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Abstract

Increasingly frequent and intense heatwaves generate new challenges for many organisms. Our
understanding of the ecological predictors of thermal vulnerability is improving, yet, at least in
endotherms, we are still only beginning to understand one critical component of predicting resilience:
exactly how do wild animals cope with sub-lethal heat? In wild endotherms, most prior work focuses on
one or a few traits, leaving uncertainty about organismal consequences of heatwaves. Here, we
experimentally generated a 2.8°C heatwave for free-living nestling tree swallows (Tachycineta bicolor).
Over a week-long period coinciding with the peak of post-natal growth, we quantified a suite of traits to
test the hypotheses that (a) behavioral or (b) physiological responses may be sufficient for coping with
inescapable heat. Heat-exposed nestlings increased panting and decreased huddling, but treatment
effects on panting dissipated over time, even though heat-induced temperatures remained elevated.
Physiologically, we found no effects of heat on: gene expression of three heat shock proteins in blood,
muscle, and three brain regions; secretion of circulating corticosterone at baseline or in response to
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handling; and telomere length. Moreover, heat had a positive effect on growth and a marginal, but not
significant, positive effect on subsequent recruitment. These results suggest that nestlings were
generally buffered from deleterious effects of heat, with one exception: heat-exposed nestlings
exhibited lower gene expression for superoxide dismutase, a key antioxidant defense. Despite this one
apparent cost, our thorough organismal investigation indicates general resilience to a heatwave that
may, in part, stem from behavioral buffering and acclimation. Our approach provides a mechanistic
framework that we hope will improve understanding of species persistence in the face of climate
change.
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Introduction

As heatwaves become more frequent and intense (Fischer et al. 2021), many species face heat-
challenges. If we are to predict species resilience, we need a deeper understanding of the mechanisms
by which wild animals cope with sub-lethal heat. Behavioral plasticity is one way organisms can cope
with changing environments (West-Eberhard 2003), including heat (Huey et al. 2003; Huey et al. 2012;
Mufioz 2022). Both plants (van Zanten et al. 2021) and animals (Verzuh et al. 2021) move away from
heat, and animals may change activity patterns to reduce physiological costs of heat (Bourne et al.
2021), but these options may not be possible in a fixed ecological niche, including for sessile organisms
(e.g., Pandolfi et al. 2011) and altricial young (e.g., Eastwood et al. 2022; Larson et al. 2015). To cope
with unavoidable heat, animals use postural changes (du Plessis et al. 2012) and evaporative cooling
(e.g. panting, bathing) (Loughran & Wolf 2020; Oswald et al. 2008). However, they may eventually be
pushed beyond their thermoneutral zone - a range of environmental temperatures in which animals
spend minimal metabolic energy thermoregulating (Angilletta 2009). At some point, elevated
temperatures may require additional coping mechanisms.

Physiological changes are also beneficial for coping with challenging stimuli. For instance, elevated
internal body temperatures can improve water economy during heat (McKechnie & Wolf 2019).
Glucocorticoid hormones can mobilize resources to provide energy for handling or recovering from
stress (Mentesana & Hau 2022; Romero et al. 2009), including stress caused by heat (Kang & Shim
2021). Heat can also induce oxidative damage (Cheng et al. 2018), but antioxidants can be upregulated
to combat this issue (Cheng et al. 2018; Jiang et al. 2015). Animals can also upregulate heat shock
proteins (HSPs), which serve to minimize and repair protein dysfunction (Feder & Hofmann 1999;
Lindquist & Craig 1988). Across diverse taxonomic groups, HSPs have been elevated in response to heat
(Feder et al. 1999; Hoffmann et al. 2003; Lipshutz et al. 2022). Although these physiological mechanisms
are adaptive in the short term, they also may direct energy away from other critical functions, leading to
short- or long-term deficits. Further, if stress is chronic or extreme, oxidative damage can accumulate
(Fontella et al. 2005), leading to accelerated ageing (Chatelain et al. 2020) and reduced longevity
(Sadnchez-Hidalgo et al. 2016).

Juvenile animals may be particularly vulnerable to heat. Heat during early life can negatively affect
development, growth, and survival (Silva et al. 2021; Ujszegi et al. 2022), with repercussions for later
reproductive success (Sales et al. 2021), though mild heat may have benefits for growth (Kingsolver et al.
2020). In birds, past research is mixed as to how heat affects developing young (Andreasson et al. 2018;
Andrew et al. 2017; Corregidor-Castro & Jones 2021; Dawson et al. 2005; Hsu et al. 2020; Rodriguez &
Barba 2016; Ton et al. 2021). Each of these studies has generated important insights, but they generally
focus on one or a few traits, leaving uncertainty as to whether heatwaves have net positive or negative
effects, given the potential for trade-offs among organismal traits (Stearns 1992). For instance, body
mass in young birds predicts their early life survival and later fecundity (Gebhardt-Henrich & Richner
1998), but these benefits are countered by other viability costs, e.g., related to growing too fast or the
need for a protracted developmental window (Blanckenhorn 2000). Organismal perspectives are needed
so that we can interpret the valence of these heat effects.

We experimentally simulated a week-long heatwave of ~2.8°C inside the nesting cavity of free-living
nestling tree swallows (Tachycineta bicolor). We quantified thermoregulatory behaviors (i.e., panting
and huddling) and several physiological mechanisms, including: (i) gene expression of heat shock
proteins in blood, skeletal muscle, and three brain regions, as well as (ii) glucocorticoid secretion at
baseline and in response to a restraint stress, and (iii) gene expression for superoxide dismutase, a key
regulatory enzyme in counteracting oxidative damage (reviewed in Wang et al. 2018). We also
quantified performance-related consequences including: (i) changes in nestling begging behavior, (ii)
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growth rate, (iii) relative telomere length, which is a proxy of future longevity (Wilbourn et al. 2018), (iv)
likelihood to fledge, and (v) likelihood to recruit to the breeding population. Using these data, we tested
the hypothesis that behavior is the first line of defense in buffering animals from the deleterious effects
of heat (sensu Huey et al. 2003; Huey et al. 2012; Mufioz 2022). Based on this hypothesis, heat should
induce thermoregulatory behaviors, with limited effects on physiological traits and null or positive
effects on performance. These analyses, which assess both immediate and enduring effects, will lend
insight into mechanisms of thermal tolerance in our changing world.

