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Abstract
The polypeptide N-acetylgalactosaminyl transferase (GalNAc-T) enzyme family initiates O-linked 
mucin-type glycosylation. The family constitutes 20 isoenzymes in humans. GalNAc-Ts exhibit 
both redundancy and finely tuned specificity for a wide range of peptide substrates. In this work, 
we deciphered the sequence and structural motifs that determine the peptide substrate preferences 
for the GalNAc-T2 isoform. Our approach involved sampling and characterization of peptide–
enzyme conformations obtained from Rosetta Monte Carlo-minimization–based flexible docking. 
We computationally scanned 19 amino acid residues at positions −1 and +1 of an eight-residue 
peptide substrate, which comprised a dataset of 361 (19x19) peptides with previously 
characterized experimental GalNAc-T2 glycosylation efficiencies. The calculations recapitulated 
experimental specificity data, successfully discriminating between glycosylatable and non-
glycosylatable peptides with a probability of 96.5% (ROC-AUC score), a balanced accuracy of 
85.5% and a false positive rate of 7.3%. The glycosylatable peptide substrates viz. peptides with 
proline, serine, threonine, and alanine at the −1 position of the peptide preferentially exhibited 
cognate sequon-like conformations. The preference for specific residues at the −1 position of the 
peptide was regulated by enzyme residues R362, K363, Q364, H365 and W331, which modulate 
the pocket size and specific enzyme-peptide interactions. For the +1 position of the peptide, 
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enzyme residues K281 and K363 formed gating interactions with aromatics and glutamines at the 
+1 position of the peptide, leading to modes of peptide-binding sub-optimal for catalysis. Overall, 
our work revealed enzyme features that lead to the finely tuned specificity observed for a broad 
range of peptide substrates for the GalNAc-T2 enzyme. We anticipate that the key sequence and 
structural motifs can be extended to analyze specificities of other isoforms of the GalNAc-T 
family and can be used to guide design of variants with tailored specificity.
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Introduction
In higher organisms, O-linked N-acetylgalactosamine (GalNAc) glycosylation (or mucin-
type glycosylation) is an abundant and essential post-translational modification. This type of 
glycosylation is initiated by a family of glycosyltransferases (GTs) known as polypeptide N-
acetylgalactosaminyltransferases or GalNAc-Ts. These enzymes transfer a GalNAc sugar 
from a donor uridine di-phosphate (UDP) nucleotide to the hydroxyl group of a threonine or 
serine residue of an acceptor peptide. This transfer is the first committed step of mucin-type 
O-glycosylation, and these enzymes, therefore, define the sites of O-glycosylation. The 
resulting O-linked GalNAc is further extended to one of the four common core structures, 
which can be subsequently extended to give mature glycans.1,2 Aberrant O-glycosylation is 
a well-known marker of many cancers and has also been linked to developmental and 
metabolic disorders.3,4

In humans, the GalNAc-T family constitutes 20 isoforms. The unusually large number of 
isoforms for glycosylation is peculiar to O-glycosylation, and the multiplicity is conserved 
in mammalian evolution, suggesting that cell or tissue specific isoforms have specialized 
functions.5 The isoforms exhibit specific substrate preferences that vary with isoenzyme 
surface charge, prior neighboring long-range and short-range glycosylation patterns and the 
sequence of the acceptor peptide substrate. Over the last two decades, the peptide substrate 
preferences for a large number of isoforms have been established by in vitro studies.6–8 The 
peptide substrate is characterized by a sequence motif (or sequon), Thr/Ser–Pro–X–Pro (T/
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SPXP), where T/S is the site of glycosylation (position 0). This sequon is the only conserved 
consensus motif modified by all isoforms except T7 and T10. The proline at the +3 position 
of the sequon is supported by a conserved structural motif, viz., the “proline pocket” in the 
enzyme’s peptide binding groove in all isoforms that bind the T/SPXP motif.9–11 While this 
may suggest that all peptides with this motif are valid substrates for the GalNAc-T enzymes, 
in practice, the T/SPXP motif was obtained by averaging preferences over all isoforms (with 
characterized specificity). The motif simply indicates preference (rather than a strict rule or 
constraint) for a specific amino acid residue at a given position on the sequon, such as 
proline at the +1 and +3 positions. For the remaining positions in the sequon, most isoforms 
exhibit overlapping yet selective preferences for different amino acid residues. For example, 
at the −1 position with respect to the glycosylation site, T1 favors aromatics12 and T12 
prefers bulky non-polar residues;13 whereas T2 exhibits very little to no activity for these 
amino acids and instead prefers threonine, proline, alanine, and serine. Yet both T1 and T2 
glycosylate the sequon T−1TP+1

12 (with threonine at −1 and proline at +1 positions). 
Moreover, high-resolution glycosylation experiments from Kightlinger et al.12 (explicit 
determination of glycosylation efficiency for a given sequon) demonstrate that the (T/S)PXP 
motif is neither sufficient nor necessary for glycosylation. For example, their data shows that 
while T2 readily glycosylated sequons T−1TP+1AP and S−1TP+1AP, it failed to modify 
sequons F−1TP+1AP, Q−1TP+1AP, K−1TP+1AP etc. (Figure 1 A). These observations have 
led to the hypothesis that GalNAc-Ts exhibit both redundancy and finely tuned specificity 
for a wide range of peptide substrates.

While there is ample experimental data on the peptide substrate specificities of various 
isoforms, the molecular basis for observed peptide substrate specificities is not well 
understood. Computational work, so far, has been focused on understanding the mechanism 
of sugar transfer,14,15 conformational changes in the flexible loop in the catalytic domain,
16,17 and the effect of the flexible linker connecting the catalytic and lectin domains.11 None 
of the computational studies so far have examined the amino acid preferences at different 
positions on the peptide. Computational studies can pinpoint key positions and structural 
motifs on an isoform that contribute to peptide substrate specificity. These sequence and 
structural motifs can be studied across isoforms to reveal more general patterns, to modulate 
enzyme specificity, and to gain insight into the consequences of enzyme and substrate 
mutations implicated in aberrant glycosylation, (e.g., colorectal cancer associated mutations 
of GalNAc-T1218) paving the way for rational design of specific drugs/inhibitors19.

In this work, we seek to understand the sequence and structural motifs that determine the 
peptide substrate preferences for the GalNAc-T2 isoform. Our immediate goal is to 
recapitulate experimentally determined specificity in terms of glycosylation efficiency for 
sequon variations at positions −1 and +1 (19 amino acid residues tested for each position), as 
reported by Kightlinger et al.,12 and to understand the structural motifs that best explain 
experimentally observed trends. To recapitulate experimentally observed specificities for a 
large dataset, we need an efficient, high-throughput computational method that can capture 
the key mechanisms of enzymatic catalysis.

