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The rheological behaviour of dense suspensions of ideally conductive particles in the
presence of both electric field and shear flow is studied using large-scale numerical
simulations. Under the action of an electric field, these particles are known to
undergo dipolophoresis (DIP), which is the combination of two nonlinear electrokinetic
phenomena: induced-charge electrophoresis (ICEP) and dielectrophoresis (DEP). For
ideally conductive particles, ICEP is predominant over DEP, resulting in transient pairing
dynamics. The shear viscosity and first and second normal stress differences N1 and N2 of
such suspensions are examined over a range of volume fractions 15 % ≤  φ ≤  50 % as a
function of Mason number Mn, which measures the relative importance of viscous shear
stress over electrokinetic-driven stress. For Mn <  1 or low shear rates, the DIP is shown to
dominate the dynamics, resulting in a relatively low-viscosity state. The positive N1 and
negative N2 are observed at φ <  30 %, which is similar to Brownian suspensions, while
their signs are reversed at φ ≥  30 %. For Mn ≥  1, the shear thickening starts to arise at φ
≥  30 %, and an almost five-fold increase in viscosity occurs at φ =  50 %. Both N1 and N2
are negative for Mn  1 at all volume fractions considered. We illuminate the transition in
rheological behaviours from DIP to shear dominance around Mn =  1 in connection to
suspension microstructure and dynamics. Lastly, our findings reveal the potential use of
nonlinear electrokinetics as a means of active rheology control for such suspensions.

Key words: suspensions, Stokesian dynamics, electrokinetic flows

1. Introduction

Electric-field-driven suspensions of small particles have been appreciated as a promising
context for effectively manipulating the particle configuration and actively controlling the
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stress transfer of fluids (Yeh, Seul & Shraiman 1997; Velev & Bhatt 2006; Sheng & Wen
2012; Li et al. 2018; Driscoll & Delmotte 2019). Playing a crucial role in the driving
mechanism of such fluids, nonlinear electrokinetic phenomena have been widely exploited
in a variety of fields, among which are material science, bioengineering, nanofluidics
and microfluidics (Feng et al. 2020; Xuan 2022). In particular, a growing interest in
slurry batteries containing suspended conductive particles requires a deep investigation
into nonlinear electrokinetic phenomena resulting specifically from particle polarizability
(Presser et al. 2012; Soloveichik 2015; Tan et al. 2019; Sánchez-Díez et al. 2021;
Heidarian, Cheung & Rosengarten 2022). However, the current understanding of utilizing
the electrokinetics for tuning the suspension rheology is mainly limited to non-conductive
or weakly conductive particle systems.

For non-conductive or weekly conductive particles suspended in an insulating fluid, the
classical example of nonlinear electrokinetics is dielectrophoresis (DEP), under which the
particles experience dipole moments upon the application of an electric field. Resulting
dipolar interactions between the particles cause them to assemble into chain/column-like
structures along the field direction. Such a well-known response belongs to a popular class of
smart fluids or the so-called electrorheological (ER) fluid (Wang et al. 2000; Sheng &
Wen 2012). As a main characteristic of the typical ER fluids, the rapid formation of the
field-aligned anisotropic structures under the action of an electric field induces a dramatic
viscosity enhancement, potentially leading to a phase transition from a liquid to a solid
state. These reversible and controllable features make the ER fluids an attractive material
of choice for a variety of applications, including valves (Whittle et al. 1994; Choi et al.
1997), active shock absorbers (Choi et al. 2007), clutches (Madeja, Kesy & Kesy 2011)
and actuators (Mazursky, Koo & Yang 2019). Furthermore, as relevant to technical
applications of the ER fluids, their rheological response to an external shear flow has
been extensively explored (Klingenberg, Van Swol & Zukoski 1989; Klingenberg, van
Swol & Zukoski 1991; Bonnecaze & Brady 1992a,b; Qian, McKinley & Hosoi 2013). The
rheological properties are strongly related to the response of the field-induced structures to
the external flow, where the elastic body-like deformation was developed at low shear rates,
while rapid transient structural arrangement occurred at high shear rates (Parthasarathy &
Klingenberg 1996; Qian et al. 2013). Hence, such rheological behaviour of the ER fluids
was primarily described by the Bingham constitutive model (Bonnecaze & Brady 1992b).
In addition to the ER fluid, a similar rheological response can also be generated by
applying a magnetic field to a suspension, which leads to a well-known concept of the
so-called magnetorheological fluid (von Pfeil et al. 2002; De Vicente, Klingenberg &
Hidalgo-Alvarez 2011; Ruiz-López et al. 2016).

Rheological properties of a suspension of non-conductive particles can also be modified
by a completely different mechanism than the ER fluid. Upon the application of strong
electric fields above the critical strength, the particles can start to undergo spontaneous
sustained rotation via an effect of the so-called Quincke rotation (Quincke 1896). This
effect arises primarily due to the symmetry breaking when the polarized cloud of ions
around the particle induces a dipole antiparallel to the field, which is the case when the
charge relaxation time of the particles is greater than that of the suspending fluid (Lobry &
Lemaire 1999; Das & Saintillan 2013; Saintillan 2018; Pradillo, Karani & Vlahovska
2019; Sherman & Swan 2020). Under the Quincke instability, the particles spin around a
random axis orthogonal to the field direction (Sherman & Swan 2020). When placed in an
external shear flow with an electric field in the velocity-gradient direction, the rotation axis
of the particles tends to align with the vorticity direction (Pannacci, Lemaire & Lobry 2007;
Dolinsky & Elperin 2009; Das & Saintillan 2013). As a result, the particles spin
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Rheology of conductive particles in electric field

with an angular velocity that exceeds one of the imposed flow, leading to a reduction in the
effective shear viscosity. For Quincke rotors, it was shown that increasing the field
strength results in a faster particle rotation and thus a further decrease in the viscosity
(Lobry & Lemaire 1999).

