggregated Load Profile Data of Bus-ref

Normalized, anonymized., minute level

Bus-ref Disaggr: Bus-ref actual load

 Bus-n disaggregated load
based on different algorithms

Final disaggregated bus load function

Bus to Bus relations

Relation based
on OLS Reg

OLS Quantile Reg

X-train = Bus-ref Aggr

Y-train = Bus-n Aggr

Relation based
on Quantile Reg

X-train = Bus-ref Aggr

Y-train = Bus-n Aggr

X-train = Zonal, Solar

Y-train = Bus-ref Aggr

Bus-ref Disaggr= A*Zonal + B  

Outcome Evaluation

Compared outcome based on distance on nighttime data

Zone-to-Node Node-to-Node

Fig. 10: Overview of the bi-level procedure utilizing Z2N and N2N for any
transmission bus in the same region

In our model, we choose q = 0.5 to estimate the conditional
median of the disaggregated nodal load profile at the target bus
and simplify QR as

β̂QR,q=0.5 = argmin
b

n∑
i=1

0.5 |yi − f (b, xi)| , (15)

which is equivalent to a Least Absolute Deviation (LAD)
formulation [30]:

β̂LAD = argmin
b

n∑
i=1

|yi − f (b, xi)| . (16)

The proposed performance enhancement by the prposed bi-
level N2N can be illustrated in Fig. 11, in which 2 illustrative
examples are shown to represent different seasons and solar
patterns. Each plot includes three-day’s profiles, and it can be
observed that the proposed Z2N OLS disaggregator does not
perform sufficiently well when the metered (aggregated) nodal
load profiles turn negative, while the proposed bi-level N2N
can significantly enhance the disaggregation performance.

IV. QUANTITATIVE EVALUATION OF OUTCOMES

In the proposed semi-supervised architectures, the disaggre-
gated nodal load profiles at night-time match their correspond-
ing nodal injection profiles since there is no BTM solar at
night, which could evaluate the performance of the proposed
disaggregation algorithms without ground truth. In addition,
this work proposes a novel comparative evaluation technique.
Specifically, the ground truth can be considered as scenarios
with zero BTM solar, and thus the main idea here is to first
quantify the total daily solar generation and then calculate
the difference between the disaggregated and observed load
profiles. Consequently, the proposed disaggregation techniques
are considered effective if days with less quantified daily solar
implies smaller differences. For instance, for any two days A
and B,

(daily solar A ≤ daily solar B) ⇒
(disaggregation difference A ≤ disaggregation difference B).

(a) Jan 21-23, 2020

(b) May 19-21, 2020

Fig. 11: Performance enhancement by the proposed bi-level N2N architecture
(compared to Z2N OLS) when metered (aggregated) nodal load profiles are
negative. (Top) Jan 21-23, 2020 and (Bottom) May 19-21, 2020.

In this work, we adopt the area-based spatial differences
between two time series of equal length [31], which is the
accumulation of point-to-point Euclidean distances and an
intuitive representation of similarity between two equal-length
time series. The smaller the area difference is, the higher the
similarity, vice versa. Specifically, the following two distance
functions are also adopted.

A. Kullback–Leibler Distance

In probability theory and information theory, the Kull-
back–Leibler (KL) divergence is a statistical measure of the
difference between a discrete (actual) probability distribution
P from its reference probability distribution Q. In applications,
P typically presents the observed data with Q being its
modeled values. Formally, for discrete probability distributions
P and Q defined on the same probability space Y , the KL
divergence from Q to P is defined by

DKL(P∥Q) =
∑
y∈Y

P (y) log

(
P (y)

Q(y)

)
, (17)
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Algorithm 1: Bilevel Node-to-Node Disaggregation

1 Input s, z, λ, xbusn , n = 1, . . . , N
// Applying Moving Average

2 xMA(t)← 1
λ (xbusn(t) + . . .+ xbusn(t+ λ− 1))

