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Abstract—The increasing penetration of solar generation
into power grids has promoted the need for accurate and
reliable short-term solar irradiance forecasting. Existing methods
utilizing advanced deep learning architectures have shown
advanced performance compared to conventional time-series
analytical techniques but in general encountered shortcomings in
modeling spatial correlations among neighboring solar generation
sites, exploring the similarity of long-term, time-varying patterns,
and alleviating overfitting issues in convolutional and recurrent
neural networks, such as the popular Long Short-term Memory
(LSTM). To effectively but yet reliably tackle these challenges
in the existing literature, this paper proposes a spatio-temporal
framework consisting of a multi-branch hybrid Residual
network and the Transformer architecture (ResTrans). The
proposed framework has been tested on two groups’ real-
world data containing 17 years-long data from different solar
sites in Philadelphia, USA, including 12 and 18 locations,
respectively. Compared to other hybrid benchmark architectures,
including single-branch ResTrans and multi-branch ResNet-
LSTM (ResLSTM), single-branch ResLSTM, and CNN-LSTM,
the proposed multi-branch ResTrans achieves the highest
forecasting accuracy with an average RMSE of 0.049 (1V/m?),
an average MAE of 0.031 (T/m?), and an R? coefficient of 97%.

Index Terms—solar irradiance forecasting, spatio-temporal
modeling, deep residual network (ResNet), attention mechanism,
transformer neural network

NOMENCLATURE
Indices
n index of solar generation sites
k index of input feature variables
i index of residual blocks
J index of branches
m index of layers within residual block
Parameters
1 total number of residual blocks

J total number of branches

K total number of input feature variables
N total number of solar generation sites
v learning rate of multi-branch ResNet
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n attention score at time ¢

h} attention vector of hidden layer

hn, nt" head of multiple-head self-attention
L window length

C(7) time embedding

query, key, and value matrices of self-attention
hidden layer and output vector
Ty k-th input variable at solar site s™ at time ¢

Xp all input variables at solar site s™ at time ¢
Wh, weight of hidden layer

Yr, Y;” measured / forecast GHI values at s™ at time ¢
g,w, periodic feature and two learnable parameters
A forecasting horizon

zZ° learned projection matrix

Z0,Zp input and output of the residual network

Zi input of ¢-th residual block and j-th branch
D, ; weight w.r.t. ¢-th residual block and j-th branch
z mean of the variable

R? statistical measurement of prediction model
Functions

o(") sigmoid function
loss function

residual function
softmax function

forecast function
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I. INTRODUCTION

In recent years, the widely proliferation of distributed
energy resources (DERs) has caused major paradigm shifts
for future electric power grids. For instance, the recent
U.S. Federal Energy Regulatory Commission (FERC) Order
2222 allows DERs to participate in regionally organized
wholesale electricity markets and compete with conventional
thermal generators [2]. Consequently, system operators and
aggregators face challenges in how to effectively handle
uncertainty and volatility in high penetration of DERs,
especially ubiquitous solar generations that could be before- or
behind-the-meter [3], [4]. Therefore, daily operations of both
electricity markets and vertical integrations requires granular
and reliable awareness of solar generation capability, which in
term relies on accurate and robust solar irradiance forecasting
mechanisms at different time scales [5]. For instance, studies
have shown significant economic benefits utilizing intelligent
self-scheduling based on reliable sky images-based solar
irradiance forecasting techniques [6].

In general, solar irradiance is considered a function
of highly volatile meteorological factors at various time



scales [7]. In a prediction horizon manner, solar irradiation
forecasting techniques can be classified into four categories
based on their target forecast time ahead: (i) very short,
(ii) short, (iii) medium, and (iv) long-terms, and a detailed
comparison can be found in [5]. Specifically, short-term
forecasting, typically ranging from several hours to one
day ahead, is highly challenging due to volatile short-
term fluctuations in solar irradiance, mostly driven by local
meteorological conditions [8], [9]. Therefore, this paper will
be focused on short-term solar irradiance forecasting.

Moreover, in practical applications, solar irradiance is
forecasted in either a temporal or spatio-temporal manner.
Specifically, temporal techniques predict the solar irradiance
based on historical data on a specific site, whereas spatio-
temporal methods utilize historical data from multiple
sources with inherent spatial correlations. If handled properly,
spatial correlations among data sources (i.e., the spatio-
temporal approach) could lead to significant improvements in
prediction accuracy compared to the temporal method [10].
Compared to the conventional spatio-temporal solar irradiance
forecast literature that is based on data-driven time-series
data analysis, machine learning (ML)-based models have
show better performance. Specifically, Deep Learning (DL)
models includes Recurrent Neural Networks (RNNs) and
convolutional neural networks (CNNs) have been widely
adopted for temporal and spatial modeling, respectively.