Until now, controlling the microstructure and macroscopic rheological properties via
an external electric field has been mostly limited to the suspension of non-conductive
particles whose responses to the electric field and shear flow have been well understood. A
relatively new class of suspensions that contains conductive particles suspended in an
electrolyte, which is the case of interest for this study, has gained a growing interest in
timely applications, such as additive manufacturing (Tan et al. 2019) and electrochemical
energy storage systems (Presser et al. 2012; Nikonenko et al. 2014; Rommerskirchen,
Gendel & Wessling 2015; Soloveichik 2015; Sánchez-Díez et al. 2021; Folaranmi et al.
2022). In such suspensions, another nonlinear electrokinetic phenomenon is expected to
arise with characteristics dissimilar to one typically seen in ER fluids. Under the action of
the electric field E ,  the conductive particles can acquire an additional non-uniform
charge around their surface. This charging process results in the non-uniform zeta
potential distribution, which, in turn, drives a nonlinear quadrupolar flow around the
particles. This flow is termed as induced-charge electroosmosis (ICEO) (Squires &
Bazant 2004). The ICEO flow is easily seen by the Helmholtz–Smoluchowski equation to
scale quadratically with the magnitude of the applied electric field E =  |E| because the
induced zeta potential or additional surface charge is solely driven by the electric field.
While the ICEO flow is perfectly symmetric for a single spherical particle, symmetric
breaking can arise for a suspension due to a disturbance from other particles. The broken
symmetries then result in the motion of the conductive particles, which is termed as
induced-charge electrophoresis (ICEP) (Squires & Bazant 2004, 2006). This nonlinear
electrokinetic phenomenon was first described by Murtsovkin and coworkers (Dukhin &
Murtsovkin 1986; Gamayunov, Murtsovkin & Dukhin 1986; Murtsovkin 1996). Unlike
the ER fluid, the particles undergoing ICEP show transient pairing dynamics, where
they tend to approach along the field direction, pair up and eventually separate in the
transverse directions (Saintillan 2008). It is important to point out that when the
suspension of conductive particles is placed in an external electric field, the particle
motions arise undergoing both ICEP and DEP concurrently, which is sometimes referred to
as dipolophoresis (DIP) (Shilov & Simonova 1981). Nevertheless, it was found that
DIP is mainly governed by ICEP for ideally conductive particles in a low-frequency field
because of the slower decay of ICEP interactions as O(R−2 ) with separation distance R
compared with O(R−4 ) for DEP interactions (Saintillan 2008; Park & Saintillan 2010;
Kilic & Bazant 2011).

For zero-shear-limiting suspensions, we found that DIP exhibits intriguing non-trivial
behaviours at the concentrated regime around a volume fraction φ in a range of 35 % ≤  φ
≤  50 % (Mirfendereski & Park 2019, 2021). More specifically, the hydrodynamic
diffusivity and particle velocity fluctuation start to increase at φ ≈  35 % despite the
expectation that they should continue to decrease with increasing φ due to the increase in
the magnitude of excluded volume interactions (Mirfendereski & Park 2019). They then
reach a local maximum at φ ≈  45 % before decreasing again towards zero as φ approaches
random close packing. Interestingly, such non-trivial dynamics was associated with the
onset of negative particle pressure at φ ≈  30 %, which eventually becomes maximum at
φ ≈  45 % (Mirfendereski & Park 2021). A mechanism for these counter-intuitive
behaviours was explained by the transition in the dominant mechanism of particle paring
arising at the concentrated regime. For a dilute DIP suspension, the particle pairing is
mostly dominated by attractive particle contacts along the field direction, and contact
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Figure 1. A suspension of ideally conductive spheres under an external shear flow with constant shear rate γ̇
and a uniform electric field E 0 . Note that the direction of the applied electric field is set to align with the
velocity-gradient direction of the external shear flow, which is orthogonal to the flow direction.

motions are relatively slow. For semidilute and dense DIP suspensions, however, there are
massive, very strong and fast repulsive particle contacts in the direction perpendicular to an
electric field, which is believed to be a driving mechanism for the non-trivial behaviours
(Mirfendereski & Park 2019).

While it has been focused mainly on the zero-shear-rate limit for DIP, not much effort
has been made to determine the shear rheology of suspensions undergoing DIP, for
which the present work aims at providing the first insight. In this paper, we develop and
use large-scale numerical simulations to explore the rheology of dense suspensions of
non-colloidal conductive particles undergoing both DIP and shear flow. The current
simulation model is based on the Stokesian dynamics technique incorporating the
mobility-based methodology for DIP (Saintillan, Darve & Shaqfeh 2005; Mirfendereski &
Park 2019) and the resistance-based methodology for shear flow (Bossis & Brady 1984;
Durlofsky, Brady & Bossis 1987; Brady & Bossis 1988). In § 2, the simulation model is
described in more detail. We provide the simulation results in § 3, where we present the
shear viscosity and normal stress differences of the suspension followed by suspension
microstructure and dynamics. We then conclude in § 4.

2. Governing equations and simulation method

We consider a suspension of N identical neutrally buoyant spheres of radius a in a viscous
electrolyte with permittivity ε and viscosity η. The spheres are considered smooth, ideally
conductive or polarizable, and sufficiently large so that the Brownian motion is negligible.
As demonstrated in figure 1, the suspension experiences a uniform electric field E  =  E ŷ
and simple shear flow u∞  =  K ∞  ·  x, simultaneously, where the x, y and z axes represent
the flow, velocity-gradient and vorticity directions of the external shear flow, respectively.
Note that the electric field is along with the velocity-gradient direction and orthogonal to
the flow direction. The velocity gradient tensor K ∞  of the shear flow can be given by

�
0 γ̇ 0

�
K ∞  =  �0 0 0�, (2.1)

0 0 0

977 A35-4
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Rheology of conductive particles in electric field

where the shear rate γ̇ is constant for a steady shear flow. We use a cubic periodic domain of
a Lees–Edwards kind (Lees & Edwards 1972) to accommodate the bulk shear flow for the
simulation of an unbounded infinite suspension.

