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Abstract

The polypeptide N-acetylgalactosaminyl transferase (GalNAc-T) enzyme family initiates O-linked
mucin-type glycosylation. The family constitutes 20 isoenzymes in humans. GalNAc-Ts exhibit
both redundancy and finely tuned specificity for a wide range of peptide substrates. In this work,
we deciphered the sequence and structural motifs that determine the peptide substrate preferences
for the GalNAc-T2 isoform. Our approach involved sampling and characterization of peptide—
enzyme conformations obtained from Rosetta Monte Carlo-minimization—based flexible docking.
We computationally scanned 19 amino acid residues at positions —1 and +1 of an eight-residue
peptide substrate, which comprised a dataset of 361 (19x19) peptides with previously
characterized experimental GalNAc-T2 glycosylation efficiencies. The calculations recapitulated
experimental specificity data, successfully discriminating between glycosylatable and non-
glycosylatable peptides with a probability of 96.5% (ROC-AUC score), a balanced accuracy of
85.5% and a false positive rate of 7.3%. The glycosylatable peptide substrates viz. peptides with
proline, serine, threonine, and alanine at the —1 position of the peptide preferentially exhibited
cognate sequon-like conformations. The preference for specific residues at the —1 position of the
peptide was regulated by enzyme residues R362, K363, Q364, H365 and W331, which modulate
the pocket size and specific enzyme-peptide interactions. For the +1 position of the peptide,
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enzyme residues K281 and K363 formed gating interactions with aromatics and glutamines at the
+1 position of the peptide, leading to modes of peptide-binding sub-optimal for catalysis. Overall,
our work revealed enzyme features that lead to the finely tuned specificity observed for a broad
range of peptide substrates for the GaINAc-T2 enzyme. We anticipate that the key sequence and
structural motifs can be extended to analyze specificities of other isoforms of the GalNAc-T
family and can be used to guide design of variants with tailored specificity.
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Introduction

In higher organisms, O-linked N-acetylgalactosamine (GalNAc) glycosylation (or mucin-
type glycosylation) is an abundant and essential post-translational modification. This type of
glycosylation is initiated by a family of glycosyltransferases (GTs) known as polypeptide N-
acetylgalactosaminyltransferases or GaINAc-Ts. These enzymes transfer a GalNAc sugar
from a donor uridine di-phosphate (UDP) nucleotide to the hydroxyl group of a threonine or
serine residue of an acceptor peptide. This transfer is the first committed step of mucin-type
O-glycosylation, and these enzymes, therefore, define the sites of O-glycosylation. The
resulting O-linked GalNAc is further extended to one of the four common core structures,
which can be subsequently extended to give mature glycans.!2 Aberrant O-glycosylation is
a well-known marker of many cancers and has also been linked to developmental and
metabolic disorders.>*

In humans, the GalNAc-T family constitutes 20 isoforms. The unusually large number of
isoforms for glycosylation is peculiar to O-glycosylation, and the multiplicity is conserved
in mammalian evolution, suggesting that cell or tissue specific isoforms have specialized
functions.? The isoforms exhibit specific substrate preferences that vary with isoenzyme
surface charge, prior neighboring long-range and short-range glycosylation patterns and the
sequence of the acceptor peptide substrate. Over the last two decades, the peptide substrate
preferences for a large number of isoforms have been established by in vitro studies.®8 The
peptide substrate is characterized by a sequence motif (or sequon), Thr/Ser—Pro—X-Pro (T/
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SPXP), where T/S is the site of glycosylation (position 0). This sequon is the only conserved
consensus motif modified by all isoforms except T7 and T10. The proline at the +3 position
of the sequon is supported by a conserved structural motif, viz., the “proline pocket” in the
enzyme’s peptide binding groove in all isoforms that bind the T/SPXP motif.>~1! While this
may suggest that all peptides with this motif are valid substrates for the GalNAc-T enzymes,
in practice, the T/SPXP motif was obtained by averaging preferences over all isoforms (with
characterized specificity). The motif simply indicates preference (rather than a strict rule or
constraint) for a specific amino acid residue at a given position on the sequon, such as
proline at the +1 and +3 positions. For the remaining positions in the sequon, most isoforms
exhibit overlapping yet selective preferences for different amino acid residues. For example,
at the —1 position with respect to the glycosylation site, T1 favors aromatics!2 and T12
prefers bulky non-polar residues;!3 whereas T2 exhibits very little to no activity for these
amino acids and instead prefers threonine, proline, alanine, and serine. Yet both T1 and T2
glycosylate the sequon T_; TP, !2 (with threonine at —1 and proline at +1 positions).
Moreover, high-resolution glycosylation experiments from Kightlinger ef al.!2 (explicit
determination of glycosylation efficiency for a given sequon) demonstrate that the (T/S)PXP
motif is neither sufficient nor necessary for glycosylation. For example, their data shows that
while T2 readily glycosylated sequons T—{ TP, ;AP and S_; TP AP, it failed to modify
sequons F_; TP{AP, Q_; TP1AP, K_; TP AP etc. (Figure 1 A). These observations have
led to the hypothesis that GalNAc-Ts exhibit both redundancy and finely tuned specificity
for a wide range of peptide substrates.

While there is ample experimental data on the peptide substrate specificities of various
isoforms, the molecular basis for observed peptide substrate specificities is not well
understood. Computational work, so far, has been focused on understanding the mechanism

14,15 conformational changes in the flexible loop in the catalytic domain,

of sugar transfer,
16,17 and the effect of the flexible linker connecting the catalytic and lectin domains.!! None
of the computational studies so far have examined the amino acid preferences at different
positions on the peptide. Computational studies can pinpoint key positions and structural
motifs on an isoform that contribute to peptide substrate specificity. These sequence and
structural motifs can be studied across isoforms to reveal more general patterns, to modulate
enzyme specificity, and to gain insight into the consequences of enzyme and substrate
mutations implicated in aberrant glycosylation, (e.g., colorectal cancer associated mutations

of GalNAc-T12!8) paving the way for rational design of specific drugs/inhibitors!®.

In this work, we seek to understand the sequence and structural motifs that determine the
peptide substrate preferences for the GalNAc-T2 isoform. Our immediate goal is to
recapitulate experimentally determined specificity in terms of glycosylation efficiency for
sequon variations at positions —1 and +1 (19 amino acid residues tested for each position), as

1,12 and to understand the structural motifs that best explain

reported by Kightlinger et a
experimentally observed trends. To recapitulate experimentally observed specificities for a
large dataset, we need an efficient, high-throughput computational method that can capture

the key mechanisms of enzymatic catalysis.