Methods

Study Species and Location: Tree swallows are cavity-nesting birds that nest in human-made nest boxes.
Our experiment focused on nestlings confined to this thermal environment near Bloomington, Indiana
USA (39.1653° N, 86.5264° W), where we monitor over 150 tree swallow nests each year. Focal nests
were located at one of two wet, meadowy sites separated by 14.2 km. In this species, mothers alone
incubate eggs and brood nestlings frequently until they develop homeothermic capabilities (Winkler et
al. 2020). Nestlings begin thermoregulating around day 6 post-hatch (D6) (Marsh 1980), while
undergoing a period of rapid growth until they reach asymptotic, adult-like mass around D12 (McCarty
2001). Both parents provision nestlings, which fledge around D21 (Marsh 1980); hatch day is denoted as
D1. Broods are typically 4 to 7 nestlings (Winkler et al. 2020), with an average of 4.7 nestlings in this
study (range: 2-6).

Simulated Heatwave: Heatwaves are generally defined as a period of two to several days with
temperatures above what is normally expected (Heo et al. 2019; Xu et al. 2016). Our experiment sought
to mirror such an event, rather than a set target temperature per se. Using an air-activated warmer
(Uniheat 72h) placed directly under the nest, we elevated nest temperatures starting at D6 post-hatch
between 8:00 and 10:00, continuing until D12 post-hatch. Warmers contain a mixture of charcoal, iron
powder, vermiculite, salt, sawdust, and moisture. When the warmer packaging is opened, exposure to
air leads to heating via oxidation of iron powder, yielding a heat challenge above naturally occurring
temperatures. Uniheat warmers were rated for 72h, but pilot work showed that temperatures waned
after ~24h; therefore, we replaced warmers daily. In control nests, cooled warmers were used in an
identical fashion to control for non-thermal disturbances of the experimental design. To reduce among-
nest variation in treatment effectiveness, we standardized the amount of nesting material between the
warmers and the nestlings; for nests >7cm tall, we removed grass from the bottom of the nest, and for
nests £2.5cm, we added thin posterboard between the bottom of the nest and the warmer. Treatments
were balanced by date, brood size, and age of the mother. The experiment occurred between May and
July 2019. Two heated nests were excluded for failures unrelated to the experiment, leaving n=17
heated nests, n=21 control nests, with n = 80 heat nestlings, n = 102 control nestlings.

To habituate birds to foreign objects, a dummy camera and iButton temperature logger were placed in
the nest on D4 post-hatch (i.e., 2 days before treatments began). Each iButton was fastened into the
nest, facing up, recording temperature every 20 min. Ambient data came from NOAA hourly dry bulb
temperature from a nearby weather station (ID: WBAN:03893; avg. 14.3km from our study areas). We
collapsed iButton reads into hourly averages to mirror NOAA data. For each nest, we calculated the
hourly difference between nest and ambient temperatures as well as the mean nest temperatures
across the duration of experiment (D6-12). Two nests have missing or excluded temperature data: (1)
one nest (control) experienced an iButton technology failure, and (2) one iButton (heat) recorded
uncharacteristically high temperatures coinciding with the D11 warmer swap, suggesting the iButton
was dislodged from its standardized position. For this latter nest, we only included nest temperatures
from D6-D10 in the final dataset.
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Because iButtons faced upwards during the experimental heatwave, they did not directly measure heat
coming up from the heat source below, which may lead to under-estimation of the treatment effect.
Therefore, we conducted a post-hoc experiment to compare iButtons facing up versus down (elaborated
in Sl§a).

Nestling Behavior: We measured behavior on the first and third day of the experiment. We mounted
cameras (GoPro Hero Session 4) in each box during warmer placement. Cameras recorded for two
hours, and we used only the second hour of data to allow recovery from human disturbance. We scored
videos in JWatcher (version 1.0; Blumstein & Daniel 2007). First, we measured the total number of
minutes any panting was observed. Second, we measured the number of nestlings huddling inside
(versus outside) the nest cup. Finally, we recorded the number of nestlings that begged per feeding, and
for each nestling, we scored begging intensity using a postural scale from 0 to 4 (adapted from Pilz et al.
2004). See details in SI§b and Figure S1.

Parental Visitation: To account for potential indirect effects of heat on parents, we measured parental
visitation rate using radio-frequency identification (RFID) boards, as a proxy for provisioning rate
(Lendvai et al. 2015). In our population, all mothers and most fathers were banded with a plastic leg
band containing a PIT tag. Due to logistical constraints, we only measured visitation at the first 26 of 38
nests. Samples sizes per treatment are lower than this because of malfunctions in some PIT tags (see
Table 1). See Sl§c for details.

Blood Sampling: We collected nestling blood between 12:00 — 16:00 on D6, D9, and D12. On D6 and D9
we sampled all nestlings, and on D12 we sampled 1-3 nestlings per nest depending on brood size,
avoiding runts but otherwise choosing at random. D9 and D12 samples were taken from the alar vein,
but D6 samples were collected from the medial metatarsal vein because the wings were insufficiently
developed at this age. For gene expression analyses, we collected 20-50ul on D6, D9, and D12. For
baseline and handling-induced corticosterone (Cort) secretion analyses, we collected two 20ul samples
on D12. Following best practices (Gaunt et al. 2010), we did not collect >2% body mass summed across
samples, and we did not exceed 1% in any one sampling. In the field, blood samples were placed on wet
ice (i.e., for hormone analyses) or dry ice (i.e., for gene expression). In the lab, we stored plasma at -20°C
and other tissues at -80°C.