Furthermore, for better performances, more sophisticated
ML frameworks are adopted not only for forecasting at
spatio-temporal scales and also incorporating inherent non-
linear characteristics of solar irradiance data [11], [12]. For
instance, in [13], the authors developed a hybrid architecture
that adopt long short-term memory (LSTM) to extract
temporal characteristics and use CNN to learn spatial features,
respectively. In [11], a novel neural network autoencoder is
proposed as a generative probabilistic model to learn the
continuous probability densities of each solar site’s data. The
authors adopt graph spectral convolutions to capture the spatial
characteristics of each site, the features then forwarded to an
encoder and decoder neural network to learn the distribution of
solar irradiance and forecast. In [14], a framework is proposed
to combine graph CNN and LSTM to process the signal with
a graph perspective in a spatio-temporal manner to achieve
better performance on forecast solar irradiance.

Compared to CNN, aforementioned RNN-based frameworks
are capable of extracting temporal dependencies, however,
have certain limitations when dealing with long sequence
data. When input sequences become longer, RNNs become
computationally inefficient and cause gradient vanishing. Also,
the RNNSs lack the ability to learn long-term dependencies in
a long sequence [15]. Although the LSTM-based frameworks
can alleviate the gradient vanishing problem and learn both
short and long-term dependencies, LSTM-based models have
limitations in remembering long sequences [16].

To overcome the shortcomings mentioned, this paper
proposes a novel multi-branch ResTrans architecture that
combines a Transformer network for temporal modeling
and a multi-branch residual network (ResNet) for spatial
modeling. The Transformer neural network is first

proposed in [17] for overcoming the long-range dependencies
problem in sequence-to-sequence tasks in Natural Language
Processing (NLP). The Transformer’s architecture is solely
based on attention mechanisms. That means Transformer
is free from recurrence and convolutions entirely and
overcomes all shortcomings with them [17]. Beyond
the application in NLP, the framework based on the
Transformer with attention mechanism has also been
adopted for research involving time-series data. In [18], the
authors propose a Transformer-based GAN network to
solve the mode collapse problem in time-series anomaly
detection (TSAD) and improve the generalization capability.
In [19], a convolutional neural network with Transformer-
encoder is proposed. Compared to common approaches with
convolution neural network with long and short-term memory
structures, the framework with Trans former-encoder mine
the deep information in multivariate time series more
accurately. In [20], a multi-head Transformer framework
that is Transformer-based is proposed to forecasts the
patient’s status time series variables utilizing various vitals
signs of the patient to capture the long-term dependencies.

Inside the proposed framework, the Transformer
network based on attention mechanisms, is developed to
enable parallel processing, minimize information loss, and
alleviate the inefficiencies caused by recursion and sequential
processing [17]. The primary benefits the proposed framework
brings are listed as follow:

o The multi-branch ResNet leverages feature extraction at
multiple time scales by applying several convolutional
branches

o The over-fitting problem is alleviated by exploiting shared
representations as auxiliary information

e The learning process is accelerated

e The Transformer analyzes the long sequences data
more quickly and efficiently

To the best of our knowledge, the proposed framework in
this paper is the first work that combines Transformer
with multi-branch ResNet networks for short-term spatio-
temporal solar irradiance forecasting. The performance of our
proposed framework is tested on real data from different
solar sites in Philadelphia, USA. The proposed framework
outperforms mainstream benchmark architectures, including
single-branch ResTrans and multi-branch ResNet-LSTM
(ResLSTM), single-branch ResLSTM, and CNN-LSTM on
two different data groups containing 12 sites (validation of
temporal models) and 18 sites (validation of spatio-temporal
models), respectively [21].

The remaining of this paper is organized as follows. Section
II formulates the proposed short-term solar forecast prob-
lem and outlines the proposed framework with necessary
background information. Sections III proposes temporal solar
forecast models based on the Transformer architecture
with time embedding steps to process historical solar irradi-
ance data. Furthermore, Section IV further extends to spatio-
temporal solar forecast models based on Transformer and
ResNet. Section V describes the data and its process for
numerical validations, which are presented in Section VI and



compared with the literature to validate the proposed mod-
els. Finally, Section VII draws conclusions and summarizes
contributions by this paper.

II. PROBLEM FORMULATION AND BACKGROUND

This section outlines the proposed framework, which
consists of Tansformer, attention mechanism, and residual
network (ResNet).

A. Problem Definition

We follow our previous work [5] and formally define
the considered short-term solar irradiance forecast problem
as follows. Consider a set of solar generating sitesS =

{s',s%,...,sN}, where s" denotes the n'" solar site and is
. . : 1, k, Kon
associated with an input vector X' = [z;" ... 2" ...y "]

of K meteorological variables and its corresponding actual
values Y;” € R at each time step ¢ € [1,T]. Consequently, the
predicted solar irradiance value at s,, over a defined forecasting
horizon A is estimated by

VA = F(X) (1

where F(-) donates the forecasting function and Y;" . is
the estimated value of the actual Y} 5. In this work, F'(-)
is implemented by a hybrid architecture consisting of the
self-attention mechanism, ResNet, and the Transformer.
The fundamental architectures of these functional models are
discussed as follows.

