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Abstract

Significance: Imaging through scattering media is critical in many biomedical imaging appli-

cations, such as breast tumor detection and functional neuroimaging. Time-of-flight diffuse opti-

cal tomography (ToF-DOT) is one of the most promising methods for high-resolution imaging

through scattering media. ToF-DOTand many traditional DOT methods require an image recon-

struction algorithm. Unfortunately, this algorithm often requires long computational runtimes

and may produce lower quality reconstructions in the presence of model mismatch or improper

hyperparameter tuning.

Aim: We used a data-driven unrolled network as our ToF-DOT inverse solver. The unrolled

network is faster than traditional inverse solvers and achieves higher reconstruction quality

by accounting for model mismatch.

Approach: Our model “Unrolled-DOT” uses the learned iterative shrinkage thresholding

algorithm. In addition, we incorporate a refinement U-Net and Visual Geometry Group (VGG)

perceptual loss to further increase the reconstruction quality. We trained and tested our model

on simulated and real-world data and benchmarked against physics-based and learning-based

inverse solvers.

Results: In experiments on real-world data, Unrolled-DOT outperformed learning-based algo-

rithms and achieved over 10× reduction in runtime and mean-squared error, compared to

traditional physics-based solvers.

Conclusion: We demonstrated a learning-based ToF-DOT inverse solver that achieves state-of-

the-art performance in speed and reconstruction quality, which can aid in future applications for

noninvasive biomedical imaging.
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1 Introduction

Light scattering is one of the primary limitations for optical imaging in biological tissue. It leads

to lower spatial resolution, contrast and signal-to-noise ratio (SNR). Many optical imaging
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methods attempt to mitigate the effects of scattering through ballistic imaging, filtering unscat-

tered photons from heavily scattered photons. A number of ballistic imaging techniques have

been developed, including spatial filtering (i.e., confocal microscopy), polarimetry, and time-of-

flight (ToF) imaging.1–4 Unfortunately, the number of ballistic photons decreases exponentially

with optical thickness. For example, optical imaging through the human skull requires imaging

through ∼6.5 mm of tissue with scattering coefficient 9 mm−1. This corresponds to ∼60 mean

free paths, which indicates on average a photon will undergo 60 scattering events while propa-

gating through a scatterer of this thickness. Therefore, only one ballistic photon would remain for

every e60 ¼ 1.14 � 1026 photons from the light source. As a result, most ballistic imaging meth-

ods fail to image beyond a few millimeters of tissue. The limited depth of ballistic imaging has

led to great interest in diffuse optical tomography, a technique that uses ballistic and diffuse

photons to image through densely scattering media.

In diffuse optical tomography (DOT), an array of light sources and detectors, which are

placed on the subject, capture a set of optical measurements. An associated reconstruction

algorithm converts these measurements into a high resolution, human-interpretable images.

To establish this reconstruction algorithm, DOT uses the predictable relationship between spatial

variations in the optical properties and the spatial-angular distribution of light, the radiance.5,6

This relationship can be represented as a function known as the forward model, which maps

the spatial distribution of optical properties to the radiance. To perform image reconstruction,

this forward model must be inverted, establishing a mapping from the radiance to the spatial

distribution of optical properties. This is generally referred to as the inverse problem. It is widely

accepted that an accurate forward model and inverse solver are essential to high accuracy

DOT image reconstruction.7 Accurate forward models and inverse solvers were essential in

several recent papers that achieved high resolution reconstructions through densely scattering

media.5,8–11

Despite the recent progress in optimizing the DOT inverse solver, it still possesses several

limitations. First, inverse solvers can be slow. Non-linear algorithms may require several hours to

complete.12 Even linear inverse algorithms, which are regarded as the fastest solvers, may require

minutes to reconstruct a single image.9 This precludes the possibility of real-time imaging of

biological events, which may require subsecond timing resolution. Second, many inverse solvers

require several hyperparameters, which are hand-tuned. Several prior works use optimization-

based inverse solvers that include regularization terms, such as Tikhonov or L1 norm regulari-

zation. Scaling the weights of these regularization terms can impact the resulting image recon-

struction. For example, increasing L1 norm regularization increases image sparsity. This can

improve the image reconstruction quality. However, since the parameters are hand-tuned, there

is no guarantee that the final result achieves the highest fidelity to the original image. Third, the

image reconstruction quality is highly sensitive to the system calibration. Reconstruction algo-

rithms require knowledge of the system parameters, i.e., the source and detector positions, the

target geometry, and the camera transform. While these parameters can sometimes be estimated

through a calibration procedure, this can be difficult for dynamic or living targets. This can lead

to model mismatch in estimating the background measurement13 or the mesh geometry14 and

can lead to inaccurate reconstructions of the target’s optical properties or position.

To address these challenges, we propose to use algorithm unrolling as the DOT inverse

solver, a technique we have dubbed “Unrolled-DOT.” In algorithm unrolling, the iterations

of a standard linear inverse solver are converted into fully connected (FC) layers of a neural

network.15,16 This has been shown to improve the image reconstruction quality and runtime

of the solver (Fig. 1). As shown by Lecun et al.,16 and as we will demonstrate in Sec. 6, the

unrolled algorithm can achieve a significantly faster algorithm runtime than traditional physics-

based solvers. In addition to improving the runtime, Unrolled-DOT also improves on traditional

physics-based solvers since it directly learns the hyperparameters and calibration from data. In

addition to outperforming physics-based solvers, there are also benefits to using the unrolled

algorithm versus other learning-based models: the unrolled algorithm is interpretable, and can

be trained with fewer parameters than traditional networks.15 While many traditional deep learn-

ing models are considered “black-box models,” the learned parameters of the unrolled-algorithm

correspond to physically meaningful values. For example, the learned activation parameter in the

unrolled network corresponds to sparsity regularization. In addition, traditional methods may
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possess tens of millions of parameters and require millions of examples for training.17,18 We will

demonstrate that Unrolled-DOT can be trained with just a few thousand examples.

Thus, we report the following contributions.

1. Our algorithm achieves higher image reconstruction quality compared to both physics-

based and learning-based solvers for DOT/ToF-DOT image reconstructions. Our method

reduces the mean-squared error (MSE) by over an order of magnitude on real-world data,

compared with physics-based linear solvers.

2. Our method is faster than traditional linear DOT solvers, achieving over an order of

magnitude reduction in the runtime compared to all other physics-based methods in our

comparison. High-quality image reconstruction can be achieved with just one layer,

approximately corresponding to a single iteration of a standard linear solver. In contrast,

other linear inverse solvers may require tens of iterations.

3. We collected the first real-world DOT/ToF-DOT dataset with thousands of measurement

and ground truth pairs (5000 total), which we made available to the public.19 In gen-

erating DOT tissue phantoms, it is difficult to precisely place the absorbing targets and

even harder to achieve on a large scale. Our method uses an Eink display to program-

matically control the target shape and placement, which provides a more accurate

ground truth. This is important for supervised learning algorithms that require measure-

ment and ground-truth pairs. In addition, these supervised models typically require

thousands of training examples for DOT reconstruction,20–22 which could only be

achieved with synthetic datasets in prior works. In the future, our real-world dataset

could be used to train and benchmark models on data that inherently possesses the fea-

tures (noise, contrast, etc.) of real-world measurements. This can lead to more accurate

benchmarks and trained algorithms that better account for model mismatch with real-

world measurements.