The particles are assumed to carry no net charge, so linear electrophoresis is not
expected to occur under the applied electric field. We also assume weak electric fields,
thin Debye layers and zero Dukhin number for no surface conduction (Squires & Bazant
2004). Under these conditions and assumptions, the applied electric field drives the relative
motion of the particles entirely through DIP, which is the combination of ICEP and
DEP (Saintillan 2008; Park & Saintillan 2010). For ICEP, it is important to note that
the charging time of the Debye layer is very fast, of the order of τc =  λDa/D, where λD
is the Debye layer thickness, and D is the characteristic diffusivity of ions in solution.
For instance, the charging time τc � 10−4 s in a typical experiment (a =  10 μm, λD =  10
nm, D � 10−5 cm2 s−1). Therefore, with the reasonable assumption of τc  γ̇ −1 , we can
easily ignore the distortion of the equilibrium charge cloud due to shear-induced
rotation/translation of spheres and any consequent effects or potential instabilities (Khair &
Balu 2019). In other words, while the particles undergo shear-induced rotation, the
surface charge distribution and the screening charge cloud remain intact with respect to
the external electric field.

The current simulation model captures the contributions of both DIP and shear flow to
the particle motion and suspension rheology, which are detailed as follows.

2.1. Electrokinetics contribution

For computing the electric and hydrodynamic interactions resulting from both ICEP and
DEP (i.e. DIP), we employ the method used in our previous studies (Park & Saintillan
2010, 2011b; Mirfendereski & Park 2019, 2021). Based on pair interactions calculated by
Saintillan (2008) for a suspension undergoing DIP, the translational velocity of a given
particle α driven by ICEP and DEP under an electric field E 0  =  E0ŷ can be expressed as

U d =  
εaE0 

X
[M D E P (Rαβ /a )  +  M ICEP(Rαβ /a)] : byby, α =  1, . . . , N , (2.2)

β =1

where Rαβ  =  xβ −  xα is the separation vector between the particle α and particle β, and
MDEP and M ICEP are third-order dimensionless tensors accounting for the DEP and ICEP
interactions, respectively. It is shown that these two tensors are entirely determined by
the scalar functions of the dimensionless inverse separation distance λ =  2a/|R|. For
far-field interactions (λ  1), the DEP and ICEP far-field interaction tensors can be
computed using the method of reflections and expressed up to order O(λ4) in terms of
two fundamental solutions of Stokes equations S  and T  =  �2S , which are the Green’s
functions for a Stokes dipole and for a potential quadrupole, respectively (Kim & Karrila
2013). The far-field expressions of these tenors are written as follows:

MDEP =  12 T +  O(λ5),                                                        (2.3)

M ICEP =  − 8 S  −  24 T +  O(λ5).                                                (2.4)

These tensors can be expressed as the periodic version of the far-field tensors to account for
far-field interactions between particles α and β and all its periodic images, which are valid
to order O(Rαβ ). Direct calculation of the sums for U α  in (2.2) requires O(N2)

977 A35-5
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of computation for which the smooth particle mesh Ewald algorithm, which shares
similarities to the accelerated Stokesian dynamics simulation (Sierou & Brady 2001), is
used to accelerate the calculation of the sums to O(NlogN) operations (Mirfendereski &
Park 2019). However, the near-field corrections are necessary as the method of reflections
becomes inaccurate when the particles are close to each other (typically for |Rαβ| <  4a).
This is achieved by correcting the far-field tensor with the more accurate method of twin
multiple expansions (Saintillan 2008). This method is very accurate down to separation
distances of the order of |Rαβ| ≈  2.005a.

For DEP and ICEP interactions due to (2.3) and (2.4), it is worth noting that while
both ICEP and DEP lead to similar particle pairing in the electric-field direction, the
subsequent paring dynamics is significantly different (Saintillan 2008; Park & Saintillan
2010). Specifically, ICEP leads to transient pairing dynamics, where particles briefly pair
up in the field direction but then reorient themselves to align in the transverse directions,
eventually leading to their separation. Such paring dynamics give rise to chaotic collective
motion. Conversely, in the DEP case, the formed pairs remain in a stable equilibrium,
ultimately resulting in the formation of stable chains/columns along the field direction. In
the case of DIP, when both ICEP and DEP coexist, transient pairing dynamics only occur
due to the predominance of ICEP over DEP, as can be alluded to by the leading orders
of the ICEP and DEP interactions, which are a Stokes dipole of O(λ2) and a potential
quadrupole of O(λ4), respectively.

2.2. Shear flow contribution

The contribution of the external shear flow u∞  to the particle motion and bulk stress is
calculated by the classical resistance-based Stokesian dynamics approach (Brady & Bossis
1988). Owing to the linearity of the Stokes equation, we can relate the moments of the
hydrodynamic force density on the particle surfaces to the relative velocity moments of
particles by the grand resistance tensor R  as given by

�
F
� �

U −  u∞
�

�T� =  − R  ·  �Ω  −  ω∞�, (2.5)
S − E ∞

where U  and Ω  are translational and rotational velocities of particles, respectively, and F ,
T  and S  are the force, torque, and stresslet on particles, respectively. The rate of strain E ∞

is the symmetric part of K ∞ ,  and ω∞  =  1/2� ×  u∞  gives the vorticity of the imposed
flow. The grand resistance tensor R  can be approximated as a sum of the Stokes drag and
the pairwise lubrication interactions since the dominant hydrodynamic interactions come
from the pairwise short-range lubrication forces for dense suspensions (Mari et al. 2014).
The grand resistance tensor R  can be then written by the combination of the resistance
matrices (Bossis & Brady 1987),

R  =  R FU R FE     , (2.6)
SU SE

where the 6N ×  6N second-rank tensor R FU relates the hydrodynamic forces/torques on
particles to their motion (translation/rotational velocity) relative to the imposed flow. The
third-rank tensors R FE and R SU relate the hydrodynamic forces/torques to the rate of strain
and the particle stresslet to the relative motion of particles, respectively. The fourth-rank
tensor R SE gives the particle stresslet owing to the rate of strain. These resistance tensors
are configuration-dependent, and their elements can be expressed by the relationships

977 A35-6
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Rheology of conductive particles in electric field

between the unit vector along the centreline of each pair of particles R  =  Rαβ/|Rαβ| and
the scalar resistance functions of λ. The details of calculating these resistance tensors
were provided by Jeffrey & Onishi (1984), Kim & Mifflin (1985), Jeffrey (1992) and Kim &
Karrila (2013).