On D6, we timed our sampling to 4h after the onset of heat because previous work in poultry shows
robust changes in HSP gene expression within 4h of heat (Tu et al. 2016; Xie et al. 2014). On D9 and D12,
samples were collected approximately 72h and 144h after the D6 bleed, respectively.

On D12 only, we collected blood for Cort and gene expression analyses, modifying our bleeding protocol
as follows: First, we collected a baseline sample within 3 min of opening the nest box. As a continuation
of this bleed, we took a second tube for gene expression analysis (completed on average, 2.56 min +
0.17 after our arrival to the nest). Finally, 30 min after disturbing the nest box, we collected a final
sample to measure handling-induced (or elevated) Cort (Romero & Reed 2005). Latency to complete the
gene expression sample was not related to handling induced Cort (LMM with the random effect of nest
ID: D12 gene expression bleed end time: F14217=0.99, p = 0.33). Later that day, we centrifuged samples
intended for Cort assays, reserving plasma via Hamilton syringe. The remaining red blood cells were
used for DNA-based telomere length analyses, described below.

Morphology: On D6, each nestling was given a unique pattern of nail clipping (keratin nail tip blunted),
for individual identification. On D6, D9, and D12, we measured mass to the nearest 0.1g using a digital
scale (HH120D, Ohaus, USA). On D12, we measured wing length to the nearest 0.5 mm using a
stoppered wing ruler, and banded nestlings with a numbered USGS band.
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Terminal Collection: At the end of the experiment (D12), we euthanized one nestling/nest in 25 nests,
and snap-froze additional tissues on dry ice. We selected the median mass chick for these analyses
because body mass can impact heat responses (Choy et al. 2021). We later micro-dissected brains
following (Bentz et al. 2019) for region-specific analysis. We focused on the hypothalamus (HYPO),
hippocampus (HPC), and ventromedial telencephalon (VmT, which includes the avian medial amygdala
or nucleus taeniae) because these regions contain social and cognitive centers in the brain (Goodson
2005; O’Connell & Hofmann 2012). In addition, HYPO mediates homeostatic temperature regulation
(Murugesan et al. 2017). HPC is involved in navigation and spatial memory (Bingman et al. 2003;
Pravosudov et al. 2006), traits that likely affect successful migration (Mikami 1986). Our final tissue was
the pectoralis, the major flight muscle, which is critical for successful fledging. In a previous study, we
found that these tissues express HSP mRNA in unmanipulated, wild adult tree swallows, with lower
levels in muscle compared to brain (Woodruff et al. 2022). In addition, some brain regions show
latitudinal variation in HSP gene expression, suggesting that HSPs may be related to thermal regimes
(Woodruff et al. 2022).

Quantitative PCR: We extracted RNA using Trizol, and we converted RNA to cDNA using Superscript ll|
(elaborated in S/§d). cDNA was used in quantitative real-time PCR (gPCR) to measure mRNA abundance
of SOD in blood as well as three HSPs (HSP90AA1, HSP90B1, and HSPA2) in blood, brain, and pectoral
muscle. We focused on these HSPs because they have been robustly linked to heat tolerance (Wan et al.
2017; Wang et al. 2015). We ran gPCR reactions in triplicate on 384-well plates, alongside no template
controls (NTCs), in a QuantStudio 5 thermocycler (Thermo Fisher Scientific, Massachusetts, USA) using
PerfeCta SYBR Green FastMix with low ROX (Quanta Biosciences, Maryland, USA). See SI§d for details on
gPCR reactions and thermal profiles. We calculated mRNA abundance with the comparative Ct method
(22<): fold change in expression for each gene of interest, normalized to an internal reference gene. We
used MRPS25 as a reference gene for blood and pectoral data, and the geometric mean of HMBS and
PPIA for brain data because these genes did not significantly differ in expression between treatments
(MRPS25: F<0.65, p 20.43; HMBS and PPIA: F< 1.3, p 2 0.28). Primer details are reported in Table S1.
Each gPCR plate included intra- and inter-plate control samples (a cDNA pool derived from tree swallow
RNA). Intra-plate CV was 0.86 + 0.56% and inter-plate was CV 1.78%.

Quantifying Plasma Corticosterone: Using an enzyme immunoassay kit (Cayman #501320), we
quantified plasma corticosterone as in (Virgin & Rosvall 2018); elaborated in S/§e. We selected two
middle-mass nestlings from each nest for this analysis — the same for which we measured blood HSP
gene expression. 12 of 142 samples had unexpectedly high variation among duplicates (CV >25%), so we
omitted these data. We then calculated intra-plate variation by averaging across all sample and pool CVs
for each of 5 plates. Intra-plate CV was 13.40 + 3.62%. Inter-plate CV was 22.66%, and plates were
balanced by treatment.

Quantification of Telomere Length: We quantified relative telomere length using DNA extracted from
D12 red blood cells following Wolf et al. (2021). We used primers telc and telg (Cawthon 2009) to
guantify telomere length relative to the single copy gene GAPDH; see Table 51 for details. We ran
samples in triplicate and used mean values to calculate the ratio (T/S) of telomere repeat copy number
(T) to a single gene copy number (S) for each sample using the formula: 222% (AAC;, = (C; telomere — C, GAPDH)
sample — (Cy '€10mere — C, GAPDH)  torence). All plates contained a reference sample of pooled tree swallow DNA,
which yielded intra-plate CVs of 0.42% for GAPDH and 0.83% for telomeres. Using 28 samples run across
two plates, the inter-plate repeatability of the T/S ratio was high (intraclass correlation coefficient: 0.86;
95% confidence interval: 0.73-0.93). Plates were balanced by treatment, hatch date, and brood size.

