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ABSTRACT 62 
 63 
1. Biologists aim to explain patterns of growth, reproduction, and ageing that characterize life 64 

histories, yet we are just beginning to understand the proximate mechanisms that generate 65 
this diversity. Existing research in this area has focused on telomeres but has generally 66 
overlooked the telomere’s most direct mediator, the shelterin protein complex. Shelterin 67 
proteins physically interact with the telomere to shape its shortening and repair. They also 68 
regulate metabolism and immune function, suggesting a potential role in life history variation 69 
in the wild. However, research on shelterin proteins is uncommon outside of biomolecular 70 
work. 71 
 72 

2. Intraspecific analyses can play an important role in resolving these unknowns because they 73 
reveal subtle variation in life history within and among populations. Here, we assessed 74 
ecogeographic variation in shelterin protein abundance across eight populations of tree 75 
swallow (Tachycineta bicolor) with previously documented variation in environmental and life 76 
history traits. Using blood gene expression of four shelterin proteins in 12-day old nestlings, 77 
we tested the hypothesis that shelterin protein gene expression varies latitudinally and in 78 
relation to both telomere length and life history. 79 
 80 

3. Shelterin protein gene expression differed among populations and tracked non-linear 81 
variation in latitude: nestlings from mid-latitudes expressed nearly double the shelterin 82 
mRNA on average than those at more northern and southern sites. However, telomere 83 
length was not significantly related to latitude.  84 

 85 
4. We next assessed whether telomere length and shelterin protein gene expression correlate 86 

with 12-day old body mass and wing length, two proxies of nestling growth linked to future 87 
fecundity and survival. We found that body mass and wing length correlated more strongly 88 
(and significantly) with shelterin protein gene expression than with telomere length. 89 

 90 
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5. These results highlight telomere regulatory shelterin proteins as potential mediators of life 91 
history variation among populations. Together with existing research linking shelterin 92 
proteins and life history variation within populations, these ecogeographic patterns 93 
underscore the need for continued integration of ecology, evolution, and telomere biology, 94 
which together will advance understanding of the drivers of life history variation in nature.  95 

 96 

Keywords: bird, latitude, life history, POT1, shelterin proteins, telomere, TPP1, TRF2 97 

 98 
INTRODUCTION 99 

 100 
Evolutionary biologists aim to explain diversity in patterns of growth, reproduction, and ageing 101 
that characterize life histories (sensu Stearns, 1992). Life history traits often vary predictably 102 
with geography and ecology (Gaston et al., 2008). However, many ecogeographic rules do not 103 
fully address the proximate mechanisms underlying variation in life history, despite repeated 104 
calls to integrate physiological mechanisms into life history theory (Ricklefs & Wikelski, 2002). 105 
 106 

Life history traits are often linked to telomeres (Monaghan, 2010), the chromosomal structures 107 
that preserve genomic integrity and shorten over time (Blackburn, 1991; Remot et al., 2021; 108 
Young, 2018), yet the telomere’s protective shelterin proteins are often ignored. The shelterin 109 
complex includes six proteins (de Lange, 2018; Myler et al., 2021; Figure 1): TRF1 and TRF2 110 
bind double-stranded telomeric repeats; RAP1 associates with TRF2; and TIN2 physically links 111 
TRF1 and TRF2 with TPP1, which recruits POT1. Together, this complex forms a protective 112 
telomere cap that negatively regulates telomere accessibility by telomerase, the enzyme that 113 
repairs telomere length (de Lange, 2018). Critically, telomere loss and other factors may free up 114 
shelterin proteins to act away from the telomere end (Mukherjee et al., 2019; Mukherjee et al., 115 
2018), where they may influence life history via transcriptional regulation of metabolic and 116 
immune function (Akincilar et al., 2021; Wolf & Shalev, 2023; Ye et al., 2014). This provides a 117 
putative mechanism by which stress-induced and ecogeographic variation in telomere loss 118 
(Chatelain et al., 2020; Karkkainen et al., 2021; Stier et al., 2016) may causally contribute to life 119 
history (e.g., survival, lifespan: Heidinger et al., 2012; Wilbourn et al., 2018). 120 
 121 