2.3. Total particle velocity

We calculate the total particle velocity and stress by superposing the contributions of DIP
and shear flow thanks to the linearity of the Stokes equation. Hence, the total translational
velocity U t  and rotational velocity Ω t  of the particles are given by

−1 ∞ −1 p

Ω ω FU FU Ω
(2.7)

where Ω d =  0 as no particle rotation arises as a result of DIP for the perfectly symmetric
spheres (Saintillan 2008). The explicit calculation of the second and third terms on the
right-hand side of (2.7) is prohibitively expensive due to an inversion of the resistance
tensor RFU , which is of an order of O(N3). For the sake of fast calculations, we use the
generalized minimal residual method (Saad & Schultz 1986) to resolve these terms. The
interparticle force F p in (2.7) is written as a pairwise electrostatic repulsive force between
the particles α and β (Bossis & Brady 1984; Sierou & Brady 2002),

− /σ
F αβ =  

σ 1 −  e−/σ  Rαβ , (2.8)

where F0, σ and  are the force magnitude, force range and the dimensionless spacing
between the surface of particles  =  R/a −  2, respectively. The magnitude of the

interparticle force relative to the shear force can be controlled by the dimensionless
number γ̇� =  6πηa2 γ̇/F0. For all present simulations, the fixed values of γ̇� =  5000 and σ
=  0.001 are employed as validated and used by Sierou & Brady (2002). It is important to
note that the choice of these values for the repulsive force corresponds to a very short time
scale with a negligible impact for the system studied.

Once the particle velocities are calculated by (2.7), the particle positions are advanced
in time using a second-order Adams–Bashforth time-marching scheme, with an explicit
Euler scheme for the first time step. A fixed time step Δ t  is chosen so as to ensure that the
particles only travel a very small fraction ( <  0.4 %) of the mean interparticle distance at
each iteration. However, due to the use of a finite time step, the particle overlap should be
prevented, for which we employ the potential-free algorithm (Melrose & Heyes 1993) from
our previous works (Mirfendereski & Park 2019, 2021). The initial random equilibrium
configurations were generated using an approach similar to the one employed in our
previous works (Mirfendereski & Park 2019, 2021). This method is based on the procedure
suggested for dense hard-sphere systems (Stillinger, DiMarzio & Kornegay 1964; Clarke &
Wiley 1987; Rintoul & Torquato 1996).

2.4. Bulk stress

The bulk rheological properties can be determined from the average stress tensor hΣ i
(Batchelor 1970), where the angle bracket denotes the ensemble average over all particles.

977 A35-7
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The stress tensor is expressed as

hΣ i  =  −pf  I +  2ηE ∞  +  hΣ p i , (2.9)

where pf is the average pressure in the fluid phase, I is the identity matrix, and 2ηE ∞  is the
deviatoric contribution from the incompressible fluid. The total contribution of particle
phase to the stress or particle stress hΣ p i  is given by

hΣ p i  =  −n R SU ·  U  −  u
∞

 
+  nhRSE : E ∞ i  +  nhSd i −  nhxF p i, (2.10)

where n is the particle number density. The first and second terms in (2.10) are the
hydrodynamic stresslets that come from the external shear flow (Sierou & Brady 2002;
Mari et al. 2014), while the third term hSd i stems from the DIP contribution (Mirfendereski
& Park 2021). Note that the contribution of DEP to the stress is negligible compared with
the ICEP contribution for ideally conductive particles (Mirfendereski & Park 2021). The
direct interparticle force contribution is given by −hxF p i  in (2.10), which is found to be
negligible here.

Once the average bulk stress tensor is obtained, its xy component hΣxy i  is used to
calculate the relative shear viscosity:

ηr =  
2ηExy 

. (2.11)

The normal components of the average bulk stress are also used to calculate the first and
second normal stress differences:

N1 =  hΣxx i  −  hΣyy i,                                                         (2.12)

N2 =  hΣyy i  −  hΣzz i.                                                         (2.13)

For testing the code for validation purposes, the relative shear viscosity in the absence of
an electric field is calculated using the present simulation model, which is shown in figure
2(a). In addition to the current simulation results, the experimental results by Dbouk et al.
(2013), Denn et al. (2018) and Lewis & Nielsen (1968), and computational results by
Sierou & Brady (2002) are present along with the Maron–Pierce correlation ηr =  (1 −
φ/φm )−2 with φm =  63 %. A good agreement between the current and previous results is
observed. In particular, the current simulation model reproduces the Maron–Pierce
correlation well.

To indicate the relative importance of the viscous stress from shear flow over the
electrokinetics-driven stress from DIP, the so-called Mason number (Mn) can be used and
given by

Mn =  
ηγ̇ 

, (2.14)
0

where the viscous shear stress and DIP stress scale as ηγ̇ and εE2, respectively.
To further validate the simulation code in the presence of both electric field and shear

flow, we conducted simulations for suspensions undergoing shear flow and DEP, where
ICEP is absent, a scenario closely resembling typical ER fluids. Figure 2(b) illustrates
the relative shear viscosity as a function of the Mason number, presenting the current
simulation results along with the experimental data reported by Marshall et al. (1989) for
ER fluids. A good agreement between the current computational results and the previous
experimental data is observed.

977 A35-8
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(a) (b)
Present simulations 105

Sierou & Brady (2002)

Denn et al. (2018) (2a = 41 µm ±  3.6)

Dbouk et al. (2013) (2a = 140 µm) 104

Lewis & Nielsen (1968) (2a = 45 – 60 µm)

ηr = (1 – φ/φm)–2

101 103

ηr

102

Present simulations
Marshall et al. (1989) E = 50 kV m–1

Marshall et al. (1989) E = 100 kV m–1

Marshall et al. (1989) E = 200 kV m–1

Marshall et al. (1989) E0 = 400 kV m–1

101

10
0.1 0.2 0.3 0.4 0.5

10
10–6

φ
10–4 10–2 100

Mn

Figure 2. (a) The relative shear viscosity ηr of a non-Brownian suspension solely undergoing shear flow as a
function of volume fraction. Also shown are the experimental results of Lewis & Nielsen (1968), Dbouk, Lobry
& Lemaire (2013) and Denn, Morris & Bonn (2018), and the numerical results of Sierou & Brady (2002). The
current results agree well with the numerical and experimental data reported in the literature. The dotted line is
the Maron–Pierce correlation with φm =  0.63. (b) Relative shear viscosity of the suspension undergoing DEP
and shear flow as a function of Mn at φ =  15 % from the current simulations. Also shown are the experimental
results of Marshall, Zukoski & Goodwin (1989) for ER suspensions containing hydrated poly(methacrylate)
particles in a chlorinated hydrocarbon subjected to different electric field strengths at φ =  13 %.