Enzymatic catalysis relies primarily on selective transition state stabilization, ground state 
(reactants) destabilization, dynamics, and active-site gating.20,21 In practice, these effects 
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occur at different length- and time-scales and therefore cannot be accurately captured by a 
single method, even when enzyme crystal structures are available.22 Hybrid quantum 
mechanics/molecular mechanics (QM/MM) simulations have been able to recapitulate 
catalytic proficiency or mechanistic details for many enzymes such as Kemp eliminases23 or 
glycoside hydrolases24 as they are well-suited to characterize the transition state. QM/MM 
simulations, however, are not suitable to capture binding or dynamics over longer timescales 
and are prohibitively expensive for a larger dataset. Other factors that determine the stability 
of the transition state are electrostatic- and shape-complementarity at the peptide-enzyme 
interface. Electrostatic complementarity can be captured by various computational 
techniques (e.g., Monte Carlo (MC) or molecular dynamics (MD)-based methods with 
Poisson-Boltzmann electrostatics or other continuum electrostatics models) at different 
length-scales. Other effects are determined by the thermodynamics of the enzyme-peptide 
interactions. To achieve a lower free energy of activation,20,25 the enzyme must stabilize the 
transition state selectively relative to the reactants. Additionally, if the product is too stable 
in the enzyme’s active site, product release becomes the catalytic rate-limiting step. This 
thermodynamic description demands the use of methods that capture multiple states 
(reactants, products and transition states).26,27 Furthermore, dynamics is important in many 
catalytic mechanisms, from small vibrations that lead to rate-promoting motions28 to large 
conformational changes and rearrangements in the molecular structure.29 Active site gating 
is another important mechanism for catalysis by which key residues outside the active site 
regulate access to the active site.30,31 These thermodynamic and kinetic effects, primarily in 
the nanosecond to microsecond timescales, can be captured faithfully by MD simulations 
though such simulations can be computationally prohibitive for comparing a large number of 
substrates. An alternative to MD simulations are Monte Carlo-minimization32 (MCM) 
approaches, which are computationally faster and can be reliably used to determine 
thermodynamically stable native-like states.

Rosetta-based MCM computational protocols, notably, pepspec,22 sequence-tolerance33,34 

and MFPred35 have previously been used for predicting the sequence profiles of peptides 
recognized by various multi-specific protein recognition domains (PRDs) such as PDZ, 
SH2, SH3, kinases, and proteases. All protocols rely on MCM sampling and aim to 
approximate the stabilization of the substrate-bound state or transition state in the enzyme’s 
peptide binding groove. The transition state is approximated by known cognate sequon 
conformations in the enzyme’s active site (based on crystal structures and/or homology 
modeling) with additional constraints to preserve important structural motifs pertaining to 
the transition state, when available. In the absence of constraints, this approach is equivalent 
to evaluating the stabilization of the substrate-bound state.36 MCM allows for faster 
sampling facilitating the scanning of a large number of amino acid residues at multiple 
positions of the peptide substrate. All three protocols achieve impressive accuracy in 
predicting experimentally observed profiles for many PRDs. However, since all three 
methods are developed with the broad goal of predicting sequence specificity profiles for a 
range of PRDs, the accuracy of prediction may not be sufficient to pinpoint subtle 
differences in specificity for a specific target of interest. For example, the sequence-
tolerance protocol pre-calculates the interactions between all interacting residues ignoring 
changes in conformation of the peptide in the protein’s binding pocket. All three methods 
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struggle to predict specificity for HIV–1 protease, which has a relaxed specificity profile and 
a preference for small hydrophobic residues, similar to GalNAc-T2. Additionally, all three 
protocols employ limited backbone sampling, prohibiting the free conformational sampling 
of the peptide in the binding groove. For the more targeted goal of designing a peptide 
inhibitor to discriminate between two similar PDZ domains, Zheng et al.1 employ extensive 
conformational sampling using the full-fledged flexpepdock protocol38,39 along with the 
CLASSY method to achieve a solution with desired specificity and affinity goals. Similarly, 
Pethe et al40 were able to obtain significantly improved prediction accuracies for proteases 
(including HIV–1 protease) compared to previous methods (MFPred, sequence tolerance 
and pepspec) by employing machine learning and a discriminatory score based on geometric 
features, interface score terms from Rosetta, and electrostatic score terms from Amber. In 
another work, Pethe et al.41 used supervised learning on experimentally obtained deep-
sequencing data and information from structure-based models to chart the specificity 
landscape of 3.2 million substrate variants of the viral protease HCV.

Here, we sought to understand specificity determinants for a specific isoform of the 
GalNAc-T family and to pinpoint sequence and structural motifs in the enzyme that explain 
fine-tuning of specificity. To this end, we developed a customized Rosetta-based 
protocol42,43 that allowed us to model structures of all 361 peptide sequons (19×19) with the 
GalNAc-T2 enzyme and computationally determine the sequon preference for the GalNAc-
T2 isoform. Our protocol was similar in spirit to earlier protocols in that it docks the peptide 
substrate into the enzyme’s active site. However, unlike pepspec,22 sequence-tolerance33,34 

and MFPred35 and similar to the protocol of Zheng et al.,37 we allowed fully flexible peptide 
sampling (as opposed to limited or no backbone sampling) followed by clustering and 
analysis of the sampled low energy decoys. Our strategy relied on characterizing the peptide 
binding to the enzyme with a range of structural features at the interface as a function of the 
amino acid residues at the +1 and −1 positions. Using our methodology, we were able to 
identify features that recapitulated high-quality experimental specificity data for GalNAc-
T2. Extensive peptide backbone sampling revealed that the peptide binding groove of 
GalNAc-T2 stabilized multiple competing conformations/states – some leading to efficient 
glycosylation and others hampering it. Furthermore, multiple stable states suggested that 
kinetics might play an important role in determining specificity. Thus, finely-tuned 
specificity might be achieved by modulating the relative stability of these states to 
discriminate between peptide substrates for an isoform and across isoforms. Overall, our 
work reveals key residues on the enzyme that determine peptide substrate preferences at 
various sequon positions.

Results
Clustering of low interaction energy decoys reveals that peptides exhibit multiple 
competing low-energy conformations

We studied all 361 (19x19) sequons obtained by scanning 19 amino acids (all amino acids 
except cysteine) at positions −1 and +1 with respect to the modified threonine (at position 0 
or T0). The experimentally determined glycosylation efficiencies for all of these sequons 
was determined by Kightlinger et al.12 and replotted in Figure 1A (Figure S1). For each 
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sequon, we started with the co-crystal structure of the peptide and UDP-sugar bound to the 
enzyme (pdb ids: 4d0z and 2ffu, respectively).16 We mutated the residues at the −1 and +1 
position of the peptide to the target sequon and repacked and minimized the nearby side 
chains to obtain a starting enzyme-peptide configuration for the target sequon. We then 
subjected this starting structure to MCM sampling of rigid-body displacements and peptide 
torsion angles in two stages - a low-resolution centroid stage with simulated annealing 
followed by a high-resolution all-atom stage to generate 2,000 structures (decoys) per 
sequon (see Methods). In this paper, we use the shorthand notation XN for amino acid ‘X’ 
(denoted by 1-letter code) and sequon position ‘N’ and a sequon with the shorthand notation 
X−1TX+1. For example, P−1 denotes amino acid proline at the −1 position, M+1 denotes a 
methionine at the +1 position and P−1TM+1 denotes a sequon or peptide with P−1 and M+1. 
For brevity, we also refer to peptides or sequons containing residue X at position N as “XN 

peptides” or “XN sequons” respectively.

Preliminary analysis of the decoys showed that many peptides exhibited multiple stable 
states with comparable energies of interaction (interaction energy) between the peptide and 
enzyme. In Figure 1B, we show plots of interaction energy vs. distance to the reference 
crystal structure for four randomly chosen sequons obtained from MCM sampling of the 
peptide substrate with the respective sequons in the enzyme’s peptide-binding groove. For 
all four sequons in Figure 1B, we observed multiple clusters of low interaction energy 
decoys, or “funnels.” For example, for sequon T−1TQ+1, we observed two distinct funnels at 
RMSDpeptide (the root mean square deviation of Cα carbons of the peptide backbone with 
respect to the peptide in the crystal structure) values of about ~ 0.65 Å and 1.25 Å with 
comparable lowest interaction energies. Overall, 57% (205/361) of the sequons exhibited 
two significant clusters. 39/205 (19.0%) and 81/205 (39.5%) sequons exhibited lowest 
energy states for each cluster within 0.5 and 1.0 Rosetta energy units (or REUs) respectively, 
of each other, underscoring the importance of considering both states (Figure S2).