Shelterin proteins could expand the causal links between telomere biology and ecologically 122 
relevant phenotypes, but only a few recent studies have focused on shelterin in nature. For 123 
example, some shelterin proteins are more highly expressed in mammalian species with longer 124 
lifespans (e.g. TIN2, TRF1: Ma et al., 2016; MacRae et al., 2015). At the intraspecific level, 125 
decreases in shelterin occur in response to natural stressors and are linked to survival (Rouan 126 
et al., 2021; Wolf et al., 2022), suggesting that low shelterin may be adaptive. In addition, Wolf 127 
et al. (2022) showed that shelterin POT1 gene expression outperformed telomere length in 128 
predicting fitness-related traits within a population of wild birds. These intraspecific approaches 129 
are key to assessing subtle variation occurring among populations without confounding species 130 
effects. On the other hand, biomedical work suggests that increases in shelterin may provide 131 
temporarily heightened DNA protection during aerobic stress (sensu Ludlow et al., 2013). 132 
Extremely high or low shelterin can also promote senescence or immortalization of cancer cells 133 
(Akincilar et al., 2021). Together, these observations suggest that telomere length, and by 134 
extension telomere regulation, may be shaped by stabilizing selection. Altogether, it remains 135 
unclear how subtle natural variation in shelterin protein abundance contributes to life history. 136 
 137 
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The first step to integrating shelterin proteins into a life history framework is to quantify their 138 
standing variation in the wild and assess correlations with ecology and life history. Our study 139 
used free-living tree swallows (Tachycineta bicolor). Tree swallows migrate north each spring 140 
from the southernmost United States, Central America, and Caribbean to breeding grounds 141 
ranging from Alaska to mid-southern United States (Winkler et al., 2020), although this range 142 
has been expanding south, for example, into South Carolina and Alabama in the last three 143 
decades (Shutler et al., 2012; Wright et al., 2019). Previous work shows life history variation 144 
among populations: birds breeding at higher latitudes have shorter breeding seasons, slightly 145 
larger clutches, and higher mortality rates (Ardia, 2005; Dunn et al., 2000; Winkler et al., 2020), 146 
which may be driven in part by migration routes and glucocorticoid levels (Gow et al., 2019; 147 
Zimmer et al., 2020; but see Siefferman et al., 2023). Critically, this range also varies in 148 
environmental factors, such as local food availability and nest temperatures (Ardia, 2006; 149 
Zimmer et al., 2020). 150 
 151 
We capitalized on this range to assess spatial variation of shelterin protein abundance in 152 
nestling tree swallows across eight populations in the eastern United States. We expected that 153 
shelterin protein gene expression would vary latitudinally and in relation to proxies of life history. 154 
Based on findings that long-lived species have higher shelterin protein abundance (e.g., Ma et 155 
al., 2016; MacRae et al., 2015), one prediction is that more southerly populations, which have a 156 
slower life history strategy, will express more shelterin. Alternatively, populations with slower life 157 
histories may express less shelterin, if insights gained from within-population analyses (e.g., 158 
Wolf et al., 2022) apply across larger spatial scales. We also assessed associations of shelterin 159 
proteins with telomere length and age-specific body size, an established proxy of nestling 160 
growth. We predicted that shelterin proteins would better predict nestling body size than 161 
telomere length, given that shelterin proteins regulate metabolism. While little is known about 162 
the consequences of shelterin proteins at the organismal scale (but see above), they should 163 
nevertheless vary with life history and the environment. Documenting intraspecific variation in 164 
shelterin levels and their covariation with fitness-related traits is foundational to future research 165 
on the proximate and ultimate outcomes of shelterin protein expression, and may reveal a novel 166 
mechanism contributing to life history and ageing.  167 
 168 
 169 
METHODS AND MATERIALS 170 

 171 
Study populations: Data were collected from 8 populations in the eastern United States, 172 
spanning nearly 10 degrees of latitude (Table 1, Fig 2A): Ithaca, New York (42.28°N, 76.29°W); 173 
Amherst, Massachusetts (42.22°N, 72.31°W); Linesville, Pennsylvania (41.65°N, 80.43°W); 174 
Bloomington, Indiana (39.17°N, 86.53°W); Lexington, Kentucky (38.11°N, 84.49°W); Knoxville, 175 
Tennessee (35.90°N, 83.96°W); Davidson, North Carolina (35.53°N, 80.88°W); and Santee, 176 
South Carolina (33.49°N, 80.36°W). These populations do not represent the entire breeding 177 
range of this species and in particular, do not extend to the northern edge in Canada and 178 
Alaska. All methods were approved by institutional IACUCs and conducted with appropriate 179 
state and federal permits. 180 
 181 
Sampling of nestlings: Nest boxes were monitored for hatch dates, but in cases where hatch 182 
dates were missed (e.g., due to weather or COVID-related staffing shortages), hatch dates were 183 
estimated using existing growth curves (McCarty, 2001; Wolf et al., 2021) and accounted for in 184 
all statistical analyses. Data from multiple populations shows that the average peak of postnatal 185 
growth occurs around 6-days old (McCarty, 2001; Wolf et al., 2021). Growth then slows and 186 
plateaus near adult size by 12-days old, just as feather development accelerates. We targeted 187 
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12-day old nestlings because they have just completed the rapid period of postnatal growth. 188 
Many studies therefore use morphological data at this critical time period as a proxy of nestling 189 
growth (Gebhardt-Henrich & Richner, 1998; Haywood & Perrins, 1992; Magrath, 1991; Martin et 190 
al., 2018; McCarty, 2001). Population variation in growth rates occurs primarily after peak 191 
growth but does not map neatly onto latitude, at least not in the northern (historical) range 192 
where previous research has been focused (Ardia, 2006; McCarty, 2001).  193 
 194 