3. Results and discussion

We performed large-scale simulations of ideally conductive particle suspensions under
both electric field and shear flow in a periodic cubic domain of a Lees–Edwards kind in
ranges of volume fractions and Mason numbers. The dependence on the system size was
examined, confirming that the simulation results are insensitive to the domain size and the
number of particles. It is worth noting again that the Mason number is the ratio of viscous
shear stress and electrokinetics-driven stress, representing the dimensionless shear rate
for the system studied here. However, it can also be regarded that given the shear rate, the
Mason number represents the inverse of the squared dimensionless field strength. All
simulation runs were initiated from the hard-sphere equilibrium configurations, and the
time steps within the first 10–30 strains were discarded for statistical averaging over the
steady-state configurations. To reach 200 strains γ , the current simulation at φ =  15 %
requires approximately 50 h of central processing unit (CPU) time, and a higher volume
fraction at φ =  50 % requires approximately seven times more CPU time as compared with φ
=  15 %. In addition, it is worth noting that the CPU time increased with higher volume
fractions and lower Mason numbers. The statistical variation of the suspension properties
over the steady state is determined by their standard deviation and represented by the error
bar in the figures.

3.1. Relative shear viscosity

We start by exploring the effects of the Mason number and volume fraction on the shear
viscosity of suspensions. Figure 3(a) presents the relative shear viscosity ηr as a function of
volume fraction for a range of Mason numbers. As seen in the figure, the high-shear-rate
viscosities (Mn ≥  5) collapse almost onto a single curve. Note that Mn =  ∞  refers to
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0     
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Figure 3. (a) The relative shear viscosity ηr of the non-Brownian suspensions undergoing both DIP and steady
shear flow as a function of volume fraction for a range of Mason numbers. Note that the Mn =  ∞  limit refers to
the viscosity in the absence of an electric field. Inset: the magnified view of the low-Mn or low-shear-rate
viscosities (Mn =  0.05, 0.1, 0.2), showing a non-monotonic variation with volume fraction. (b) The relative
shear viscosity is replotted as a function of Mason number for various volume fractions.

a measurement in the absence of an electric field. By reducing the shear rate or the
Mason number below Mn =  5, the viscosity starts to decrease, more significantly at high
volume fractions for φ ≥  40 %. Interestingly, there is a significant decrease from Mn =  2 to
Mn =  1, suggesting a possible transition taking place around these Mason numbers. At
the low-shear-rate regime (Mn <  0.5), the viscosity seems to collapse again onto a single
curve with smaller values than for the high-shear-rate regime. The inset of the figure
shows a magnified view of the low-shear-rate viscosities (Mn =  0.2, 0.1, 0.05) as a function
of volume fraction. Interestingly, a non-monotonic variation with volume fraction is
observed. These low-shear-rate viscosities start to increase with volume fraction, reach a
local maximum at φ ≈  35 % and then slightly decrease up to φ ≈  40 % before increasing
again as volume fraction is further increased. Such non-monotonic behaviour is attributed to
the predominant ICEP effect over shear flow at low Mason numbers or low shear rates. This
non-monotonic trend can be explained by quiescent DIP suspensions in our previous
studies, where the hydrodynamic diffusivity exhibits the exact opposite trend to the shear
viscosity (Mirfendereski & Park 2019) and the particle pressure exhibits a very similar
non-monotonic trend (Mirfendereski & Park 2021).

To characterize a shear-dependence behaviour, the relative shear viscosity is replotted as
a function of the Mason number for various volume fractions, as seen in figure 3(b). At a
volume fraction as small as φ =  15 %, the variation of viscosity with Mason number is
almost negligible, indicating a Newtonian-fluid-like behaviour. For φ ≥  30 %, however, the
shear-thickening behaviour is observed. The viscosity appears to remain constant at low
Mason numbers and starts to sharply increase around Mn =  1, reaching a plateau as the
Mason number is further increased. Similar to figure 3(a), a significant transition again
seems to occur at Mn ≈  1, which can be thus referred to as the transitional or critical Mason
number for the current study. The shear thickening becomes more prominent with
increasing volume fraction. At φ =  45 %–50 %, a large increase in viscosity occurs during
the shear-thickening process, which is approximately five-fold. The underlying mechanism

977 A35-10



ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

98
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

∞
N

1/
|N

1 
|

φ

∞        ∞

∞
N

1 
/η
γ̇

φ

∞ ∞

∞
N

2 
/η
γ̇

∞
N

2/
|N

2 
|

–1

1 2

1 2

Rheology of conductive particles in electric field

(a)
10

5

0
N1 /|N1 |

0

–5 –1

–2

φ = 15 %
φ = 30 %
φ = 35 %
φ = 40 %
φ = 45 %

(b)
15

10

5

0
N2 /|N2 |

0
–5

–1

–10 –2

φ = 15 %
φ = 30 %
φ = 35 %
φ = 40 %
φ = 45 %

–10

–15
10

–3

0.2 0.3 0.4

100 101 102

–15

–20
10–1

–3

0.2 0.3 0.4

100 101 102

Mn Mn

Figure 4. The (a) first and (b) second normal stress differences, normalized by their magnitude for the
pure-shear-flow limit (Mn =  ∞), as a function of Mason number for various volume fractions. The insets of
(a) and (b) show the first and second normal stress differences for Mn =  ∞  as a function of volume
fraction, respectively.

of such shear thickening in the concentrated regime is intimately linked to the emergence of
a distinct microstructure, which we will discuss in § 3.3. As an interesting future work, this
Mn-dependent behaviour suggests a possible rheology control for a suspension of ideally
conductive particles in an electric field. For example, at a given high volume fraction
(i.e. φ ≥  30 %) and high shear rate (i.e. Mn >  1), having stronger DIP or ICEP effects via
increasing the electric-field strength could lead to a viscosity reduction from the shear-
thickened states to the Newtonian-like low viscosity states.