Enzymatic catalysis relies primarily on selective transition state stabilization, ground state
(reactants) destabilization, dynamics, and active-site gating.2%-2! In practice, these effects
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occur at different length- and time-scales and therefore cannot be accurately captured by a
single method, even when enzyme crystal structures are available.22 Hybrid quantum
mechanics/molecular mechanics (QM/MM) simulations have been able to recapitulate

catalytic proficiency or mechanistic details for many enzymes such as Kemp eliminases?>

or
glycoside hydrolases2* as they are well-suited to characterize the transition state. QM/MM
simulations, however, are not suitable to capture binding or dynamics over longer timescales
and are prohibitively expensive for a larger dataset. Other factors that determine the stability
of the transition state are electrostatic- and shape-complementarity at the peptide-enzyme
interface. Electrostatic complementarity can be captured by various computational
techniques (e.g., Monte Carlo (MC) or molecular dynamics (MD)-based methods with
Poisson-Boltzmann electrostatics or other continuum electrostatics models) at different
length-scales. Other effects are determined by the thermodynamics of the enzyme-peptide
interactions. To achieve a lower free energy of activation,2%-23 the enzyme must stabilize the
transition state selectively relative to the reactants. Additionally, if the product is too stable
in the enzyme’s active site, product release becomes the catalytic rate-limiting step. This
thermodynamic description demands the use of methods that capture multiple states
(reactants, products and transition states).26-27 Furthermore, dynamics is important in many
catalytic mechanisms, from small vibrations that lead to rate-promoting motions?8 to large
conformational changes and rearrangements in the molecular structure.2? Active site gating
is another important mechanism for catalysis by which key residues outside the active site
regulate access to the active site.3?-3! These thermodynamic and kinetic effects, primarily in
the nanosecond to microsecond timescales, can be captured faithfully by MD simulations
though such simulations can be computationally prohibitive for comparing a large number of
substrates. An alternative to MD simulations are Monte Carlo-minimization32 (MCM)
approaches, which are computationally faster and can be reliably used to determine
thermodynamically stable native-like states.

Rosetta-based MCM computational protocols, notably, pepspec,22 sequence-tolerance33-4

and MFPred?> have previously been used for predicting the sequence profiles of peptides
recognized by various multi-specific protein recognition domains (PRDs) such as PDZ,
SH2, SH3, kinases, and proteases. All protocols rely on MCM sampling and aim to
approximate the stabilization of the substrate-bound state or transition state in the enzyme’s
peptide binding groove. The transition state is approximated by known cognate sequon
conformations in the enzyme’s active site (based on crystal structures and/or homology
modeling) with additional constraints to preserve important structural motifs pertaining to
the transition state, when available. In the absence of constraints, this approach is equivalent
to evaluating the stabilization of the substrate-bound state.3¢ MCM allows for faster
sampling facilitating the scanning of a large number of amino acid residues at multiple
positions of the peptide substrate. All three protocols achieve impressive accuracy in
predicting experimentally observed profiles for many PRDs. However, since all three
methods are developed with the broad goal of predicting sequence specificity profiles for a
range of PRDs, the accuracy of prediction may not be sufficient to pinpoint subtle
differences in specificity for a specific target of interest. For example, the sequence-
tolerance protocol pre-calculates the interactions between all interacting residues ignoring
changes in conformation of the peptide in the protein’s binding pocket. All three methods
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struggle to predict specificity for HIV—1 protease, which has a relaxed specificity profile and
a preference for small hydrophobic residues, similar to GaINAc-T2. Additionally, all three
protocols employ limited backbone sampling, prohibiting the free conformational sampling
of the peptide in the binding groove. For the more targeted goal of designing a peptide
inhibitor to discriminate between two similar PDZ domains, Zheng et al.! employ extensive
conformational sampling using the full-fledged flexpepdock protocol3®:3? along with the
CLASSY method to achieve a solution with desired specificity and affinity goals. Similarly,
Pethe er a*? were able to obtain significantly improved prediction accuracies for proteases
(including HIV—1 protease) compared to previous methods (MFPred, sequence tolerance
and pepspec) by employing machine learning and a discriminatory score based on geometric
features, interface score terms from Rosetta, and electrostatic score terms from Amber. In
another work, Pethe ef a/*! used supervised learning on experimentally obtained deep-
sequencing data and information from structure-based models to chart the specificity
landscape of 3.2 million substrate variants of the viral protease HCV.

Here, we sought to understand specificity determinants for a specific isoform of the
GalNAc-T family and to pinpoint sequence and structural motifs in the enzyme that explain
fine-tuning of specificity. To this end, we developed a customized Rosetta-based
protocol*243 that allowed us to model structures of all 361 peptide sequons (19x19) with the
GalNAc-T2 enzyme and computationally determine the sequon preference for the GalNAc-
T2 isoform. Our protocol was similar in spirit to earlier protocols in that it docks the peptide
substrate into the enzyme’s active site. However, unlike pepspec,22 sequence-tolerance33-4
and MFPred?? and similar to the protocol of Zheng et al.,3” we allowed fully flexible peptide
sampling (as opposed to limited or no backbone sampling) followed by clustering and
analysis of the sampled low energy decoys. Our strategy relied on characterizing the peptide
binding to the enzyme with a range of structural features at the interface as a function of the
amino acid residues at the +1 and —1 positions. Using our methodology, we were able to
identify features that recapitulated high-quality experimental specificity data for GalNAc-
T2. Extensive peptide backbone sampling revealed that the peptide binding groove of
GalNAc-T?2 stabilized multiple competing conformations/states — some leading to efficient
glycosylation and others hampering it. Furthermore, multiple stable states suggested that
kinetics might play an important role in determining specificity. Thus, finely-tuned
specificity might be achieved by modulating the relative stability of these states to
discriminate between peptide substrates for an isoform and across isoforms. Overall, our
work reveals key residues on the enzyme that determine peptide substrate preferences at
various sequon positions.

Clustering of low interaction energy decoys reveals that peptides exhibit multiple
competing low-energy conformations

We studied all 361 (19x19) sequons obtained by scanning 19 amino acids (all amino acids
except cysteine) at positions —1 and +1 with respect to the modified threonine (at position 0
or Tp). The experimentally determined glycosylation efficiencies for all of these sequons
was determined by Kightlinger ef a/.!2 and replotted in Figure 1A (Figure S1). For each
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sequon, we started with the co-crystal structure of the peptide and UDP-sugar bound to the
enzyme (pdb ids: 4d0z and 2ffu, respectively).!® We mutated the residues at the —1 and +1
position of the peptide to the target sequon and repacked and minimized the nearby side
chains to obtain a starting enzyme-peptide configuration for the target sequon. We then
subjected this starting structure to MCM sampling of rigid-body displacements and peptide
torsion angles in two stages - a low-resolution centroid stage with simulated annealing
followed by a high-resolution all-atom stage to generate 2,000 structures (decoys) per
sequon (see Methods). In this paper, we use the shorthand notation X~ for amino acid ‘X’
(denoted by 1-letter code) and sequon position ‘N’ and a sequon with the shorthand notation
X_1TX41. For example, P_; denotes amino acid proline at the —1 position, M| denotes a
methionine at the +1 position and P_;TM. | denotes a sequon or peptide with P_; and M.
For brevity, we also refer to peptides or sequons containing residue X at position N as “XN
peptides” or “X~ sequons” respectively.

Preliminary analysis of the decoys showed that many peptides exhibited multiple stable
states with comparable energies of interaction (interaction energy) between the peptide and
enzyme. In Figure 1B, we show plots of interaction energy vs. distance to the reference
crystal structure for four randomly chosen sequons obtained from MCM sampling of the
peptide substrate with the respective sequons in the enzyme’s peptide-binding groove. For
all four sequons in Figure 1B, we observed multiple clusters of low interaction energy
decoys, or “funnels.” For example, for sequon T_;TQ.;, we observed two distinct funnels at
RMSDyeptide (the root mean square deviation of C,, carbons of the peptide backbone with
respect to the peptide in the crystal structure) values of about ~ 0.65 A and 1.25 A with
comparable lowest interaction energies. Overall, 57% (205/361) of the sequons exhibited
two significant clusters. 39/205 (19.0%) and 81/205 (39.5%) sequons exhibited lowest
energy states for each cluster within 0.5 and 1.0 Rosetta energy units (or REUs) respectively,
of each other, underscoring the importance of considering both states (Figure S2).