B. The Transformer

As a primary part of the proposed framework, the
Transformer is a transduction model proposed in [17]
which utilizes the self-attention mechanism to compute
representations of its inputs and outputs without using
sequence-aligned RNNs or convolution. The Transformer
is widely adopted to replace models that are based on the
conventional encoder-decoder architecture, such as LSTM and
GRU, which have encountered various difficulties in handling
sequence-to-sequence tasks with long-range dependencies, as
discussed in Section I.

As shown in Fig. 1, the original Transformer
model consists of multiple self-attention modules and time-
embedding to identify periodic elements in the variation
of time-series data and non-periodic elements for output
prediction. Each encoder consists of a multi-head self-attention
mechanism and a fully connected position-wise feed-forward
network. The decoder is similar to an encoder with one
extra multi-head self-attention over the encoder’s outputs.
Moreover, the Transformer can be constructed as a stack of
multiple encoder and decoder building blocks, each of which
works independently without the need of sharing weights. The
model’s outputs are generated based on the encoded input data
and previous decoder outputs [17]. As the RNNs are designed
to handle sequential inputs such as time series data [15], such
a stacked Transformer model generally outperform RNNs
for sequential inputs. Moreover, with the attention mechanism
added, the Transformer can compute inputs and outputs
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Fig. 1: The Transformer architecture proposed by Vaswani [17].

beyond the scope of sequence-to-sequence relations for more
general tasks with long-range dependencies, such as the solar
irradiance forecast problem considered in this paper.

Furthermore, the self-attention mechanism provides varying
weights to each component in the data domain with respect
to its relative importance in providing information. In con-
ventional NLP problems, such weighted information is typi-
cally referred to as contexts. In the solar irradiance problem
considered in this paper, such information can be generally
considered as the relative importance of aforementioned mete-
orological factors. The significant improvements introduced by
the self-attention mechanism include the following advantages.

o Compared to RNNs, the Transformer enables parallel
computation to reduce the training time;

o Compared to CNNs, the number of operations required by
the Transformer to compute the association between
two data components does not grow with their distance;

« Attention building blocks can generally avoid the issue
of vanishing or exploding gradients.

The operating mechanism of the proposed multi-head
Transformer is illustrated in Fig. 2. First, each input (e.g., a
word in NLP applications or a meteorological factor in solar
irradiance applications) is converted into a vector using an
embedding algorithm. Secondly, the embedded vector is added
by its positional information before it is fed to the (first)
encoder (i.e., Encoder 1), which processes all input vectors
by two steps:

1) First through a multi-head self-attention layer (the

details on multi-head will be discussed in later sections);

2) Then through a feed-forward neural network.

The norm of the summation of the self-attention layer’s
output and input vectors is calculated between the self-
attention layer and the feed forward layer. Finally, the first
encoder’s output is delivered to the next encoder. Note that
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Fig. 2: Performance enhancement via encoders in the

Transformer architecture.

stacking

the stack of encoders (the original Transformer is proposed
with a stack six encoders) can generally enhance the overall
performance. In general the number of stacked encoders
depends on data and applications, which is also a trade-off
between model complexity and performance.

C. Attention Mechanism

Despite their capabilities in modeling complex structures,
RNNs tend to forget previous information, which could
cause degraded performances when the length of inputs
grows. Moreover, RNNs are often constrained by their
computationally inefficiency with respect to sequential inputs.
In recent years, the attention mechanism has emerged as a
potential solution to these issues. It is a non-uniform weighting
method to focus more on one part of the input sequence
while giving less attention to the rest to improve the learning
process [17]. In RNNGs, the output vector p; of a hidden layer
h, is fed to the attention module as its input. The weight of
each hidden state is calculated by

pe = tanh (W"h, + ") )

ay = sm& 3)
Zt:l exp (pt)

hé =a;©® ht (4)

where a; and hj are the score and attention vectors of hy,
respectively.

1) Self-attention: As discussed above, when the length
of input sequences increasingly grows longer, existing
deep architectures (e.g., RNNs) tend to forget” previously
learned information, which in turn results in loss of global
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Fig. 3: Single-head self-attention mechanism calculation using vectors [22].

dependencies between input and outputs and consequently
degraded learning performance. To overcome this issue, the
attention mechanism was introduced in [17] and widely
acknowledged, which focuses more on one segment of the
input sequence while paying less attention to the others.
Self-attention, as a subset of the attention mechanism, is a
weighting approach that emphasizes one segment of the input
sequence over the others to maximize the learning process.
The attention system determines the relationships between
two independent sequences, but the self-attention mechanism
evaluates the relationships between a sequence and itself.
Self-attention is categorized into single-head self-attention and
multiple-head self-attention.

