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ABSTRACT

Characterization of cell populations and identification of distinct subtypes based on surface
markers are needed in a variety of applications from basic research and clinical assays to cell
manufacturing. Conventional immunophenotyping techniques such as flow cytometry or
fluorescence microscopy require immunolabeling of cells, expensive and complex
instrumentation, skilled operators, and are therefore incompatible with field deployment and
automated cell manufacturing systems. In this work, we introduce an autonomous microchip that
can electronically quantify the immunophenotypical composition of a cell suspension. Our
microchip identifies different cell subtypes by capturing each in different microfluidic chambers
functionalized against the markers of the target populations. All on-chip activity is electronically
monitored by an integrated sensor network, which informs an algorithm determining
subpopulation fractions from chip-wide immunocapture statistics in real time. Moreover, optimal
operational conditions within the chip are enforced through a closed-loop feedback control on
the sensor data and the cell flow speed, and hence, the antibody-antigen interaction time is
maintained within its optimal range for selective immunocapture. We apply our microchip to
analyze a mixture of unlabeled CD4+ and CD8+ T cell sub-populations and then validated the
results against flow cytometry measurements. The demonstrated capability to quantitatively
analyze immune cells with no labels has the potential to enable not only autonomous biochip-
based immunoassays for remote testing but also cell manufacturing bioreactors with built-in,
adaptive quality control.

Keywords: flow cytometry, T-cell immunophenotyping, sensor network, electronic cytometry,
autonomous microfluidics.
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1. INTRODUCTION

A special set of proteins and carbohydrates known as cell surface antigens, or markers, are
expressed on the cell membrane of cells (Kalina et al., 2019; Zola et al., 2007). These markers
present a rich and unique set of information about a cell, including health, age, growth, stage of
differentiation and so on (Goodwin et al., 2020; Jensen et al., 2016; Trusler et al., 2018). In the
case of immune cells, surface markers have been employed extensively to identify to which
subpopulation a cell belongs (Brown & Greaves, 1974; Priyadarssini et al., 2016). Quantifying
the prevalence of immune cell types within a sample forms the basis for many types of
diagnoses, and underpins a wide variety of standard clinical practices, ranging from clinical trial
qualification to drug development. Beyond these fields, immunophenotyping has been used to
diagnose immunodeficiency disorders(Bright et al., 2013; Gutierrez et al., 2018; Mishra et al.,
2014), perform subclassification of leukemia and lymphoma (Burger et al., 1999; Chiaretti et al.,
2014; Comazzi & Gelain, 2011), monitor the immune system health in HIV patients (Barnett et
al., 2008; Gojak et al., 2019) and those undergoing immunosuppressive therapy (Furlanetto et al.,
2017; Spec et al., 2016), to mention a few.

Multicolor flow cytometry has thus far served as the gold standard for immunophenotype
measurements due to its unique ability to process large populations of cells and quantify the
expression level of multiple surface markers simultaneously at the single cell level (Baumgarth
& Roederer, 2000; Finak et al., 2016) . In this process, cells are first pre-labeled with specific
antibodies that have been conjugated with fluorochromes and then interrogated under laser
illumination as they flow in a single file through an aperture (Cho et al., 2010). While
expressions of different membrane antigens from individual cells can be rapidly and precisely
measured from the fluorescence emission intensity, flow cytometry is a specialized and laborious
technique that can only be implemented in centralized research and clinical laboratory settings
(Abraham & Aubert, 2016; Saeys et al., 2016), where the assay complexity, high operational
cost, and large instrumental footprint as well as employing skilled operators could be justified
(Grant et al., 2021).