To characterize multiple low-energy conformations and to construct a more complete picture
of the landscape of structural conformations sampled by the peptide substrate in the enzyme
cavity, we developed the computational flow summarized in Figure 1C. For each sequon, we
selected the top-10%-scoring decoys (by interaction energy) from MCM sampling and then
clustered them using three features. The first feature, RMSDpepige, characterized decoys on
the basis of the similarity of the peptide backbone conformation and position of the peptide
in the crystal structure. Next, doc, the distance between the hydroxyl group of T and the
anomeric carbon (C;) on the sugar tracked the distance for the new glycosidic linkage.
Finally, djyp, the distance between the amide group of Ty on the peptide and the oxygen of
the B-phosphate group of UDP (Op_po4) Was a reaction coordinate characterizing a
transition-state-stabilizing hydrogen bond between the backbone amide of T( and UDP.!4

We characterized the lowest-energy decoy for the largest and second-largest clusters
obtained for each sequon and plotted heatmaps to show the distribution of the lowest
interaction energy (Figure 2A), normalized cluster size (Figure 2B), RMSDpepyide (Figure
2C) and diyg (Figure 2D) for all 361 sequons (see also Figure S3 and S4). We also
characterized the clusters by the decoy representing the center of the cluster, the average
over all decoys with interaction energies within 1 REU and the average over the five decoys
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in the cluster with the lowest interaction energies. All strategies resulted in similar heatmaps
(Figure S5) and hence, going forward, we represented a cluster by the lowest energy decoy
belonging to that cluster.

Horizontal stripes emerging across the RMSDpeptige and dhis heatmaps (Figure 2C-D)
suggested that sequons with the same amino acid at the —1 position (horizontal axis)
exhibited similar RMSD,eptide and dhis values. To probe whether the low-energy
conformations exhibited by various peptides depends on the identity of the residue in a
position-specific manner, we plotted the RMSD eprige and dhis of the lowest energy decoy
for the two largest clusters for each sequon colored by the amino acid residue at the —1
(Figure 3A) and +1 (Figure 3B) positions. It is apparent in Figure 3A that sequons with the
same amino acid residue at the —1 position, especially A, G, T, P, S and V, were grouped or
clustered together. The clustering or grouping suggests that sequons with the same amino
acid at the —1 position exhibited similar conformations or low-energy states. Similar
grouping was not observed for sequons with the same residue at the +1 position (Figure 3B).
This high-level analysis of low-energy conformations for the entire dataset suggested that
the —1 position plays a dominant role in determining the low-energy conformation(s)
exhibited by a sequon and that the +1 position contributed in a secondary capacity.

In the following sections, we present hypotheses to explain how each position (—1, +1)
contributed in a characteristic manner to determine the low-energy conformations exhibited
by a sequon and how these conformations, in turn, related to experimentally determined
specificities. We characterized the low-energy conformations by a selected set of relevant
features.

To compare our predictions with experiments, we employed logistic regression and, unless
otherwise indicated, we labeled all sequons with experimental glycosylation efficiencies
greater than 10% (efficiency threshold) as glycosylatable and those with efficiencies less
than 10% as unglycosylatable, in line with previous work3>. In Table 1 (and Table S1), for a
chosen value of efficiency threshold, we have tabulated the area-under the curve (AUC) of
the receiver operating curve (ROC). Since the dataset of glycosylation efficiency
measurements is highly imbalanced with only 46/361 (12.7%) glycosylatable sequons
(positive samples) and 315/361 (87.3%) unglycosylatable sequons (negative samples), in
Table 1 (and Table S2), for each metric, we also report the true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) and the balanced accuracy (BA = (TPR +
TNR) / 2, where the true positive rate TPR = TP / (TP + FN) and the true negative rate TNR
= TN /(TN + FP) and false positive rate (FPR = FP / (FP + TN)). Note that a naive classifier
that classifies all 361 sequons as unglycosylatable has an accuracy (ACC = (TP + TN) / (TP
+ TN + FP + FN)) of 87.3% (= 315/361), a BA of 50% (= (0/46 + 315/315)/2) and an FPR
of 0%. Since accuracy (as opposed to balanced accuracy) higher than such a naive classifier
may come at the expense of FPs, we report balanced accuracy instead of accuracy for our
dataset.

Energy is a commonly used metric in determining specificity of peptide substrates (e.g.
pepspec?2, sequence_tolerance®3 and MFPred33). However, for the purpose of prediction of
specificity trends for the T2 enzyme, interaction energy by itself was a weak predictor of
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specificity (AUC = 0.566, Table 1). The significantly lower AUC values based on interaction
energy were due to the fact that P_; and S_; peptides bind the enzyme with significantly
lower interaction energies than A_, G_; or T_; peptides (Figure 2A). For comparison with
other energy based approaches, we applied MFPred3? to obtain the specificity profile for
GalNAc-T2 (Figure S6). MFPred uses a mean-field approach that assumes each residue
position is independent. MFPred obtains an AUC score of 0.68 at the —1 position and 0.50 at
the +1 position (Table S3). For comparison of experimental and MFPred specificity logos,
see Figure S6. In the MFPred study, the addition of structural-motif-preserving constraints
improved predictions for some PBDs. For the MFPred scores reported here, we did not add
any constraints.

We omitted dpc from future characterization due to its low AUC score in classifying
glycosylatable and non-glycosylatable sequons (AUC score 0.43; Table S1). However, we
retained clustering in the 3d feature space formed by RMSDpeptide, doc and dyp) since doc
improves resolution of conformations for some sequons (Figure S7).

Recapitulation of amino acid specificity trends for the —1 position

Sampling of TS-critical hydrogen bond recapitulates specificity for 84% of the
sequons with a false positive rate of 14%—In QM/MM simulations of the
glycosylation of the EA2 peptide by GalNAc-T2, Gomez e/ al. characterized a hydrogen
bond between the backbone amide of Thry and the B-phosphate group on UDP !4 They
proposed that the hydrogen bond stabilizes the transition state (TS) in “a general catalytic
strategy used in peptide O-glycosylation by retaining glycosyltransferases”. Hence, our first
hypothesis was that successful glycosylation requires a peptide to exhibit a low-energy
conformation with dim distances compatible with the proposed hydrogen bond. Thus, in
Figure 4A, we show the heatmap of djyg for the lowest interaction energy decoys. Applying
a 4.0 A threshold to the 19%x19 grid of sequons splits the sequons into those that do not meet
this condition (Ze., > 4.0 A,) and those that exhibited a representative low-energy
conformation compatible with hydrogen bonding between the peptide and UDP. When
compared with experimental results (Figure 1 A), this criterion discriminated well between
substrate peptides and non-substrates of the enzyme (Figure 4B) with 44 TPs, 259 TNs, 56
FPs and 2 FNs (Table 1, Table S2).