2) Single-head Self-attention: The single-head self-
attention layer is an agent to find the importance of data
at each time in the given query of time-series input data.
The mechanism of calculating single-head self-attention is
illustrated in Fig. 3. The mechanism of calculating single-head
self-attention is illustrated in Figure 3.8. The @} (Query), K
(Key) and V' (Value) matrices are calculated from input data
X. The query vector, @), is constructed using the current
token. The result is compared to the Key vectors, K, of prior
tokens. The Value vector, V, contains a representation vector
of the current token. The output matrix is calculated by

QKT)
V)

where 1 is the softmax function and pj, is the dimension of
K.

A(Q, K, V) = 1 ( 5)

3) Multiple-head  Self-attention:  The aforementioned
single-head attention mechanism performs its calculations
several times in parallel and concatenates and transforms
them non-linearly in the multi-head attention mechanism.
Its mathematical representation is illustrated in Figure 4b. It
allows the model to learn information simultaneously from
different subspaces at various locations. It is formulated as:

Multi-head(Q, K, V') = Concat (hy,...,h,) Z°  (6)
h; = Att (QZ? K 7K, VZV) 7

where h,, donates the n!” head and Z° is the learned
projection matrix.
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III. TEMPORAL MODELING WITH TRANSFORMER

The original Transformer architecture is optimized for
natural processing tasks and may be incompatible with other
applications such as time series forecasting. Thus, the self-
attentive Transformer architecture is altered for the solar
irradiance forecasting task to account for solar irradiance
data’s variable and stochastic nature. First, the original
encoder-decoder Transformer network is optimized for
sequence-to-sequence learning, making it ideal for tasks
where both input and output are sequences. However, the
solar irradiance prediction task takes a sequence as input
and return a predicted value as output. Therefore, the
proposed architecture has just encoder blocks. Next, the word
embedding concept in the NLP task should be changed to
time embedding to encode the notion of time in data. It is
accomplished by [23], which incorporates an embedding layer
into a neural network architecture to learn the time embedding
and increase the structure’s performance. Finally, the proposed
Transformer learns the local variation and pattern of data
by using a I-dimensional convolutional neural network (1D
CNN) layer rather than a feed-forward layer, while boosting
the generalizability of the system through the use of dropout.

A. Time Embedding

As discussed above, in NLP learning tasks, input to
the Transformer’s encoder blocks are combinations of
positional encoding and word embedding, which provides
the model with those words’ embedding and location in the
sentence. Such an emdedding technique has been extended to
other applications. For instance, reference [23] incorporates
an embedding layer into a neural network architecture in
order to learn the time embedding and increase the structure’s
performance.

To utilize this technique for solar irradiance forecasting, this
paper extends word embedding to the time-series forecasting
domain by establishing a time embedding technique, which can
map the temporal correlations between each input sequence.
Formally, the time embedding C' should be invariant with
respect to time and take into account both periodic and non-
periodic patterns, which is presented by
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where C(7)[j] donates the j*" element of time embedding,
g is periodic feature of the time embedding. w;, and ¢; are
learnable parameters.

B. Proposed Transformer-based Architecture

The proposed architecture is applied independently to each
solar site following the data pre-processing stage described
in detail in next section III. As illustrated in Figure 5,
the Transformer-based temporal model consists of three
encoder layers with three heads followed by global average
pooling, a dropout, and a dense layer. The embedding of
GHI and meteorological values in time is generated and
sent to the Transformer encoder layer as input data. The
Transformer encoder layer has a multi-head self-attention
sub-layer and one 1D CNN sub-layers with 28 kernels with
a size and stride of one. Before and after the CNN sub-layer
are dropout and normalization layers. The system trains with
Adam and MSE optimizer and loss function, receptively for
50 iterations and early stopping with patience 3.

IV. PROPOSED SPATIO-TEMPORAL ARCHITECTURE
DESIGN

The proposed multi-branch hybrid ResNet/Transformer
(ResTrans) architecture is shown in Fig. 6, which consists
of three major phases. The first phase pre-processes the raw
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data, which applies cleaning, linear interpolation, and Min-
max normalization on every solar site. The second phase
is the aforementioned temporal model, which consists of
three Transformer encoder layers, global average pooling,
a dropout, and a dense layer. As illustrated in Figure. 5,
the Transformer-based temporal model consists of three
encoder layers with three heads followed by global average
pooling, a dropout, and a dense layer. The embedding of
GHI and meteorological values in time is generated and
sent to the Transformer encoder layer as input data. The
Transformer encoder layer has a multi-head self-attention
sub-layer and one 1D CNN sub-layers with 28 kernels with
a size and stride of one. Before and after the CNN sub-layer
are dropout and normalization layers.

The proposed architecture is trained with Adam [24] and
MSE optimizer and loss function, receptively, for 50 iterations
and early stopping with patience 3. The proposed temporal
model is applied to each solar site separately. Finally, the
outputs from all temporal models are aggregated, rearranged,
and fed into the proposed spatial model, a multi-branch
ResNet, to provide spatial correlation between solar sites.
Note that the proposed mutli-branch ResNet consists of four
blocks, including a bottleneck block which is followed by two
residual blocks and a prediction block to generate the final
estimations. The bottleneck consists of one convolution layer
with 64 kernels of size 3 with stride equal to 1, BN layer, and
a ReLU layer, with details can be found in [5].