While our approach makes several improvements over existing methods, we also acknowl-

edge that there are certain limitations that can be addressed in future work. First, our prototype

uses a single laser source and single-pixel detector, which are raster-scanned by galvo mirrors.

In the future, an imaging system that possesses an on-chip array of sources and detectors

would improve the measurement acquisition speed. In addition, the measurements are currently

captured for only two-dimensional imaging targets and can be extended to three-dimensional

targets. In future work, it may be possible to extend to other imaging modalities through transfer

learning or by learning only the parameters associated with the physical apparatus. These learned

parameters can be treated as a calibration. To perform image reconstruction, the physics-based

models can still be applied on top of this calibration. Finally, applying these algorithms to in-vivo

targets is reserved as future work.

Fig. 1 Comparison of unrolled algorithms versus standard iterative linear solvers: (a) classical

inverse solvers, such as ISTA perform reconstruction by iteratively applying a gradient step

followed by the proximal operator, i.e., the shrinkage function with predetermined parameter λ.

(b) This iterative procedure can be unrolled. The gradient steps become FC layers of a neural

network. The non-differentiable operation becomes an activation function, such as a shrinkage

function with learnable parameter θ. Because the forward model is learned, unrolled algorithms

can reduce the number of layers and perform faster reconstruction compared to linear solvers. The

learned model can also reduce model mismatch and increase the image reconstruction quality.
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2 Related Works

2.1 DOT/ToF-DOT

There is a long history of imaging through scattering media using techniques such as near-

infrared spectroscopy (NIRS) and diffuse optical tomography (DOT). Early works in NIR

spectroscopy include monitoring of blood oxygenation levels in the brain, which began in

the 1970s.23 It was later discovered that neural activity was correlated to blood oxygenation

levels, and could be measured using NIRS, which led to the development of functional near

infrared spectroscopy in the 1990’s.24 In the present day, DOT has been applied to many appli-

cations in biomedical imaging, including functional neuroimaging, breast tumor detection, and

small animal imaging.25–27 DOT techniques can be generally categorized into three modalities:

continuous-wave (CW), frequency domain (FD), and time domain (TD), which is also referred

to as ToF.

In CW-DOT, each recorded measurement between a source and detector is a scalar intensity

value. Due to the simplicity of the associated hardware, this technology is the most cost-efficient

and can be easily integrated into wearable devices.28 CW-DOT has been shown to image up to

centimeters deep into tissue, but generally achieves poorer spatial resolution on the order of

centimeters.6 Recent progress with high-density DOT, which uses a dense array of sources and

detectors, has shown improvement in spatial resolution.25 Another DOT imaging modality is

FD diffuse optical tomography (FD-DOT). FD-DOT uses a frequency-modulated optical signal

for the light source. The optical properties of the target change the amplitude and phase of

the resulting measurements, which can improve the image reconstruction quality using greater

measurement diversity.29

Finally, the third DOT imaging modality is TD or ToF diffuse optical tomography

(ToF-DOT), which enhances the imaging quality using TD measurements on the order of

picoseconds. While the theory for ToF-DOT has existed since the 1990s, development of

the technology was limited by hardware performance and cost.30 In recent years, ToF-DOT

imaging systems have risen in popularity as the technology for TD detectors has matured.

Lyons et al.9 demonstrated that a transmission-geometry ToF-DOT system could achieve

approximately millimeter-scale spatial resolution through a 2.5-cm-thick scatterer. Unfortunately,

ToF-DOT systems were still very slow due to the large volume of spatial-temporal measurements

that had to be processed. Thus, confocal scanning geometries (CToF-DOT) have been applied to

ToF-DOT, reducing the number of measurements that are required while maintaining a high

spatial resolution.5,10

2.2 Physics-based DOT Inverse Solvers

While many imaging modalities exist, all DOT techniques require a forward model of light

propagation as well as an inverse solver to recover a spatial distribution of optical properties

from optical measurements. Both the forward model and inverse solver have an enormous impact

on the image reconstruction quality and the overall runtime. Most algorithms exhibit a tradeoff

between the reconstruction quality and runtime. Therefore, the forward and inverse algorithm

selection is critical. The most accurate method of light propagation is generally a full solution to

the radiative transfer equation using the Monte Carlo algorithm.6,31–33 While this approach is

accurate, it can also be quite slow. Solutions can also often be estimated using mesh-based

methods, such as finite-element method (FEM) or boundary element method,34–36 and finite

volume methods (FVM).12 Faster but more inaccurate forward models using the diffusion

approximation37,38 or truncated spherical harmonics approximations39–41 have also been pro-

posed. While physics-based methods have allowed DOT to achieve high resolution imaging

through densely scattering media, we believe they still possess certain limitations, including

a tradeoff between speed and reconstruction quality, a need for hyperparameter tuning,5 and

a need for system calibration.13,14 We believe that a learning-based method may help to mitigate

these challenges.
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2.3 Data-driven Models

While a lot of efforts have been placed on physics-based approaches, there has been a rise in the

popularity of machine-learning methods. Table 1 summarizes these recent works. Yedder et al.

was one of the first to use a deep neural network as the DOT inverse solver.20 Subsequent work

by Sabir et al.21 and Yoo et al.22 also applied neural networks, more specifically convolutional

neural network architectures, for solving the DOT inverse problem. Nizam et al. and Deng et al.

have demonstrated progress in improving CW diffuse optical tomography reconstruction quality

using a variation of the automated transform by manifold approximation (AUTOMAP)

architecture.43–45 Li et al.46 has applied deep learning and DOT to clinical applications, improv-

ing the accuracy of breast tumor imaging. Deep learning has also been applied for generating

data in DOTapplications.47 Recently, Zou et al.42 used an autoencoder to learn the forward model

and inverse problem of FD-DOT. While their training data included experimental data, it was

limited to only 30 unique configurations. Our proposed approach aims to improve on prior work

by constructing a neural network that is more interpretable and is trained on a real-world dataset

with thousands of examples to account for model mismatch.

The techniques described above all applied machine learning to improve the inverse solver

for recovering spatial distributions of optical properties. There are also many other works that

apply machine learning to other modalities of optical imaging,48,49 for example fluorescence

molecular tomography,50,51 fluorescence lifetime imaging,52–54 and direct optical imaging with-

out an inverse solver.55 In addition, machine learning has also been used in hybrid imaging

modalities. For example, deep learning has improved the reconstruction quality of magnetic

resonance imaging (MRI)-guided DOT/NIRS in the applications of breast tumor detection56 and

cerebral subdural hematoma monitoring;57 however, because these methods also rely on MRI,

they may lack the cost-efficiency and portability of an exclusively optical imaging approach.