A ROC analysis (Figure 4C) showed that the dyg value of the lowest-energy decoy of the
largest cluster correctly distinguished the glycosylatable sequons from the non-
glycosylatable sequons with a probability of 92.3% (ROC-AUC value of 0.923; Figure 4C).
Setting a threshold of diB < 4 A, diB classified with a balanced accuracy of 88.9% (TPR =
44/46, TNR = 259/316), accuracy of 84% (=303/316) (Table S2) and a false positive rate of
17.8% (56/(56+259)) (Table 1). If instead of @B, we used the fraction of the of decoys (Ng)
that satisfied the dis < 4 A criterion, the probability of correctly classifying a sequon was
90.6% (ROC-AUC was 0.906; Figure 4C). Setting an arbitrary threshold of Ngq > 0.70, this
feature classified with a balanced accuracy of 85.2% (TPR=39/46, TNR=270/316) of the
sequons with a false positive rate of 14.3% (45/(45+270)) (Table 1). The large number of
FPs for both diyg and Ny indicates that the of dyg <4 A criterion has low precision.
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Large amino acid residues are excluded from GalNAc-T2’s “—1 pocket”—Figure
4A reveals that peptides preferentially exhibited low-energy, highly populated states (higher
fraction of decoys) with dyp distances compatible with hydrogen-bonding when amino acid
residues with smaller side chains such as proline, alanine, glycine, serine, or threonine were
present at the —1 position. To understand the structural basis for the observed dyg trends, we
considered specific sequons and their lowest-energy conformations. In Figure 4D, we show
the dyp distances sampled by the top 10% low-energy decoys for four representative
sequons — P_; TP, and T_ TP, (preferentially sampled conformations with diyg < 4.0 A),
and N_| TP, and R_{ TP, (higher dyp distances). Figure 4E shows the structures of the
lowest energy conformation (largest cluster) for these four sequons. The sequons with P_;
and T_; fit in the pocket-like cavity in the enzyme’s peptide binding groove (Figure 4E, top
panels), whereas sequons with N_; or R_| were excluded from this cavity due to steric
hinderance thereby resulting in larger distances (Figure 4E, bottom panels). Hence, the
structural basis for peptides to preferentially sample low-energy conformations compatible
with sampling of the proposed TS stabilizing hydrogen bond was the relative size of the side
chain of the amino acid at the —I position and fit into the ‘“—1 pocket” on the enzyme
(highlighted in Figure 4F; discussed in more detail later).

The case of sequon N_; TP (Also V_{TP,; Figure S8) is also notable because it exhibited
two significant clusters, the smaller one (normalized cluster size ~ 10%) exhibiting distances
compatible with hydrogen bonding (Figure 4D) and the larger one (normalized cluster size ~
90%) with comparable interaction energy exhibiting larger distances. Experimentally this
sequon was non-glycosylatable. Sequon T_ TP, which is experimentally glycosylatable,
also exhibits two significant clusters. However, the larger cluster exhibits a dyg distance
compatible with hydrogen bonding (Figure 4D). This suggests that a larger fraction of
decoys exhibiting diyg compatible with TS-stabilizing hydrogen bond renders a sequon more
glycosylatable.

For sequons with larger amino acid residues at the —1 position, characterization of the dyg
distance correlated with undetectable glycosylation in experimental assays as peptides/
sequons with larger amino acids did not meet the hydrogen-bonding criteria and assumed
conformations at distances farther from the UDP-GalNAc donor, making the reaction less
likely. However, this dyp criterion incorrectly classified all G—; sequons. (Figure 4B; blue
arrow). Since dyp generated some false positives, especially G 1 peptides, the ability of the
peptide to assume conformations amenable to the formation of the TS-stabilizing hydrogen
bonding is a necessary but not sufficient condition to determine specificity.

G-1 results in distinct low-energy states characterized by higher RMSDeptide
values—To probe why G_; peptides may be non-glycosylatable even though they satisfy
the dyp metric, we examined the joint distribution of the RMSDeptide and diyg sampled by
the top 10% of decoys for all G_; and P_; peptides (Z.¢c., averaged over all 19 amino acid at
the +1 position) (Figures S9—S13 plots all 19 sequons for G, S—_1, A_j, T—y and P_;.) G_;
peptides exhibited two low-energy states (Figure 5A), but P_; peptides primarily exhibited a
single, low RMSDy,eptige state (Figure 5B).
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Amino acid residues with smaller side chains are sub-optimal for -1 pocket of
the enzyme—In Figure 5C, we have superposed the lowest-energy decoys for sequons P
—1TP4; and G_{ TP, representative of P_; and G_; peptides, respectively. For G_; TPy, the
backbone was shifted “up” with respect to that of the P_; TP, backbone (Figure 5C; green
arrow). For G_ peptides, the small size of the glycine residue allowed multiple
configurations in the —1 pocket of the enzyme, all of which still made the TS stabilizing
hydrogen bond (i.e., < 4.0 A). Consequently, we also observed the “GTX-like state” (defined
as RMSDpeptide = 1.0 A and < 4.0 A and marked in Figure 5 with black arrows) for A_; and
S_; (shorter side chains) peptides (Figure 5D) but not for T—; peptides. Instead, T—; peptides
exhibited a third state (Figure 5D; blue arrow) which we discuss later. Thus, while the dyp
metric explained why sequons with larger side chains at the —1 position were non-
glycosylatable, the RMSD eptide metric explains why certain sequons with smaller side
chains at the —1 position may not be suitable for glycosylation.

RMSD,eptide metric improves sequon specificity predictions for G- peptides
and recapitulates specificity for 90% of the sequons—P_ peptides, irrespective of
the amino acid at the +1 position, experimentally exhibited high glycosylation efficiencies
and also primarily exhibited the low-RMSD¢piide 0r the PTX-like state (defined as
RMSDpeptide < 1.0 A and < 4.0 A and marked in Figure 5 with red arrows). This leads us to
hypothesize that besides the TS-stabilizing hydrogen bond (characterized by dyg), the
second factor that determined the glycosylatability of a sequon was the precise positioning
of the peptide in the enzyme’s peptide binding groove, i.e., how close the peptide backbone
was, spatially and conformationally, to the cognate sequon peptide conformation in the
crystal structure. We postulated that the “PTX-like state” (red arrows in Figure 5D) with
RMSDpeptide < 1.0 A leads to successful glycosylation (reactive state) whereas all other
conformations or states with RMSDeptige = 1.0 A (e.g. the GTX-like state) did not lead to
glycosylation (non-reactive).

Hence, we used the sampling of the PTX-like state by the top-scoring decoys, quantified by
the RMSDpeptige 0f the lowest energy decoy of the largest cluster and the normalized size of
the largest cluster, as the second criterion for successful glycosylation that includes multiple
low-energy conformations. This criterion improved prediction for sequons that exhibited
low-energy conformations in the GTX-like state, (A—{THy, A-1 TG4, S-1 TG4y, G TG4y,
etc.), including G_; peptides and was able to correctly classify many such peptides as non-
glycosylatable (Figure SE, F). When compared with experimental results, this criterion,
based on the RMSDeptige value of the lowest-energy decoy of the largest cluster as a
classification metric for glycosylation gives a ROC-AUC value of 0.959 (Figure 5G, Table
1). Setting a threshold of RMSDeptige < 1.0 A, the criterion correctly classifies 90.3%
((39+287)/361) of sequons with a BA of 8§7.9% and an FPR of 8.9% (28/(28+287)) (Figure
SF, Table 1). When the fraction of decoys (N;) that satisfy the RMSDpeptide < 1 A condition
is the classification metric, the ROC-AUC value was 0.965 (Figure 5G). Setting an arbitrary
threshold value of N; > 0.53, N with RMSDpeptide < 1 A correctly classified 90.8%
((36+292)/361) of the sequons with a BA of 85.5% and an FPR rate of 7.3% (23/(23+293))
(Table 1).
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Note that for most conformations that satisfy RMSDpeptidge < 1.0 A, the condition diyg < 4.0
A is also satisfied (Figures 5A, B, D).