Compared to training multiple architectures separately,
the multi-branch architecture computes more efficiently. The
multi-branch residual network, learns time-series solar patterns
at varying resolutions by cascading multiple convolutional
layers with different kernel sizes to analyze solar data at
varying resolutions and extract both short and long features
along with residual connections to enable the flow of gradient
directly through the bottom layers and overcome degradation
problems. The output of multi-branch ResNet with J branches
and I residual blocks can be calculated by

J I
Zp=2Z0+Y Y G(Zi; ®ij) ©)
j=11i=0
where Zy and Zp donate input and output of ResNet with
Z; ; is the input vector of i-th residual block and j-th branch,
and @, ; = {d’i,j,m|1<m<M} is the set of weights associated
with the i-th residual block and j-th branch with M number

of layers within residual block. The backpropagation of the
total loss function, £, with respect to Zy can be defined as

oL oL 0

where 1 denotes the gradient of output directly back-
propagates to alleviate the vanishing gradient burden [25].

(10)

V. NUMERICAL VALIDATIONS
A. Data Description

This study utilizes data contains 3,784,320 observations
from the National Solar Radiation Database (NSRDB) [26],
which is widely used to examine solar irradiance forecasting
performances. The collected dataset consists of 18 sites in
Philadelphia, Pennsylvania, from 2000 and 2017 with a 30-
minute interval. For performance evaluation, 12 sites are
choose in south Philadelphia with 6 additional solar sites
around 60 miles from the first 12 sites. All chosen solar sites’
geological locations are depicted in Fig. 7.
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Fig. 7: Geological locations of 18 selected solar sites used in Philadelphia.

The dataset contains not only the historical GHI (W /m?),
DHI (W/m?), and DNI (W/m?) but also the clear-sky
GHI (W/mQ), clear-sky DHI (W/mz), and clear-sky DNI
(W/m?) which represent the maximum values of GHI, DHI,
and DNI during clear sky conditions, respectively. Also,
NSRDB includes different meteorological measurements such
as dew point (°C), solar zenith angle (°), wind speed (m/s),
precipitable water (mm), wind direction (°), relative humidity
(%), temperature (°C), pressure (mb), and cloud type. All
variables in the dataset are numerical except cloud type, which
will be converted to one-hot code. All variables’ descriptive
statistics are presented in Table I. In general, GHI values
increase from 5:00 to 12:00 and then decreasing with time until



TABLE I: Statistics of feature parameters [27].

Variable Mean std Min 50% Max
Dew Point 7.71 9.52 -24.00 8.00 27.00
Precipitable Water 2.12 1.36 0.10 1.86 7.24
Pressure 1008.20 | 8.50 | 940.00 | 1010.00 | 1040.00
Relative Humidity 80.98 18.40 18.49 85.71 100.00
Solar Zenith Angle | 89.70 36.16 16.45 89.72 163.54
Surface Albedo 0.17 0.20 0.08 0.12 0.87
Temperature 11.70 10.33 | -21.00 12.00 39.00
Wind Direction 208.96 | 99.97 0.00 22320 | 360.00
Wind Speed 191 1.15 0.00 1.60 10.50
Fill Flag 0.29 0.99 0.00 0.00 4.00
Clearsky DHI 57.36 73.82 0.00 0.00 499.00
Clearsky DNI 305.39 | 349.83 | 0.00 0.00 1016.00
Clearsky GHI 229.58 | 301.86 | 0.00 0.00 1029.00
DHI 68.00 99.71 0.00 0.00 501.00
DNI 187.66 | 300.72 | 0.00 0.00 1016.00
GHI 173.47 | 257.99 | 0.00 0.00 1029.00

it drops to zero at around 19:00. Therefore, solar irradiance
data between 5:00 and 19:00 is included in the modeling.
Additionally, to explore the presence of spatio-temporal
patterns, the correlations between the targeted solar site and
its neighbouring solar sites are evaluated. Correlation ranges
from -1 to +1. Closer to zero values indicate that there is no
linear relationship between the two variables. The closer the
correlation is to 1, the more positively correlated it is.

B. Data Process

The dataset is split into a training set (consisting of data
from years 2000-2010), a validation set (2011-2013), and a
test set (2014-2017). All observations with missing data and
superfluous data are interpolated with a linear interpolation
technique. The numerical values are normalized by Min-Max
and converted into a normalized number between O and 1:

, x — min(x)

T = (1)

max(z) — min(z)

where x is the original value and z’ is its normalized value.
The sliding window method generates data points, X;". The
sliding window technique generates data for the current time
step by moving a window of a specified length over the
historical data, sample by sample. If the data of n-th solar site
is presented by matrix X* € R¥ K is number of variables,
sliding window generates X;” € RE*L [ is window length.
In this study, the same sliding window length is applied to all
input variables and is set to 24, representing 24 time steps for
the considered half-day solar irradiance forecasting and the
observation interval of 30 minutes.