It is interesting to note that the shear-thickening behaviour of the current DIP suspension
is in contrast to what has been typically observed for the classical ER fluid, which
mainly exhibits shear-thinning behaviour (Bonnecaze & Brady 1992a; Parthasarathy &
Klingenberg 1996). This distinct difference in shear-dependent rheological responses
should be associated with the predominance of ICEP over DEP in the DIP suspension
of ideally conductive particles (Park & Saintillan 2010, 2011b). Note that the underlying
mechanism of the ER fluid ties closely to DEP interactions (Mirfendereski & Park 2022).

3.2. Normal stress differences

As it has been observed that significant particle normal stresses are generated by DIP even at
zero shear rate (Mirfendereski & Park 2021), we investigate the normal stress differences as
a result of shear flow. The first and second normal stress differences, which are defined
by N1 =  Σ x x  −  Σ y y  and N2 =  Σ y y  −  Σz z ,  respectively (Zarraga, Hill & Leighton 2000;
Sierou & Brady 2002; Dbouk et al. 2013), are examined. Prior to proceeding to a
detailed analysis for DIP suspensions with shear flow, the insets of figures 4(a) and 4(b)
present the pure-shear-flow limiting normal stress differences N∞  and N∞  as a function
of volume fraction, respectively. As clearly seen, both N∞  and N∞  remain negative,
and their magnitude increases with volume fraction, which has also been reported both
experimentally and numerically for sheared, non-colloidal suspensions (Sierou & Brady
2002; Dai et al. 2013; Pan et al. 2015; Guazzelli & Pouliquen 2018). It is worth noting that
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N∞  and N∞  at φ =  45 % are almost the same as those for high-shear colloidal dispersions
(Foss & Brady 2000) and high-shear non-colloidal dispersions (Sierou & Brady 2002).
The notable error bars are observed at high volume fractions. These errors are attributed to
the sensitivity of the normal stress differences to even small errors in the calculation of the
average value of each normal stress component, which is also seen and explained by Sierou
& Brady (2002).

Figures 4(a) and 4(b) show N1 and N2 as a function of Mason number for various
volume fractions, respectively, where the normal stress differences are normalized by their
values for a pure shear flow (Mn =  ∞). At low Mason numbers or specifically below the
critical Mason number (Mn =  1), the DIP effect is expected to be strong relative to the
shear flow. In this DIP-dominant regime, N1 is positive for a volume fraction as small as φ
=  15 % but negative at φ ≥  30 %. As opposed to the first normal stress difference, N2 is
negative at φ =  15 % but positive at φ ≥  30 %. The positive N1 and negative N2 at a low
volume fraction of φ =  15 % indeed share similarities with the Brownian contributions to
the normal stress differences observed in a hard-sphere colloidal dispersion (Foss &
Brady 2000). The distinctive characteristics of the low-shear-rate N1 and N2 can also be
explained by our previous observation of the DIP-driven normal stresses at zero shear
rate (Mirfendereski & Park 2021). We observed that under DIP only, the magnitude of the
normal stress in the field direction is larger than the transverse ones (i.e. |Σyy| >
|Σxx|, |Σzz|) for all volume fractions. In addition, the signs of field and transverse normal
stresses are opposite at different regimes of volume fraction; specifically, the suspension at
φ <  30 % exhibits positive transverse normal stresses (Σxx , Σ zz )  and a negative field
normal stress (Σyy ), while the former becomes negative and the latter becomes positive at
30 % ≤  φ ≤  50 %. That is again consistent with the unique low-shear-rate characteristics of
N1 and N2 described above and shown in figure 4. For Mn  1 or well above the critical Mason
number, both N1 and N2 become negative for all volume fractions considered, which
indicates that the effect of shear flow becomes dominant over the DIP effect. Both N1 and
N2 appear to reach a high-shear plateau for Mn >  10. It should be noted that the negative
sign of both normal stress differences at high Mason numbers is well observed in
concentrated suspensions, especially in the shear-thickened states (Cwalina & Wagner
2014).

3.3. Suspension microstructure

As the suspension microstructure has been regarded as a microscopic basis of the
shear viscosity and the normal stress differences (Wagner & Ackerson 1992; Brady &
Morris 1997; Zarraga et al. 2000), we attempt to investigate the microstructural variation in
connection to the variation of the macroscopic rheological properties. To directly
characterize the microstructure undergoing both DIP and shear flow, we calculate the
pair distribution function (Park & Saintillan 2010; Mirfendereski & Park 2019). This
function provides the probability of finding the particles with respect to a reference particle
placed at the origin. Figure 5 shows the projection of this function on the shear plane (x–
y) for various Mason numbers at volume fractions of φ =  15 %, 30 % and 45 %. At Mn
=  0.1, which is below the critical Mason number, the function is symmetric with respect
to the y axis (the electric-field direction) for all volume fractions considered. However,
it is interesting to note that as the volume fraction increases, the location of the
maximum probability changes from near the particle poles (φ =  15 %) to the particle
equators (φ =  30 %, 45 %), which is similar to the zero-shear-rate limiting suspension
(Mirfendereski & Park 2019, 2021). On the relation of the microstructure to the normal
stress differences, the high probability near the poles formed at φ =  15 % and Mn =  0.1
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Figure 5. The projection of the pair distribution function onto the shear plane (x–y) at various Mason
numbers: (a) φ =  15 %; (b) φ =  30 %; (c) φ =  45 %.

suggests the strong negative normal stress in the y direction compared with the other
two directions. This leads to the positive N1 and negative N2 at low Mason numbers
(Mn <  1), as seen in figures 4(a) and 4(b). On the other hand, for higher volume fractions of
φ ≥  30 %, the high probability at the equators corresponds to the strong negative normal
stress in the x and z directions, leading to the negative N1 and positive N2 at low Mason
numbers (Mn <  1), as also seen in figures 4(a) and 4(b).