However, since both classes of sequons, those that are glycosylatable experimentally (e.g. A
—1TA+; and S_|TA,, Figure 5F black boxes) and those that are non-glycosylatable
experimentally (e.g. G-; TA;+; and A_;TH4; Figure SF brown boxes), exhibited non-reactive
states, the criterion based on RMSDeptide Was not sufficient to correctly classify all
peptides, especially for sequons that exhibited both reactive and non-reactive states with
similar interaction energies and/or similar fraction of decoys.

Amino acid residue at the —1 position dictates the low-energy conformations
and glycosylatibility for the majority of the sequons—The analysis of the low-
energy conformations characterized by diyg and RMSDeprige lead to the following
observations. For the majority of sequons, those with K_j, R—{, F—_, Y-, W_{,D_1, E_{, Q
—1, Noy, Hoq, I, M, L4, or V_y, the peptide primarily sampled non-reactive low-energy
conformations with diyg > 4.0 A and RMSDpeptide > 1.0 A. For a small fraction of sequons
(P—; peptides), the peptide primarily sampled a reactive, cognate-sequon like state (or PTX-
like state) with diyg < 4.0 A and RMSDpeptide <1.0 A. For both of these categories that
primarily sample one state—either the non-reactive state or the reactive-state—the
computational predictions based on either hypothesis (RMSDpeptige OF diip), agreed quite
well with experimental data. These observations underscore the importance of the residue at
the —1 position in determining the low-energy conformations and, consequently, the
glycosylatability for the majority of the sequons (~ 15 x 19 = 285 out of 361 peptides).
However, four amino acids (G, A, S, T) at the —1 position are yet ambiguous, showing two
states. Sometimes they are classified correctly, but sometimes not.

Recapitulation of amino acid specificity trends for the +1 position

For G_, A_1, S—{, T—; sequons (4 x 19 = 76 out of 361), the peptide sampled both reactive
and non-reactive states with comparable interaction energies. For many of these sequons, the
computational predictions based on the effect of the —1 position did not accurately
recapitulate experimental observations. Hence, for G|, A_j, S_|, Ty, to recapitulate
experimental glycosylation trends, we must consider the effect of the +1 position.

Amino acid at the +1 position confers secondary effects that modulate effects
of the -1 position—To investigate the effect of the +1 position for G_;, A_j, S_4
peptides, all of which exhibit the GTX-like state, we considered the variation in sampling of
the GTX-like state as a function of the amino acid at the +1 position. Figure 6A shows these
fractions for a subset of sequons, viz. the G, A_q, S_, and T_; peptides. For T_; peptides,
no sequon exhibited the GTX-like state for a significant fraction of the decoys. For A_;, S_;
and G_| peptides, G4 and D, significantly increased the propensity to sample (indicated
by a large fraction of decoys) the GTX-like state. Furthermore, for A_; peptides, H., K4,
R4, and S, also resulted in a large fraction of decoys exhibiting the GTX-like state. The
interaction energies of the lowest-energy decoys of the GTX-like state are comparable to
those of the PTX-like state (Figure S14), suggesting that such a state could dominate or
compete with the PTX-like. Hence, the +1 position, in these specific cases, enhanced the
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sampling of the non-reactive, GTX-like state, modulating the glycosylatability of a peptide
in a capacity secondary to the —1 position.

We used these observations to test a classification based on the sampling of the GTX-like
state. While the changes in classification accuracy are negligible, the prediction improves for
sequons A_1TW, q, A,{TY 1, A.{TT4; and T-; TG4, summarized in Table S4 and Figure
S15.

Residues glutamine, glutamate, aspartate and the aromatics at the +1 position
interact with residues K363/K281 on the enzyme to form competing states—To
understand the variation in glycosylatability with the +1 position for T_; peptides, we
examined the sequons T_1TQ4q, T TF4+;, T-{TY4; and T_;TW. Experimentally, T_; TQ
+1 was glycosylatable with ~20% activity, whereas T—; TF4, T-{TY; and T TW. were
non-glycosylatable. All four sequons exhibited the PTX-like state (red arrow in Figure 6B
and Figure S16A). These sequons additionally exhibited a second, low-energy state with
RMSDyeptide >1.0 and > 4.0 A (blue arrow in Figure 6B and Figure S16A). In this state, the
residue T—; occupied the —1 pocket similar to the PTX-like state, while the residue Q4
interacted with residue K281 on the enzyme, which lies at the rim of the peptide-binding
groove (Figure 6B). The interaction between the residues Q4 and K281 pulled the peptide
backbone away from the catalysis site (Figure 6B and Figure S16B), resulting in a non-
reactive state that competed with the reactive PTX-like state. We observed a similar
interaction for residue D4 (sequons T_; TD,; and P_;TD,;), however, due to a shorter side
chain compared to Q. 1, it was in a better position to interact with K363 residue (Figure 6C,
Figure S16C, D).

In Figure 6D, we show the sampling of the “TTQ-like state” (dyp > 4.0 and RMSDeptige >
1 A) for A_j, Gy, S_, and T_| peptides. The TTQ-like state was observed primarily in S_;
and T_; peptides. Fi1, Y11, Wi, M4y, Ly, E4q, Q41, Hyq, and Dy exhibited highly
stabilized TTQ-like states. For non-polar residues such as M., and 1, the stabilization
arose from non-polar interactions of the +1 side chain with the K281 side chain.

For sequons that exhibited both states, we computed the energy difference between the
lowest-energy decoys for the two states (Figure S17). Similar to the GTX-like state, for
many sequons, the interaction energy of the lowest-energy decoys of the TTQ-like state is
comparable to that of the PTX-like state. For sequons T—{TD4, T-{TW4; and T-{TY 1, the
lowest interaction energy of the TTQ-like state was about 2 REU lower than that of the
PTX-like state. For T_;TQ., the difference was small (—0.2 REU), and for T_;TE,, the
PTX-like state was more stable by 2.4 REU. The relative stabilization of the PTX-like state

over the TTQ-like state as measured by interaction energy (AGE’TtX — TTQ) correlated with

higher experimental glycosylation efficiencies for sequons T_1TQ4; (~ 22%) and T_1{TE
(~13%) compared to T_{TD4; (3%) and T_;TX4; (0%), where X was an aromatic residue.

To quantify the interaction energy of different amino acid residues at the +1 position to
specific residues on the enzyme, we computed the pairwise energies of interaction between
the residue at the +1 position and the enzyme (Figure S18) and, as expected, found that the
residues that exhibit the TTQ-like state interact favorably with residues K281 or K363 on the
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enzyme. On the other hand, residues P;| and A did not interact with K281 or K363
residues on the enzyme. The lack of interaction with K281 or K363 residues on the enzyme
suggested that sequons T_; TP, T-{TA4, S-;TP;; and S_{TP4; and S_TA4; had no
propensity for the TTQ-like state and may explain the high glycosylation efficiencies
observed for these sequons.

With these observations, we tested using TTQ-like state populations for classifying the
substrate and non-substrate sequons (classification accuracy in Table S4 and Figure S19).
While the change in classification accuracy is negligible, the consideration of the TTQ-like
state improves predictions for sequons T_; Y, T-{TW4 and T_;TD; (Figure S19).