C. Performance Metrics

Typically, researchers report the performance of solar
forecasting systems in terms of MAE, RMSE, and R?
coefficient [28], [29]. The RMSE is a quadratic scoring rule
that determines the average magnitude of the error. RMSE is
the most reliable evaluation metrics since it assists in detecting
and removing the outliers in the data. It is sensitive to large
forecasting errors while being forgiving of minor errors

1 n N2
RMSE = \/n thl (2t — 2:)°,

12)

Algorithm 1: Multi-Branch ResTran

1 Input X € RVXKXT 'learning rates o and y
// Data Pre-processing

2 for S« 1,2,...,ndo
3 Data cleansing, Interpolation of missing data
4 Data normalization
5 Dividing data to training, validation, and test sets
6 Data Embedding
7 end
8 return X’
// Training transformer with
Attention
9 for S+ 1,2,...,ndo
10 Input + X, Initialize {Q, K, V'}
11 while Stopping criterion not meet do
12 Multi-head self-attention, parallel calculation
13 Calculate the total lost function using MSE
14 Accelerate with Adaptive moment estimation
15 Output sequence, Zf
16 end
17 end

18 return Predictions, Z" € R”
19 return Predictions of all sites, Z € RNVXT
20 return Sliding window data Z’

// Training Multi-Branch ResNet
21 Input + Z’, Initialize {®}
22 while Stopping criterion not meet do

23 Sample from the training set

24 Calculate prediction, Y; € RN

25 Calculate the total lost function using MSE
26 Compute gradient estimate,

27 Update weights ® <+ & — [

28 end

29 return Final predictions, Y € RV*T
30 Output Y € RVXT

where z; and Z; are the actual and predicted GHI at target
solar site, respectively.

The MAE is a linear score, meaning that all individual
differences are equally weighted on average. Hence, it
provides equal weight to all differences in the data.

1 n
MAE = — thl

A lower value indicates a more accurate forecasting estimation.

13)

|Zt - ZAt| s

The R? is a statistical measure that that indicates how much
the prediction model deviates from reality.

N2
RZ—1_ Do (20— 21)
Y (- 4)

where Z donates the mean of the actual data. The R? output is

a number between 0 and 1, where O indicates that the model
fits poorly and 1 indicates that the model fits perfectly.

(14)



VI. NUMERICAL RESULTS AND ANALYSIS

This section presents results that justify at the proposed
hybrid ResTran architecture’s efficiency for geographically
distributed solar sites.

1) Transformer as a Temporal Model: This section
presents numerical evaluation results and compares the
Transformer-based temporal architecture’s performance
with benchmark models, including CNN, LSTM, AtLSTM
(proposed by earlier work [5]), and ResNet.

Table II compares the performance of benchmark models
with self-attentive Transformer architecture across a 12-
hour time horizon. The average RMSE, MAE, and R? of
baseline models across the 12 solar sites are as follows:
CNN (0.19, 0.13, 0.63), LSTM (0.14, 0.09, 0.77), AttLSTM
(0.12, 0.07, 0.78), and ResNet (0.08, 0.05, 0.84). Furthermore,
recurrent algorithms outperform CNN because of feedback
loops that allow them to recall information from the past
and learn short-term and long-term dependencies. The average
RMSE and MAE of CNN, respectively, are 0.19 and 0.13,
and that of the LSTM is 0.14 and 0.09, which shows 26.31%,
30.77% of improvement.

It can be further observed in Table II that integrating
LSTM with an attention mechanism, AtLSTM improves
LSTM performance by 14.28%, 22.22%, and 1.27% in terms
of RMSE, MAE, and RZ, respectively. Moreover, as the
LSTM output is reliant on the output of prior states at
each time step, this might result in a forgetting problem
and performance degradation in an excessively lengthy input
sequence. This problem is solved in the Transformer by
processing the input sequence as a whole, utilizing the self-
attention mechanism, and avoiding recursion.

The Transformer, with an average RMSE of 0.06
W/m?, an average MAE of 0.04 W/m?, and a R? coefficient
of 0.87%, beats LSTM by 57.14%, 55.56%, and 12.99% in
terms of RMSE, MAE, and R?, respectively. As seen in III,
both ResNet and Transformer are deep architectures with
985,361 and 1,106,011 parameters, respectively. However,
Transformer training time is 17.35% faster than ResNet,
despite having 12.24% more parameters. This is because the
Transformer employs a parallel training process, whereas
the ResNet uses a sequential procedure. Furthermore, the
Transformer surpasses ResNet by 25.00% and 20.00% in
terms of average RMSE and MAE, respectively. Thus, we can
conclude that the self-attentive Transformer architecture
introduced here considerably improve forecasting accuracy
and surpasses all other deep learning baseline models.