We sampled nestlings at 12.03 ± 0.01-days old (hatch day = day 1, range = 10 – 14 days). We 195 
sampled ~30 nests per population (Table 1), though logistical constraints prevented collection 196 
of RNA in Kentucky. Upon arrival at each nest, we immediately collected whole blood from the 197 
brachial vein of 2-3 nestlings per nest (≤ 200 µl, below the maximum suggested volume based 198 
on body mass; Gaunt et al., 1997), and we avoided obvious runts with atypical growth. We 199 
collected blood in separate tubes for DNA and RNA analyses. We banded nestlings with a 200 
USGS band and weighed them to the nearest 0.1g. We also measured flattened wing length 201 
using a wing ruler. We stored blood on ice or dry ice in the field, and later stored it at -80°C.  202 

 203 
Due to limited budgets, we made the decision a priori to conduct laboratory analyses for a single 204 
nestling per nest. When possible, we selected the nestling with the median mass. If the median-205 
massed nestling was not bled or failed to produce a sufficient blood sample, we selected the 206 
nestling with the closest mass to the median. In nests with even brood sizes, we randomly 207 
selected one of the two nestlings with median mass for telomere and gene expression analyses. 208 
In all states except Indiana, telomere length and gene expression data come from the same 209 
individual. 210 
 211 
qPCR for Telomere length: We extracted DNA from whole blood (following Wolf et al., 2022) 212 
and used primers telc and telg (adapted from Cawthon, 2009) to quantify telomere length 213 
relative to the single copy gene GAPDH. Samples were run in triplicate, and mean values were 214 
used to calculate the T/S ratio of telomere repeat copy number (T) to our single gene copy 215 
number (S) using the formula: 2-∆∆Ct, where ∆∆Ct = (Ct telomere – Ct GAPDH) reference – (Ct telomere – Ct 216 
GAPDH) sample. The intraclass correlation coefficient (ICC) for intraplate repeatability was 0.951 ± 217 
0.03 (95% CI = 0.944, 0.957) for GAPDH Ct values and 0.926 ± 0.09 (95% CI = 0.916, 0.935) 218 
for telomere Ct values. The ICCs for interplate repeatability were 0.96 ± 0.03 (95% CI = 0.87, 219 
0.98) for GAPDH Ct values, 0.89 ± 0.06 (95% CI = 0.73, 0.95) for telomere Ct values, and 0.79 220 
± 0.10 (95% CI: 0.54 - 0.90) for the T/S ratio (based on 2-∆Ct values). Plates (n = 13) were 221 
balanced by population, sex, relative date of sampling within each population, and brood size. 222 

 223 
Nestling Sexing Protocol: Nestlings were molecularly sexed using DNA following established 224 
methods (Griffiths et al., 1998; Wolf et al., 2022). 225 
 226 
Shelterin Protein Primer Design: Shelterin proteins are relatively conserved across taxa (de 227 
Lange, 2018; Myler et al., 2021) and earlier work has identified at least four shelterin proteins in 228 
the chicken (De Rycker et al., 2003; Konrad et al., 1999; Tan et al., 2003; Wei & Price, 2004). 229 
Our shelterin protein primer sets were developed using the tree swallow transcriptome 230 
(accession #GSE126210; Bentz et al., 2019). TRF2 exhibits multiple variants in passerines, and 231 
a BLAST search confirmed that our primer set targets TRF2 in closely related barn swallows 232 
(Hirundo rustico). TPP1 and POT1 each have a single transcript in adult tree swallows that is 233 
highly expressed across tissues, and BLAST searches confirmed that our primer sets targeted 234 
TPP1 and POT1 genes, respectively, in multiple bird species. We also designed primers for 235 
RAP1 based on tree swallow transcripts of TRF2IP (TRF2-interacting protein), a common alias 236 
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for RAP1. However, this study omits TRF1 due to negligible expression in nestling blood, and 237 
TIN2 because we could not confidently identify the passerine sequence for TIN2. Thus, 238 
altogether we quantified gene expression for four key components of the shelterin complex: 239 
TRF2, RAP1, TPP1, and POT1 (primer sequences in Table S1). 240 