Characterization of the peptide-enzyme interface

Shape complementarity and hydrogen bonding contribute to the finely tuned
specificities at the —1 and +1 positions—So far, our analysis focused on analyzing the
landscape of low-energy conformations exhibited by the peptides and on recapitulating the
experimentally observed specificity trends as a function of the amino acid at the —1 and +1
position of the sequon. In this process, we discovered the dominant modes of interaction
between the peptide and the enzyme that lead to reactive (PTX-like) and non-reactive (GTX-
like and TTQ-like) conformations. Comparison between experimental data and
computational predictions also revealed that a majority of sequons that were glycosylatable
exhibited a PTX-like conformation. Next, we characterize the PTX-like state to decipher the
structural basis for the variation of specificity within the subset of peptides that exhibited
this state.

First, we calculated the shape complementarity,** S, for the enzyme-peptide interface for all
sequons for the ten lowest-interaction-energy decoys that satisfied the RMSDpepige < 1.0 A
criterion (Figure 7A). P_; peptides exhibited the highest shape complementarity at the
peptide-enzyme interface. We further characterized the residue-wise and pairwise interaction
energies at the interface (Figure S20). The P_; residue exhibited generally higher attractive
van der Waals energies with all enzyme residues at the interface (Figure S20) and especially
with H365 of the enzyme (Figure 7B). The planar interface formed by a histidine residue at
position 365 on the enzyme packs well against Pi residue (Figure 7C). T_j, S, and A_;
residues shape complementarities and exhibited energies that varied to a significant extent
with the residue at the +1 position (Figure 7A, B and Figure S20, S21). Thus for these
sequons, the +1 position may additionally contribute to anchoring the peptide in the binding
cavity.

In the +1 position, proline exhibited the highest shape complementarity (Figure 7A and
Figure S21) in the “+1 pocket” formed by three aromatics F280, W282 and F361, stabilized
by favorable interactions between the partially positively charged proline ring and the
partially negatively charged 1t faces of aromatic side chains (Figure 7D, Figure S22). Also,
similar to the TTQ-like state, sequons with aromatics, glutamine, glutamate and non-polar
residues other than alanine, proline and glycine at the +1 position interacted with K281 on
the enzyme (Figure 7E).
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Surprisingly, the median S of the top ten decoys that satisfied the RMSDpeptige < 1.0 A
criterion is a reasonably good classifier of sequon glycosylatability with a ROC-AUC score
0f 0.944.

For T_; and S_; residues, the PTX-like state was additionally stabilized by a hydrogen bond
between the hydroxyl side chain and the backbone carboxyl of R362 on GalNAc-T2 (Figure
S23).

In summary, the shape complementarity and pairwise-energies describe a —1 pocket that is
highly specific for the P_; residue, underlying the high experimental glycosylation
efficiencies measured for P_; peptides.

Sequence motifs at the —1 pocket hint at modes of specificity modulation
across isoforms T2, T14 and T16—The —1 pocket on the enzyme plays an important
role in screening for optimally-sized side chains at the —1 position of the sequon. This
pocket is primarily formed by residues R362, K363, Q364, H365 and W331. These residues
determine the size and chemical composition of the —1 pocket. The residues R362, K363,
Q364, and H365 reside on the flexible, semi-conserved catalytic loop*> of GaINAc-T2. This
flap-like loop can additionally contribute to the variability of the —1 pocket size across the
GalNAc-T isoforms.!” Among the three isoforms of the GaINAc-T family that show a strong
preference for Pi (T2, T14, T16), the H365 residue is conserved (Figure 7F). Residues K363
and Q364 reside at the point of entry for the —1 residue on the peptide. Variation of amino
acids at these positions could allow for variation in the size of the amino acid preferred at the
—1 position of the sequon. For example, isoforms T14 and T16, which are evolutionary most
proximal to T2, have residues lysine or arginine at position 364. Unlike T2, both T14 and
T16 prefer G_;* indicative of a —1 pocket suitable for smaller sidechains. In fact, when we
repeated MCM sampling of the G_; sequons for the T2 isoform with the Q364R mutation,
we observed a complete shift towards conformations with RMSDeptige < 1.0 A (PTX-like
state) and the elimination of the GTX-like state (Figure 7G), suggesting a possible strategy
for varying the peptide substrate preference of various isoforms.

Discussion

In this work, we attempted to understand the structural basis for the peptide substrate
preferences of the T2 isoform of the GalNAc-T family. We expect this work to be useful in
understanding how the preference for different peptide substrates is modulated across the 20
isoenzymes of this family.

We used a flexible backbone protocol with MCM sampling, resulting in more than one low-
energy peptide conformation/state in the vicinity of the starting peptide conformation. Most
existing protocols for determining peptide specificity for peptide binding domains employ
limited backbone sampling, generating ensembles close to the starting structures (pepspec,
MFPred) and usually employing additional constraints to sample TS-like conformations.
While these studies have been successful at predicting specificity trends, a wealth of
information can be garnered from sampling the peptide landscape without imposed
constraints. Our work benefitted from the availability of crystal structures for the peptide-
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enzyme complex but may be less accurate in the absence of crystal structures. Our approach
also suffered from inaccuracies in the Rosetta energy function, the limitations of MCM
sampling, and the use of implicit solvation models to name a few. We further note that an
MD-based simulation, though computationally prohibitive for a large dataset, may be better
suited for generating thermodynamically accurate ensembles and for characterizing the
density of multiple stable states.

We investigated a range of features to predict the glycosylation efficiency of GalNAc-T2
(Table 1) and found that the features dyg and RMSDyeptiqe are able to recapitulate binarized
glycosylation specificity with a balanced accuracy of 88.9% and 87.9% and a false positive
rate of 17.8% and 8.9% respectively. Alternatively, the fraction of decoys, Ngq and N, that
satisfy criterion dyyg <4.0 A and RMSDpeptide < 1.0 A respectively, recapitulated specificity
with a balanced accuracy of 85.2% and 85.6% and a false positive rate of 14.3% and 7.3%
respectively.

Additionally, we found energy-based predictors (based on MFPred and interaction energy in
this work) to be poor predictors of specificity, especially in the absence of structural-motif-
preserving constraints. While MFPred is able to predict a preference for T_; and S_;
residues, it fails to identify P_; and A_;. For the +1 position, MFPred performs much worse.
Both of these AUC values as well as the average AUC over all positions predicted by
MFPred are lower than those obtained with the dyg and RMSD e pyige criteria (Table 1, Table
S3). These results suggest that the stability of the peptide-enzyme complex or the
interaction-energy at the interface, by itself, is a weak indicator of efficient catalysis by
GalNAc-T2. In fact, since selective stabilization of the transition state over the reactants is
important for catalysis, the over-stabilization of the reactant state (indicated by higher
interaction energies) may increase the free energy of activation (difference between the
energy of reactants and the transition state) thereby slowing or preventing the reaction?%-25.
The addition of constraints could partially alleviate this issue by restraining the enzyme-
peptide complex in a configuration mimicking the transition state. However, the addition of
constraints will omit the sampling of potential low energy states that may compete with or
hinder the formation of the transition state. Such states can only be identified in protocols
that allow flexible sampling of the backbone without constraints.