To characterize multiple low-energy conformations and to construct a more complete picture 
of the landscape of structural conformations sampled by the peptide substrate in the enzyme 
cavity, we developed the computational flow summarized in Figure 1C. For each sequon, we 
selected the top-10%-scoring decoys (by interaction energy) from MCM sampling and then 
clustered them using three features. The first feature, RMSDpeptide, characterized decoys on 
the basis of the similarity of the peptide backbone conformation and position of the peptide 
in the crystal structure. Next, doc, the distance between the hydroxyl group of T0 and the 
anomeric carbon (C1) on the sugar tracked the distance for the new glycosidic linkage. 
Finally, dHB, the distance between the amide group of T0 on the peptide and the oxygen of 
the β-phosphate group of UDP (Oβ-PO4) was a reaction coordinate characterizing a 
transition-state-stabilizing hydrogen bond between the backbone amide of T0 and UDP.14

We characterized the lowest-energy decoy for the largest and second-largest clusters 
obtained for each sequon and plotted heatmaps to show the distribution of the lowest 
interaction energy (Figure 2A), normalized cluster size (Figure 2B), RMSDPeptide (Figure 
2C) and dHB (Figure 2D) for all 361 sequons (see also Figure S3 and S4). We also 
characterized the clusters by the decoy representing the center of the cluster, the average 
over all decoys with interaction energies within 1 REU and the average over the five decoys 
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in the cluster with the lowest interaction energies. All strategies resulted in similar heatmaps 
(Figure S5) and hence, going forward, we represented a cluster by the lowest energy decoy 
belonging to that cluster.

Horizontal stripes emerging across the RMSDPeptide and dHB heatmaps (Figure 2C–D) 
suggested that sequons with the same amino acid at the −1 position (horizontal axis) 
exhibited similar RMSDpeptide and dHB values. To probe whether the low-energy 
conformations exhibited by various peptides depends on the identity of the residue in a 
position-specific manner, we plotted the RMSDpeptide and dHB of the lowest energy decoy 
for the two largest clusters for each sequon colored by the amino acid residue at the −1 
(Figure 3A) and +1 (Figure 3B) positions. It is apparent in Figure 3A that sequons with the 
same amino acid residue at the −1 position, especially A, G, T, P, S and V, were grouped or 
clustered together. The clustering or grouping suggests that sequons with the same amino 
acid at the −1 position exhibited similar conformations or low-energy states. Similar 
grouping was not observed for sequons with the same residue at the +1 position (Figure 3B). 
This high-level analysis of low-energy conformations for the entire dataset suggested that 
the −1 position plays a dominant role in determining the low-energy conformation(s) 
exhibited by a sequon and that the +1 position contributed in a secondary capacity.

In the following sections, we present hypotheses to explain how each position (−1, +1) 
contributed in a characteristic manner to determine the low-energy conformations exhibited 
by a sequon and how these conformations, in turn, related to experimentally determined 
specificities. We characterized the low-energy conformations by a selected set of relevant 
features.

To compare our predictions with experiments, we employed logistic regression and, unless 
otherwise indicated, we labeled all sequons with experimental glycosylation efficiencies 
greater than 10% (efficiency threshold) as glycosylatable and those with efficiencies less 
than 10% as unglycosylatable, in line with previous work35. In Table 1 (and Table S1), for a 
chosen value of efficiency threshold, we have tabulated the area-under the curve (AUC) of 
the receiver operating curve (ROC). Since the dataset of glycosylation efficiency 
measurements is highly imbalanced with only 46/361 (12.7%) glycosylatable sequons 
(positive samples) and 315/361 (87.3%) unglycosylatable sequons (negative samples), in 
Table 1 (and Table S2), for each metric, we also report the true positives (TP), true negatives 
(TN), false positives (FP) and false negatives (FN) and the balanced accuracy (BA = (TPR + 
TNR) / 2, where the true positive rate TPR = TP / (TP + FN) and the true negative rate TNR 
= TN / (TN + FP) and false positive rate (FPR = FP / (FP + TN)). Note that a naive classifier 
that classifies all 361 sequons as unglycosylatable has an accuracy (ACC = (TP + TN) / (TP 
+ TN + FP + FN)) of 87.3% (= 315/361), a BA of 50% (= (0/46 + 315/315)/2) and an FPR 
of 0%. Since accuracy (as opposed to balanced accuracy) higher than such a naïve classifier 
may come at the expense of FPs, we report balanced accuracy instead of accuracy for our 
dataset.

Energy is a commonly used metric in determining specificity of peptide substrates (e.g. 
pepspec22, sequence_tolerance33 and MFPred35). However, for the purpose of prediction of 
specificity trends for the T2 enzyme, interaction energy by itself was a weak predictor of 
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specificity (AUC = 0.566, Table 1). The significantly lower AUC values based on interaction 
energy were due to the fact that P−1 and S−1 peptides bind the enzyme with significantly 
lower interaction energies than A−1, G−1 or T−1 peptides (Figure 2A). For comparison with 
other energy based approaches, we applied MFPred35 to obtain the specificity profile for 
GalNAc-T2 (Figure S6). MFPred uses a mean-field approach that assumes each residue 
position is independent. MFPred obtains an AUC score of 0.68 at the −1 position and 0.50 at 
the +1 position (Table S3). For comparison of experimental and MFPred specificity logos, 
see Figure S6. In the MFPred study, the addition of structural-motif-preserving constraints 
improved predictions for some PBDs. For the MFPred scores reported here, we did not add 
any constraints.

We omitted dOC from future characterization due to its low AUC score in classifying 
glycosylatable and non-glycosylatable sequons (AUC score 0.43; Table S1). However, we 
retained clustering in the 3d feature space formed by RMSDpeptide, dOC and dHB) since doc 
improves resolution of conformations for some sequons (Figure S7).

Recapitulation of amino acid specificity trends for the −1 position

Sampling of TS-critical hydrogen bond recapitulates specificity for 84% of the 
sequons with a false positive rate of 14%—In QM/MM simulations of the 
glycosylation of the EA2 peptide by GalNAc-T2, Gomez el al. characterized a hydrogen 
bond between the backbone amide of Thr0 and the β-phosphate group on UDP 14 They 
proposed that the hydrogen bond stabilizes the transition state (TS) in “a general catalytic 
strategy used in peptide O-glycosylation by retaining glycosyltransferases”. Hence, our first 
hypothesis was that successful glycosylation requires a peptide to exhibit a low-energy 
conformation with dim distances compatible with the proposed hydrogen bond. Thus, in 
Figure 4A, we show the heatmap of dHB for the lowest interaction energy decoys. Applying 
a 4.0 Å threshold to the 19×19 grid of sequons splits the sequons into those that do not meet 
this condition (i.e., > 4.0 Å,) and those that exhibited a representative low-energy 
conformation compatible with hydrogen bonding between the peptide and UDP. When 
compared with experimental results (Figure 1 A), this criterion discriminated well between 
substrate peptides and non-substrates of the enzyme (Figure 4B) with 44 TPs, 259 TNs, 56 
FPs and 2 FNs (Table 1, Table S2).