 241 
qPCR for Shelterin Protein Gene Expression: We extracted RNA using a phenol-chloroform-242 
based Trizol method (Invitrogen, Carlsbad, CA) with PhaseLock tubes (5PRIME, #2302830). 243 
We synthesized cDNA using 1µg RNA and Superscript III reverse transcriptase (Invitrogen), 244 
treated with DNAase (Promega, Madison, WI) and RNase inhibitor (RNAsin N2111, Promega). 245 
For each gene of interest, we used the 2-∆∆Ct method of quantification (Livak & Schmittgen, 246 
2001), in which expression is normalized to the geometric mean Ct of two reference genes for 247 
each sample (Vandesompele et al., 2002), and relative to a calibrator sample on each plate. 248 
Reference genes correct for technical variation in cDNA quantity across samples, and as such, 249 
must (i) be highly expressed, (ii) exhibit low variability among samples, and (iii) show no 250 
significant variation among biological categories of interest. Our reference genes were PPIA 251 
(peptidylprolyl isomerase A; Virgin & Rosvall, 2018) and MRPS25 (Mitochondrial Ribosomal 252 
Protein S25; Woodruff et al., 2022). Preliminary work showed that New York samples exhibited 253 
markedly higher gene expression of these and a third reference gene (GAPDH). This violates 254 
assumption (iii) of the 2-∆∆CT method, and we therefore had to omit New York gene expression 255 
data. The remaining six populations exhibited limited among-population variation in reference 256 
gene expression (non-significant state differences or ≤ 0.5 Ct of the study-wide average).  257 
 258 
Samples were run in triplicate alongside No Template Controls (NTCs), using PerfeCta SYBR 259 
Green FastMix with low ROX (Quanta Biosciences, Gaithersburg MD) on 384-well plates using 260 
an ABI Quantstudio 5 machine with Quantstudio Design & Analysis software (v1.4.3, Thermo 261 
Fisher Scientific, Foster City, CA). Each well included 3µL of cDNA diluted 1:50 (or 3µL water, 262 
for NTCs) and primers diluted to 0.3µM in a total volume of 10µL. All reactions use the following 263 
thermal profile: 10 min at 95°, followed by 40 cycles of 30 s at 95°, 1 min at 60°, and 30 s at 70°, 264 
with a final dissociation phase (1 min at 95°, 30 s at 55°, and 30 s at 95°) that confirmed single-265 
product specificity for all samples. All samples fell within the bounds of the standard curve and 266 
reaction efficiencies were within 100 ± 15%. Each gene was run on 1.5 plates, balanced by 267 
population. Intraclass correlation coefficients for triplicates were 0.996 ± 0.01 (95% CI = 0.995, 268 
0.997) for PPIA Ct values, 0.994 ± 0.009 (95% CI = 0.993, 0.996) for MRPS25 Ct values, 0.975 269 
± 0.05 (95% CI = 0.967, 0.982) for POT1 Ct values, 0.940 ± 0.05 (95% CI = 0.923, 0.954) for 270 
TRF2 Ct values, 0.975 ± 0.05 (95% CI = 0.968, 0.981) for TRF2IP Ct values, and 0.996 ± 0.007 271 
(95% CI = 0.995, 0.997) for TPP1 Ct values.  272 
 273 
Statistical analyses: All analyses were performed in R (version 3.5.3, R Core Team, 2019).  274 
We fitted general linear mixed effects models using the nlme package (Pinheiro et al., 2023) to 275 
perform two main types of analyses (below).  276 
 277 
All four shelterin proteins were positively correlated (log(log2-transformed gene expression), 278 
0.21 < R < 0.61, Fig S1), so we used principal components analysis to reduce the 279 
dimensionality of these data. PC1 had an eigenvalue of 1.52, accounting for 58% of the total 280 
variance. PC1 positively loaded for all 4 shelterin proteins (TRF2: 0.59, TRF2IP: 0.51, TPP1: 281 
0.45, POT1: 0.44). Based on these loadings and the fact that 1 unit of log2 space denotes a 282 
doubling of abundance, we can infer that 1 additional unit of PC1 equates to increases in gene 283 
expression of 50% for POT1 and 100% (or doubling) for TPP1, TRF2, and TRF2IP. 284 
 285 
To test for ecogeographic trait variation, we ran separate Gaussian models for body mass, wing 286 
length, log-transformed telomere length, and shelterin protein gene expression. While latitude 287 
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was our main fixed effect, we also included latitude2 for several reasons. First, populations 288 
closer to the range edge may have unique physiological traits that alter telomere dynamics and 289 
life history, including immune function and growth (Chatelain et al., 2020; Martin et al., 2014; 290 
Myles-Gonzalez et al., 2015). This may be relevant to the South Carolina population, which is 291 
near the southward expansion edge-of-breeding-range (Shutler et al., 2012; Wright et al., 2019). 292 
Such ‘pioneers’ may have unique phenotypes (Siefferman et al., 2023). Even without individual 293 
variation driven by range expansions, non-linear patterns with latitude can emerge from spatial 294 
contrast in selection by abiotic and biotic factors (MacArthur, 1984; Paquette & Hargreaves, 295 
2021). Each model included latitude, latitude2, sex, age at sampling, and ageing method (i.e., 296 
known or estimated age) as fixed effects. Brood size was also included as a fixed effect, as it 297 
may influence traits of interest and it exhibits subtle latitudinal variation in previous work (Dunn 298 
et al., 2000). We did not detect multicollinearity among this group of fixed effects (variable 299 
inflation factors ≤ 2). Population was included as a random effect to account for multiple birds 300 
sampled at each site. In addition, models of telomere length and shelterin gene expression 301 
included random effects of qPCR plate. Note that results for these models run with qPCR plate 302 
as a fixed effect are equivalent to those in which qPCR plate was included as a random effect 303 
(Table S2). One outlier was removed (using Grubbs test) for models predicting body mass and 304 
PC1 for shelterin protein gene expression.  305 
 306 
To evaluate whether shelterin protein gene expression or telomere length better predicts 307 
nestling morphology, we use an information-theoretic approach. For model comparisons 308 
predicting body mass and wing length, we created a three-model set. The null model included 309 
known or likely predictors of body mass or size: latitude, latitude2, nestling age at sampling, 310 
ageing method, sex, and brood size as fixed effects, with population as a random effect. The 311 
remaining two models additionally contained either shelterin protein gene expression or log-312 
transformed telomere length, allowing us to evaluate the prediction that shelterin proteins better 313 
predict morphology than telomere length. As above, we did not detect multicollinearity among 314 
fixed effects for any candidate model (variable inflation factors ≤ 2). We used Akaike information 315 
criterion (AICc to correct for small sample size) for model comparisons and present ∆AIC, where 316 
highly supported models have ∆AIC ≤ 2 compared to other models (Burnham et al., 2011). We 317 
also report AIC weights, which quantify the relative support for specific models and the terms 318 
within. Weights range from 0 to 1. We then performed model averaging of these candidate 319 
models for each morphological trait. Only conditional model averages are reported because 320 
shelterin protein gene expression and telomere length were each a priori included in only one 321 
candidate model. Because different Indiana nestlings were used for telomere and shelterin 322 
protein analyses, Indiana nestlings were not included in this analysis.  323 