Survival and Recruitment: At the end of the experiment (D12) and after fledging, we inspected the nest
for dead nestlings. We also devoted considerable effort during the next two years to identify and
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capture subjects from this experiment that recruited to the population as adults, identified by their
USGS band (elaborated in SI§g). This approach provides a good estimate of recruitment (established
methods for this species e.g., Lombardo et al. 2020) because typical natal dispersal distances are 8.38
km for females and 2.44 km for males (Winkler et al. 2005), and our extensive study population spans
36.4 km. Typical recruitment rates for this species are 5-10% (Lombardo et al. 2020; Shutler et al. 2006;
Wolf et al. 2022).

Statistical Analysis: Statistical analyses were performed with JMP v14 (SAS Institute, Cary, NC) and R
(RStudio Version 1.3.959). Sample sizes are summarized in Table 1.

Temperature: To quantify our experimental heatwave, we tested for effects of treatment on nest
temperature elevation above ambient because this metric accounts for ambient daily variation.
Temperature elevation was calculated by subtracting the hourly mean nest temperature from its
corresponding hourly ambient value. Temperatures in the wild are expected to vary non-linearly with
hour and day, so we fit a generalized additive model (GAM) that allows for non-linear data with
restricted maximum likelihood (REML) using the mgcv R package (Wood 2020). Main effects were
treatment, brood size, a smoothed (i.e., non-linear) term for experiment hour, and a smoothed term for
the interaction between treatment and hour. Experiment hour 1 began when the warmer was placed in
the nest box on D6 and continued until the D12 sample collections (147.7h % 1.4). Smoothed variables
use a penalized thin plate regression spline to correct for overfitting (Wood 2006). Our model assumed
Gaussian distribution with a log link function, and included the random effect of nest ID. We inspected
model fit using gam.check in the mgcv package.

Treatment effects on other variables: Next, we used a model comparison framework based on Akaike
Information Criterion to identify the single model that best fit our data (lowest AlCc score) (Burnham &
Anderson 2002); or, in cases where multiple models had AAICc values (AICc; — AlCchest model) < 2, we
considered them equally fit and averaged them using MuMIn (Barton 2019). We used the dredge
function (Barton 2019) to create model sets that evaluated and controlled for potentially relevant fixed
effects. For instance, ambient temperature could affect temperatures experienced by nestlings, so we
include mean ambient temperature across all hours of the experiment. Likewise, brood size could
impact conductive heat transfer among siblings, so we include the number of nestlings in the brood. We
included treatment in every model to provide a statistical test of our core research question. Therefore,
our most simplistic model was our “focal’ model, which included only treatment and the intercept. We
included the random effect of nest ID in all models that included multiple measures per nest. We also
ensured that variables were not multicollinear (ensured that variable inflation factors were <3, Fox &
Weisberg 2018). All models followed best practices of at least one parameter per 10 observations. Data
and model residuals were visually inspected for normality. Unless otherwise stated, models assumed
gaussian distribution. We Log; transformed relative gene expression values when it improved normality.
We Logio transformed Cort data for analysis, though figures plot untransformed data to facilitate
biological interpretation.

In the text, we present results from the model(s) that best fit our data (i.e., the lowest AAICc, or equally
fit, AAICc), including variance explained by fixed (R? marginal) and random effects (R? conditional) when
applicable. Table S5 reports these models alongside the focal model. We report effect sizes via beta
estimates (B), standard error, test statistics, and p-values. Treatment effect Bs are relative to controls.
For averaged models, we report full model-averaged coefficients including adjusted standard error and z
values (full and conditional model-averaged coefficients in Table S6).

Behavior: For each nestling behavior — duration panting, number of nestlings huddling, mean number of
nestlings begging, and mean begging intensity — model sets included our focal model, plus models with
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treatment and every combination of timepoint (D6 or D9), the interaction between timepoint and
treatment, ambient temperature, and brood size. Because total duration panting was zero-inflated, we
used a negative binomial regression. To examine differences in heat effects across timepoints, we
performed post-hoc least square mean comparisons for significant interactions.

We also tested for potential confounding effects of heat on mean daily parental visitation rate. We
tested each parent separately because heat may affect mothers and fathers differently (Perez et al.
2008). Model sets included our focal model, plus every combination of ambient temperature and brood
size.

Morphology: To assess heat effects on growth, our dependent variable was the percent change in mass
from D6 to D12. For simplicity, we did not use D9 mass data, instead focusing on growth occurring from
the beginning (D6) to the end (D12) of heat. In addition to our focal model, sets also included D6 mass
(i.e., starting mass) and the interaction between D6 mass and treatment. Analysis included n =171
nestlings for which we had all predictor variables. We also evaluated effects of heat on D12 wing length.
Model sets included our focal model plus every combination of ambient temperature and brood size.

HSP gene expression: The three HSPs of interest were positively correlated with each other (range of
Pearson r = 0.33-0.68, see Table S2), so we collapsed them using Principal Components Analyses (PCA;
loadings in Table S3). We performed separate PCAs for each tissue because we were interested in tissue-
specific heat effects, and some tissues differed in expression of the reference gene, thereby preventing
direct comparisons of mMRNA abundance. Similarly for blood, we performed separate PCAs at D6 and at
D12 because the reference gene changed in expression from D6 to D12. Due to limited resources, we
opted to exclude D9 gene expression data from this project, though we note that a pilot analysis mirrors
the D6 and D12 results below (see SI§f, including Table S4). We therefore focused on timepoint- and
tissue-specific comparisons between treatment and control at D6 or D12. For each tissue, we used the
first PC, which explained 45.2-85.5% of the variation in HSP gene expression (eigenvalues >1.4; Table
53). Next, we evaluated model sets for each PC1 that included our focal model and every combination of
ambient temperature and brood size.