A ROC analysis (Figure 4C) showed that the dHB value of the lowest-energy decoy of the 
largest cluster correctly distinguished the glycosylatable sequons from the non-
glycosylatable sequons with a probability of 92.3% (ROC-AUC value of 0.923; Figure 4C). 
Setting a threshold of dHB < 4 Å, dHB classified with a balanced accuracy of 88.9% (TPR = 
44/46, TNR = 259/316), accuracy of 84% (=303/316) (Table S2) and a false positive rate of 
17.8% (56/(56+259)) (Table 1). If instead of dHB, we used the fraction of the of decoys (Nd) 
that satisfied the dHB < 4 Å criterion, the probability of correctly classifying a sequon was 
90.6% (ROC-AUC was 0.906; Figure 4C). Setting an arbitrary threshold of Nd > 0.70, this 
feature classified with a balanced accuracy of 85.2% (TPR=39/46, TNR=270/316) of the 
sequons with a false positive rate of 14.3% (45/(45+270)) (Table 1). The large number of 
FPs for both dHB and Nd indicates that the of dHB < 4 Å criterion has low precision.
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Large amino acid residues are excluded from GalNAc-T2’s “−1 pocket”—Figure 
4A reveals that peptides preferentially exhibited low-energy, highly populated states (higher 
fraction of decoys) with dHB distances compatible with hydrogen-bonding when amino acid 
residues with smaller side chains such as proline, alanine, glycine, serine, or threonine were 
present at the −1 position. To understand the structural basis for the observed dHB trends, we 
considered specific sequons and their lowest-energy conformations. In Figure 4D, we show 
the dHB distances sampled by the top 10% low-energy decoys for four representative 
sequons – P−1TP+1 and T−1TP+1 (preferentially sampled conformations with dHB < 4.0 Å), 
and N−1TP+1 and R−1TP+1 (higher dHB distances). Figure 4E shows the structures of the 
lowest energy conformation (largest cluster) for these four sequons. The sequons with P−1 
and T−1 fit in the pocket-like cavity in the enzyme’s peptide binding groove (Figure 4E, top 
panels), whereas sequons with N−1 or R−1 were excluded from this cavity due to steric 
hinderance thereby resulting in larger distances (Figure 4E, bottom panels). Hence, the 
structural basis for peptides to preferentially sample low-energy conformations compatible 
with sampling of the proposed TS stabilizing hydrogen bond was the relative size of the side 
chain of the amino acid at the −1 position and fit into the “−1 pocket” on the enzyme 
(highlighted in Figure 4F; discussed in more detail later).

The case of sequon N−1TP+1 (Also V−1TP+1; Figure S8) is also notable because it exhibited 
two significant clusters, the smaller one (normalized cluster size ~ 10%) exhibiting distances 
compatible with hydrogen bonding (Figure 4D) and the larger one (normalized cluster size ~ 
90%) with comparable interaction energy exhibiting larger distances. Experimentally this 
sequon was non-glycosylatable. Sequon T−1TP+1, which is experimentally glycosylatable, 
also exhibits two significant clusters. However, the larger cluster exhibits a dHB distance 
compatible with hydrogen bonding (Figure 4D). This suggests that a larger fraction of 
decoys exhibiting dHB compatible with TS-stabilizing hydrogen bond renders a sequon more 
glycosylatable.

For sequons with larger amino acid residues at the −1 position, characterization of the dHB 
distance correlated with undetectable glycosylation in experimental assays as peptides/
sequons with larger amino acids did not meet the hydrogen-bonding criteria and assumed 
conformations at distances farther from the UDP-GalNAc donor, making the reaction less 
likely. However, this dHB criterion incorrectly classified all G−1 sequons. (Figure 4B; blue 
arrow). Since dHB generated some false positives, especially G 1 peptides, the ability of the 
peptide to assume conformations amenable to the formation of the TS-stabilizing hydrogen 
bonding is a necessary but not sufficient condition to determine specificity.

G−1 results in distinct low-energy states characterized by higher RMSDpeptide 
values—To probe why G−1 peptides may be non-glycosylatable even though they satisfy 
the dHB metric, we examined the joint distribution of the RMSDpeptide and dHB sampled by 
the top 10% of decoys for all G−1 and P−1 peptides (i.e., averaged over all 19 amino acid at 
the +1 position) (Figures S9–S13 plots all 19 sequons for G−1, S−1, A−1, T−1 and P−1.) G−1 
peptides exhibited two low-energy states (Figure 5A), but P−1 peptides primarily exhibited a 
single, low RMSDpeptide state (Figure 5B).
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Amino acid residues with smaller side chains are sub-optimal for −1 pocket of 
the enzyme—In Figure 5C, we have superposed the lowest-energy decoys for sequons P
−1TP+1 and G−1TP+1, representative of P−1 and G−1 peptides, respectively. For G−1TP+1, the 
backbone was shifted “up” with respect to that of the P−1TP+1 backbone (Figure 5C; green 
arrow). For G−1 peptides, the small size of the glycine residue allowed multiple 
configurations in the −1 pocket of the enzyme, all of which still made the TS stabilizing 
hydrogen bond (i.e., < 4.0 Å). Consequently, we also observed the “GTX-like state” (defined 
as RMSDpeptide ≥ 1.0 Å and < 4.0 Å and marked in Figure 5 with black arrows) for A−1 and 
S−1 (shorter side chains) peptides (Figure 5D) but not for T−1 peptides. Instead, T−1 peptides 
exhibited a third state (Figure 5D; blue arrow) which we discuss later. Thus, while the dHB 
metric explained why sequons with larger side chains at the −1 position were non-
glycosylatable, the RMSDpeptide metric explains why certain sequons with smaller side 
chains at the −1 position may not be suitable for glycosylation.

RMSDpeptide metric improves sequon specificity predictions for G−1 peptides 
and recapitulates specificity for 90% of the sequons—P−1 peptides, irrespective of 
the amino acid at the +1 position, experimentally exhibited high glycosylation efficiencies 
and also primarily exhibited the low-RMSDpeptide or the PTX-like state (defined as 
RMSDpeptide < 1.0 Å and < 4.0 Å and marked in Figure 5 with red arrows). This leads us to 
hypothesize that besides the TS-stabilizing hydrogen bond (characterized by dHB), the 
second factor that determined the glycosylatability of a sequon was the precise positioning 
of the peptide in the enzyme’s peptide binding groove, i.e., how close the peptide backbone 
was, spatially and conformationally, to the cognate sequon peptide conformation in the 
crystal structure. We postulated that the “PTX-like state” (red arrows in Figure 5D) with 
RMSDpeptide < 1.0 Å leads to successful glycosylation (reactive state) whereas all other 
conformations or states with RMSDpeptide ≥ 1.0 Å (e.g. the GTX-like state) did not lead to 
glycosylation (non-reactive).

Hence, we used the sampling of the PTX-like state by the top-scoring decoys, quantified by 
the RMSDpeptide of the lowest energy decoy of the largest cluster and the normalized size of 
the largest cluster, as the second criterion for successful glycosylation that includes multiple 
low-energy conformations. This criterion improved prediction for sequons that exhibited 
low-energy conformations in the GTX-like state, (A−1TH+1, A−1TG+1, S−1TG+1, G−1TG+1, 
etc.), including G−1 peptides and was able to correctly classify many such peptides as non-
glycosylatable (Figure 5E, F). When compared with experimental results, this criterion, 
based on the RMSDpeptide value of the lowest-energy decoy of the largest cluster as a 
classification metric for glycosylation gives a ROC-AUC value of 0.959 (Figure 5G, Table 
1). Setting a threshold of RMSDpeptide < 1.0 Å, the criterion correctly classifies 90.3% 
((39+287)/361) of sequons with a BA of 87.9% and an FPR of 8.9% (28/(28+287)) (Figure 
5F, Table 1). When the fraction of decoys (Nr) that satisfy the RMSDpeptide < 1 Å condition 
is the classification metric, the ROC-AUC value was 0.965 (Figure 5G). Setting an arbitrary 
threshold value of Nr > 0.53, Nr with RMSDpeptide < 1 Å correctly classified 90.8% 
((36+292)/361) of the sequons with a BA of 85.5% and an FPR rate of 7.3% (23/(23+293)) 
(Table 1).
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Note that for most conformations that satisfy RMSDpeptide < 1.0 Å, the condition dHB < 4.0 
Å is also satisfied (Figures 5A, B, D).

