


metrics are hand-chosen and reflect a priori on what the aberration-
free image should look like. Accordingly, existing image-guided AO
and WS methods are inherently heuristic.

By contrast, NeuWS treats aberration correction as an estimation
problem and seeks statistically optimal estimates of both the phase
of the optical aberration and the brightness of the object of interest.
To do so, NeuWS captures a series of modulated measurements and
uses these measurements to form maximum likelihood estimates of
each quantity.

A schematic of NeuWS is presented in Fig. 1A. An incoherently
illuminated object is imaged by our optical system, which has an
unknown optical aberration at its aperture plane. Taking inspiration
from coded diffraction pattern phase retrieval (35) and computa-
tional wavefront sensing (17, 36, 37), a series of known and stochas-
tically generated patterns Γ1, Γ2, ... ΓL are displayed on a phase-only
SLM, which is imaged onto the system’s aperture plane with a 4f
system. Example modulation patterns and their corresponding
measurements are presented in Fig. 1C. Under the assumption

Fig. 1. NeuWS operating principles, comparisons, and experimental demonstration. (A) Neural wavefront shaping (NeuWS) images a high-resolution SLM onto the
surface of an optical aberration (e.g., soft tissue). The spatial light modulator (SLM) modulates the aberrated light with a sequence of randomly generated patterns Γ1,…,
ΓL, and the light is then Fourier-transformed by a lens onto a sensor. The captured images are compared with images simulated using a neural network—basedmodels of
the optical system, and backpropagation is used to estimate the target and aberration, thereby computationally correcting for the aberration. The conjugate of the
estimated aberration phase error can be displayed on the SLM to optically correct for the aberration. (B) Comparison between NeuWS and image-guided WS (IGWS)
(29). Both are tasked with correcting for scattering-induced optical aberrations (simulated with complex circular Gaussian wavefront errors) using a varied number of total
measurements. Reconstruction quality is measured by normalized correlation coefficient (NCC). NeuWS can correct for optical aberrations using orders of magnitude
fewer measurements. (C) Example of phasemodulation patterns Γ displayed on the SLM (top) and the correspondingmeasurement that each pattern produces (bottom).
(D) Experimental reconstructions of a negative USAF resolution target imaged through a glass slide covered in nail polish. NeuWS produces accurate digital reconstruc-
tions of the aberration (aberration estimate) and the object (object estimate) using 30 measurements, such as those shown in (C). Optical correction denotes an image
captured with the conjugate of the aberration estimate displayed on the SLM. No aberration denotes an image captured without an aberration along the optical path.
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that the optical aberrations are isoplanatic and the illumination is
spatially incoherent and monochromatic, this procedure results in
a sequence of measurements described by

Ii ¼ Oo�Hi þ Zi with Hi ¼ jF ½M � ejðΦoþΓiÞ� j
2

ð1Þ

where Ii denotes the ith observation, Hi denotes the ith point spread
function, Oo denotes the brightness of the object of interest, F
denotes the two-dimensional (2D) Fourier transform, Φo denotes
the phase of the optical aberration (which can include defocus),
M denotes the known binary mask/pupil defined by the shape of
the aperture, and Zi denotes the ith realization of noise. If the ele-
ments of all Zi follow independent identically distributed Gaussian
distributions, then, up to constants, the negative log likelihood of

the measurements, −lnp(I1, …IL∣O, Φ), is proportional to

LstaticðO; ΦÞ ¼
XL

i¼1

k Ii � O�jF ½M � ejðΦþΓiÞ� j
2
k2 ð2Þ

One could minimize the loss from Eq. 2 with respect to Φ and O
to form maximum likelihood estimates of the true wavefront error
and object brightness, Φo and Oo. However, as we demonstrate in
the Supplementary Materials, the negative log-likelihood loss func-
tion is too nonconvex for this direct approach to be effective, and
the optimization becomes stuck in inaccurate local minima.

In this work, we regularize the estimation problem by parame-
terizing Φ and O as the output of two untrained coordinate-based
neural networks, ϕ(u, v): ℝ

2
→ [0,2π] and o(x, y): ℝ

2
→ ℝ≥0. These

networks, which rely on no external training data, map 2D spatial
coordinates (u, v) and (x, y) to estimates of the aberration and object
brightness, respectively. One can form Φ and O by evaluating ϕ and

Fig. 2. Imaging static objects through static aberrations. (A) Experimental results of imaging a butterfly stamp through∼80 μmof onion skin using 500measurements
(top), a dog esophagus tissue sample through a 0.5° diffuser using 100measurements (middle), and a positive resolution target through a glass slide covered in nail polish
using 100 measurements (bottom). (B) Close-ups of the uncorrected images (green), the optically corrected images (blue), and the reference images (orange) captured
without an aberration in the optical path. NeuWS successfully corrects all three optical aberrations.
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o at all (u, v) and (x, y) on a pixel grid. Φ and O can then be used to
compute the loss defined by Eq. 2.