Increasing the shear rate then results in the notable distortion of the microstructure, as
seen in figure 5 for Mn =  1, 2 and 10. At a low volume fraction of φ =  15 % in figure
5(a), the microstructure evolves like a typical shear-driven suspension (Foss & Brady
2000), where the compressive and extensional axes are clearly identified. The
anisotropy in the microstructure is further developed by increasing the Mason number.
This microstructural anisotropy – the high probability along the compressional axis and
the low probability along the extensional axis – indeed results in negative normal stress
differences at high shear rates (Foss & Brady 2000; Sierou & Brady 2002; Cwalina &
Wagner 2014). For a higher volume fraction of φ =  30 % in figure 5(b), an intriguing
microstructural feature is observed at Mn =  1, where a striped pattern or a string-like
phase is horizontally formed in the direction perpendicular to the field (y) direction.
This observation suggests that the particles tend to assemble into two-dimensional (x–z)
structures parallel to one another at a certain distance apart. This seemingly ordered
microstructure could be responsible for a slight reduction in viscosity from Mn =  0.1 to
Mn =  1 in figure 3(b), which could resemble shear thinning for hard-sphere colloidal
suspensions (Phung, Brady & Bossis 1996; Wagner & Brady 2009). For a much higher

977 A35-13



rms rms

rms rms

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

98
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

S. Mirfendereski and J.S. Park

volume fraction of φ =  45 % in figure 5(c), the horizontal striped patterns also emerge but
form earlier at Mn <  1 than for φ =  30 %. A further increase in shear rate again leads to
the microstructure being analogous to the typical shear-driven suspension for both φ =
30 % and 45 %, showing the anisotropic microstructure with respect to the compressive
and extensional axes. Interestingly, the ordered patterns start to break around the critical
Mason number (Mn =  1), after which so-called hydroclusters are formed. A further rise
in the viscosity during the shear-thickening process at φ =  45 % compared with φ =  30 %
could be attributed to denser hydroclusters, which can be elucidated by the pair
distribution functions at Mn =  10 in figures 5(b) and 5(c). Accompanying supplementary
movies are available at https://doi.org/10.1017/jfm.2023.980 and show the particle motions
in a suspension for Mn =  0.1, 1 and 10 at φ =  30 % and 45 %.

Here, we focus more on the stripped pattern observed in figure 5(b) at Mn =  1 and
figure 5(c) at Mn =  0.1. It is known that the particles tend to pair up briefly due to DIP or
ICEP along the field (y) direction and then immediately reorient towards the directions
orthogonal to the field direction, after which they tend to repel from each other (Saintillan
2008; Park & Saintillan 2011a). Under sufficiently strong particle loading, specifically
beyond the semidilute regime (φ >  15 %), we previously found that such pairing dynamics
cause the particles to interact dominantly along the transverse directions (x, z), resulting in
the maximum probability of the pair distribution function at the particle equators
(Mirfendereski & Park 2019), which is also seen in figure 5. Upon the application of
shear flow at which the shear effect is comparable to or weaker than the DIP effect, the
particles tend to be trapped in the flow-vorticity (x–z) plane and thus self-assemble into
two-dimensional horizontal sheets while still coherently moving in the flow (x)
direction. These two-dimensional sheet-like structures appear to experience no direct
contact between them, making them move more easily (see accompanying supplementary
movies for Mn =  1 at φ =  30 % and Mn =  0.1 at φ =  45 %). Such a well-organized
structural pattern under the flow is associated with less energy dissipation, resulting in a
shear viscosity smaller than for the absence of the electric field, as seen in figure 3(b).
However, these sheet-like structures are gradually disrupted by further increasing the
Mason number, forming hydroclusters and, in turn, leading to the viscosity increase.

3.4. Suspension dynamics

We now attempt to illuminate the transition observed in the suspension rheology and
microstructure around Mn =  1 from a suspension dynamics point of view. A
straightforward way to examine suspension dynamics is kinetics. We compute the
contributions of DIP and shear to the r.m.s. velocity of particles, which are denoted as
UDIP and UShear, respectively. Figure 6 presents the ratio of these two contributions,
UDIP/UShear, as a function of the Mason number for different volume fractions. The ratio
seems to decrease almost linearly on the logarithmic scales with the Mason number. It
passes the unity at Mn =  0.7–1, around which there would be a changeover in the dominant
mechanism of particle kinetics from DIP to shear dominance. Such a changeover could
confirm the critical Mason number (Mn ≈  1), which is identified by the relative shear
viscosity in figure 3(b), the normal stress differences in figure 4 and the microstructure in
figure 5. The inset of figure 6 shows the changeover Mason number MnC as a function of
volume fraction. There seems to be no general trend except in the range of MnC =  0.7–1.
Similar to the normal stress differences, large errors are observed at higher volume
fractions due to stronger fluctuations. It is worth noting again that even small errors in the
computation of each contribution of DIP and shear to the r.m.s. velocity can give rise
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Figure 6. The ratio of the DIP contribution and the shear contribution to the root-mean-square (r.m.s.) velocity
of particles (UDIP/UShear) as a function of Mason number on a log–log scale. Inset: the crossover Mason
number Mn as a function of volume fraction. Note that the critical Mason number can be approximated when
the ratio becomes unity, UDIP/UShear =  1.
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Figure 7. (a) Hydrodynamic diffusivity Dyy in the electric-field (y) direction, which is the same as the
velocity-gradient direction of the external flow, as a function of volume fraction for a range of Mason numbers.
Inset: the mean-square displacement (MSD) curves in the velocity-gradient (y) and vorticity (z) directions at
φ =  30 % and Mn =  0.05. (b) The diffusivity is replotted as a function of Mason number for various volume
fractions.

to larger errors in the calculation of their ratio, which is also noted by Sierou & Brady
(2002).