Seeking to create low-cost, portable cell immunophenotyping assays, researchers have developed
microchip-based technologies. Typically, such systems drive a cell suspension through an
antibody-functionalized microchip which in turn screens the cell population constituents using
immunoaffinity as the discriminatory mechanism (Y. Liu et al., 2014; Qasaimeh et al., 2017;
Vickers et al., 2012). Though most of the implementations of this approach relied on microscopy
for measurements (Huang et al., 2012; M Weerakoon-Ratnayake et al., 2020; Zhang et al., 2018),
other techniques that integrated sensing elements within the microchip for on-chip quantification
of the population constituents have also been demonstrated (Civelekoglu et al., 2019;
Civelekoglu et al., 2022; R. Liu et al., 2020). One such work reports a microfluidic device that
electrically counts CD4+ and CD8+ lymphocytes present within a whole blood sample after
lysing the erythrocytes on the chip (Watkins et al., 2013). Another approach, known as the
electronic antibody microarray, utilizes a set of microfluidic capture chambers that have each
been functionalized against different antigens present on target subpopulations of a given
sample. The capture statistics are collected using an embedded electrical sensor network for
combinatorial analysis of multiple antigens at the population level (R. Liu et al., 2019). While
successfully achieving portability, these miniaturized microfluidic systems require user
intervention during runtime to keep the operational conditions within favorable bounds
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(Civelekoglu et al., 2022; Wang et al., 2021). Without intervention, process components that
fluctuate over time such as sample concentration, size and speed might hinder device operation
or compromise the accuracy of the assay, rendering these approaches unsuitable for use in
applications like cell manufacturing processes, which require automated, continuous, closed-
system conditions.

We present here, an autonomous microchip-based immunoassay that continuously updates
runtime parameters to maintain optimal operation conditions on the analytical chip for cell
analysis. To achieve this capability, our work combines microfluidics, integrated on-chip
sensors, computation and real time feedback control. Specifically, the presented microchip
utilizes a multi-chamber immunocapture scheme that separates cell subpopulations by capturing
them based on their surface markers and an integrated electrical sensor network to quantify the
capture statistics (Fig. 1a). The readout produced by the sensor network is analyzed by our
custom-built deep learning algorithms to compute population-level insights. These algorithms
also inform a runtime feedback control algorithm that continually monitors the cell flow
dynamics and updates the sample drive pressure to maintain optimal cell flow conditions for
immunocapture.

2. MATERIAL AND METHODS

2.1. Chemicals and materials

APTES was purchased from Gelest, Inc. (Morrisville, PA), Neutravidin and BSA were purchased
from Thermo Scientific (Rockford, IL), Glutaraldehyde, and trichloro(octyl)silane were purchased
from Sigma-Aldrich (St. Louis, MO), 200 proof ethanol was purchased from Decon Labs, Inc.
(Kings of Prussia, PA), 1 x PBS was purchased from Mediatech (Manassas, VA), all chemicals
are analytical grade. All water used for the experiment was deionized (DI) water.

FITC anti-CD4 antibody (OKT4 clone), APC anti-CDS antibody (SK1 clone), Biotin anti-CD4
antibody (SK3 clone), Biotin anti-CD8 antibody (SK1 clone) and APC anti-CD33 (WMS53 clone)
antibody were all purchased from Biolegend (San Diego, CA).

Density gradient medium Lymphoprep™ (Catalog #07801), EasySep™ Buffer (Catalog
#20144), EasySep™ Human Naive CD4+ T Cell Isolation Cocktail II (Catalog # 17555), Human
Naive CD8+ T Cell Isolation Cocktail II (Catalog # 17968), polystyrene round-bottom tube
(Catalog # 38007), EasySep™ Magnet (Catalog # 18000), SepMate™-50 (IVD) (Catalog #
85450) and ImmunoCult™-XF T Cell Expansion Medium (Catalog # 10981) were all purchased
from STEMCELL Technologies (Vancouver, Canada).

Human Peripheral Blood CD4+CD45RA+ T Cells, Frozen (Catalog # 70029; Lot # 2206403013)
and Human Peripheral Blood CD8+CD45RA+ T Cells, Frozen (Catalog # 70030; Lot #
200180505C, 200173103C) were purchased from STEMCELL Technologies (Vancouver,
Canada).

4-inch silicon wafers were purchased from UniversityWafer, Inc. (South Boston, MA), SU-8
2000 series photoresist was purchased from MicroChem (Westborough, MA), NR9-1500PY
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negative photoresist was purchased from Futurrex, Inc. (Franklin, NJ), polydimethylsiloxane
(PDMS) elastomer Sylgard 184 was purchased from Dow Corning (Auburn, MI).