 324 
RESULTS 325 
 326 
Shelterin protein gene expression was significantly related to the latitude2 term, such that 327 
nestlings from mid-range sites expressed nearly double the shelterin protein mRNA relative to 328 
more northern and southern sites (Fig 2B, Fig S2A). PC1 gene expression was unrelated to 329 
sex, exact age, ageing method, or brood size (Table 2). In contrast with shelterin protein gene 330 
expression, relative telomere length (Fig 2B, Fig S2B) and proxies of growth (Fig 3) were not 331 
significantly related to any latitude terms, though these traits still showed marked intraspecific 332 
variation (see Tables 2, 3 and Fig S3 for full details). Telomere length was not significantly 333 
correlated with gene expression of any shelterin protein (-0.1 < R < -0.02, Fig S1). 334 

 335 
PC1 gene expression outperformed telomere length in predicting nestling growth (Table 4). The 336 
top-ranking models for mass and wing length contained shelterin protein gene expression, each 337 
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with a model weight ≥ 0.75, showing strong evidence that nestlings with lower shelterin protein 338 
gene expression were heavier and had longer wings at 12-days old (Fig 4A). We found weaker 339 
evidence for a relationship between telomere length and proxies of nestling growth (Table 4, 340 
Fig 4B), as all models containing telomere length and not shelterin protein gene expression had 341 
a ∆AIC ≥ 5.15, with model weights ≤ 0.06. Both ‘null + shelterin’ models also had more support 342 
than the null model alone, which had a ∆AIC ≥ 3.06. Furthermore, model averaging revealed 343 
that shelterin protein gene expression, but not telomere length, significantly predicted both 344 
nestling body mass and wing length (Table 5). Therefore, inclusion of shelterin protein gene 345 
expression in statistical models improved latitude and age-based predictions of nestling growth 346 
and critically, outperformed models that included telomere length.  347 
 348 
DISCUSSION  349 
 350 
Telomeres have been connected to environmental and intraspecific variation in life history 351 
(Burraco et al., 2020; Karkkainen et al., 2021; Kirby et al., 2017; Tricola et al., 2018; Whittemore 352 
et al., 2019), and we hypothesized that shelterin proteins may be key underlying mediators. We 353 
used tree swallows, which vary across populations in a number of environmental and life history 354 
traits like body size and growth (Ardia, 2005, 2006; Dunn et al., 2000; McCarty, 2001), a result 355 
replicated here using nearly 10 degrees of latitude and updated to include the expanding 356 
southern range edge. Across these populations, we found significant non-linear latitudinal 357 
patterns in shelterin protein gene expression. Specifically, nestlings from mid-latitude sites 358 
expressed on average nearly double the shelterin mRNA compared to more northern and 359 
southern sites, and individual variation was even more marked (up to 256x). Because the 360 
pleiotropic effects of shelterin proteins are likely related to telomere dynamics and may affect 361 
physiology, we expected to also find intraspecific variation in telomere length and body size 362 
measured at the end of the growth period, the latter of which is an established proxy of growth 363 
and predictor of future fecundity and survival (Haywood & Perrins, 1992; McCarty, 2001). While 364 
we did not find a relationship between telomere length and nestling morphology, we did find that 365 
shelterin protein mRNA abundance better predicted intraspecific variation in nestling size than 366 
did telomere length, altogether encouraging continued research on shelterin proteins in life 367 
history. 368 
 369 
We predicted that shelterin protein gene expression would co-vary with latitude, and we found 370 
lower shelterin mRNA abundance at northern and southern ends of our sampling range. 371 
Quadratic relationships with latitude are not uncommon (Karkkainen et al., 2021; Lappalainen et 372 
al., 2008) and may be driven by factors that act differentially with latitude. For example, shelterin 373 
proteins respond to food limitation (Rouan et al., 2021; Wolf et al., 2022), a major driver of 374 
population dynamics at more northern latitudes (MacArthur, 1984). Other factors may dominate 375 
in the south. For example, the southernmost population in this study (South Carolina) lies at the 376 
edge of an ongoing southward range expansion (Siefferman et al., 2023; Wright et al., 2019). 377 
Expanding populations, including those of the tree swallow, often exhibit unique sets of 378 
phenotypes like boldness or aggression (Siefferman et al., 2023), both energetically costly 379 
behaviors that may affect shelterin protein abundance (sensu Ludlow et al., 2013). Regardless 380 
of its cause, population averages differ by as much as two fold (a doubling) in their baseline 381 
gene expression. Among-individual variation within populations was even more marked, up to 382 
~2.5 to 8 log2-fold, which translates to 6 to 256-fold variation in gene expression among 383 
individuals. While shelterin mRNA abundance has already been linked to stress resiliency and 384 
survival in adults and nestlings of this species, respectively (Wolf et al., 2022), we cannot yet 385 
determine the functional outcomes of this variation. At present, we have no evidence that this 386 
natural intraspecific variation compromises telomere functionality. As speculated below, 387 
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latitudinal variation in shelterin levels may lead to differential regulation of physiology (e.g., 388 
metabolism and immune function) and the expression of life history traits across populations. 389 