Finally, we investigate the hydrodynamic diffusion to make a further link between the
suspension dynamics and the transition observed in the rheological properties and
microstructure. To effectively quantify the hydrodynamic diffusion of a suspension, the
MSD over time are calculated, as seen in the inset of figure 7(a) as an example in the
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log–log plot. The MSD curve exhibits an initial quadratic growth with time followed by
the diffusive regime with linear growth due to particle–particle interactions. The average
slopes of the MSD curves over the diffusive regime give the effective hydrodynamic
diffusivity tensor D (Park & Saintillan 2010; Mirfendereski & Park 2019). Figure 7(a)
shows the dependence of the diffusivity in the velocity-gradient direction Dyy on the
volume fraction for various Mason numbers. Here Dyy also denotes the hydrodynamic
diffusivity in the field direction. Note that the diffusivity Dyy is normalized by γ̇a2. At
the smallest Mason number of Mn =  0.05, the diffusivity appears to be the largest across
all volume fractions considered due to the strongest DIP interactions in comparison with
other higher Mason numbers. At this Mason number, the diffusivity remains almost
constant up to φ ≈  35 %, after which it starts to increase with volume fraction. As the
Mason number is increased, this trend seems to maintain up to Mn =  1, but its magnitude
continues to decrease and reach a minimum at Mn =  1. Interestingly, as the Mason number is
further increased, the diffusivity starts to increase, especially for 20 % <  φ <  45 %. It then
seems to collapse on a single curve for Mn ≥  5 as it approaches the pure-shear-flow
diffusivity, which is comparable with one observed by Sierou & Brady (2004). To more
clearly demonstrate the transition around Mn =  1, the normalized diffusivity is replotted in
figure 7(b) as a function of the Mason number for various volume fractions. As the
Mason number increases, the diffusivity continues to decrease until Mn ≈  1, after which it
becomes almost constant, except for φ =  35 % and 40 %, where there is a slight increase
from Mn =  1 to Mn =  2. Nevertheless, a clear transition is observed around Mn =  1 in
figure 7(b). Therefore, the suspension dynamics, characterized by the kinetics and
hydrodynamic diffusion in figures 6 and 7, strongly supports a changeover in the dominant
mechanism around the critical Mason number of Mn =  1, which ties closely into the
transition observed in rheological properties and microstructure around Mn =  1.

4. Conclusion

We have investigated for the first time the effects of DIP (the combination of two nonlinear
electrokinetic phenomena – DEP and ICEP) on the shear rheology of suspensions of
ideally conductive spheres using large-scale numerical simulations. For ideally conductive
particles undergoing DIP in an electric field, the ICEP is known to be predominant over the
DEP – thus the DEP effect is mostly neglected. To simulate the particle motions driven by
both DIP and shear flow, we developed a simulation model that incorporates our previous
model for DIP using the mobility-based Stokesian dynamics approach (Mirfendereski &
Park 2019) combined with the classical resistance-based Stokesian dynamics approach
(Brady & Bossis 1988) for shear flow in a periodic domain of the Lees–Edwards kind.
The suspension is characterized by Mason number (Mn), which is the ratio of viscous
shear stress to electrokinetics-driven stress, Mn =  ηγ̇/εE2. The suspension rheology was
examined in a range of 5 ×  10−2 ≤  Mn ≤  102 at volume fractions up to φ =  50 %.

For shear viscosity, it was found that at high shear rates corresponding to high Mason
numbers (Mn >  5), the φ-dependent shear viscosities collapse almost onto a single curve of
a purely sheared suspension, demonstrating almost negligible effects of DIP. As the
Mason number is decreased below Mn =  5, the φ-dependent shear viscosity starts to
decrease due to the increasing DIP effect, where a significant reduction of the viscosity is
observed from Mn =  2 to Mn =  1. As the Mason number is further decreased below Mn =
1, the viscosity slightly decreases as entering the low-shear-rate regime, where the φ-
dependent viscosity eventually collapses again onto another single curve for Mn <  0.5. For
shear-dependent behaviours, it was found that the shear viscosity at a volume fraction
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as small as φ =  15 % is insensitive to a shear rate, showing Newtonian-like behaviour. For
the semidilute regime at φ ≈  30 %, the shear thickening starts to occur in which viscosity
starts to sharply increase around Mn =  1. In the concentrated regime of φ =  45 %–50 %, an
almost five-fold increase in viscosity occurs during the shear thickening process. The
microstructure was also investigated, where for low shear rates or DIP-dominant regimes
Mn ≤  1 and beyond semidilute regimes φ ≥  30 %, the two-dimensional sheet-like structures
are formed in the plane orthogonal to the velocity-gradient direction or electric-field
direction. This structure helps a suspension flow easily, which is responsible for low
viscosity. As a shear rate or the Mason number is increased above Mn ≈  1, such an
organized structure is gradually disrupted, leading to the formation of the so-called
hydroclusters, which eventually results in increasing viscosity and thus promoting the
shear thickening.

For the normal stress differences, it was found that at low Mason numbers below Mn
≈  1, the first normal stress difference N1 is positive and the second normal stress
difference N2 is negative at a low volume fraction of φ =  15 %, implying that the effects of
DIP on the normal stress differences are reminiscent of the Brownian contribution (Foss &
Brady 2000). As a volume fraction is further increased for φ ≥  30 %, N1 and N2 show the
opposite trend that N1 and N2 become negative and positive, respectively. This can be
explained by the microstructure that exhibits the high probability of the pair distribution
function in the flow and vorticity directions due to the effect of DIP, causing the particles to
get trapped in two-dimensional sheets orthogonal to the velocity-gradient direction. For
higher Mason numbers of Mn >  1, both N1 and N2 become negative across all volume
fractions considered, and their magnitude increases with volume fraction.

To further illustrate the transition observed in rheological properties around Mn =  1,
which we call the critical Mason number, suspension dynamics were investigated. The
particle kinetics of each DIP and shear contribution were compared, showing that a
changeover in the dominant kinetics is observed around Mn =  0.7 −  1 from DIP to shear
dominance. Furthermore, the hydrodynamic diffusivity in the velocity-gradient direction
clearly exhibits the transition around Mn =  1. Its magnitude is the largest at the lowest
Mason numbers Mn =  0.05 due to the strong DIP effect and starts to decrease until
reaching a minimum at Mn ≈  1, beyond which it becomes almost constant.

Lastly, the present study suggests the potential use of DIP or ICEP as a means to
control the suspension rheology of conductive particles in an electric field. For instance, at
high volume fractions (i.e. φ ≥  30 %) and high shear rates (i.e. Mn >  1), having a
stronger DIP effect via increasing the electric-field strength could reduce the viscosity
from shear-thickened states. In addition, it also suggests that the direction or frequency of
an electric field could play a promising role as a control parameter in controlling the
rheology of such suspensions, allowing us to tune shear-thinning or shear-thickening
behaviours. A detailed investigation of the active rheology control via an electric field for
suspensions of conductive particles will be a subject of interesting future work.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.980.
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