2.4 Algorithm Unrolling

Neural networks are commonly treated as black boxes, hindering interpretability. This lack of

explainability has limited their adoption in several domains, especially for medical imaging, in

which the interpretability of results is essential. To increase the explainability of these networks,

a new technique known as algorithm unrolling has risen in popularity.15 Gregor and Lecun were

the first to propose this type of neural network architecture, an algorithm that they coined

“learned iterative shrinkage thresholding algorithm” (LISTA).16 The key idea of this approach

is to represent the iterations of the ISTA as layers of a neural network. This model is more

interpretable than a standard neural network because the learnable parameters represent the

Table 1 Comparison of DOT dataset size in recent works: Above, we summarize the important

attributes of datasets from recent works on machine learning and DOT. For the dataset size, we

break down whether the dataset was obtained through simulated or real-world data. In addition, we

note the size of the data for training and testing. Most data-driven DOT algorithms are trained on

large simulated datasets or a limited number of real-world measurements. Our method is the first

to use a dataset of thousands of real-world measurements.

Dataset
DOT modality
(CW, FD, ToF)

Real-world
training data?

(Y/N)
Simulated dataset size

(number of Measurements)
Real dataset size

(number of measurements)

Yedder et al.20 CW N 4500 32 (testing only)

Sabir et al.21 FD N 6500 2 (testing only)

Yoo et al.22 FD N 1500 3 (testing only)

Zou et al.42 FD Y NA (trained on
real-world data)

114 (24 inhomogeneous/
90 homogeneous phantoms)

Unrolled (ours) CW/ToF Y NA (trained on
real-world data)

5000 (training
and testing)
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forward matrix of the underlying physical model. This work has led to the “unrolling” of other

algorithms, such as the alternating direction method of multipliers (ADMMs)-CSNETalgorithm,

and has been used in several imaging applications, such as lensless imaging and MRI.58,59 Recent

works have also tested unrolled networks that do not train the network weights. Liu et al.60

introduced a network with analytically determined weights and learnable stepsizes and thresh-

olds. In the application of diffuse optical tomography, Hua et al.61 used an unrolled network for

fluorescence diffuse optical tomography. However, their method learns only the regularizer term

rather than the entire forward model, and was trained only on simulated data, which may lead to

model mismatch.

3 Physics-Based DOT Forward Model

The key to image reconstruction in DOT is an accurate model of light propagation, generally

referred to as the forward model. The forward model establishes the relationship between the

spatial distribution of optical parameters, i.e., the target image that we ultimately want to solve

for, and the set of recorded measurements. Because of this relationship, the accuracy of the

forward model is essential to obtaining high-quality, accurate image reconstructions. For

example, if the forward model assumes an inaccurate position for the detector, this can lead to

misplacement of the targets or other artifacts in the reconstructed image.

To establish an accurate forward model, we employ the radiative transfer equation (RTE).

The RTE, and consequently most DOT forward models, uses the particle model of light because

the wave nature of light has negligible impact on heavily scattered light. While the RTE is

generally considered the most accurate model of light propagation,39 it can be computationally

expensive or even intractable to solve for an arbitrary target geometry and imaging setup.

We model the propagation of light using a linear forward model. This model assumes a linear

relationship between small changes in the optical parameters (perturbations) and the optical mea-

surements that we collect. This is valid under the Born approximation for small optical changes,

relative to the background optical properties.31 The linear forward model can be expressed as

EQ-TARGET;temp:intralink-;e001;116;393Δm ¼ JΔμ: (1)

Here, Δm, Δμ, and J represent the differential measurements, the target, and the Jacobian (or

sensitivity) matrix, respectively. The target Δμ is modeled as an optical perturbation. For exam-

ple, neural activity can lead to optical changes in the associated regions of the brain due to the

hemodynamic response.25 The differential measurements Δm ¼ mbkg −mtarget correspond to the

difference between the detected intensity in the unperturbed (mbkg) and perturbed (mtarget) state.

The Jacobian matrix relates these two quantities, i.e., a change in the optical parameters (Δμ)

corresponds to a change in the detected intensity (Δm). Thus, each entry of the Jacobian matrix is

a partial derivative: Jrs ¼
∂mr

∂μs
.

Under this linear setup, the Jacobian matrix is essential to both generating synthetic test data

and image reconstruction with a traditional, physics-based forward model. Several methods exist

for simulating the Jacobian matrix, including analytical expressions, FEM, and the Monte Carlo

(MC) algorithm.31,37,62,63 We use MC in this work since it is regarded as the most accurate and

flexible of these methods. The details of the implementation are described in Sec. 5; here, we will

provide a brief description of the algorithm itself. MC uses randomly sampled photon trajectories

to simulate the propagation of light.64 These photon trajectories are sampled from a distribution

that incorporates the optical parameters of the target medium. By averaging the information over

many samples, we obtain an accurate estimate of the distribution of light. MC is an unbiased

estimator and can be easily adapted to arbitrary geometries; however, it may require many

random samples and consequently a long run time to converge to a sufficiently low-variance

estimate.32

While the RTE and MC can be used to model the underlying physics of the imaging system,

they require knowledge of the imaging setup and target parameters. These parameters are pro-

vided as input to the algorithm. Some examples of input parameters include the source–detector

positions which are generally a vector of coordinates and the target geometry which can be
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represented as a mesh. Certain parameters may be simple to estimate for a particular setup, such

as the source–detector separation.65 Other parameters may be challenging to estimate through

calibration, which can lead to model mismatch. For example, Reisman et al. showed that assum-

ing an incorrect target geometry led to an incorrect depth estimation.14 To avoid potential recon-

struction errors from inaccurate forward model parameters, we use the unrolled network to

learn the system parameters. Thus, our training procedure can be interpreted as a calibration step.

By training on real-world measurements and their associated ground truth images, our model

reduces the potential for model mismatch and improves the image reconstruction quality.

4 Unrolled-DOT

4.1 Unrolled Network Design

Our ultimate goal is to solve the inverse problem: determine the target parameters from a given

set of measurements. Using the linear forward model described in Eq. (1), the inverse can be

formulated as a convex optimization problem

EQ-TARGET;temp:intralink-;e002;116;537Δμ� ¼ min
Δμ

kJΔμ − Δmk2 þ ΛðΔμÞ: (2)

Here, as in Sec. 3, the terms Δμ, J, Δm represent the target, Jacobian matrix, and observed

differential measurements, respectively. ð·Þ� denotes the optimum. This equation states that the

desired reconstruction (Δμ�) minimizes the MSE between the predicted and the observed mea-

surements (kJΔμ − Δmk2) and includes a penalty term (ΛðΔμÞ) that enforces prior information

regarding the target. For example, ΛðΔμÞ ¼ λ1jΔμj1 would enforce an image sparsity prior.

A suite of techniques exist for solving linear inverse problems that follow the form of Eq. (2).

This includes the ISTA, fast ISTA (FISTA) an accelerated version of ISTA, and the ADMM.66,67

We will focus on ISTA because this algorithm forms the foundation of our proposed method.

However, our results will include comparisons with these other standard solvers.