Corticosterone: Model sets included the focal model with a random effect of nest ID, plus every
combination of ambient temperature and brood size. We analyzed baseline and handling-induced Cort
separately because evidence suggests these endocrine traits are regulated and can evolve
independently (Vitousek et al. 2019).

SOD gene expression: Model sets predicting D12 SOD gene expression included our focal model, plus
every combination of ambient temperature and brood size. Analysis included 1 nestling per nest.

Telomere length: Model sets predicting relative telomere length on D12 included our focal model, plus
every combination of ambient temperature and brood size, while controlling for the random effect of
nest ID.

Likelihood of survival and recruitment: First, to confirm that the treatment was sublethal, we performed
a logistic regression using a generalized linear mixed model with a binomial distribution to look for
effects of treatment on the likelihood of nestlings to survive to D12, while controlling for the random
effect of nest ID. Data stem from all n = 182 nestlings in this experiment. Next, we used this approach in
a separate model to measure the likelihood of nestlings to fledge for n = 152 nestlings that were alive at
D12 (excluding those that were terminally collected). Finally, we used the same analytical approach to
assess potentially longer-term effects of heat on the likelihood of nestlings to recruit to the population
in following breeding seasons, focused on the n = 145 nestling that fledged.

Results
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Temperature: Heat-exposed nests averaged 2.8°C hotter than controls (35.5°C £ 0.8, 38.3°C £ 0.7; Table
2). Our GAM explained 62% of the deviance in hourly nest temperature elevation, which was
significantly higher in heated nests (B = 0.16, SE =0.07, t = 2.27, p = 0.02), and in larger broods ( = 0.10,
SE =0.04, t =3.33, p =0.001). As expected for temperatures measured in the wild, temperature
elevation varied non-linearly across experiment hour (effective degrees of freedom, EDF = 13.95, F =
104.81, p < 0.0001). The non-linear pattern across time also varied between treatments, with less
temporal variation in heated nests (experiment hour*treatment: control: EDF = 12.28, F =3.85, p <
0.0001; heat: EDF = 0.03, F = 0.002, p < 0.0001; Figure 1). This temporal variation seems to stem from
diurnal variability (Figure 1), yet the heated nests remain hotter than controls throughout the
experiment, with higher max and min temperatures (Table 2). Based on a post-hoc validation
experiment (see S/§a), our iButton orientation may have underestimated treatment-induced
temperatures by as much as 2.7°C.

Behavior: Experimental heating significantly affected nestling thermoregulatory behaviors. We observed
significantly more panting in heated nests (B = 7.50, SE = 2.22, Z; 53 = 3.38, p = 0.001) and in larger
broods (brood size: B =0.87, SE =0.21, Z1 53 = 4.21, p < 0.0001); model R?’m = 0.53, R%c = 0.53. Further
this model showed significantly more panting at the later timepoint (timepoint:  =0.75, SE=0.21, Z; s3
=3.63, p <0.0001) and a significant treatment by timepoint interaction (B =-0.73, SE=0.29, Z; 53 = -
2.52, p = 0.01). This interaction stems from markedly more panting in heat-exposed vs. control nests on
D6 (treatment: B = 11.87, SE =5.22, t156=-2.27, p = 0.03), but by D9, there is no difference between
treatments (treatment: B = 0.60, SE =5.42, t156=-0.11, p = 0.91); Figure 2A. We observed significantly
less huddling in heated nestlings (treatment: p = -0.56, SE = 0.23, F1303=6.12, p = 0.02; Figure 2B) and in
smaller broods (brood size: B = 0.75, SE = 0.10, F1,2023= 60.03, p < 0.0001); model R?’m = 0.62, R%c = 0.76.

Experimental heating did not significantly affect other behaviors measured here. We observed
significantly fewer nestlings begging in smaller broods (B = 0.55, SE = 0.09, F1 3258 = 37.32, p < 0.0001)
and when nestlings are younger (B = 0.22, SE = 0.05, F12950 = 23.13, p < 0.0001), but there was no
difference between treatments (B = 0.07, SE =0.21, F13353 = 0.12, p = 0.73, Figure 52); model R?’m = 0.53,
R%c = 0.74. Mean begging intensity was not affected by treatment (B = -0.05, SE = 0.10, F159=0.2, p =
0.63, Figure: S2); model R?m = 0.00, R%c = 0.00. For maternal visitation, model averaging showed no
significant effect of treatment (B =-21.65, Adj. SE =17.59,Z=1.23, p = 0.22, Figure: S3A and no
significant effect of brood size (B = -5.65, Adj. SE = 8.26, Z = 0.68, p = 0.49); models R?’m = 0.07-0.16
(Table S5-6). For paternal visitation, model averaging showed no significant of treatment (f = 17.49, Adj.
SE =22.96,Z2=0.76, p = 0.45, Figure: S3B) or ambient temperature (B =3.63, Adj. SE=8.67,Z=0.42,p =
0.68); models R?2m = 0.04-0.09 (Table 55-6).

Morphology: We observed significantly more growth in heated nests (B = 59.18, SE = 21.54, F1 16484 =
7.55, p =0.01), in warmer ambient temperatures (B =9.14, SE = 2.60, F1,3455 = 12.61, p = 0.001), in
nestlings with smaller starting mass (D6 mass: f =-11.74, SE = 1.26, F1,155.03= 234.16, p < 0.0001,), and
especially in heated nestlings with smaller starting mass (treatment*D6 mass: B =-4.74, SE = 1.84,
F1,156.01= 6.61, p = 0.01; Figure 3A). There was no effect of brood size (B =3.61, SE=3.30, F13133=1.2,p =
0.28); model: R?m = 0.54, R%c = 0.84. Heated nestlings gained proportionally more mass than controls
(D6-D12: heat mean =96.1% * 35.2, control mean = 90.1% * 34.6), but this effect was strongest among
smaller nestlings, as indicated by the significant treatment*D6 mass interaction (Figure 3A).