However, since both classes of sequons, those that are glycosylatable experimentally (e.g. A
−1TA+1 and S−1TA+1, Figure 5F black boxes) and those that are non-glycosylatable 
experimentally (e.g. G−1TA+1 and A−1TH+1 Figure 5F brown boxes), exhibited non-reactive 
states, the criterion based on RMSDpeptide was not sufficient to correctly classify all 
peptides, especially for sequons that exhibited both reactive and non-reactive states with 
similar interaction energies and/or similar fraction of decoys.

Amino acid residue at the −1 position dictates the low-energy conformations 
and glycosylatibility for the majority of the sequons—The analysis of the low-
energy conformations characterized by dHB and RMSDpeptide lead to the following 
observations. For the majority of sequons, those with K−1, R−1, F−1, Y−1, W−1, D−1, E−1, Q
−1, N−1, H−1, I−1, M−, L−1, or V−1, the peptide primarily sampled non-reactive low-energy 
conformations with dHB > 4.0 Å and RMSDpeptide > 1.0 Å. For a small fraction of sequons 
(P−1 peptides), the peptide primarily sampled a reactive, cognate-sequon like state (or PTX-
like state) with dHB < 4.0 Å and RMSDpeptide <1.0 Å. For both of these categories that 
primarily sample one state—either the non-reactive state or the reactive-state—the 
computational predictions based on either hypothesis (RMSDpeptide or dHB), agreed quite 
well with experimental data. These observations underscore the importance of the residue at 
the −1 position in determining the low-energy conformations and, consequently, the 
glycosylatability for the majority of the sequons (~ 15 x 19 = 285 out of 361 peptides). 
However, four amino acids (G, A, S, T) at the −1 position are yet ambiguous, showing two 
states. Sometimes they are classified correctly, but sometimes not.

Recapitulation of amino acid specificity trends for the +1 position
For G−1, A−1, S−1, T−1 sequons (4 x 19 = 76 out of 361), the peptide sampled both reactive 
and non-reactive states with comparable interaction energies. For many of these sequons, the 
computational predictions based on the effect of the −1 position did not accurately 
recapitulate experimental observations. Hence, for G−1, A−1, S−1, T−1, to recapitulate 
experimental glycosylation trends, we must consider the effect of the +1 position.

Amino acid at the +1 position confers secondary effects that modulate effects 
of the −1 position—To investigate the effect of the +1 position for G−1, A−1, S−1 
peptides, all of which exhibit the GTX-like state, we considered the variation in sampling of 
the GTX-like state as a function of the amino acid at the +1 position. Figure 6A shows these 
fractions for a subset of sequons, viz. the G−1, A−1, S−1, and T−1 peptides. For T−1 peptides, 
no sequon exhibited the GTX-like state for a significant fraction of the decoys. For A−1, S−1 
and G−1 peptides, G+1 and D+1 significantly increased the propensity to sample (indicated 
by a large fraction of decoys) the GTX-like state. Furthermore, for A−1 peptides, H+1, K+1, 
R+1, and S+1 also resulted in a large fraction of decoys exhibiting the GTX-like state. The 
interaction energies of the lowest-energy decoys of the GTX-like state are comparable to 
those of the PTX-like state (Figure S14), suggesting that such a state could dominate or 
compete with the PTX-like. Hence, the +1 position, in these specific cases, enhanced the 
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sampling of the non-reactive, GTX-like state, modulating the glycosylatability of a peptide 
in a capacity secondary to the −1 position.

We used these observations to test a classification based on the sampling of the GTX-like 
state. While the changes in classification accuracy are negligible, the prediction improves for 
sequons A−1TW+1, A−1TY+1, A−1TT+1 and T−1TG+1, summarized in Table S4 and Figure 
S15.

Residues glutamine, glutamate, aspartate and the aromatics at the +1 position 
interact with residues K363/K281 on the enzyme to form competing states—To 
understand the variation in glycosylatability with the +1 position for T−1 peptides, we 
examined the sequons T−1TQ+1, T−1TF+1, T−1TY+1 and T−1TW+1. Experimentally, T−1TQ
+1 was glycosylatable with ~20% activity, whereas T−1TF+1, T−1TY+1 and T−1TW+1 were 
non-glycosylatable. All four sequons exhibited the PTX-like state (red arrow in Figure 6B 
and Figure S16A). These sequons additionally exhibited a second, low-energy state with 
RMSDpeptide >1.0 and > 4.0 Å (blue arrow in Figure 6B and Figure S16A). In this state, the 
residue T−1 occupied the −1 pocket similar to the PTX-like state, while the residue Q+1 
interacted with residue K281 on the enzyme, which lies at the rim of the peptide-binding 
groove (Figure 6B). The interaction between the residues Q+1 and K281 pulled the peptide 
backbone away from the catalysis site (Figure 6B and Figure S16B), resulting in a non-
reactive state that competed with the reactive PTX-like state. We observed a similar 
interaction for residue D+1 (sequons T−1TD+1 and P−1TD+1), however, due to a shorter side 
chain compared to Q+1, it was in a better position to interact with K363 residue (Figure 6C, 
Figure S16C, D).

In Figure 6D, we show the sampling of the “TTQ-like state” (dHB > 4.0 and RMSDpeptide > 
1 Å) for A−1, G−1, S−1, and T−1 peptides. The TTQ-like state was observed primarily in S−1 
and T−1 peptides. F+1, Y+1, W+1, M+1, I+1, E+1, Q+1, H+1, and D+1 exhibited highly 
stabilized TTQ-like states. For non-polar residues such as M+1, and I+1, the stabilization 
arose from non-polar interactions of the +1 side chain with the K281 side chain.

For sequons that exhibited both states, we computed the energy difference between the 
lowest-energy decoys for the two states (Figure S17). Similar to the GTX-like state, for 
many sequons, the interaction energy of the lowest-energy decoys of the TTQ-like state is 
comparable to that of the PTX-like state. For sequons T−1TD+1, T−1TW+1 and T−1TY+1, the 
lowest interaction energy of the TTQ-like state was about 2 REU lower than that of the 
PTX-like state. For T−1TQ+1, the difference was small (−0.2 REU), and for T−1TE+1, the 
PTX-like state was more stable by 2.4 REU. The relative stabilization of the PTX-like state 
over the TTQ-like state as measured by interaction energy (ΔGPTX TTQ

int ) correlated with 

higher experimental glycosylation efficiencies for sequons T−1TQ+1 (~ 22%) and T−1TE+1 
(~13%) compared to T−1TD+1 (3%) and T−1TX+1 (0%), where X was an aromatic residue.

To quantify the interaction energy of different amino acid residues at the +1 position to 
specific residues on the enzyme, we computed the pairwise energies of interaction between 
the residue at the +1 position and the enzyme (Figure S18) and, as expected, found that the 
residues that exhibit the TTQ-like state interact favorably with residues K281 or K363 on the 
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enzyme. On the other hand, residues P+1 and A+1 did not interact with K281 or K363 
residues on the enzyme. The lack of interaction with K281 or K363 residues on the enzyme 
suggested that sequons T−1TP+1, T−1TA+1, S−1TP+1 and S−1TP+1 and S−TA+1 had no 
propensity for the TTQ-like state and may explain the high glycosylation efficiencies 
observed for these sequons.

With these observations, we tested using TTQ-like state populations for classifying the 
substrate and non-substrate sequons (classification accuracy in Table S4 and Figure S19). 
While the change in classification accuracy is negligible, the consideration of the TTQ-like 
state improves predictions for sequons T−1Y+1, T−1TW+1 and T−1TD+1 (Figure S19).