ISTA can be considered as a variation of gradient descent. As stated before, the problem setup

generally follows a similar structure to Eq. (2), whereΔμ in our notation is the standard unknown

variable, and J is the standard forward matrix (often referred to as A). Using ISTA, the solution is

obtained by iteratively performing the gradient step and applying a proximal operator for the

non-differentiable portion of the objective. Mathematically, a single step of this procedure can be

expressed as66

EQ-TARGET;temp:intralink-;e003;116;318Δμkþ1 ¼ hðΔμk − γðJTJΔμk − JTΔmÞ; λÞ; (3)

where, γðJTJΔμk − JTΔmÞ is the gradient step with step-size γ, and hð·; λÞ is the proximal oper-

ator. Generally, the gradient step solves the linear inverse problem, while the proximal operator is

used to enforce regularization constraints. For example, an L1 norm penalty can be used to

enforce image sparsity in the reconstruction. In this case, the proximal operator is the shrinkage

function with tuning parameter λ. An overview of this procedure is also shown in Fig. 1(a). While

this procedure is simple and sufficiently general that it can account for even non-differentiable

terms in the objective function, there are also several challenges to using this approach, particu-

larly for DOT image reconstruction.

First, the ISTA algorithm possesses relatively slow convergence. Even for algorithms such as

FISTA, which accelerates the convergence of ISTA, tens of iterations may be needed to converge

to a sufficiently accurate reconstruction. For this reason, unrolled algorithms have been proposed

with the potential to increase the reconstruction speed. This gain was demonstrated by Gregor

et al.16 and is shown empirically in our results in Sec. 6. In addition to improvements in effi-

ciency, there are also potential benefits to the image reconstruction quality. Any misalignment

between the expected forward model and the underlying system that generates the measurements

can reduce the efficacy of standard linear solvers. To address this, we propose a deep network to

learn the parameters of the standard inverse solver. More specifically, we apply the learned-ISTA

algorithm.16
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The learned algorithm follows a very similar structure to ISTA. Each “layer” of the algorithm

corresponds to an iteration of ISTA. The i’th layer can be represented mathematically as the

function16

EQ-TARGET;temp:intralink-;e004;116;699Δμiþ1 ¼ fiðΔμiÞ ¼ hðSΔμi þWΔm; λÞ: (4)

Here, W, S, and λ correspond to learnable parameters of the network. hð·; λÞ is the non-

linearity applied after each layer of the network and corresponds to the shrinkage function used

in ISTA. Using this function, we can express the full network with L-layers as

EQ-TARGET;temp:intralink-;e005;116;631FL ¼ fL ∘ fL−1 ∘; : : : ; ∘ f0: (5)

Here f is the function: fiðyÞ ¼ hðSfi−1ðyÞ þWy; λÞ, and f0ðyÞ ¼ hðWyÞ is the “0-th” layer.
An overview of this full pipeline is shown in Fig. 2(b). Next, we can show the relationship

between the ISTA and the unrolled network. If we set W ¼ γJT and S ¼ I − γJTJ, we return

to the original ISTA expression. In this case, the layers of the unrolled-network would be equiv-

alent to the iterations of ISTA, as represented in Eq. (3) and stated in Gregor et al.16 One of the

benefits of this type of “unrolling” algorithm is interpretability: the learned parameters provide

insight into the physics of the underlying system because the layers correspond to iterations of

a standard linear solver. Additional details about this are provided in Sec. 6.

Training is performed using the standard backpropagation approach, with either synthetic or

experimentally collected data

EQ-TARGET;temp:intralink-;e006;116;479W�; S�; λ� ¼ min
W;S;λ

kFðΔm;W; S; λÞ − Δμk2: (6)

As before, W, S, and λ are parameters of the learned network, F. Here, we use MSE as the

loss function to determine optimality, though other metrics can also be chosen. The measure-

ments Δm are generated either synthetically by applying the physics-based forward model or

captured experimentally using a prototype system. For training, ground truth data is accessible

Fig. 2 Unrolled-DOT network architecture: (a) the full algorithm pipeline is shown in the grey box.

The set of measurements is first passed through an unrolled network to perform image reconstruc-

tion. Additional details are shown in panel (b); a key of relevant terms is shown in panel (c). The

unrolled network uses a shared FC layer and K independent FC layers. Additionally, we use

the shrinkage function as the non-linear activation function. The shrinkage functions are applied

after each layer. After the unrolled network, the output is passed through a U-Net, which further

improves the image reconstruction quality. The loss is a weighted sum of a standard loss

(MSE or MAE) and the Visual Geometry Group (VGG) perceptual loss with weight parameter β.

Backpropagation is then applied to train the unrolled network and U-Net.
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both in simulation and in experiments. In simulation, the ground truth and forward model

directly compute the measurements. In experiments, we display the ground truth on an electronic

ink (E-ink) display, which can programmatically control the spatial distribution of optical

absorbers and scatterers. We collect measurements corresponding to the ground truth target with

the experimental prototype. Additional details about our full training and testing procedure are

described in Sec. 5.

4.2 Additional Perceptual Enhancement

While the unrolled network offers a powerful learning-based model for solving linear inverse

problems, the quality of our image reconstructions can still be further improved. To this end,

we also incorporated a refinement U-Net and VGG perceptual loss in our network design and

training procedure. In adding these steps, we were inspired by Khan et al.,68 who demonstrated

that the U-Net and VGG-loss could enhance image reconstruction quality in the application of

lensless imaging.

The U-Net architecture is a convolutional neural network that uses a contracting and expand-

ing path. This network architecture was originally designed by Ronneberger et al. for the appli-

cation of image segmentation.69 It was subsequently shown that the U-Net architecture could

also be applied to image reconstruction.70 In addition to the refinement U-Net, we also apply a

VGG perceptual loss to further enhance the image reconstruction quality.71,72 The resulting loss

term can be expressed as

EQ-TARGET;temp:intralink-;e007;116;483W�; S�; λ�; θ� ¼ min
W;S;λ;θ

kUθðFðΔm;W; S; λÞÞ − Δμk2

þ kfVGGðUθðFðΔm;W; S; λÞÞÞ − fVGGðΔμÞk2: (7)

For the VGG-loss, the ground truth image and the reconstructed image, i.e., the output of the

refinement U-Net, are passed through a pretrained VGG network. The VGG loss is then calcu-

lated from the standard (MSE or MAE) loss between intermediate outputs of the VGG network

for the predicted and true images. The overall loss then becomes the weighted sum of the stan-

dard loss and the VGG loss, as shown in Eq. (7). Here, Uθð·Þ refers to the U-Net with trainable

parameters θ, and fVGGð·Þ is a function that maps the input to the intermediary outputs of the

VGG network. Because the VGG network is pretrained, its parameters are not updated during the

Unrolled-DOT training. Finally, this overall loss is backpropagated to train the unrolled network

and U-Net.