Wing length was significantly longer in heated nests (treatment: = 3.06, SE = 1.50, F1333,=4.36, p =
0.04; Figure 3B), in larger broods (B = 1.55, SE = 0.65, F1,367=5.65, p =0.02) and in warmer ambient
temperature (B = 1.5, SE = 0.50, F13597= 8.81, p = 0.005); model: R2m = 0.2, R%c = 0.58. On average,
heated nestling wings were 55.2 + 3.8 mm at the end of the experiment, whereas controls were 51.8 +
7.5 mm.
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HSP gene expression: Experimental heating did not affect HSP gene expression in any tissue or timepoint
sampled here (Figure 4; R?’m = 0.00-0.09). D6 blood HSP PC1 was not significantly affected by heat (B =
0.13, SE=0.32, F13666=0.16, p = 0.69). For D12 blood HSP PC1, model averaging indicated no significant
effects of treatment (B =-0.16, Adj. SE =0.35,Z=0.46, p = 0.65) or brood size (B =-0.14, Adj. SE=0.18, Z
=0.79, p=0.43); see Table S5-6. For pectoral muscle HSP PC1, hippocampus HSP PC1, and ventromedial
telencephalon HSP PC1, the focal model had the lowest AAIC. In each case, there was no significant
effect of treatment (PM: B =-0.1, SE =0.69, F; ,:=0.02, p =0.89; HPC: B =-0.36, SE=0.60, F1,,=0.37, p
=0.55; VmT: 3 =-0.27, SE = 0.63, F12,=0.18, p = 0.68). For hypothalamus HSP PC1, model averaging
indicated no significant effects of treatment (B = 0.04, Adj. SE =0.52, Z=0.09, p = 0.93) or brood size (B
=0.13, Adj. SE =0.20, Z=0.63, p = 0.53); see Table S5-6.

Corticosterone: For both baseline Cort and handling-induced Cort, there was no significant effect of
treatment (baseline: p =-0.03, SE = 0.10, F135.19=0.09, p =0.77, R?’m = 0.00, R%c = 0.15; handling-induced:
B=0.11, SE=0.10, F136=1.72, p = 0.20, R?’m = 0.04, R%c = 0.56); Figure 5.

SOD gene expression: We observed significantly lower D12 blood SOD mRNA expression in heated nests
(B=-4.33,SE=1.90, F135=5.16, p = 0.03; Figure 6A) and in warmer ambient temperatures (f =-1.64,
F135= 9.0, p = 0.005); model: Rm = 0.28.

Telomere length in blood at D12: We observe no effect of heat on relative telomere length (B = -0.03, SE
=0.10, F13324= 0.1, p = 0.75; Figure 6B): model: R*m = 0.00, R%c = 0.21.

Likelihood of survival and recruitment: There was no treatment effect on the likelihood of nestlings to
survive to D12 (B =0.98, SE = 0.95, Z = 1.03, p = 0.30) or the likelihood to fledge (B =-0.26, SE=1.01,Z =
-0.26, p = 0.80). 174 of the 182 nestlings were alive on D12 (n = 78 heat and n = 96 control) and 145 out
of 149 nestlings remaining after terminal collections successfully fledged (n = 63 heat and n = 82
control). In subsequent years, we recaptured 11 heated and 5 control nestlings that returned to breed in
the population (4.9% of control and 13.8% of heat fledglings). This represented a marginal, but not
significant, treatment effect on the likelihood of recruiting into the breeding population (B = 1.24, SE =
0.67,Z=1.85, p =0.06).

Discussion

We experimentally elevated nest temperatures by an average of 2.8°C, an effect that is comparable to
expected temperature rises over the next 100 years (Hayhoe et al. 2009; Reidmiller et al. 2018). We
documented increased panting, reduced huddling, and accelerated growth, the latter of which was most
prominent among the initially smallest individuals. This accelerated development was not a byproduct
of resource availability — heat did not affect nestling begging or parental visitation. Heat also did not
affect heat shock protein gene expression in any of the five tissues sampled here. Other common
physiological ‘stress’ responses were also not significantly different between treatments, including
baseline corticosterone secretion, handling-induced corticosterone secretion, or relative telomere
length. However, blood gene expression for the antioxidant SOD was lower in heated nestlings at the
end of the experiment. Because SOD mitigates oxidative damage by neutralizing reactive oxygen species
(Wang et al. 2018), this finding suggests that heated nestlings may be less equipped to cope with
oxidative stress. None of these phenotypic effects translated to treatment differences in the immediate
likelihood to survive; however, heated nestlings were marginally, but not significantly, more likely to
recruit in following years. Thus, despite one apparent physiological cost, our multi-trait investigation
demonstrates general resilience to a mild heatwave. Below, we discuss how behavioral buffering may
shape persistence amidst rising temperatures, and more broadly, how organismal frameworks like ours
may improve predictions of species resilience.
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Thermoregulatory behaviors were robustly affected by our experimental heatwave. On the first day of
the experiment (D6 post-hatch), we observed nearly 14-fold more panting in heat vs. control nests.
However, this effect dissipated by the third day of the experiment (D9 post-hatch), when panting rates
were comparable in heat and control nests. Comparing D6 to D9 among controls, we observed more
panting as nestlings age, but nest temperatures did not increase during this time (see Figure 1 and
Figure S4). This natural increase in panting with age may relate to natural increases in body mass.
Afterall, larger bodies retain more heat (Cramer & Jay 2016), and nestlings gained an average of 7.2g
between D6 and D9 (68% increase in mass). Comparing heat and control nests on D6, we see more
panting in heated nests. If heat continued to have a comparable or additive effect as the experimental
heatwave continued, we would expect to again see more panting in hot nests vs. controls on D9.
Instead, we see that heated nestlings converge to typical (control-like) amounts of panting by D9,
despite sustained heat. Thus, our data are consistent with some degree of behavioral acclimation to
heat. Acclimation generally occurs when individuals plastically adjust to their environment in adaptive
ways (Rohr et al. 2018). Panting is a key heat dissipation behavior in passerines (Nord & Nilsson 2019)
and, based on our findings, panting seems to be a first line of defense against inescapable heat.