The —1 position on the peptide strongly determined the glycosylation efficiency. Residues
R362, K363, Q364 and H365 on the catalytic loop and residue W331 on the enzyme form
the —1 pocket and select for amino acids threonine, proline, serine, alanine or glycine at the
sequon’s —1 position. For sequons with residues that did not fit this pocket, the peptide was
not able to form a hydrogen bond with UDP that has been proposed to stabilize the TS. We
further found that this pocket was especially favorable for recognizing peptides with proline
at the -1 position, as demonstrated by highly favorable interactions between H365 and
proline and a high degree of shape complementarity at the +1 position irrespective of the
amino acid. The flexible catalytic loop is especially suitable for modulating of the size of the
peptide binding pocket.!” Hence, by changing the size and other biophysical aspects of this
pocket, the specificity for the —1 position can be potentially modulated. These structural and
sequence features are especially relevant for specificity modulation across isoforms, as the
GalNAc-T family can glycosylate a wide range of amino acids at the —1 position.
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We additionally found that residues K281 and K363 acted as gating residues by interacting
with peptide amino acid residues, such as Q. and D, leading to low-energy states that
compete with the reactive state. Hence, the specificity for the +1 position may be modulated
by altering the lysine residues at positions 281 and 363 on the enzyme. Similar to the —1
position, such variation in specificity for the +1 position is already observed in the GalNAc-
T family as certain isoforms (GaINAc-T1!2, GaINAc-T14) are capable of efficiently
glycosylating D ;.

Key structural motifs identified in this work may be important for designing more
promiscuous forms of the enzyme or tailored forms with specificities different from those
seen in the 20 naturally occurring isoforms. Furthermore, since many members of the
GalNAc-T family have been associated with various cancers, the sequence and structural
motifs identified in this work may help decipher mutations that cause aberrant glycosylation.

Starting structure for enzyme—peptide complex

The primary starting structure of the enzyme-peptide complex was obtained from the crystal
structure of the active conformation of GalNAc-T2 from the crystal structure of the complex
(pdb id: 2ffu). Since the sugar is absent from that structure, we used a second GalNAc-T2
structure (pdb id: 4d0z) with bound peptide (mEA2), manganese and UDP-GalNAc-5S.
While the sugar bound to UDP in 4d0z has a modification (sulfur instead of oxygen in the
ring), it aligns exactly with 2ffu with the additional sugar (Figure S24). To generate the
starting structure for each sequon, we used the crystal structure of the complex replacing the
mEA?2 peptide peptide with A_»X_ToX+1A+2P+3R+4Cs5, where X is any amino acid
residue except cysteine. Residues at positions —1 and +1 (denoted by Xs) were mutated to
the target sequon for all 361 sequons studied in the work by Kightlinger et al.!? using
Rosetta’s MutateResidue mover followed by side chain repacking and minimization using
the PackRotamersMover. No backbone motion is allowed at this stage.

Rosetta protocol for generating decoys

The glycosylation protocol is based on the flexpepdock38:3? protocol with a few
modifications. There are two main stages— 1) Low-resolution sampling with the centroid
score (united atom) 2) High-resolution refinement with the all-atom ref2015 score function.
47 In the low-resolution phase, we use simulated annealing for enhanced sampling of the
peptide. We vary the temperature from 2.0 to 0.6 in Rosetta temperature units (kT) over 30
Monte Carlo (MC) cycles. For each temperature cycle of simulated annealing, we use 50
inner MC cycles are used for perturbation followed by minimization in rigid body (across
enzyme-peptide interface) and torsional (peptide) space. “Small” and “shear” movers from
Rosetta are used for torsional sampling of the peptide*® with rigid body perturbations using
the RigidBodyPerturbMover. The final pose from the low-resolution stage is passed to the
high-resolution stage. In the high-resolution stage, the attractive and repulsive potential
weights are ramped down and up respectively over 10 outer cycles. Similar to the low-
resolution stage, we apply rigid body sampling across the enzyme-peptide interface and
torsional sampling of the peptide backbone followed by minimization and Metropolis
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criterion. Additionally, both rigid body moves (30 cycles) and torsional moves (30 cycles)
are accompanied by peptide side chain repacking every cycle and the interface side chains
every 3" cycle*®. We used the default distance of 8 A to define the interface. Additionally,
the run was terminated if the peptide moved more than 8 A away from the enzyme-peptide
interface. The backbone of the enzyme is fixed throughout sampling. We generated 2000
decoys per sequon. Larger number of decoys (8000) were not found to alter the results.

This protocol is available in the Rosetta software suite (revision>=275). See Supporting
Information for the complete list of steps to run the protocol. The protocol is run from
commandline as follows:

>mucintypeglycosylation.<system><compiler><mode> @flags

System=linux; compiler=gcc; mode=release

Where “flags” is a plain text file and contains the following options:

-in:file:s <input pdb file>

-in:fde:native <input pdb file>

-nstruct 2000 #no. of decoys

-residue_to_glycosylate 3P #Threonine on peptide chain P

-substrate_type peptide

-low_res true #enables low resolution stage

-tree_type docking

-sugardonor_residue 495 #residue number of UDP-5SGalNac

-enable backbone moves_pp #enables peptide backbone moves in high resolution
-ex1

-ex2aro

-nevery_interface 3 # pack enzyme peptide interface every 3 MC cycles in high resolution
-ntotal_backbone 30 # mn 30 MC cycles in High resolution

-output_distance metrics true #output rmsd, distance, interaction energies to score file

Clustering and analysis of decoys

The top 10% decoys (200/2000) were clustered using the dbscan clustering algorithm*->? in

sklearn®! with parameters set to eps = 0.3 A (maximum distance between samples for one to
be considered in the neighborhood of the other) and min_samples = 10 (number of samples
in the neighborhood of a point to be considered a core point).
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Calculation of features

We report two RMSD metrics in this work — RMSDjeptige and RMSDgequon, Both metrics
are calculated over backbone C, atoms only with respect to the backbone of the peptide in
the starting structure. For RMSDeptige; RMSD is calculated over all peptide positions (8).
For RMSDyequon, RMSD is calculated for positions -1 to +3 (XTXAP). Shape
complementarity** is calculated using PyRosetta>2 as described in Supporting Information.
The interaction energy at the enzyme-peptide interface is calculated as the difference
between the ref2015 score for the bound complex and the ref2015 score for the enzyme
(includes the UDP-sugar molecule) and the peptide, separated from the complex without
relaxing or repacking side chains.

Specificity prediction with MFPred

We used MFPred as described:33 1) The starting structure was relaxed. 2) The lowest energy
decoy from relax step was used as the starting structure for the FastRelax protocol for each
sequon. 3) The lowest energy decoy for each sequon from the FastRelax protocol was
processed by the GenMeanFieldMover. All calculations were performed as described in
study3> with Rosetta software suite*? (revision 226).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Computational workflow to determine glycosylation efficiency of GalNAc-T2 for
peptide substrates for an experimentally characterized dataset obtained by scanning 19 amino
acid residues (all except cysteine) at positions —1 and +1 of the peptide.

(A) For reference, a replot of the experimentally determined efficiencies (data from

Kightlinger et a/.'2). (B) Monte Carlo minimization (MCM) sampling of peptides docked to

GalNAc-T2 result in “funnel plots” like the three shown. Each point represents one

structural model, or “decoy,” at its corresponding RMSD from the reference structure and

the interaction energy calculated by Rosetta. (C) Computational workflow to characterize

enzyme-peptide interactions for a representative sequon, T_; TQ,;, with T at the —1 position
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and Q at the +1 position. For each sequon, we selected the top-10%-scoring decoys (by
interaction energy) from MCM sampling and clustered them using three features (see main
text for features). For each sequon, we characterized the two largest clusters by the lowest
interaction energy decoy belonging to that cluster and then examined which features (or
combinations of features) could recapitulate the experimental glycosylation efficiencies (A).
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Figure 2. Characterization of the lowest-energy representative conformation for the top two

clusters in Rosetta runs.