A. Model efficiency on nearby solar sites on forecast errors

The suggested multi-branch ResTrans architecture is
compared to baseline deep learning models such as CNN-
LSTM [30], single-branch ResLSTM [30], and multi-
branch ResLSTM [5]. Finally, the superiority of the multi-
brach ResTrans model is established by comparison to the
single-branch ResTrans architecture. Table IV compares the
performance of benchmark models with the proposed multi-
branch ResTrans in terms of average RMSE, average MAE,
and R? across the 12 solar sites in south Philadelphia.

By substituting LSTMs with the Transformer in single-
branch and multi-branch ResLSTM architectures, the average
RMSE of the architectures was decreased by 8.70% and
14.04%, respectively. Compared to LSTM, which has issues
such as vanishing gradients and forgetting earlier data,
the Transformer maintains direct connections to all
preceding timestamps, allowing information propagation over
considerably longer sequences.

Moreover, comparing the average RMSE and MAE of
single-branch ResTrans and multi-branch ResTrans architec-
tures demonstrates that multi-branch ResTrans improves the
forecasting accuracy by 22.22% and 20.51% in terms of
average RMSE, MAE, respectively. It is due to the fact that
solar irradiance data has various embedded information at
different resolutions, and single resolution architectures extract
features at one resolution while ignoring features at others.
Therefore, the multi-branch network overcomes this limitation
by modeling data at various resolutions and concurrently learn-
ing local and global trends to improve prediction accuracy [5].
The numerical results prove that the proposed multi-branch
ResTrans model is good at capturing the uncertainty and non-
linearity of solar irradiance.

Moreover, an illustrative plot of the actual GHI and
forecasted GHI by both the benchmarks and by the proposed
multi-branch ResTrans are shown in Fig. 8. It can be observed
in Fig. 8 that the proposed multi-branch ResTrans outperforms
benchmark models in term of closely matching the actual GHI
measurements, which aligns with the numerical results shown
in Table II.

B. Model efficiency on distant solar sites on forecast errors

The performance of the proposed spatio-temporal architec-
tures on all 18 locations is summarized in Table V. Further-
more, Tables IV and V indicate that when features from distant
solar sites are included in the study, the models’ accuracy
slightly decrease due to their lower correlation with distant
solar sites locations. For instance, LSTM-CNN delivers the
poorest results, with an average RMSE of 0.078 (W/m?),
an average MAE of 0.053 (W/m?), and a R? coefficient of
0.79, corresponding to a 1.3% and 1.9% increase in RMSE
and MAE, respectively. The single-branch and Multi-branch
ResLSTM designs yielded a higher average RMSE of 2.9%
and 5.3%, respectively, and a higher average MAE of 4.08%
and 7.9%, respectively, compared to the similar structures
in Table IV. Furthermore, the average RMSE and MAE of
the single-branch ResTrans architecture are 0.067 (W/m?)
and 0.046 (W/m?), respectively, which are 6.3% and 17.9%
greater than the similar structure in Table IV.

The findings demonstrate that there is a negative correlation
between forecasting accuracy and distance.

VII. CONCLUSION

This paper introduces a novel spatio-temporal multi-
resolution ResTrans network for short-term solar irradiation
forecasting. The proposed hybrid model aimed at separating
temporal models from spatial models to alleviate the curse
of dimensionality. First, the temporal model is applied to



TABLE II: Evaluating temporal Transformer architecture in comparison to baseline temporal models

Solar RMSE (W/m?2) MAE (W/m?2) R?
Sites SB SB SB
CNN | LSTM | AttLSTM Trans. | CNN | LSTM | AttLSTM Trans. | CNN | LSTM | AttLSTM Trans.
ResNet ResNet ResNet
#1 0.17 0.11 0.09 0.07 0.06 0.11 0.07 0.05 0.06 0.04 0.69 0.83 0.84 0.84 0.87
#2 0.19 0.12 0.11 0.08 0.08 0.12 0.08 0.06 0.05 0.05 0.63 0.79 0.80 0.83 0.84
#3 0.19 0.15 0.13 0.09 0.07 0.12 0.10 0.11 0.06 0.04 0.63 0.75 0.77 0.85 0.86
#4 0.19 0.13 0.11 0.08 0.05 0.13 0.08 0.06 0.05 0.03 0.60 0.78 0.77 0.85 0.88
#5 0.18 0.13 0.12 0.09 0.06 0.12 0.09 0.05 0.06 0.04 0.65 0.76 0.78 0.87 0.88
#6 0.19 0.13 0.10 0.09 0.05 0.12 0.09 0.06 0.06 0.03 0.60 0.76 0.79 0.87 0.88
#7 0.19 0.16 0.13 0.09 0.07 0.13 0.10 0.07 0.05 0.04 0.69 0.75 0.76 0.84 0.85
#8 0.22 0.12 0.09 0.09 0.06 0.15 0.08 0.06 0.05 0.04 0.56 0.79 0.80 0.86 0.87
#9 0.20 0.12 0.11 0.08 0.05 0.13 0.08 0.06 0.05 0.03 0.67 0.79 0.81 0.85 0.88
#10 0.19 0.14 0.12 0.08 0.07 0.13 0.10 0.09 0.05 0.04 0.63 0.73 0.75 0.84 0.86
#11 0.18 0.14 0.12 0.08 0.05 0.12 0.10 0.08 0.05 0.03 0.66 0.72 0.75 0.83 0.89
#12 0.19 0.16 0.15 0.08 0.07 0.13 0.11 0.10 0.05 0.05 0.60 0.75 0.76 0.82 0.85
Avg. | 0.19 0.14 0.12 0.08 0.06 0.13 0.09 0.07 0.05 0.04 0.63 0.77 0.78 0.84 0.87
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(a) Illustration of actual GHI vs. forecasted GHI by both the benchmarks and by the proposed multi-branch ResTrans over a year (2016) of processed test data.
Each day’s GHI is only shown between 5 AM to 7 PM and represented by 28 data points (one point every 30 minutes between 5 AM to 7 PM).