5 Materials and Methods

5.1 Computational Processing

The computational processing in these experiments includes the generation of synthetic data,

machine learning for training and testing our models, and computational post-processing, which

includes testing other standard linear solvers. The model training and testing were implemented

in Python using the Pytorch library. In addition, the structural similarity (SSIM) loss in Sec. 6.3

used the Kornia library.73 MATLAB was generally used for post-processing, such as plotting

and visualization, as well as implementing the FISTA, and ADMM solvers for the algorithm

comparison in Sec. 6.4.

The synthetic data was generated using an in-house Monte Carlo simulator, which imple-

mented the Monte Carlo multi-layered (MCML) algorithm.64 The standard MNIST and Fashion

MNIST images were scaled to 41 × 41 pixels, where each pixel corresponds to 1 mm in world

coordinates. The pixel values of the images were converted to absorption coefficients, with the

maximum pixel intensity scaling to μa ¼ 1.0 mm−1, and negligible background absorption.

In addition, the background scattering coefficient was set to μs ¼ 9.0 mm−1. For the simulated

experiments testing the generalizability of the model and the comparison of reconstruction

with and without the U-Net and VGG loss a 10 × 10 array of sources and detectors is used.

For each source–detector pair, a TD measurement consisting of four timebins is simulated.
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Measurements are normalized to 1.0. For the circular phantoms experiments in the supplemen-

tary material, a circular grid of 32 source–detector pairs are distributed uniformly over the circle.

Again, each time-domain measurement consists of 4 timebins. We used a precomputed Jacobian

matrix to apply the forward model on the ground truth and generate the full synthetic dataset.

Jacobian matrix construction is described in reference.31 In the experimental reconstruction and

simulated generalizability experiments, a non-negativity threshold and normalization between

0 and 1 was applied to the reconstructed images. The synthetic dataset consisted of 3000 training

images and 100 testing images from the MNIST and fashion-MNIST datasets.

In our experiments, we tested the unrolled network with and without the refinement U-Net

and VGG-loss. When testing only the unrolled network, the batch size was equal to the training

set size; however, when the U-Net and VGG-loss are applied, a smaller batch size is used to meet

the greater memory demands and the GPU memory limitations. In addition, to meet the input

size requirement of the U-Net and VGG-Net, the images were zero padded to increase the size

from 41 × 41 to 64 × 64. The U-Net consisted of four downsampling levels (i.e. images were

downsampled by a factor of 24 ¼ 16) followed by four upsampling levels to bring images

back to size 64 × 64. Finally, the weight factor for the VGG perceptual loss was set to 0.01 for

all experiments.

Computational processing used a combination of both CPU and GPU hardware. Highly

parallelizable processes, including the model training, applying the learned forward model, and

generating synthetic data with Monte Carlo, were performed on Nvidia 1080/2080 Ti’s. Other

post-processing was performed on a standard desktop, running on an Intel Xeon CPU.

5.2 Real-World Data Capture Procedure

Figure 3 shows a rendering of the prototype that was used to capture experimental data. Our

setup consisted of a light source, detector, and target. For the light source, we used a pulsed laser

(the NKT supercontinuum laser) set to 670 to 680 nm wavelength. Our detector is the MPD

FastGatedSPAD, which is a single-pixel single-photon avalanche diode (SPAD). The detector

also uses an associated MPD picosecond delayer and a Picoquant Hydraharp to perform the

time-correlated single-photon counting.

Our target consisted of an E-ink display and an optically scattering tissue phantom. The

E-ink display allows us to control the spatial distribution of light absorbers and scatterers

programmatically.74 We used a Form 3 stereolithography three-dimensional (3D) printer to

synthesize the optical tissue phantom. The optical properties can be controlled by mixing

the Formlabs white and clear resins. By measuring the temporal point spread function of

the transmitted light through the phantom, we determined the scattering coefficient of the

tissue phantom to be ∼9 mm−1, which is within the acceptable range of biological tissue.75

Fig. 3 Unrolled-DOT experimental prototype setup: a rendering of our prototype system is shown

above. Images displayed on an E-ink monitor served as the targets. A tissue phantom was placed

in front of the target to mimic the effects of biological scattering. Our imaging setup consisted of a

laser and a single pixel single photon avalanche diode (SPAD). The laser and virtual detector are

raster-scanned over the surface of the tissue phantom by a pair of galvo mirrors.
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More details regarding the phantom synthesis and characterization procedure can be found in

our supplementary materials and the following references.5,10,76,77

We captured a total of 5000 measurements, which we split into a training and testing set of

4500 and 500 measurements, respectively. Ground truth targets consisted of examples from

MATLAB’s digits dataset, which we then programmatically projected onto the E-ink display.

The measurements consisted of 5 × 5 source and 5 × 5 detector scan points. The minimum

source–detector separation was 4 mm, and the inter-source separation was 8 mm. In the raw

data, each transient was initially binned into 4000 timebins, which were each 1-ps in duration.

In post-processing, the data were further binned into 400 timebins, which were each 10 ps in

duration. For all TD measurements, we applied temporal filtering, specifically the Laplace-tem-

poral-filter78 with s ¼ 10−4. This helped reduce the amount of data that needed to be processed

and improved the image reconstruction quality. Because the temporal-filtering reduces the tran-

sient to a scalar value, the input is a B × N matrix, where B is the batch size and N is the number

of source–detector pairs. For generating CW-DOT measurements, these time-domain transients

can be integrated into a scalar. Using this system, we captured, to the best of our knowledge, the

first dataset of DOT/ToF-DOTmeasurements with thousands of examples for training supervised

machine learning models.

6 Results and Discussion

In this section, we report the results of our experiments, which include tests on both synthetic and

real-world data. We began by testing the image reconstruction algorithm on a simulated dataset

to show the benefits of applying a refinement U-Net and VGG-loss, and to show the algorithm’s

generalizability. We also applied Unrolled-DOT to experimentally collected (real-world) data.

Our first experiment on the real-world data is to verify the validity of our learned model itself. To

do this, we visualize both the output feature maps of the pretrained VGG-loss as well as the

learned model. In addition, we also demonstrate that our model is able to account for model

mismatch by testing how the network performs when initialized with a misaligned source–detec-

tor array. After verifying our results, we conduct a performance analysis. The first test in this

performance analysis is to compare the results of training the unrolled network and U-Net end-

to-end versus training the U-Net after training the unrolled-network (two-step training). Next we

conduct an ablation study, in which we test how the model performs when various training

parameters are varied including the loss function, the number of training iterations, and number

of layers. Finally, we compare our approach to traditional physics-based linear solvers as well as

learning-based inverse solvers. We conducted this test on real-world data and compared both

a standard ToF-DOT arrangement (measurements from all source–detector pairs) as well as a

CToF-DOT.