Telomere length, on the other hand, did not vary with latitude in 12-day old nestlings. Our result 390 
is among others in asking how the environment drives spatial patterns of telomere length 391 
(reviewed in Burraco et al., 2021), e.g., long telomeres are found in low-latitude adult black 392 
bears (Ursus americanus) but mid-latitude nestling and adult pied flycatchers (Ficedula 393 
hypoleuca; Karkkainen et al., 2021; Kirby et al., 2017). Latitudinal differences may be masked 394 
by variation in telomere length within populations that results from variability in natal conditions 395 
and population-specific factors. Within-population variability may also shrink after the first year 396 
of life, at which point only 10-20% of nestlings remain alive (Winkler et al., 2020). If so, 397 
latitudinal patterning may emerge among adults, though compensatory shifts in telomere 398 
regulation may equalize length across the range. However, strong directional selection on 399 
telomere regulation or length may be unlikely if it promotes non-functional telomeres or cancers. 400 
Continued population and longitudinal analyses are key to disentangling these alternatives. 401 

That shelterin protein gene expression did not co-vary with telomere length may not be intuitive, 402 
but there are several reasons why this might be the case. The only major evidence of shelterin-403 
telomere covariation comes from research on cancer (Fujii et al., 2008; Hu et al., 2010), a 404 
diseased state in which trait variation may far exceed that of putatively healthy wild animals. 405 
Shelterin-telomere covariation may be masked, first, by other telomere regulators like 406 
glucocorticoids (Angelier et al., 2018) and antioxidants (Badas et al., 2015). Second, shelterin 407 
abundance may be more temporally and environmentally plastic than telomere length (Belmaker 408 
et al., 2019; Chik et al., 2022), which may produce covariation only under specific conditions or 409 
windows of time. In addition, focusing sampling on median-massed, 12-day old nestlings may 410 
limit variation in telomeric traits and thereby, the probability of detecting relationships. Shelterin 411 
abundance may also be more strongly correlated with telomere length in tissues with greater 412 
telomerase activity than nucleated red blood cells (e.g., gonads; Haussmann et al., 2007). 413 
These findings underscore the need for a closer look at the dynamics of shelterin proteins and 414 
telomere length, and the relative role each plays in tracking versus contributing to life history.  415 
 416 
Biomolecular work has begun to establish potential links between shelterin proteins and 417 
physiological traits that have ecological relevance (Akincilar et al., 2021; de Lange, 2018; Ye et 418 
al., 2014). Consistent with this view, we found that shelterin protein gene expression co-varied 419 
with two key proxies of growth, namely, mass and wing length measured after a period of rapid 420 
postnatal growth. Furthermore, shelterin protein gene expression was a stronger predictor of 421 
morphology than telomere length and improved upon our basic latitudinal model, suggesting 422 
that shelterin proteins may contribute to intraspecific variation in life history traits. That shelterin 423 
is highly expressed in the blood of adult tree swallows despite negligible telomerase activity in 424 
the same tissue (Bentz et al., 2019) suggests that shelterin may act via telomere-independent 425 
functions. For example, high shelterin levels (e.g., RAP1, TIN2) are associated with metabolic 426 
dysfunction in cell culture (Chen et al., 2012; Teo et al., 2010). High shelterin gene expression 427 
was found in our smallest nestlings, whose slow postnatal growth is a robust predictor of 428 
lifespan (McCarty, 2001). Similarly, Wolf et al. (2022) reported higher shelterin POT1 gene 429 
expression in adult birds with smaller body mass and a stronger weight-loss response to 430 
sickness. Experimental manipulation of a shelterin gene (TRF1) also affects metabolism 431 
(Augereau et al., 2021). Continued efforts to characterize shelterin proteins in nature are vital to 432 
testing shelterin’s effects on traits that vary within species and are visible to natural selection.  433 
 434 
CONCLUSION 435 
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We hypothesized that shelterin proteins may contribute to diversity in life history because these 436 
proteins may functionally connect telomere dynamics to physiological outcomes and life history 437 
traits. This hypothesis differs from the prevailing idea that telomeres are passive correlates of 438 
life history traits, and to date, remains largely untested. However, our among-population 439 
analyses corroborate and extend a few recent and exciting within-population analyses of 440 
shelterin proteins (Rouan et al., 2021; Wolf et al., 2022). In doing so, we underscore the need 441 
for further study of the shelterin proteins in an ecological context (as discussed in Wolf & 442 
Shalev, 2023). By applying these ideas to variation within and among species, we will move 443 
closer to understanding the proximate mechanisms that generate patterns of diversity in nature.  444 
 445 
  446 
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FIGURES AND TABLES 