Fig. 8

TABLE III: Comparison of the number of parameters, training time

Models # Parameters | Training Time (s)
Single-branch ResNet 985,361 15,465
Transformer 1,106,011 12,782

each solar site separately to learn the temporal pattern
and perform dimension reduction. Then, outputs of the
temporal modeling step are fed to the proposed ResTran for
spatial modeling. The proposed hybrid ResTran architecture
inherits Transformer’s designed capability of effectively
handling lengthy input sequences in parallel as well as multi-
resolution ResNet’s strength in learning local and global
patterns. Consequently, the proposed ResTran can accurately
and effectively model historical solar irradiance in a spatio-
temporal manner, which is also validated by the numerical
results. Finally, the proposed ResTran’s effectiveness against
distant solar sites was also investigated. The numerical results
indicated that the accuracy of forecasts reduces as the distance
between solar sites grows.

REFERENCES

[1] S. Ziyabari, L. Du, and S. Biswas, “Multi-branch resnet-transformer
based deep hybrid approach for short-term spatio-temporal solar
irradiance forecasting,” in 2022 IEEE Energy Conversion Congress and
Exposition (ECCE), 2022, pp. 1-5.

[2] U.S. Federal Energy Regulatory Commission, “Order No. 2222:
Participation of Distributed Energy Resource Aggregations in Markets

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Operated by Regional Transmission Organizations and Independent
System Operators,” issued September 17, 2020.

X. Fan, D. Moscovitz, L. Du, and W. Saad, “A data-driven democratized
control architecture for regional transmission operators,” in 2022 IEEE
Power & Energy Society Innovative Smart Grid Technologies Conference
(ISGT), 2022, pp. 1-5.

Z. Zhao, D. Moscovitz, S. Wang, X. Fan, and L. Du, “Semi-supervised
disaggregation of load profiles at transmission buses with significant
behind-the-meter solar generations,” in 2022 IEEE Energy Conversion
Congress and Exposition (ECCE), 2022, pp. 1-5.

S. Ziyabari, L. Du, and S. Biswas, “Multibranch attentive gated resnet
for short-term spatio-temporal solar irradiance forecasting,” IEEE Trans.
Ind. Appli., vol. 58, no. 1, pp. 28-38, 2022.

A. Dolatabadi, H. H. Abdeltawab, and Y. A.-R. I. Mohamed, “Deep
reinforcement learning-based self-scheduling strategy for a caes-pv
system using accurate sky images-based forecasting,” IEEE Transactions
on Power Systems, 2022.

A. Asrari, T. X. Wu, and B. Ramos, “A hybrid algorithm for short-term
solar power prediction—sunshine state case study,” IEEE Transactions
on Sustainable Energy, vol. 8, no. 2, pp. 582-591, 2016.

Z. Zhen et al., “Pattern classification and pso optimal weights based sky
images cloud motion speed calculation for solar pv power forecasting,”
IEEE Trans, Ind. Appl., vol. 55, no. 4, pp. 3331-3342, 2019.

Z.Si, Y. Yu, M. Yang, and P. Li, “Hybrid solar forecasting method using
satellite visible images and modified convolutional neural networks,”
IEEE Trans, Ind. Appl., vol. 57, no. 1, pp. 5-16, 2021.

R. Zhang, H. Ma, W. Hua, T. K. Saha, and X. Zhou, “Data-Driven
Photovoltaic Generation Forecasting Based on a Bayesian Network with
Spatial-Temporal Correlation Analysis,” IEEE Trans. Ind. Informat.,
vol. 16, no. 3, 2020.

M. Khodayar, S. Mohammadi, M. E. Khodayar, J. Wang, and G. Liu,
“Convolutional graph autoencoder: A generative deep neural network for
probabilistic spatio-temporal solar irradiance forecasting,” IEEE Trans.
Sustain. Energy, vol. 11, no. 2, pp. 571-583, 2020.
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