6.1 Image Reconstruction on Synthetic Data

6.1.1 Comparing performance with and without U-Net+VGG
on simulated data

We began by testing the performance of our model on synthetic data. We first demonstrated the

benefits of adding a refinement U-Net and VGG perceptual loss to the unrolled network. Here,

we trained solely on images from the fashion MNIST dataset. In both cases, a three-layer

unrolled network was trained with a learning rate of LR ¼ 10−4 and MSE-loss. When training

just the unrolled network a batch size equal to the training set (3000 measurements) was trained

for 2000 iterations. With the U-Net and VGG-loss, the model was trained for 200 iterations with

a batch size of 500 measurements. In Fig. 4, we see that adding the U-Net and VGG-loss to the

network architecture dramatically improves the visual quality of the reconstructed image. The

benefits of adding these components are further confirmed by quantitative metrics of the image

reconstruction quality: the MSE and correlation factor. By incorporating the U-Net and VGG-

loss, the MSE decreased from 6.40 � 10−2 to 1.50 � 10−2 while the correlation coefficient

increased from 0.897 to 0.961. We have also shown that using Unrolled-DOT, it is possible
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to reconstruct more complex images that have varying contrast levels rather than sparse, binary

images that are typically used as targets.

6.1.2 Generalizability test

Next, we also demonstrated the generalizability of Unrolled-DOT. We trained two separate

models on structurally different images: the MNISTand fashion-MNIST datasets, respectively.

We then performed image reconstruction on measurements generated from MNIST dataset

images. In this case, we tested only the unrolled-network without the U-Net and VGG-loss.

We see that both models achieve good reconstruction of the test images, though model A does

achieve slightly higher reconstruction quality than model B (an increase in the correlation

coefficient from 0.94 to 0.97) because it is trained and tested on images of the same class

(Fig. 5).

6.2 Interpretability of the Trained Model

6.2.1 Visualization of the VGG-loss features

In addition to a standard training loss, the Unrolled-DOT algorithm also uses a VGG-loss. To

calculate the VGG-loss, the ground truth training images and reconstructed images are passed

through a pretrained VGG network. The VGG-loss is then determined by the MSE/MAE error

between the VGG network outputs for the ground truth and reconstructed images. Examples of

feature maps that are generated by the VGG network are visualized in Fig. 6. The outputs used in

the VGG loss are the ReLU 2-2 and the ReLU 4-3 features, which are the network outputs

between the second convolution and second max pool and the fourth convolution and third

maxpool, respectively.68,72 Johnson et al.72 observed that the ReLU 2-2 features corresponded

Fig. 4 Improvement in image reconstruction quality using U-Net and VGG perceptual loss: We

trained and tested our Unrolled-DOT algorithm on the fashion MNIST dataset. We compared the

reconstruction quality with and without the refinement U-Net and VGG perceptual loss. We can

see that incorporating the U-Net and VGG loss dramatically improves the reconstruction quality,

based on both visual inspection and the average MSE across all test images. We have also

shown that with these two enhancements, the reconstruction algorithm can accurately reconstruct

images with varying levels of contrast.
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to the low-level features of the image, while the ReLU 4-3 features appeared to correspond to

the higher-level structures of the image. Therefore, using both features for the VGG-loss aids in

preserving the fidelity of both low-level features and overall structure. We see in Fig. 6

that ReLU 2-2 seems to correspond to features of the input image, such as edges. While the

ReLU 4-3 feature maps are very heavily downsampled, we see that for both sets of VGG outputs,

there is good agreement between the ground truth and reconstructed images.

Fig. 6 Visualization of VGG-network feature maps: The VGG loss uses the ReLU 2-2 (output of

the ReLU between second convolution and second max pool) and ReLU 4-3 (output of the ReLU

between fourth convolution and third max pool).68 Johnson et al.72 have noted that ReLU 2-2

corresponds to low-level features while ReLU 4-3 corresponds to higher-level structures.

Thus, these two features were chosen for the VGG loss to encourage a better fit for both low-level

features and overall structure.

Fig. 5 Generalizability of the Unrolled-DOT model. We trained two models: one on the MNIST

dataset (model A) and another on the fashion MNIST dataset (model B). Both models performed

similarity in reconstructing test images on the MNIST dataset, demonstrating the generalizability of

our learning approach.
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6.2.2 Visualization of the learned Jacobian

The layers of our learned network correspond to the iterations of a standard linear solver. As a

result, the learnable parameters can provide insight into the underlying physical parameters of

the system. Recall from Sec. 4 that the learnable parameter W corresponds to the adjoint of the

Jacobian matrix, i.e., W ¼ γJT in the unlearned algorithm. Therefore, by visualizing the learned

W parameter, we can analyze the learned sensitivity matrix.

In Fig. 7, we show a visualization of rows of the physics-based Jacobian matrix, and

the learned sensitivity profile W, which was trained on real-world measurements. Because the

Jacobian matrix describes the sensitivity of the measurements to small perturbations in the

optical parameters, it can also be interpreted as the likelihood that a photon will pass through

a particular point in space. In this visualization, we see the sensitivity profile as a function of

ðx; yÞ spatial location, for a fixed depth z. The regions of highest sensitivity, i.e., the bright

yellow regions, correspond to the position of the light source/detector. This follows from the

intuition that the sensitivity profile describes the likelihood of photons passing through a point

in space: regions closer to the source/detector will have a higher likelihood of a photon passing

through and therefore a greater sensitivity.

The interpretability of the learned model allows for greater insight into the underlying sys-

tem. In future work, the learned Jacobian could be used to estimate parameters of the underlying

physical model. This could be useful for calibrating the source–detector positions, or estimating

the optical parameters.

6.2.3 Mitigating model mismatch with Unrolled-DOT

We also wish to demonstrate that Unrolled-DOT is able to mitigate certain cases of model mis-

match through training. To demonstrate this, we use an incorrect forward matrix to initialize the

Unrolled-DOT model, as shown in Fig. 8. In Fig. 8(a), we visualize the layers of the unrolled

network. More specifically, we visualize rows of the matrix, which correspond to the network

layer. Recall that the layers of the Unrolled-DOT model correspond to the Jacobian, or sensitivity

matrix. The rows of this matrix should correspond to the sensitivity for a specific source–detector

pair. Therefore, we should expect to see highest sensitivity (bright yellow regions) at locations

corresponding to the source–detector position. The true positions of the sources and detectors are

overlaid on the visualization of the network layers as a red circle and blue square, respectively.

Fig. 7 System parameter estimation using learned model. (a) In traditional DOT solvers, the

forward model is assumed and must be passed in as an algorithm input. (b) With Unrolled-DOT,

the forward model is estimated from data. Visualizations for rows of the physics-based and

learned-forward models are shown on the bottom row.
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Initially, we see that the regions of high sensitivity do not correlate well with the source–detector

positions. However, after 2000 iterations of training, we see that the regions of highest sensitivity

shift to the correct locations, corresponding to the source–detector positions. As expected, in

Fig. 8(b), we see that mitigating this model mismatch also improves the image reconstruction

quality. The average MSE is reduced from 5.6 to 0.020 and the average correlation coefficient is

increased from 0.29 to 0.88.