Characterization of the peptide-enzyme interface

Shape complementarity and hydrogen bonding contribute to the finely tuned 
specificities at the −1 and +1 positions—So far, our analysis focused on analyzing the 
landscape of low-energy conformations exhibited by the peptides and on recapitulating the 
experimentally observed specificity trends as a function of the amino acid at the −1 and +1 
position of the sequon. In this process, we discovered the dominant modes of interaction 
between the peptide and the enzyme that lead to reactive (PTX-like) and non-reactive (GTX-
like and TTQ-like) conformations. Comparison between experimental data and 
computational predictions also revealed that a majority of sequons that were glycosylatable 
exhibited a PTX-like conformation. Next, we characterize the PTX-like state to decipher the 
structural basis for the variation of specificity within the subset of peptides that exhibited 
this state.

First, we calculated the shape complementarity,44 Sc, for the enzyme-peptide interface for all 
sequons for the ten lowest-interaction-energy decoys that satisfied the RMSDpeptide < 1.0 Å 
criterion (Figure 7A). P−1 peptides exhibited the highest shape complementarity at the 
peptide-enzyme interface. We further characterized the residue-wise and pairwise interaction 
energies at the interface (Figure S20). The P−1 residue exhibited generally higher attractive 
van der Waals energies with all enzyme residues at the interface (Figure S20) and especially 
with H365 of the enzyme (Figure 7B). The planar interface formed by a histidine residue at 
position 365 on the enzyme packs well against Pi residue (Figure 7C). T−1, S−1, and A−1 
residues shape complementarities and exhibited energies that varied to a significant extent 
with the residue at the +1 position (Figure 7A, B and Figure S20, S21). Thus for these 
sequons, the +1 position may additionally contribute to anchoring the peptide in the binding 
cavity.

In the +1 position, proline exhibited the highest shape complementarity (Figure 7A and 
Figure S21) in the “+1 pocket” formed by three aromatics F280, W282 and F361, stabilized 
by favorable interactions between the partially positively charged proline ring and the 
partially negatively charged π faces of aromatic side chains (Figure 7D, Figure S22). Also, 
similar to the TTQ-like state, sequons with aromatics, glutamine, glutamate and non-polar 
residues other than alanine, proline and glycine at the +1 position interacted with K281 on 
the enzyme (Figure 7E).
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Surprisingly, the median Sc of the top ten decoys that satisfied the RMSDpeptide < 1.0 Å 
criterion is a reasonably good classifier of sequon glycosylatability with a ROC-AUC score 
of 0.944.

For T−1 and S−1 residues, the PTX-like state was additionally stabilized by a hydrogen bond 
between the hydroxyl side chain and the backbone carboxyl of R362 on GalNAc-T2 (Figure 
S23).

In summary, the shape complementarity and pairwise-energies describe a −1 pocket that is 
highly specific for the P−1 residue, underlying the high experimental glycosylation 
efficiencies measured for P−1 peptides.

Sequence motifs at the −1 pocket hint at modes of specificity modulation 
across isoforms T2, T14 and T16—The −1 pocket on the enzyme plays an important 
role in screening for optimally-sized side chains at the −1 position of the sequon. This 
pocket is primarily formed by residues R362, K363, Q364, H365 and W331. These residues 
determine the size and chemical composition of the −1 pocket. The residues R362, K363, 
Q364, and H365 reside on the flexible, semi-conserved catalytic loop45 of GalNAc-T2. This 
flap-like loop can additionally contribute to the variability of the −1 pocket size across the 
GalNAc-T isoforms.17 Among the three isoforms of the GalNAc-T family that show a strong 
preference for Pi (T2, T14, T16), the H365 residue is conserved (Figure 7F). Residues K363 
and Q364 reside at the point of entry for the −1 residue on the peptide. Variation of amino 
acids at these positions could allow for variation in the size of the amino acid preferred at the 
−1 position of the sequon. For example, isoforms T14 and T16, which are evolutionary most 
proximal to T2, have residues lysine or arginine at position 364. Unlike T2, both T14 and 
T16 prefer G−1;46 indicative of a −1 pocket suitable for smaller sidechains. In fact, when we 
repeated MCM sampling of the G−1 sequons for the T2 isoform with the Q364R mutation, 
we observed a complete shift towards conformations with RMSDpeptide < 1.0 Å (PTX-like 
state) and the elimination of the GTX-like state (Figure 7G), suggesting a possible strategy 
for varying the peptide substrate preference of various isoforms.

Discussion
In this work, we attempted to understand the structural basis for the peptide substrate 
preferences of the T2 isoform of the GalNAc-T family. We expect this work to be useful in 
understanding how the preference for different peptide substrates is modulated across the 20 
isoenzymes of this family.

We used a flexible backbone protocol with MCM sampling, resulting in more than one low-
energy peptide conformation/state in the vicinity of the starting peptide conformation. Most 
existing protocols for determining peptide specificity for peptide binding domains employ 
limited backbone sampling, generating ensembles close to the starting structures (pepspec, 
MFPred) and usually employing additional constraints to sample TS-like conformations. 
While these studies have been successful at predicting specificity trends, a wealth of 
information can be garnered from sampling the peptide landscape without imposed 
constraints. Our work benefitted from the availability of crystal structures for the peptide-
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enzyme complex but may be less accurate in the absence of crystal structures. Our approach 
also suffered from inaccuracies in the Rosetta energy function, the limitations of MCM 
sampling, and the use of implicit solvation models to name a few. We further note that an 
MD-based simulation, though computationally prohibitive for a large dataset, may be better 
suited for generating thermodynamically accurate ensembles and for characterizing the 
density of multiple stable states.

We investigated a range of features to predict the glycosylation efficiency of GalNAc-T2 
(Table 1) and found that the features dHB and RMSDpeptide are able to recapitulate binarized 
glycosylation specificity with a balanced accuracy of 88.9% and 87.9% and a false positive 
rate of 17.8% and 8.9% respectively. Alternatively, the fraction of decoys, Nd and Nr, that 
satisfy criterion dHB < 4.0 Å and RMSDpeptide < 1.0 Å respectively, recapitulated specificity 
with a balanced accuracy of 85.2% and 85.6% and a false positive rate of 14.3% and 7.3% 
respectively.

Additionally, we found energy-based predictors (based on MFPred and interaction energy in 
this work) to be poor predictors of specificity, especially in the absence of structural-motif-
preserving constraints. While MFPred is able to predict a preference for T−1 and S−1 
residues, it fails to identify P−1 and A−1. For the +1 position, MFPred performs much worse. 
Both of these AUC values as well as the average AUC over all positions predicted by 
MFPred are lower than those obtained with the dHB and RMSDpeptide criteria (Table 1, Table 
S3). These results suggest that the stability of the peptide-enzyme complex or the 
interaction-energy at the interface, by itself, is a weak indicator of efficient catalysis by 
GalNAc-T2. In fact, since selective stabilization of the transition state over the reactants is 
important for catalysis, the over-stabilization of the reactant state (indicated by higher 
interaction energies) may increase the free energy of activation (difference between the 
energy of reactants and the transition state) thereby slowing or preventing the reaction20,25. 
The addition of constraints could partially alleviate this issue by restraining the enzyme-
peptide complex in a configuration mimicking the transition state. However, the addition of 
constraints will omit the sampling of potential low energy states that may compete with or 
hinder the formation of the transition state. Such states can only be identified in protocols 
that allow flexible sampling of the backbone without constraints.