3 sMA(t)← 1
λ (s(t) + . . .+ s(t+ λ− 1))

4 for t = 0 : T − 1 do
5 xMA(t+ 1)← xMA(t)− xbusn(t) + xbusn(t+ λ)
6 sMA(t+ 1)← sMA(t)− s(t) + s(t+ λ)
7 t← t+ 1
8 end
// Z2N OLS at reference bus

9 Input xref(Tsunrise : Tsunset), s, z
10 Calculate Cl, pc ← Min. daytime error
11 Update Cl, pc ← Min. switching points error
12 Output pref = Clz + pc
// N2N disaggregation w/ correlation

13 for n = 1, . . . , N, n ̸= ref do
14 Input xref(Tsunset : Tsunrise), xn(Tsunset : Tsunrise)
15 CR,MSE, pR,MSE, σMSE ← Min. nighttime MSE
16 CR,LAE, pR,LAE, σLAE ← Min. nighttime LAE
17 if σMSE ≥ σLAE then
18 CR, pR ← CR,LAE, pR,LAE;
19 else
20 CR, pR ← CR,MSE, pR,MSE;
21 end
22 pn = CRpref + pR
23 end

which is the expected (over P ) logarithmic difference between
P and Q.

Note that although the KL distance is originally defined
over two probability distribution, recent works have justified
utilizing a symmetrical KL divergence for evaluating the
similarity between two time series sequences [32], which is
also adopted in this paper as

DKLsym = (D (pnodal,nighttime∥p̂nodal,nighttime)

+D (p̂nodal,nighttime∥pnodal,nighttime))/2
(18)

where p̂ and p denote the disaggregated and metered nodal
load profiles, respectively.

B. Wassertein Distance

The other distance function we propose to adopt for measur-
ing the difference between two time series is the Wasserstein
distance, which is also originally designed as a distance
metric between two probability distributions and has been
widely used in calculating ambiguity sets in power system
applications [33], [34]. Specifically, the Wasserstein metric
DW (P,Q) :M(Ξ) ×M(Ξ) → R between two distributions
P and Q is defined as

DW (P,Q) = inf

{∫
Ξ×Ξ

∥w1 −w2∥Π(dw1, dw2)

}
, (19)

where M(Ξ) denotes the set of all probability distributions
with support Ξ, Π is a joint distribution of (the two integral
variables) w1 and w2 with marginal distributions P and Q,

respectively, and ∥ · ∥ is a norm. Note that ∥w1 −w2∥ is the
cost of moving a unit mass from w1 to w2 as defined in the
optimal transport problem. Intuitively, the joint distribution Π
can be viewed as a plan to transport probability mass from
P to Q. Consequently, DW (P,Q) returns the lowest cost of
transporting probability mass from P to Q so that P = Q.

In our case, each metered (aggregated) nodal load profile
and its corresponding actual (disaggreagted) nodal load profile
are considered as two samples of the same size and also
with the same with support, which aligns with aforementioned
observations and industry best practices that statistical charac-
teristics of each nodal demand can be considered as stationary.

C. Numerical Results

Numerical results using aforementioned PJM data through-
out the year of 2020 are listed in Table II. Moreover, to further
show details of the performance enhancement by the proposed
unsupervised clustering, in-class OLS, and parameter tuning,
4 cases are further shown in Fig 12, in which key periods
with significant performance enhancement are amplified with
details and compared with comments.