6.3 Performance Analysis

6.3.1 End-to-end training versus two-step training

The Unrolled-DOT model consists of two networks: an unrolled network and a U-Net. These

two networks can be trained end-to-end or in a two-step procedure, training the unrolled network

first and subsequently the U-Net. The first test in our performance analysis is to compare the end-

to-end training procedure with the two-step training procedure. The results of this experiment are

Fig. 8 Overcoming model mismatch using Unrolled-DOT: the model was initialized with a weight

matrix, which was generated with incorrect source–detector positions. Panel (a) shows a visuali-

zation of the rows of the forward matrix at different stages of training. The regions of highest

sensitivity (bright yellow region) correspond approximately to the position of the source–detector

pair. We see that at 0 iterations, the regions of highest sensitivity do not correspond well to the

true source–detector positions. After 2000 iterations of training, we see there is good agreement

between the source–detector positions and regions of high sensitivity. In addition, in panel (b),

we see that training the network and reducing model mismatch also improves the image recon-

struction quality.
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shown in Fig. 9. The end-to-end training procedure achieves a small improvement compared to

the two-step training procedure; however, the improvement is relatively small since the MSE is

only reduced from 0.013 to 0.11. From the reconstructed images shown in Fig. 9, we also see that

the two methods achieve comparable image reconstruction quality.

6.3.2 Ablation study

In addition to performing image reconstruction, we also characterized the performance of our

algorithm as a function of different training parameters. Our ablation study is conducted on real-

world data. For simplicity, we tested only the unrolled network, without the U-Net or VGG-loss.

In general, we trained a three-layer unrolled network for 2000 iterations with MAE loss, and

a learning rate of LR ¼ 2 � 10−4. The parameter is varied if it is the dependent variable for

a particular experiment. For example, in testing the impact of the number of network layers, the

model is still trained for 2000 iterations with MAE loss, and a learning rate of LR ¼ 2 � 10−4;
however, the number of layers is varied between 1 and 10.

In this analysis, we specifically studied the performance as we varied the loss function, num-

ber of training iterations, and the number of layers in our network (Fig. 10). First, we compared

three different loss functions. The loss functions we chose were based on the standard metrics

used to judge image reconstruction quality: the MSE, the mean absolute error (MAE), and the

SSIM loss.79,80 In comparing the loss functions, it appears the MAE produces the highest quality

reconstructions, with less blurring and artifacts as compared to MSE and SSIM. It is interesting

that the MAE (L1) objective achieves a lower overall MSE on the test set than the MSE (L2)

objective; however, this phenomenon was also observed by Zhao et al.81 They postulated this is

because MAE is able to avoid local minima better than MSE.

Fig. 9 Comparison of end-to-end training with two-step training procedure. The Unrolled-DOT

algorithm uses two networks: an unrolled network and a U-Net. The two networks can be trained

end-to-end or in two steps: training the unrolled network first, then the U-Net. Above, average

reconstruction MSE and correlation coefficients are reported for the full test set. We see there

is only a marginal reduction in the MSE from 0.013 with the two-step training to 0.011 with the

end-to-end training and a 0.01 increase in the correlation coefficient. Visual inspection of the

example reconstruction images (shown above) appears to confirm that both methods achieve

similar reconstruction quality.
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Second, we tested the number of iterations used to train the network. From this experiment,

we found a fairly straightforward result: given an appropriate learning rate, the image recon-

struction quality increased as the number of iterations increased. In Fig. 10, this is particularly

noticeable in the reconstruction of the number “9,” in which we see that the blurring effect is

significantly decreased as the number of iterations is increased.

Third, we tested how the number of layers in our learned model affects the reconstruction

quality. We found that by increasing the number of layers, there is an increase in the image

reconstruction quality, which is in agreement with the standard intuition and prior work.16

However, this improvement does seem to produce diminishing returns as the number of layers

is increased beyond seven layers.

Fig. 11 Unrolled-DOT image reconstruction on experimental data with sparse 5 × 5 confocal

scanning geometry: the reported metrics are averaged over the entire test set. In panel (b),

we see there is a dramatic reduction in the MSE from 0.102 using FISTA and 0.218 with

ADMM, compared to 0.042 with our approach. Similarly the SSIM increases from 0.20 and

0.36 for ADMM and FISTA, respectively to 0.72 with our approach. In addition, Unrolled-DOT

achieves a faster runtime than AUTOMAP and an increased SSIM and reduced MSE compared

to both AUTOMAP and the FC network. Visually, in panel (a), we also see from the reconstructed

images that the Unrolled-DOT algorithm shows good agreement with the ground truth and

removes artifacts from the sparse source–detector array.

Fig. 10 Ablation study on objective function, number of training iterations, and number of network

layers: we tested the image reconstruction quality as a function of several training parameters.

(a) The MAE loss provides marginal improvements in the image reconstruction quality compared

to SSIM and MSE. (b) In addition, with a reasonable learning rate, the reconstruction quality

increases with more iterations in training. (c) Finally, we found the image reconstruction quality

increases with the number of layers, though there seem to be diminishing returns beyond seven

layers.

Zhao et al.: Unrolled-DOT: an interpretable deep network for diffuse optical tomography

Journal of Biomedical Optics 036002-17 March 2023 • Vol. 28(3)



6.4 Image Reconstruction on Experimentally Collected Data

We trained and tested our model on real-world data that we collected from our prototype system.

The model was trained on a dataset of handwritten digits. Our model was tested on measure-

ments from both a standard ToF-DOT setup (i.e., scanning all pairs of sources and detectors), as

well as a CToF-DOT. Our Unrolled-DOT model was trained with a learning rate LR ¼ 2 � 10−4.
Measurements are normalized to 5.0. With the U-Net and VGG-loss, the model was trained for

400 iterations with a batch size of 900 measurements. For training just the unrolled network,

the model was trained for 2000 iterations with a batch size equal to the training set size

(4500 measurements).

To show the benefits of our approach, we compared our method with two physics-based

inverse solvers and two machine-learning-based inverse solvers. The physics-based solvers that

we compare against are FISTA with L1 sparsity for CToF-DOT reconstruction, which was pro-

posed by Zhao et al.,5 and ADMM with total-variation (TV) regularization for DOT reconstruc-

tion, which was proposed by Lu et al.82 We used in-house implementations for each of these

inverse solvers and applied the Monte Carlo forward model. For FISTA, both the Jacobian and

measurements are scaled to 1.0; while for ADMM the Jacobian and measurements are normal-

ized to 2.1 � 10−4 and 6 � 105, respectively. Since the solvers are applied to a linear inverse

problem, the normalization factors should not impact the final reconstruction as long as the

non-linear hyperparameter terms are scaled appropriately. Additional hyperparameters for the

physics-based solvers are listed in the supplementary material.