The −1 position on the peptide strongly determined the glycosylation efficiency. Residues 
R362, K363, Q364 and H365 on the catalytic loop and residue W331 on the enzyme form 
the −1 pocket and select for amino acids threonine, proline, serine, alanine or glycine at the 
sequon’s −1 position. For sequons with residues that did not fit this pocket, the peptide was 
not able to form a hydrogen bond with UDP that has been proposed to stabilize the TS. We 
further found that this pocket was especially favorable for recognizing peptides with proline 
at the -1 position, as demonstrated by highly favorable interactions between H365 and 
proline and a high degree of shape complementarity at the +1 position irrespective of the 
amino acid. The flexible catalytic loop is especially suitable for modulating of the size of the 
peptide binding pocket.17 Hence, by changing the size and other biophysical aspects of this 
pocket, the specificity for the −1 position can be potentially modulated. These structural and 
sequence features are especially relevant for specificity modulation across isoforms, as the 
GalNAc-T family can glycosylate a wide range of amino acids at the −1 position.
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We additionally found that residues K281 and K363 acted as gating residues by interacting 
with peptide amino acid residues, such as Q+1 and D+1, leading to low-energy states that 
compete with the reactive state. Hence, the specificity for the +1 position may be modulated 
by altering the lysine residues at positions 281 and 363 on the enzyme. Similar to the −1 
position, such variation in specificity for the +1 position is already observed in the GalNAc-
T family as certain isoforms (GalNAc-T112, GalNAc-T1446) are capable of efficiently 
glycosylating D+1.

Key structural motifs identified in this work may be important for designing more 
promiscuous forms of the enzyme or tailored forms with specificities different from those 
seen in the 20 naturally occurring isoforms. Furthermore, since many members of the 
GalNAc-T family have been associated with various cancers, the sequence and structural 
motifs identified in this work may help decipher mutations that cause aberrant glycosylation.

Methods
Starting structure for enzyme–peptide complex

The primary starting structure of the enzyme-peptide complex was obtained from the crystal 
structure of the active conformation of GalNAc-T2 from the crystal structure of the complex 
(pdb id: 2ffu). Since the sugar is absent from that structure, we used a second GalNAc-T2 
structure (pdb id: 4d0z) with bound peptide (mEA2), manganese and UDP-GalNAc-5S. 
While the sugar bound to UDP in 4d0z has a modification (sulfur instead of oxygen in the 
ring), it aligns exactly with 2ffu with the additional sugar (Figure S24). To generate the 
starting structure for each sequon, we used the crystal structure of the complex replacing the 
mEA2 peptide peptide with A−2X−1T0X+1A+2P+3R+4C+5, where X is any amino acid 
residue except cysteine. Residues at positions −1 and +1 (denoted by Xs) were mutated to 
the target sequon for all 361 sequons studied in the work by Kightlinger et al.12 using 
Rosetta’s MutateResidue mover followed by side chain repacking and minimization using 
the PackRotamersMover. No backbone motion is allowed at this stage.

Rosetta protocol for generating decoys
The glycosylation protocol is based on the flexpepdock38,39 protocol with a few 
modifications. There are two main stages– 1) Low-resolution sampling with the centroid 
score (united atom) 2) High-resolution refinement with the all-atom ref2015 score function.
47 In the low-resolution phase, we use simulated annealing for enhanced sampling of the 
peptide. We vary the temperature from 2.0 to 0.6 in Rosetta temperature units (kT) over 30 
Monte Carlo (MC) cycles. For each temperature cycle of simulated annealing, we use 50 
inner MC cycles are used for perturbation followed by minimization in rigid body (across 
enzyme-peptide interface) and torsional (peptide) space. “Small” and “shear” movers from 
Rosetta are used for torsional sampling of the peptide48 with rigid body perturbations using 
the RigidBodyPerturbMover. The final pose from the low-resolution stage is passed to the 
high-resolution stage. In the high-resolution stage, the attractive and repulsive potential 
weights are ramped down and up respectively over 10 outer cycles. Similar to the low-
resolution stage, we apply rigid body sampling across the enzyme-peptide interface and 
torsional sampling of the peptide backbone followed by minimization and Metropolis 
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criterion. Additionally, both rigid body moves (30 cycles) and torsional moves (30 cycles) 
are accompanied by peptide side chain repacking every cycle and the interface side chains 
every 3rd cycle48. We used the default distance of 8 Å to define the interface. Additionally, 
the run was terminated if the peptide moved more than 8 Å away from the enzyme-peptide 
interface. The backbone of the enzyme is fixed throughout sampling. We generated 2000 
decoys per sequon. Larger number of decoys (8000) were not found to alter the results.

This protocol is available in the Rosetta software suite (revision>=275). See Supporting 
Information for the complete list of steps to run the protocol. The protocol is run from 
commandline as follows:

>mucintypeglycosylation.<system><compiler><mode> @flags

System=linux; compiler=gcc; mode=release

Where “flags” is a plain text file and contains the following options:

-in:file:s <input pdb file>

-in:fde:native <input pdb file>

-nstruct 2000 #no. of decoys

-residue_to_glycosylate 3P #Threonine on peptide chain P

-substrate_type peptide

-low_res true #enables low resolution stage

-tree_type docking

-sugardonor_residue 495 #residue number of UDP-5SGalNac

-enable_backbone_moves_pp #enables peptide backbone moves in high resolution

-ex1

-ex2aro

-nevery_interface 3 # pack enzyme peptide interface every 3 MC cycles in high resolution

-ntotal_backbone 30 # mn 30 MC cycles in High resolution

-output_distance_metrics true #output rmsd, distance, interaction energies to score file

Clustering and analysis of decoys
The top 10% decoys (200/2000) were clustered using the dbscan clustering algorithm49,50 in 
sklearn51 with parameters set to eps = 0.3 Å (maximum distance between samples for one to 
be considered in the neighborhood of the other) and min_samples = 10 (number of samples 
in the neighborhood of a point to be considered a core point).
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Calculation of features
We report two RMSD metrics in this work – RMSDpeptide and RMSDsequon. Both metrics 
are calculated over backbone Cα atoms only with respect to the backbone of the peptide in 
the starting structure. For RMSDpeptide, RMSD is calculated over all peptide positions (8). 
For RMSDsequon, RMSD is calculated for positions -1 to +3 (XTXAP). Shape 
complementarity44 is calculated using PyRosetta52 as described in Supporting Information. 
The interaction energy at the enzyme-peptide interface is calculated as the difference 
between the ref2015 score for the bound complex and the ref2015 score for the enzyme 
(includes the UDP-sugar molecule) and the peptide, separated from the complex without 
relaxing or repacking side chains.