Such coordinate-based neural representations are inherently
continuous and treat images as functions, rather than matrices.
They excel at parsimoniously representing complicated signals,
they do not explicitly restrict the reconstructions to a subspace
(e.g., Zernike basis), and they can quickly pick up on and reinforce
regularity in the data (38). As demonstrated in the Supplementary
Materials, the negative log-likelihood loss landscape defined by Eq.
2 is far smoother and easier to optimize when parameterized as a
function of the neural representation weights, rather than pixel
values or Zernike coefficients. This regularity allows us to efficiently
optimize o and ϕ using stochastic gradient descent, starting from
random initializations. Related network-based parameterizations
of images have been applied successfully to microscopy (39, 40), to-
mographic microscopy (41, 42), magnetic resonance imaging (43),
and other applications (44–50).

A major advantage of NeuWS’s estimation theory–based ap-
proach to WS is that it markedly reduces the number of measure-
ments required to correct a wavefront error. Figure 1B compares the
reconstruction accuracy of NeuWS and IGWS (29). Both are tasked
with recovering an image of the number “48” through a simulated
thin scattering media (every pixel of the simulated wavefront error
follows an independent and identically distributed complex circular
Gaussian distribution, introducing both amplitude and phase
errors). NeuWS can accurately recover the object using 10,000×
fewer measurements: 100 instead of 100,000. Comprehensive com-
parisons with IGWS (29) are provided in the Supplementary
Materials.

In all figures shown here,“uncorrected” denotes images captured
through an unknown optical aberration, “object estimate” denotes
NeuWS’s estimates (O) of each object’s brightness, “aberration esti-
mate” denotes NeuWS’s estimates (Φ) of each aberration’s phase
error, “optical correction” denotes images captured after compen-
sating for aberrations by displaying the conjugate (−Φ) of each ab-
erration estimate on the SLM, and “no aberration” denotes images
captured without an optical aberration (e.g., chicken breast tissue)
in the optical path.

Imaging static objects through static aberrations
We first validated the NeuWS framework by using it to image static
objects through static aberrations. Our results are summarized in
Fig. 2. We imaged a stamp of a butterfly, a prepared tissue sample
of a dog esophagus, and a positive United States Air Force resolu-
tion target through aberration layers made, respectively, of onion
skin, a 0.5° optical diffuser, and a glass slide coated with dried
nail polish. For the butterfly stamp, we captured 500 modulated
measurements, and for the other two samples, we captured 100
modulated measurements each. We also captured reference
images of the target objects without any aberrations present.

Given this dataset, we minimized the negative log-likelihood loss
from Eq. 2 to estimate the wavefront aberrations and the object
brightness. We also displayed the conjugate of the aberration esti-
mate on our SLM to optically correct for the aberration. As shown
in Fig. 2B, NeuWS’s optically corrected images match the resolution
of the aberration-free images.

Imaging dynamic objects through static aberrations
Dynamic objects present a challenge for existing image-guided AO
and WS methods. These methods estimate wavefront corrections
using feedback provided by an image quality metric. If object move-
ment causes this metric to change, then it will provide an erroneous
feedback signal that can push the correction away from the truth.

One of the biggest strengths of NeuWS is that it can be easily
extended to handle time-varying optical systems. To do so, one
merely modifies the negative log likelihood and neural representa-
tions to model time-varying measurements. The negative log-like-
lihood loss becomes, up to constants, proportional to

Ldynamic½OðtiÞ; ΦðtiÞ� ¼
XL

i¼1

k IðtiÞ � OðtiÞ � jFfM � ej½ΦðtiÞþΓi�gj
2
k2 ð3Þ

where I(ti), O(ti), and Φ(ti) are time-indexed representations of the
image, object, and phase error. The neural representations of Φ and
O similarly become ϕ(u, v, t): ℝ

3
→ [0,2π] and o(x, y, t): ℝ

3
→ ℝ≥0.