In addition, we also compare our method with two machine-learning-based methods:

a standard FC multilayer perceptron, which will be referred to as the FC-net, and the

AUTOMAP architecture.45 FC-net possesses an input layer, output layer, and a single hidden

layer of width equal to the output size and uses the tanh activation function. FC-net is trained

with MSE-loss. We also compare our method with AUTOMAP. Similar to FC-net, the first

portion of the AUTOMAP network consists of FC layers: an input layer, and two hidden layers

with width equal to the output size, and tanh activation functions. After the FC layers, the

intermediate vector is reshaped into a two-dimensional image with dimensions equal to the

output. The network then applies two convolutional layers with a kernel size of 5 and ReLU

activation functions, followed by a deconvolution layer with a kernel size of 7. AUTOMAP is

also trained with MSE-loss. More details about the AUTOMAP architecture are provided by

Zhu et al.45

6.4.1 Unrolled-DOT for confocal scanning geometry

We first tested Unrolled-DOT on a sparse set of measurements, collected from a 5 × 5 array

of sources and detectors with a CToF-DOT. Therefore, measurements from only 25 source–

detector pairs are used for image reconstructions. For this experiment, we used a three-layer

unrolled network without the U-Net and VGG-loss and trained with MSE-loss. The results

are shown in Fig. 11. From the reconstructed images in Fig. 11(a), we see that Unrolled-

DOT achieves a higher image reconstruction quality compared with all other methods. This

is particularly true compared to the physics-based solvers, which display severe reconstruc-

tion artifacts. In Fig. 11(b), we show a plot of the reconstruction quality metrics and recon-

struction runtime. Each algorithm corresponds to a different symbol, shown on the key in

the bottom right. The left y-axis (blue) corresponds to SSIM, while the right y-axis (red)

corresponds to MSE. A higher SSIM and lower MSE correspond to improved image

reconstruction quality, while lower runtime corresponds to a faster algorithm. Therefore,

the “ideal” algorithm would be in the top left and bottom left for the blue and red plots,

respectively. Based on the increase in the SSIM and the reduction in the MSE, shown in

Fig. 11(b), we see that Unrolled-DOT outperforms all other algorithms in this comparison

(exact SSIM, MSE, and runtime values are included in our supplementary material).

Unrolled-DOT is also faster than all other algorithms except the FC-net; however, the

increased speed of FC-net comes at the cost of reduced image reconstruction quality com-

pared to Unrolled-DOT.
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6.4.2 Unrolled-DOT for reconstruction of full ToF-DOT measurements

Next, we tested the Unrolled-DOT algorithm on a full set of ToF-DOT measurements, i.e., all

source–detector pairs. The measurements were captured from a 5 × 5 source array and 5 × 5

detector array. Therefore, measurements were collected from 25 sources and 25 detectors, a total

of 625 source–detector pairs. Here, we tested a 1-layer unrolled network with MAE loss.

We tested the algorithm with and without the U-Net and VGG-loss. From the reconstructed

images in Fig. 12, we see that our Unrolled-DOT method achieves a noticeably improved

image reconstruction. In addition to visual inspection, we also see the performance of our

method using quantitative metrics: the SSIM and MSE [shown in Fig. 12(b) and Table S2

in the Supplementary Material]. We see that, even with just a one-layer unrolled network,

the SSIM increases from 0.18 to 0.60 with ADMM and FISTA, respectively, to 0.88 with

Unrolled-DOT. In addition, when the U-Net and VGG-loss are added to our training pipeline,

the image reconstruction quality further increases.

There are two primary reasons for our improved reconstruction quality. First, our trained

method is able to learn the underlying physical model and can avoid potential model mismatch.

Various parameters of the imaging system and target are automatically calibrated. This includes

the source–detector positions and optical parameters of the target. Secondly, our trained model

directly optimizes the hyperparameters for image reconstruction. In contrast, traditional linear

solvers require several hand-tuned parameters as inputs. A full table of all relevant hyperpara-

meters and the procedure for tuning these parameters is included in the supplementary materials,

Table S1 in the Supplementary Material. At a minimum, this includes tuning the number of

iterations and the weight of the regularization terms. For the FISTA algorithm, we incorporated

L1 regularization to tune the image sparsity; for the ADMM algorithm, we incorporated TV-

regularization. Since these hyperparameter values are generally hand-tuned, the performance

of the corresponding inverse solver will depend on the tuning heuristics, which may not be

optimal. As a result, the performance is improved using a learning-based algorithm that directly

optimizes the hyperparameters.

In Fig. 12(b). we also report the runtimes to reconstruct the full test set, which consists of

500 images. This plot follows a similar format to Fig. 11(b). We see that the unrolled network is

over an order of magnitude faster than other physics-based linear solvers. This speed-up was

achieved with all algorithms in the comparison running on the same hardware: the Intel Xeon

CPU. We will note that there were also implementation-specific details across the different

methods. First, the learning-based methods were implemented with Python and Pytorch,

Fig. 12 Unrolled-DOT image reconstruction on experimental data from 625 source–detector pairs.

We demonstrate the improvements both visually (a) and in the reconstruction metrics and runtime

(b). Unrolled-DOT outperforms traditional physics-based linear solvers since it avoids imaging

artifacts and poor reconstruction quality that results from model mismatch and sub-optimal hyper-

parameters. In addition, we see that the unrolled network, even without the U-Net and VGG loss,

achieves better reconstruction quality than the fully connected network and comparable image

reconstruction quality to AUTOMAP, but with significantly reduced runtime. With the U-Net and

VGG loss, Unrolled-Dot achieves a significantly higher SSIM and lower MSE.
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while the other methods used MATLAB. In addition, the TV-regularization for the ADMM

reconstruction used a computationally expensive matrix multiplication to calculate the image

gradient. However, the speed-up from using our approach is not only demonstrated by the timing

experiments. Unrolled-DOT requires just one layer to obtain the desired image reconstruction.

FISTA and ADMM may require tens of iterations. Because Unrolled-DOT can achieve high-

quality reconstruction with just one layer, and each layer performs a comparable number of

operations to a single iteration of a standard solver, our method should be faster regardless

of implementation-specific variations.

We also see that the refinement U-Net and VGG-perceptual loss further improve the image

reconstruction quality. With these enhancements, the model seems to be better at rejecting spu-

rious artifacts and increasing the sharpness and contrast. Quantitatively, we see in Table S2 in the

Supplementary Material that this led to an increase in the SSIM from 0.88 to 0.92 and a decrease

in the MSE from 1.67 � 10−2 to 1.14 � 10−2. Though the U-Net does slow down the algorithm, it

is useful in applications that prioritize the reconstruction quality over the run time. Furthermore,

the benefits of the U-Net and VGG-loss should be more distinct for image reconstruction on

more complex natural images.

Finally, we see that our model performs well compared to other trained models. Without the

U-Net and VGG-loss, Unrolled-DOT is faster than all other algorithms in our comparison, except

the FC-Net. However, it is able to achieve an increased SSIM and reduced MSE compared to

the FC-Net and comparable image reconstruction quality to AUTOMAP.With the addition of the

U-Net and VGG-loss, the reconstruction metrics are further improved compared to AUTOMAP

and FC-Net.

7 Conclusion

We have proposed a learning-based method for solving the DOT inverse problem. Our method is

able to obtain high-quality image reconstructions through densely scattering media, perform

reconstructions efficiently, and can be trained end-to-end on learned data. Additionally, our net-

work is interpretable, which may aid in system calibration. We demonstrated our results on both

synthetic and real-world data, and prepared a dataset of 5000 ToF-DOT measurements. Ultimately,

our learned model is a step towards fast high-resolution imaging through scattering media.
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