Heated nestlings also huddled less than controls on both the first and third day of heat. Huddling is
known to decrease heat loss (Gilbert et al. 2010), suggesting that reduced huddling may increase heat
loss by reducing conductive heat transfer among siblings. To the degree that diminished huddling is a
general response to heat (as seen in other wild and agricultural contexts: Huynh & Aarnink 2005; Shah
et al. 2003), our warming climate may influence brood or litter sizes in the future, as there may be heat-
related constraints on space use for animals confined to a fixed burrow or nest.

We found a positive effect of heat on nestling growth, despite no treatment effect on nestling begging
or parental visitation. Further, the heat effect on mass gain was strongest in nestlings that were initially
the smallest. We speculate that our heat treatment may have protected nestlings from cold
temperatures overnight, particularly since hourly nest temperatures in heated nests never dipped below
24.2°C overnight (Table 2). This difference may be biologically important given that 22°C can induce cold
stress (Wegrzyn 2013), and cold weather affects nestling growth (Shipley et al. 2020). Though control
nests did reach temperatures above the projected thermoneutral zone, this occurred less frequently
than in heated nests (Table 2). Thus, at least in temperate climates where spring and summer nights can
be cool, heatwaves may allow smaller animals to better allocate energy towards growth or other critical
processes. Organismal approaches that quantify multiple traits at various times during a heatwave are
essential to interpreting the valence of these effects.

We expected heat to induce physiological responses that counteract negative effects of heat. Among
these mechanisms, HSPs are of interest because they represent a conserved response to stress-induced
cellular damage (Sgrensen et al. 2003). Though there are few studies on HSPs in songbirds, there is
evidence that nestlings are able to upregulate HSPs in response to stressors (Sgrensen et al. 2003),
though these effects may differ among tissues (Lipshutz et al. 2022). Our thorough analysis of three
HSPs across five tissues and two time-points during heat exposure provides a compelling null result.
These results strongly suggest that mild heat did not elicit HSP responses, at least when coupled with
apparent behavioral acclimation. Behavior has long been considered a first line of defense to novel
environmental challenges (West-Eberhard 2003). We extend this idea here in animals with limited
mobility in a fixed ecological niche. The central role of behavior in dealing with heat is underscored by
the null results we found for a battery of physiological stress responses.

For instance, glucocorticoid hormones are commonly engaged during metabolic challenges, yet we
found no treatment effect on baseline or handling-induced Cort concentrations. Baseline Cort is
important for maintaining homeostasis and can be elevated under prolonged metabolic challenges,
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whereas acute Cort elevation, in this case induced by a standardized restraint, is an adaptive response to
mobilize resources (Mentesana et al. 2022; Romero et al. 2009). The lack of glucocorticoid differences
here may suggest that our experimental heatwave was not hot enough to be metabolically challenging.

Alternatively, we note that experimentally generated nest temperatures are above the thermoneutral
zone of similarly sized passerines (Khaliq et al. 2014), and our iButton orientation may have
underestimated our heat effect (see S/§a). There is debate on exactly how to measure thermoneutral
zones in broadly applicable ways, considering that results may vary between captive and field settings,
across developmental time, and among breeding stages (reviewed in Mitchell et al. 2018). Indeed, even
for the well-characterized zebra finch (Taeniopygia guttata), the upper limit of thermoneutrality ranges
from 35.9 to 40°C (Calder 1964; Marschall & Prinzinger 1991; Wojciechowski et al. 2021). The
thermoneutral zone for young tree swallows has not yet been determined, but, using the average for
similarly sized passerines, we note that heated nests experienced more time in temperatures above the
upper limit (Table 2). Control nests also experience temperatures above the projected thermoneutral
zone, but max temperatures in focal nests were markedly higher in the heat-exposed nests (Table 2),
underscoring the importance of examining the effects of inescapable heat in microclimates that exceed
ambient temperatures (Cunningham et al. 2021).

Therefore, our results suggest that perhaps tree swallows are relatively robust to mild heatwaves. Many
previous studies on heat effects in nestlings, have shown null or negative effects (Andreasson et al.
2018; Andrew et al. 2017; Corregidor-Castro et al. 2021; Hsu et al. 2020; Rodriguez et al. 2016; Ton et al.
2021), but notably, Dawson et al. (2005) used a similar air-activated warmer with tree swallows and
found that heated nestlings were heavier and had faster feather growth after 12 days of heat exposure,
albeit in a cooler northern environment. Tree swallows have also recently expanded their breeding
range southward into the hot and humid eastern United States (McCaslin & Heath 2020), contrary to
northward range shifts seen in hundreds of other species (Root et al. 2003). To the degree that tree
swallows are ‘winners’ amidst rising temperatures, their apparent ability to behaviorally acclimate could
contribute to resilience to rising temperatures. Understanding interspecific differences in resilience to
effects of climate change is an active area of research (e.g., Cohen et al. 2020; Huang et al. 2023; Nguyen
et al. 2022; Ujszegi et al. 2022), and our results extend these ideas in a species whose populations are
growing in warmer climates (Shutler et al. 2012; Siefferman et al. 2023; Wright et al. 2019).

Supporting this view, we found that heat had null or marginally positive effects on metrics of longevity
and recruitment. Previous studies have shown that early-life stressors can affect telomere length
(Eastwood et al. 2022; Wolf et al. 2021), and prolonged heat exposure can shorten telomeres and
reduce longevity (Zhang et al. 2018). Yet here, six days of heat did not alter relative telomere length.
Heated nestlings were also marginally more likely to recruit into the population in subsequent years.
Though the sample size of recruited birds is small, this trend suggests a positive effect of mild heat.