Such representations, which treat the object and aberration as func-
tions of both space and time, allow one to leverage temporal regu-
larity in the data without having explicit models on the dynamics
over time.

In our second set of experiments, we imaged a rotating stamp of
a butterfly through approximately 400 μm of chicken breast and a
rotating stamp of a fish through through a 0.5° diffuser. The butter-
fly and fish stamps each rotated counterclockwise at 0.5° per frame.
We captured 100 modulated measurements (one per angle) of the
butterfly stamp and another 100 measurements (one per angle) of
the fish stamp. We then minimized the time-varying log-likelihood
loss (Eq. 3), where the object O (but not the aberration Φ) was pa-
rameterized as a function of time to form estimates of O and Φ. As
demonstrated in Fig. 3, NeuWS can successfully estimate static ab-
errations while imaging dynamic objects, thereby allowing it to both
computationally and optically correct for aberrations. Video recon-
structions of these and other time-varying scenes can be found in
the Supplementary Materials.

Imaging static objects through dynamic aberrations
Correcting dynamic aberrations represents an important and
largely open challenge in WS (3). Guidestar-based methods have
worked to address this problem by reducing system latency, so
that they can measure and correct an aberration before it changes
(51). Meanwhile, guidestar-free methods have so far restricted
themselves to static aberrations (29).

In this work, we address the dynamic aberration challenge
through computational wavefront correction. Rather than trying
to push down system latency so that we can optically correct an ab-
erration before it changes, we computationally correct for the wave-
front error postcapture in the form of our object brightness
estimate.

To validate our approach to removing time-varying optical ab-
errations, we imaged a static sample of rabbit testes cells and a static
slide with two fingerprints through a rotating 0.5° diffuser and a ro-
tating glass slide covered in nail polish, respectively. The diffuser
rotated clockwise at 0.2° per frame, while the nail polished rotated
clockwise at 0.5° per frame. We captured 50 modulated measure-
ments of the rabbit cells and 30 modulated measurements of the
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Fig. 3. Imaging dynamic objects through static aberrations. (A) Experimental results of imaging a rotating butterfly stamp through ∼400 μm of chicken breast using
100measurements. (B) Experimental results of imaging amoving fish stamp through a 0.5° diffuser using 100measurements. (C andD) Close-ups of regions of interest of
the butterfly and fish stamps. (E and F) Estimates of phase errors produced by the the chicken breast and the diffuser, respectively. NeuWS can successfully estimate static
aberrations while imaging dynamic objects, thereby allowing it to both computationally and optically correct for aberrations.
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fingerprints. We then estimated the object and aberration by min-
imizing the time-varying log-likelihood loss (Eq. 3), where the ab-
erration (but not the object) was parameterized as a function of
time. As demonstrated in Fig. 4, NeuWS can successfully estimate
and thus computationally correct for time-varying optical aberra-
tions. In the Supplementary Materials, we demonstrate that if one
ignores the aberration dynamics and estimates a single static wave-
front error for all measurements, then the reconstruction quality
suffers severely.

Imaging dynamic objects through dynamic aberrations
Last, we used NeuWS to image dynamic objects through strong
dynamic aberrations—a task well beyond the capabilities of existing
guidestar-free WS techniques. In our experiments, we imaged rotat-
ing stamps of an owl and a turtle through translating aberrations
made of onion skin (∼80 μm in thickness) and a 0.5° diffuser.

The owl stamp and turtle stamp were each rotated counterclockwise
0.5° per frame. At the same time, the onion and diffuser were trans-
lated 0.1 mm per frame. We captured 100 modulated measurements
(one per angle) of the owl stamp and another 100 modulated mea-
surements (one per angle) of the turtle stamp. We then formed our
object and aberration estimates by minimizing the time-varying loss
from Eq. 3, with the aberration and object parameterized as func-
tions of space and time. As demonstrated in Fig. 5, NeuWS can suc-
cessfully reconstruct time-varying objects through time-varying
optical aberrations. Features that are nearly invisible in the uncor-
rected images show up clearly in the object estimates.