Specificity prediction with MFPred
We used MFPred as described:35 1) The starting structure was relaxed. 2) The lowest energy 
decoy from relax step was used as the starting structure for the FastRelax protocol for each 
sequon. 3) The lowest energy decoy for each sequon from the FastRelax protocol was 
processed by the GenMeanFieldMover. All calculations were performed as described in 
study35 with Rosetta software suite43 (revision 226).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Computational workflow to determine glycosylation efficiency of GalNAc-T2 for 
peptide substrates for an experimentally characterized dataset obtained by scanning 19 amino 
acid residues (all except cysteine) at positions −1 and +1 of the peptide.
(A) For reference, a replot of the experimentally determined efficiencies (data from 
Kightlinger et al.12). (B) Monte Carlo minimization (MCM) sampling of peptides docked to 
GalNAc-T2 result in “funnel plots” like the three shown. Each point represents one 
structural model, or “decoy,” at its corresponding RMSD from the reference structure and 
the interaction energy calculated by Rosetta. (C) Computational workflow to characterize 
enzyme-peptide interactions for a representative sequon, T−1TQ+1, with T at the −1 position 
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and Q at the +1 position. For each sequon, we selected the top-10%-scoring decoys (by 
interaction energy) from MCM sampling and clustered them using three features (see main 
text for features). For each sequon, we characterized the two largest clusters by the lowest 
interaction energy decoy belonging to that cluster and then examined which features (or 
combinations of features) could recapitulate the experimental glycosylation efficiencies (A).
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Figure 2. Characterization of the lowest-energy representative conformation for the top two 
clusters in Rosetta runs.
As in Figure 1A, each heatmap shows results for the 19x19 peptide sequons on a color scale. 
(A) Interaction energy, (B) normalized cluster size, (C) RMSDPeptide, and (D) dHB of the 
largest (top) and second-largest (bottom) clusters characterized by the lowest interaction 
energy decoy for each cluster.
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Figure 3. The major determinant of dHB and RMSDpeptide sampled by lowest energy decoys is 
the amino acid residue at the −1 position.
Lowest energy decoys belonging to the largest (top) and second largest clusters (bottom) for 
all sequons plotted as a function of the RMSDpeptide and dHB and colored by (A) the residue 
at the −1 position of the sequon and (B) the residue at the +1 position of the sequon.
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Figure 4. Substrate specificity based on TS stabilizing hydrogen bond criterion with dHB < 4 Å.
(A) Heatmaps of (left panel) dHB distances of the lowest-interaction-energy decoy belonging 
to a cluster with the cluster centroid satisying the criterion. (B) True positives (TP, dark 
blue), true negatives (TN, light blue), false positives (FP, light red) and false negatives (FN, 
dark red) predicted based on dHB < 4 Å threshold applied to the dHB value of the lowest-
interaction-energy decoy of the largest cluster. (C) ROC curve for dHB distances and fraction 
of decoys (Nd) satisfying criterion. (D) Violinplot of distribution of dHB distances sampled 
by the top-scoring 10% decoys for four representative sequons (P−1TP+1, T−1TP+1, N−1TP+1 
and R−1TP+1). (E) Lowest interaction energy decoys for four sequons (P−1TP+1, T−1TP+1, N
−1TP+1 and R−1TP+1 – black boxes in the heatmap in (A)), dHB is calculated between the 
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amide nitrogen (blue sphere) of T0 on peptide(aquamarine) and the Oβ-PO4 (red sphere) on 
UDP (orange), dHB is shown with double-ended yellow arrows. (F) Pocket-like cavity 
formed by enzyme residues (pink surface) that contacts the amino acid at the −1 position on 
the peptide.
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Figure 5. Substrate specificity based on RMSDpeptide < 1.0 Å criterion.
Joint and marginal probability densities for the top 10% of structures by score (200/2000) 
for a given amino acid at the −1 position and aggregated over all amino acids at the +1 
position. (A) G−1 and B) P−1 and all amino acid residues at X+1; Top 1% (20/2000) decoys 
per sequon shown as points where darker color indicates lower interaction energy. “GTX-
like” state is marked with a black arrrow and “PTX-like state” is marked with a red arrow. 
(C) Lowest interaction energy decoy in the enzyme’s peptide binding groove for 
representative sequon P−1TP+1 (white; RMSDpeptide < 1.0 Å) superposed with that for G
−1TP+1 (aquamarine; RMSDpeptide > 1.0 Å). (D) Joint and marginal probability densities of 
Top 10%(200/2000) sequons for all peptides with fixed amino acids A−1, S−1, T−1 and all 
amino acid residues at X+1; Top 1% (20/2000) decoys per sequon shown as points where 
darker color indicates lower interaction energy. The blue arrow indicates a third state distinct 
from PTX- and GTX-like states. (E) Heatmap of RMSDpeptide (left panel) of the lowest 
energy decoy per sequon, and fraction of decoys (Nr) satisfying RMSD criterion (right 
panel) for RMSDpeptide < 1.0 Å. (F) True positives (TP), true negatives (TN), false positives 
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(FP) and false negatives (FN) predicted based on RMSDpeptide < 1 Å threshold applied to the 
lowest-interaction-energy decoy of the largest cluster. (G) ROC curve for RMSDpeptide 
(magenta) and Nr (grey) satisfying RMSDpeptide < 1.0 Å. Black and brown boxes in (E) and 
(F) indicate examples of glycosylatable and non-glycosylatables sequons, respectively, that 
also exhibit the GTX-like states.

Mahajan et al. Page 30

ACS Catal. Author manuscript; available in PMC 2022 March 05.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Figure 6. Secondary effects of the amino acid at the +1 position.
(A) Fraction of decoys sampling the GTX-like state for sequons with A, G, S, or T at the −1 
position. (B) Joint and marginal probability densities of top 10% (200/2000) sequons for T
−1TQ+1 (left panel) and lowest energy decoy for TTQ-like state for sequon T−1TQ+1 state, 
where Q+1 position interacts with K281. (C) Joint and marginal probability densities of top 
10%(200/2000) sequons for T−1TD+1 (left panel) and lowest energy decoy for TTQ-like 
state for sequon T−1TD+1 state, where D+1 position interacts with K363. (D) Fraction of 
low-energy decoys in the TTQ-like state. Top 1% (20/2000) decoys per sequon shown as 
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points in (B) and (C) where darker color indicates lower interaction energy. “TTX-like” state 
is marked with a black arrrow and “PTX-state” is marked with a red arrow.
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Figure 7. Characterization of enzyme–peptide interactions for top 10 decoys G−1, A−1, S−1, T−1, 
P−1 peptides.
(A) Median shape complementarity (Sc). (B) Attractive component of the van der Waals 
(VdW) potential in Rosetta score function between the residue at the −1 position and H365 
on the enzyme. (C) −1 pocket of at the enzyme peptide interface with H365 on the enzyme 
(pink) interacting with the proline at the −1 position on the peptide (aquamarine). (D) 
Residues 280, 281, 282 and 361 on the enzyme (pink) interacting with proline at the +1 
position on the peptide (aquamarine). (E) Residues 280, 281, 282 and 361 on the enzyme 
(pink) interacting with tryptophan at the +1 position on the peptide (aquamarine). (F) 
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Multiple sequence alignment of isoform T2 with other isoforms for the residues at the 
enzyme-peptide interface for +1 and −1 positions on the peptide. (G) Violinplots for 
RMSDPeptide distributions sampled for sequon G−1TA+1 for isoform T2 (top) and a variant 
T2-Q364R (bottom). Residue numbering based on GalNAc-T2 Uniprot entry Q10471.
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Table 1.

Summary of AUC scores, true positives (TP), true negatives (TN), false positives (FP) and false negatives 
(FN), and balanced accuracy (BA=(TPR+TNR)/2; TPR=TP/(TP+FN) and TNR=TN/(TN+FP)) and false 
positive rate (FPR=FP/(FP+TN)) for predictions at an experimental glycosylation efficiency threshold of 10%.

Feature AUC Feature threshold
TP TN BA

(%)
FPR
(%)FP FN

Interaction Energy (dHB < 4.0 Å) 0.875 < −34 (REU)
42 255

86.1 19.0
60 4

dHB (largest cluster) 0.923 <4.0 (Å)
44 259

88.9 17.8
56 2

Fraction of decoys (dHB < 4.0 Å) 0.906 > 0.70 (−)
39 270

85.2 14.3
45 7

RMSDpeptide (largest cluster) 0.959 < 1.0 (Å)
39 287

87.9 8.9
28 7

Fraction of decoys (RMSDpeptide < 1.0 Å) 0.965 > 0.53 (−)
36 292

85.5 7.3
23 10

Sc (median top 10; RMSDpeptide < 1.0 Å) 0.944 > 0.735
42 265

87.7 15.9
50 4

Interaction Energy (largest cluster) 0.564 < −34 (REU)
36 98

54.7 68.9
217 10

Interaction Energy (RMSDpeptide < 1.0 Å) 0.908 < −34 (REU)
39 271

85.4 14.0
44 7

The calculation of TPs, TNs, FPs, FNs, BA and FPR requires a threshold. Feature thresholds were chosen in two cases (dHB (largest cluster) < 4.0 
Å and RMSDpeptide (largest cluster) < 1.0 Å) to match criteria discussed in the main text. For all other cases, thresholds were chosen arbitrarily. 
Also see Table S2 for precision and F1 score.
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