Even among apparently heat-resilient species, there may still be sub-lethal effects of heat. For instance,
our heatwave did affect SOD gene expression, which was significantly lower in the blood of heat-
exposed nestlings compared to controls at the end of the experiment. SOD encodes an enzyme that is
central to inactivating free radicals that would otherwise generate oxidative damage (Wang et al. 2018).
The dampening of SOD mRNA abundance is consistent with observations of lower enzyme activity,
including that of SOD, after periods of heat stress (Zhao et al. 2022). If transient, these effects may
interfere with the ability to cope with co-occurring stressors; if these effects endure beyond a heatwave,
they may have more significant repercussions, particularly as heatwaves increase in frequency in our
warming world.

Conclusion
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As climate change intensifies, more species will encounter previously unseen exposure to heat.
Organizations are looking for solutions to this problem, with some advocating that we prioritize the
likely ‘winners’ of global change (e.g., Cornwall 2018; Gilbert et al. 2020), though debate remains on
how best to manage these controversial decisions (e.g., Chapron et al. 2018; Wiedenfeld et al. 2021).
Models and big data have been instrumental in evaluating some factors that characterize ‘winners’ —
including ecological niches, population dynamics, and life history traits (e.g., Fischer & Huth 2019;
Marolla et al. 2021). We believe predictions that also integrate behavioral and physiological response
mechanisms are critical for improving these analyses and associated conservation decisions. Our
organismal approach, which quantifies a number of heat-response mechanisms across the animal and
how they vary over time, provides such a framework, which we hope will improve understanding of
species persistence in the face of climate change.
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535  Tables
536 Table 1: Sample size per measure for each treatment group. Behavior was quantified at the nest level;

537  therefore, the nestling sample size is indicated as NA.

Treatment (N) 538
Measures Control Heat 539
Nests Nestlings Nests  Nestlingg
Nestling Behavior (D6) 16 NA 15 NA 541
Nestling Behavior (D9) 16 NA 13 NA 542
Maternal Visitation 10 NA 13 NA 543
Paternal Visitation 10 NA 12 NA 544
D6 BL HSP 21 40 17 33 545
D12 BL HSP 21 38 17 33 546

PM HSP 10 10 13 13
547

HPC HSP 11 11 13 13
548

HYPO HSP 12 12 11 11
549

VmT HSP 11 11 13 13
550

Baseline Cort 21 36 17 28
551

Handling-induced Cort 20 38 17 28
552

Telomere Length 21 55 17 47
553

D12 BL SOD 21 21 17 17
CCA

% Change in Mass 21 94 17 77
D12 WL 21 94 17 76
Survive to D12 21 96 17 78 70
Survive to Fledge 21 82 17 63 2/
Recruitment 4 5 8 11 228

559
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Table 2: Treatment effects on hourly nest temperatures. Means (+ standard error) come from hourly

values, averaged per box. Percent of hours with nest temperature above 36.9°C is a proxy for the percent

of hours above the average upper limit of the thermoneutral zone in similarly sized passerines (36.9°C,

extracted from Table S1 in Khaliqg et al. 2014).

Temperature Summary Control Heat

Mean nest temp 35.5°C+0.8 38.3°C+0.7
Min nest temp 26.8°C+1.2 30.0°C+1.2
Max nest temp 40.2°C+0.3 42.9°C+0.8
Mean ambient temp 21.3°C+0.3 21.8°C+0.4
Mean nest temp elevation above ambient 14.3°C+0.7 16.5°C+0.8
% hours with nest temp >36.9°C 51.6% +7.1 74.5% +7.4
Daytime nest temp range (7:01 —20:59) 18 —41.5°C 21.5-50.7°C
Overnight nest temp range (21:00 - 7:00) 15.5-41.8°C 24.2 - 48.0°C
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Figures

Figure 1: Nest temperature elevation above ambient (°C) across the duration of the experiment; ambient
temperature averaged 21.5°C £ 0.1. Each point represents one hour per nest. Shading indicates 95% Cl
per treatment. Generalized additive model uses a smoothed function and controls for the random effect
of nest.
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Figure 2: (A) Total duration (minutes) any nestling was observed panting and (B) mean number of
nestlings huddling during the 1h observation period. Each point represents one nest. Lines connect nests
observed on D6 and D9 timepoints. Unconnected points represent nests for which we had only one day of
complete video data. Mean line per treatment is shown in black.
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Figure 3: (A) Nestling growth (percent change in nestling mass across the experiment), relative to
starting mass at D6. (B) D12 nestling wing length (mm) at the end of the experiment. Error bars are

mean * SE. Shading indicates 95% Cl. Each point represents one nestling. Models control for the random

effect of nest.
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Figure 4: Heat shock protein gene expression was unaffected by treatment. Y-axes represent the first
principal component derived from relative gene expression of three heat shock proteins, per tissue. (A)
D6 Blood PC1; (B) D12 Blood PC1; (C) Pectoral Muscle (PM) PC1; (D) Hippocampus (HPC) PC1; (E)
Hypothalamus (HYPO) PC1; (F) Ventromedial Telencephalon (VmT) PC1. Each point represents one

nestling. Blood models account for the random effect of nest. Error bars are mean + SE.
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591 Figure 5: (A) Baseline and (B) handling-induced plasma corticosterone (Cort) concentration (ng/uL) were
592  not ssignificantly affected at the end of the experimental heatwave. Each point represents one nestling,
593  and models account for the random effect of nest. Error bars are mean + SE.
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596  Figure 6: (A) SOD relative gene expression (2"2%) and (B) relative telomere length (2*2%) in D12 blood

597  across treatments. Telomere length models account for the random effect of nest. Each point represents
598  one nestling. Error bars are mean # SE.
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