Figure 1. Schematic of the shelterin protein complex. (A) The six-subunit shelterin protein 654 
complex binds to double-stranded and single-stranded telomeric DNA (TTAGGG repeats). (B) 655 
Shelterin complexes bind repeatedly along the telomere’s length. Co-factors are not shown. 656 
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Figure 2. Latitudinal variation in 657 
telomere biology in the blood of 658 
nestling tree swallows (A) across a 659 
latitudinal gradient in the eastern US. 660 
(B) Model outputs for shelterin protein 661 
gene expression (condensed into 662 
PC1), One unit of PC1 equates to 663 
increases in gene expression of 50% 664 
for POT1 and 100% (or doubling) for 665 
TPP1, TRF2, and TRF2IP. (C) Model 666 
outputs for relative telomere length 667 
(T/S ratio). Points and gray circles 668 
represent average ± SE values per 669 
population and individual points, 670 
respectively. Shaded areas show 671 
95% confidence intervals.  672 
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Figure 3. Morphological variation in age-matched nestlings across a latitudinal gradient in the 673 
eastern US: (A) body mass and (B) wing length (B). Points represent model outputs for average 674 
± SE values per population, and gray circles are individual data points. Shaded areas show 95% 675 
confidence intervals. 676 

  677 

  678 
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 679 

Figure 4. The relationship between body mass and (A) shelterin protein gene expression (PC1) 680 
or (B) relative telomere length (T/S ratio) among nestlings at 12-days old. One unit of PC1 681 
equates to increases in gene expression of 50% for POT1 and 100% (or doubling) for TPP1, 682 
TRF2, and TRF2IP. Points represent individual nestlings. Shaded areas show 95% confidence 683 
intervals. Note that different Indiana nestlings were used for telomere and shelterin protein 684 
analyses, and so they could not be included here.685 



20 
 

 

 

 
  

Table 1.  Sample sizes by state for each model. Multiple nestlings were measured per nest, 
but only one median-massed nestling was selected a priori for all analyses.  For logistical 
reasons, not all samples were collected in the same year.  Note that: (a) NY RNA samples were 
excluded, and (b) shelterin pc1 and telomere length were measured using two separate cohorts 
of IN nestlings (2019, 2020, respectively). 

 Year(s) Avg Age 
(days ± SE) 

Count 
Female 

Count 
Male Mass Wing 

Length 
Telomere 

Length 
Shelterin 

pc1 
NY 2020 12.00 ± 0.00 15 17 32 32 32 0a 

MA 2020 12.10 ± 0.06 24 14 38 39 39 19 
PA 2020 12.10 ± 0.05 20 16 36 36 36 36 
IN 2019, 2020b 12.00 ± 0.02 32 28 60 60 41 18 
KY 2020 12.00 ± 0.00 16 9 25 0 25 0 
TN 2020 12.00 ± 0.10 16 16 32 32 32 29 
NC 2020 11.80 ± 0.09 22 11 33 33 33 33 
SC 2020-2021 12.10 ± 0.09 11 12 23 23 23 33 
  Total Count 156 123 279 255 261 168 
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Table 2. Linear mixed effects models assessing the relationship between latitude 
and covariates, on relative telomere length and shelterin protein gene expression 
(PC1). All models included population and qPCR plate as random effects. 
Reference (intercept) levels for categorical variables are specified in parentheses. 
Marginal (R2

m) and conditional (R2
c) R-squared values represent the proportion of 

total variance explained by fixed, or fixed and random effects, respectively.  
Significant effects (p ≤ 0.05) are bolded.  
 Shelterin Protein Gene Expression, n = 168 
 β estimate ± SE df F-value p-value 
Intercept (known, female)a 105.67 ± 22.65    