As in Figure 1A, each heatmap shows results for the 19x19 peptide sequons on a color scale.
(A) Interaction energy, (B) normalized cluster size, (C) RMSDpepiide, and (D) dyp of the
largest (top) and second-largest (bottom) clusters characterized by the lowest interaction

energy decoy for each cluster.
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Figure 3. The major determinant of dggg and RMSDyeptige sampled by lowest energy decoys is
the amino acid residue at the —1 position.

Lowest energy decoys belonging to the largest (top) and second largest clusters (bottom) for
all sequons plotted as a function of the RMSDeptide and diyp and colored by (A) the residue
at the —1 position of the sequon and (B) the residue at the +1 position of the sequon.
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Figure 4. Substrate specificity based on TS stabilizing hydrogen bond criterion with dgg < 4 A.
(A) Heatmaps of (left panel) diyg distances of the lowest-interaction-energy decoy belonging

to a cluster with the cluster centroid satisying the criterion. (B) True positives (TP, dark
blue), true negatives (TN, light blue), false positives (FP, light red) and false negatives (FN,
dark red) predicted based on diyg < 4 A threshold applied to the diyg value of the lowest-
interaction-energy decoy of the largest cluster. (C) ROC curve for diyg distances and fraction
of decoys (Ny) satisfying criterion. (D) Violinplot of distribution of dyp distances sampled
by the top-scoring 10% decoys for four representative sequons (P—; TP, T—; TPy, N1 TP4;
and R_;TP;). (E) Lowest interaction energy decoys for four sequons (P_; TP, T-{TP4, N
—1TP4+; and R_; TP, — black boxes in the heatmap in (A)), dyg is calculated between the
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amide nitrogen (blue sphere) of Ty on peptide(aquamarine) and the Og_po4 (red sphere) on
UDP (orange), dyp is shown with double-ended yellow arrows. (F) Pocket-like cavity
formed by enzyme residues (pink surface) that contacts the amino acid at the —1 position on
the peptide.
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Figure S. Substrate specificity based on RMSDpeptige < 1.0 A criterion.
Joint and marginal probability densities for the top 10% of structures by score (200/2000)

for a given amino acid at the —1 position and aggregated over all amino acids at the +1
position. (A) G_; and B) P_; and all amino acid residues at X; Top 1% (20/2000) decoys
per sequon shown as points where darker color indicates lower interaction energy. “GTX-
like” state is marked with a black arrrow and “PTX-like state” is marked with a red arrow.
(C) Lowest interaction energy decoy in the enzyme’s peptide binding groove for
representative sequon P_ TP (white; RMSDpeptige < 1.0 A) superposed with that for G

-1 TP+ (aquamarine; RMSDpeptidge > 1.0 A). (D) Joint and marginal probability densities of
Top 10%(200/2000) sequons for all peptides with fixed amino acids A, S, T—; and all
amino acid residues at X; Top 1% (20/2000) decoys per sequon shown as points where
darker color indicates lower interaction energy. The blue arrow indicates a third state distinct
from PTX- and GTX-like states. (E) Heatmap of RMSDeptige (left panel) of the lowest
energy decoy per sequon, and fraction of decoys (N;) satisfying RMSD criterion (right
panel) for RMSDpeptidge < 1.0 A. (F) True positives (TP), true negatives (TN), false positives
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(FP) and false negatives (FN) predicted based on RMSDpeptige < 1 A threshold applied to the
lowest-interaction-energy decoy of the largest cluster. (G) ROC curve for RMSDeptide
(magenta) and N; (grey) satisfying RMSDpeptige < 1.0 A. Black and brown boxes in (E) and
(F) indicate examples of glycosylatable and non-glycosylatables sequons, respectively, that
also exhibit the GTX-like states.
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Figure 6. Secondary effects of the amino acid at the +1 position.
(A) Fraction of decoys sampling the GTX-like state for sequons with A, G, S, or T at the —1

position. (B) Joint and marginal probability densities of top 10% (200/2000) sequons for T
~1TQ4; (left panel) and lowest energy decoy for TTQ-like state for sequon T—; TQ4 state,
where Q. position interacts with K281. (C) Joint and marginal probability densities of top
10%(200/2000) sequons for T_1TD. (left panel) and lowest energy decoy for TTQ-like
state for sequon T_;TD, state, where D, position interacts with K363. (D) Fraction of
low-energy decoys in the TTQ-like state. Top 1% (20/2000) decoys per sequon shown as
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points in (B) and (C) where darker color indicates lower interaction energy. “TTX-like” state
is marked with a black arrrow and “PTX-state” is marked with a red arrow.
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Figure 7. Characterization of enzyme—peptide interactions for top 10 decoys G_1, A—1, S—1, T—p,

P_; peptides.

(A) Median shape complementarity (S;). (B) Attractive component of the van der Waals

(VdW) potential in Rosetta score function between the residue at the —1 position and H365

on the enzyme. (C) —1 pocket of at the enzyme peptide interface with H365 on the enzyme

(pink) interacting with the proline at the —1 position on the peptide (aquamarine). (D)

Residues 280, 281, 282 and 361 on the enzyme (pink) interacting with proline at the +1

position on the peptide (aquamarine). (E) Residues 280, 281, 282 and 361 on the enzyme

(pink) interacting with tryptophan at the +1 position on the peptide (aquamarine). (F)
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Multiple sequence alignment of isoform T2 with other isoforms for the residues at the
enzyme-peptide interface for +1 and —1 positions on the peptide. (G) Violinplots for
RMSDpeptige distributions sampled for sequon G- TA+; for isoform T2 (top) and a variant
T2-Q364R (bottom). Residue numbering based on GalNAc-T2 Uniprot entry Q10471.
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Table 1.

Summary of AUC scores, true positives (TP), true negatives (TN), false positives (FP) and false negatives
(FN), and balanced accuracy (BA=(TPR+TNR)/2; TPR=TP/(TP+FN) and TNR=TN/(TN+FP)) and false
positive rate (FPR=FP/(FP+TN)) for predictions at an experimental glycosylation efficiency threshold of 10%.

TP | TN
Feature AUC | Feature threshold ],?/A F‘}) R
FP FN ( “) (/0)
) 42 | 255
Interaction Energy (djyp < 4.0 A) 0.875 <-34 (REU) 86.1 19.0
60 4
44 | 259
dyp (largest cluster) 0.923 <4.0 (A) 889 | 17.8
56 2
39 | 270
Fraction of decoys (dys < 4.0 A) 0.906 >0.70 (-) 852 | 143
45 7
39 | 287
RMSD)epige (largest cluster) 0.959 <1.0(A) 879 | 8.9
28 7
36 | 292
Fraction of decoys (RMSDpepiige < 1.0 A) | 0.965 >0.53 (-) 855 | 7.3
23 10
) 42 | 265
S, (median top 10; RMSDjepige < 1.0 A) | 0.944 >0.735 87.7 | 159
50 4
36 98
Interaction Energy (largest cluster) 0.564 <-34 (REU) 54.7 | 68.9
217 10
) 39 | 271
Interaction Energy (RMSDpepiige < 1.0 A) | 0.908 <-34 (REU) 854 | 14.0
44 7

The calculation of TPs, TNs, FPs, FNs, BA and FPR requires a threshold. Feature thresholds were chosen in two cases (dHB (largest cluster) < 4.0
A and RMSDpeptide (largest cluster) < 1.0 A) to match criteria discussed in the main text. For all other cases, thresholds were chosen arbitrarily.
Also see Table S2 for precision and F1 score.
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