We further validated the accuracy of our aberration estimates by
performing optical correction. To do so, we rotated and translated
the objects and aberrations back to their positions when each frame
was captured. (In most applications, getting a wavefront error to
repeat itself in such a manner is impractical or impossible.) We

Fig. 4. Imaging static objects through dynamic aberrations. (A) Experimental results of imaging a static rabbit testes sample through a rotating 0.5° diffuser using 50
measurements. (B) Experimental results of imaging a static fingerprints slide through a rotating glass slide covered in nail polish using 30measurements. (C andD) Close-
ups of regions of interest of the rabbit sample and fingerprints, respectively. NeuWS can successfully estimate and thus computationally correct for time-varying optical
aberrations.
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then used the SLM to apply the conjugate of the aberration esti-
mates associated with each frame, producing excellent optical cor-
rections of the data, as shown in Fig. 5.

DISCUSSION

NeuWS combines an estimation theory–based approach to WS with
time-varying neural representations to enable high-resolution

guidestar-free WS through severe time-varying optical aberrations.
In doing so, NeuWS provides a breakthrough set of capabilities that
substantially advance what is possible with AO and WS.

NeuWS is a general-purpose approach to WS. It can correct for
lower-order optical aberrations like defocus (see the Supplementary
Materials) as well as higher-order aberrations, like scattering. It is
not restricted to imaging only binary, sparse, or simple scenes. Its
maximum resolution is diffraction limited by its aperture size, and

Fig. 5. Imaging dynamic objects through dynamic aberrations. (A) Experimental results of imaging a rotating owl stamp through ∼80 μm of translating onion skin
using 100 measurements. (B) Experimental results of imaging a rotating turtle stamp through a translating 0.5° diffuser using 100 measurements. (C and D) Close-ups of
regions of interest of (A) and (B), respectively. NeuWS can successfully reconstruct time-varying objects through time-varying optical aberrations. *In practice, optically
correcting a time-varying aberration is only possible if one can estimate the aberration before it changes. In these experiments, we enabled optical correction by rotating
and translating the object and aberration back to previously observed positions.
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like other WS methods, in the presence of strong scattering, it can,
in theory, enhance contrast by up to η ¼ π

4
N, where N is the number

of controlled pixels in the SLM (8). Like many other WS techniques,
NeuWS can only perform correction up to translation: Because they
produce equivalent measurements, NeuWS cannot differentiate
between tilts in the aberration’s phase and translations of the object.

All optical WS techniques are plagued by latency: In any
dynamic system, there is some amount of mismatch between the
wavefront that was measured (the past) and the wavefront that the
system is trying to optically correct (the present). Because in vivo
aberration decorrelation times can be on the order of milliseconds
(52), system latency represents a major barrier to optical WS. While
the nascent field of predictive AO/WS may eventually provide a sol-
ution (53), it is not yet ready to fully address this challenge.

In the context of optical WS, the computational nature of
NeuWS exacerbates the latency problem. With our current unopti-
mized implementation of NeuWS, estimating a 256-by-256 wave-
front errors takes 1 to 20 min (depending on the number of
measurements and whether the networks are parameterized as
functions of time) on an NVIDIA 3090 RTX graphics processing
unit. However, unlike other WS methods, NeuWS also estimates
the aberration-free object. That is, even when NeuWS (or any
other method) is too slow to optically correct the wavefront,
NeuWS can perform computational WS postcapture. Because
these corrections are performed postcapture on already collected
data, NeuWS is able to sidestep the latency problem: The aberration
that is computationally removed is (an estimate of) the aberration
that was present when the measurements were captured. Thus,
NeuWS can perform wavefront correction as quickly as it can mod-
ulate and capture images.

In our experiments, each image in the measurement sequences
had an exposure time of 90 to 120 ms. In addition, between each
modulated frame, we captured an unmodulated frame (they were
not used during reconstruction and only served to visualize the ab-
errations). Thus, our experiments ran at roughly 5 Hz. Assuming
that one is able to gather enough incoherent light, NeuWS’s
maximum framerate is determined by the minimum of the SLM
refresh rate and the camera frame rate. In our current system, our
SLM imposes a hard limit of 60 Hz. However, next-generation SLMs
can operate at kilohertz rates—potentially fast enough to perform
WS through thick living tissue.

Our proof-of-principle demonstrations were restricted to iso-
planatic aberrations and planar scenes, which can be corrected
with and put in focus by a single SLM pattern. In the context of
imaging through scattering media, the isoplanatic aberration as-
sumption corresponds to imaging within the memory effect
region. While the theory behind NeuWS naturally extends to multi-
planar aberration and object models, which could be corrected and
imaged with multiconjugate AO, there remain notable computa-
tional and experimental challenges that must be overcome to put
this into practice: The multiplanar forward model is no longer de-
scribed by convolution, and one would need to align multiple SLMs
to operate the system. Failed attempts to correct anisoplanatic aber-
rations with our current NeuWS implementation are presented in
the Supplementary Materials.