Specifically, in each case presented in Table II, we compare
the disaggregation performances by 1) the baseline OLS-
based algorithm and 2) the in-class OLS-based algorithm with
parameter tuning. As discussed in Section V, to quantitatively
measure disaggregation accuracy, the three distance metrics
proposed in Section V are calculated and compared for all
cases. It can be observed that

• In most cases, the proposed enhancements by unsu-
pervised learning and by parameter tuning significantly
improve the accuracy of the proposed OLS-based disag-
gregation algorithm in terms of (1) reducing differences
between nighttime metered and actual (disaggregated)
nodal load profiles and more importantly (b) correcting
the disaggregated load profiles in daytime and keeping
the them aligned with the metered (aggregated) daytime
nodal load profiles, as shown in Fig. 12;

• In some cases, the baseline OLS could perform better
than the in-class OLS due to two potential causes: (1) for
days with low solar irradiance, the baseline OLS already
perform very well with low differences, i.e., case (g);
and (2) an untypical day (e.g., highly volatile solar) that
disaggregation by linear regression has a high difference
could cause undesirable errors in clustering.

Both cases could be improved with more data.

V. CONCLUSION

This paper introduces a cluster-based unsupervised structure
to disaggregate actual nodal load profiles from metered (ag-
gregated) nodal load profiles with BTM solar. To overcome
the lack of “ground truth” and validate the performance of
the proposed algorithms, we first proposed a semi-supervised
scheme by dividing each daily profile into two portions: day-
time (i.e., with BTM solar) and nighttime (i.e., without BTM
solar) and developed a baseline OLS disaggregation algorithm.
Three performance enhancement techniques have been later
introduced: 1) parameter tuning using sunset/sunrise events;
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TABLE II: Comparison of numerical results on selected weeks throughout the year of 2020

Scenarios in Fig. 12 Area
Diff.

KLSYM
Distance

Wassertein
Distance Cluster Area Diff.

Improvement
KLSYM

Improvement
Wassertein

Improvement Month

(a) Baseline OLS 61.47 51.37 0.025 2 14.59% 16.67% 12% JanIn-class OLS + tuning 52.50 42.95 0.022

(b) Baseline OLS 166.38 136.40 0.067 2 5.11% 5.54% 4.47% JanIn-class OLS + tuning 157.84 128.84 0.064

(c) Baseline OLS 113.75 95.49 0.045 1 4.41% 5.60% 4.44% JanIn-class OLS + tuning 108.73 90.14 0.043

(d) Baseline OLS 123.75 91.97 0.088 0 18.42% 19.85% 18.18% MarIn-class OLS + tuning 100.95 73.71 0.072

(e) Baseline OLS 28.15 19.52 0.023 0 21.92% 24.49% 21.73% AprIn-class OLS + tuning 21.98 14.74 0.018

(f) Baseline OLS 35.09 29.08 0.023 2 13.25% 10.38% 13.04% MayIn-class OLS + tuning 30.44 26.06 0.020

(g) Baseline OLS 10.65 8.92 0.08 2 -168.83% -185.54% 162.50% JunIn-class OLS + tuning 28.63 25.47 0.021

(h) Baseline OLS 37.76 32.61 0.025 2 24.18% 21.89% 16.00% SepIn-class OLS + tuning 28.63 25.47 0.021

2) unsupervised clustering based on SOM and consequently
in-class OLS, and 3) a bi-level N2N architecture to alleviate
errors when metered nodal load profile is negative. Moreover,
three distance metrics to evaluate differences between time
series data are adopted for quantitative performance analy-
sis, including the area difference, the KL Distance, and the
Wassertein distance. Numerical validations using real-world
PJM data justified the applicability of the proposed methods.

Furthermore, all proposed techniques are linear and thus
are computationally effective. The proposed methods are also
practical and feasible since RTOs have the granularity of
solar profiles (e.g., PJM have real-time solar forecast for
every five miles and every five minutes), and the proposed
nodal load disaggregator can be integrated into RTOs’s EMS
as an additional tool. Finally, for future work, the proposed
nodal load profile disaggregation problem will be extended
to be formulated by nonlinear techniques, such as machine
learning models. Furthermore, the proposed nodal load profile
disaggregation also enables the possibility of studying nodal
reserves at RTOs.
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Fig. 12: Illustration of performance enhancement with the proposed parameter
tuning and unsupervised classification.