Latitude -5.71 ± 1.21 1, 8 0.39 0.55 
Latitude2 0.08 ± 0.02 1, 8 23.96 0.001 

Nestling Age 0.16 ± 0.15 1, 152 0.94 0.33 
Ageing Method (est.) -0.18 ± 0.23 1, 152 0.27 0.61 
Sex (male) -0.16 ± 0.21 1, 152 0.53 0.47 
Brood Size 0.13 ± 0.09 1, 152 2.43 0.12 
R2

m = 0.15; R2
c = 0.15 

 Relative Telomere Length, n = 261 
 β estimate ± SE df F-value p-value 
Intercept (known, female)a 7.37 ± 6.04    
Latitude -0.33 ± 0.31 1, 61 0.13 0.72 
Latitude2 0.004 ± 0.004 1, 61 1.28 0.26 
Nestling Age -0.10 ± 0.07 1, 181 2.00 0.16 
Ageing Method (est.) 0.04 ± 0.06 1, 181 0.74 0.39 
Sex (male) -0.02 ± 0.05 1, 181 0.21 0.65 
Brood Size 0.02 ± 0.02 1, 181 0.71 0.40 
R2

m = 0.02; R2
c = 0.13 

a reference levels 
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Table 3. Linear mixed effects models assessing the relationship between latitude 
and proxies of nestling growth. All models included state as a random effect. 
Reference (intercept) levels for categorical variables are specified in parentheses. 
Marginal (R2

m) and conditional (R2
c) R-squared values represent the proportion of 

total variance explained by fixed, or fixed and random effects, respectively. 
Significant effects (p ≤ 0.05) are bolded.   
 Body Mass (g), n = 279 
 β estimate ± SE df F-value p-value 
Intercept (known, female)a 109.91 ± 84.33    

Latitude -5.21 ± 4.42 1, 5 1.51  0.27 
Latitude2 0.07 ± 0.06 1, 5. 0.98 0.37 

Nestling Age 0.67 ± 0.39 1, 267 2.29 0.13 
Ageing Method (est.) -0.19 ± 0.46 1, 267 0.81 0.37 
Sex (male) 0.24 ± 0.26 1, 267 0.60 0.44 
Brood Size -0.63 ± 0.11 1, 267 31.09 <0.0001 
R2

m = 0.16; R2
c = 0.35 

 Wing Length (mm), n = 255 
 β estimate ± SE df F-value p-value 
Intercept (known, female)a 198.35 ± 224.33    
Latitude -11.55 ± 11.77 1, 4 4.48 0.10 
Latitude2 0.16 ± 0.15 1, 4 1.13 0.35 
Nestling Age 5.50 ± 0.99 1, 244 22.45 <0.0001 
Ageing Method (est.) -4.43 ± 1.18 1, 244 15.05 0.0001 
Sex (male) -0.14 ± 0.67 1, 244 0.07 0.80 
Brood Size -0.32 ± 0.29 1, 244 1.18 0.28 
R2

m = 0.26; R2
c = 0.41 

a reference levels 
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Table 4. Akaike’s information criteria of general linear mixed effects models 
predicting nestling mass and wing length, with either telomere length or 
shelterin protein gene expression (PC1). The base (or “null”) model includes 
latitude, latitude2, age at sampling, ageing method, sex, and brood size, with 
population as a random effect.  

 k logLik ∆AIC Akaike Weight 
Nestling body mass (g), n = 150     
Null + Shelterin PC1 10 -322.93 0 0.77 
Null  9 -325.61 3.06 0.17 
Null + Telomere length  10 -325.51 5.15 0.06 
     
Nestling wing length (mm), n = 150 

    
Null + Shelterin PC1 10 -453.00 0 0.99 
Null  9 -460.40 12.49 0.002 
Null + Telomere length  10 -459.29 12.58 0.002 
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Table 5. Conditional model-averaged coefficients for models predicting nestling 
body mass and wing length with either shelterin protein gene expression or 
telomere length. Population was included as a random effect in all models. 
Body Mass (g) (n = 150) β estimate ± SE F-value p-value 
Intercept (known, female)a 188.33 ± 122.96 1.52 0.13 
Shelterin Protein Gene Expression -0.35 ± 0.12 2.78  0.005 
Telomere Length 0.03 ± 0.44 0.07 0.94 
Latitude -9.62 ± 6.50 1.47 0.14 
Latitude2 0.13 ± 0.09 1.50 0.13 
Nestling Age 1.03 ± 0.22 4.60 <0.0001 
Ageing Method (est.) 0.09 ± 0.45 0.20 0.84 
Brood Size -0.62 ± 0.14 4.30 <0.0001 
Wing Length (mm) (n = 150) β estimate ± SE F-value p-value 
Intercept (known, female)a 280.12 ± 186.56 1.49 0.14 
Shelterin Protein Gene Expression -1.25 ± 0.31 3.97  <0.0001 
Telomere Length 0.39 ± 1.14 0.34 0.74 
Latitude -15.99 ± 9.88 1.60 0.11 
Latitude2 0.21 ± 0.13 1.62 0.10 
Nestling Age 5.68 ± 0.55 10.16 <0.0001 
Ageing Method (est.) -3.62 ± 1.08 3.32 0.0009 
Brood Size -0.15 ± 0.36 0.43 0.67 
a reference levels 