Like other AO and WS methods, NeuWS is complementary to
alternative scattering rejection/correction mechanisms, like two-
photon microscopy (54), optical coherence tomography (55, 56),
and time-of-flight imaging (57). Combining NeuWS with these
and other imaging technologies is a promising avenue for
future work.

Fig. 6. Network architectures. (A) We use a multilayer perceptron (MLP) network to predict the aberration based on the input (u, v, t). The standard approach to pa-
rameterizing the aberration is through modeling the phase error ϕ, but our setup also allows estimating of the amplitude error. For the input coordinates (u, v, t), the
spatial coordinates (u, v) are first transformed with NZ Zernike basis functions and then concatenated with t. Then, the transformed input is processed by the MLP. (B) We
use a combination of twoMLP networks and a neural texture map to predict the object based on the input (u, v, t). Specifically, to handle potential object motions, we use
the first MLP network to predict a displacement vector (Δx, Δy) given the input (x, y, t). Every time-dependent observation (x, y, t) is then transformed to a stationary
canonical space at location (x + Δx, y + Δy). Then, we sample the neural texture map at (x + Δx, y +Δy) to obtain a multidimensional vector representing the spatial feature
of the canonical coordinate (x + Δx, y + Δy). Last, we use the second MLP to predict the object intensity based on the sampled feature vector for each coordinate.
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MATERIALS AND METHODS

Experimental setup
We created spatially incoherent narrowband illumination by
passing light from a 532-nm laser (Z-LASER Z40M18B) through
a high-speed rotating diffuser (Thorlabs DDR25, Thorlabs DG10-
600-MD) and a laser speckle reducer (Optotune LSR-3005). We
used a Holoeye LETO-3 SLM to modulate the wavefront with ran-
domly generated patterns. The patterns were generated by forming
weighted sums of the first 15 basis functions of a Zernike polyno-
mial where the weights were determined by sampling from indepen-
dent Gaussian distributions whose SDs were all 5 radians. Data were
captured with a 1384-by-1036 pixel Grasshopper3 complementary
metal-oxide semiconductor camera. For the dynamic experiments,
motion was introduced with a rotation stage (Thorlabs K10CR1)
and a piezo translation stage (Thorlabs Z825B). A detailed
diagram of our experimental setup is provided in the Supplementa-
ry Materials.

Algorithm
Neural aberration representation

As illustrated in Fig. 6A, we used a multilayer perceptron (MLP)
network to predict the aberration ϕ at location (u, v) at time t. To
encode the input (u, v, t), we evaluated the first 28 Zernike basis
functions at (u, v) and concatenated the output values with t. The
encoded input was then processed by a eight-layer MLP with a
hidden dimension size of 32 and leaky rectified linear unit activa-
tions. We modeled the aberration ϕ at a resolution of 256 by 256.
The number of MLP layers may be tuned for each scene to improve
performance.
Neural object representation

As illustrated in Fig. 6B, we used a combination of two MLP net-
works to predict the object brightness o based on the input (x, y,
t). To handle potential object motion across measurements, we
used the first MLP, with three layers and 32 hidden dimensions,
to predict a displacement vector (Δx, Δy) given the input (x, y, t).
Every time-dependent observation (x, y, t) was then transformed to
a stationary canonical space at location (x + Δx, y + Δy). Next, we
obtained the canonical space feature of (x + Δx, y + Δy) by project-
ing it onto a learnable neural texture map (58). Last, we used the
second MLP, with two layers and 32 hidden dimensions, to trans-
form the sampled feature into the predicted object intensity. The
neural texture map serves as a flexible point embedding function
that mitigates the second MLP’s learning burden and allows use
to use smaller a MLP and thus train faster without sacrificing rep-
resentation capacity. We modeled the object o at a resolution of 256
by 256. The number of MLP layers may be tuned for each scene to
improve performance.
Optimization

After applying L randomly generated modulation patterns Γ1, Γ2, ...,
ΓL and capturing L different measurements I1, I2, ..., IL, we per-
formed 1000 epochs of stochastic gradient descent to minimize
the negative log-likelihood objective described by Eqs. 2 and 3.
Each iteration used a randomly selected batch of four images, and
the gradient-based update was performed using the Adam optimiz-
er (59) with a learning rate of 1 × 10−3.
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