2.2. Fabrication

The microchip was fabricated using soft lithography and surface micromachining techniques. To
fabricate the microfluidic layer, at 15 um thick negative photoresist SU-8 (SU-8 2015,
MicroChem) was spin coated onto a silicon wafer. The design pattern was transferred to the
resist layer by exposing the resist layer using a maskless aligner (MLA-1500, Heidelberg) and
then, the uncured photoresist was developed using SU-8 developer and treated with
trichloro(octyl)silane in a desiccator for 8 h. Then, a mixture of PDMS elastomer and its
crosslinker (Sylgard 184 kit, Dow Corning) was prepared at a 10:1 ratio (by weight) and poured
onto the mold, degassed and cured for 4 h at 65°C. Finally, the cured PDMS was peeled off and
cut into individual chips. To fabricate the electrical sensor network, 1.5 um thick negative
photoresist (NR9-1500PY, Futurrex) was spin coated onto a 2-inch by 3-inch glass microscope
slide (6101, Premiere). The electrode pattern was transferred to the resist layer using a maskless
aligner (MLA-1500, Heidelberg) and developed using photoresist developer (RD6 developer,
Futurrex). Then, the glass slides were treated with reactive ion etcher for descumming followed
by e-beam deposition of 20 nm-thick Cr and 250 nm-thick Au film stacks. The sacrificial
photoresist layer was lifted-off by submerging the glass substrate into an acetone bath under mild
sonication. Finally, the PDMS layer and the glass substrate were treated with oxygen plasma for
1 min for surface activation before being aligned under microscope and bonded at 65 °C to create
the final microchip.

2.3. Capture chamber modification for CD4+ and CD8+ T cells

Our microchip was functionalized using avidin-biotin functionalization protocol. First, the
microfluidic device was wetted with ethanol within 10 mins of the oxygen plasma assisted
PDMS-glass bonding. Then, APTES with ethanol (3% v/v) was introduced to the device.
Following 1 h incubation at room temperature, the microchip was washed with ethanol and
incubated at 110°C in a vacuum oven. Next, the microchip was washed with DI water and
infused with a glutaraldehyde solution in DI water (3% v/v). After 1 h incubation at room
temperature, the microchip was washed with DI and PBS before introducing a 1 mg/mL solution
of neutravidin in PBS into the microchip and incubating for 4 h. The microchip was then rinsed
with PBS and incubated with a solution of 3% BSA blocking buffer and 1.5 mg/mL glycine for 1
h to block nonspecific binding sites. Once complete, the microchip was washed with PBS and
capture chambers were incubated with biotin conjugated antibodies for 2 h. Finally, the
microchip was washed with PBS to remove unbound antibodies.

2.4. Measurement of false positive capture rate

To minimize false positive capture in the capture chamber, bovine serum albumin (BSA) and
glycine were used. To find the false positive capture rate, a single-chamber microchip was
assembled and functionalized the capture chamber with anti-CD4 antibody, BSA and glycine.
Then, a mixed population of CD4+ T cells and CD8+ T cells were driven through the
functionalized device at optimal flow speed. The false positive capture rate was calculated as (a)
the total number of CD8+ T cells immobilized in the anti-CD4 functionalized chamber divided
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by (b) the total number of cells processed through the microchip. To determine (a), the microchip
was post-labeled with FITC anti-CD4 antibody to first distinguish the correctly captured CD4+
expressors in the chamber. This count was then subtracted from the total captured cells to
determine the population of incorrectly captured, CD4-expressors present in the chamber. To
determine (b), the sum of the total number of cells captured in the chamber and the total number
of uncaptured cells present in the liquid ejected from the microchip were computed.

2.5. T cell isolation from whole blood

30 mL blood samples were collected from healthy donors according to an IRB-approved
protocol. All blood samples were collected in BD EDTA tubes in order to prevent coagulation
and placed on a rocker at room temperature. Blood samples were always processed within 4 h of
the blood withdrawal. To successfully separate naive CD4+ and CD8+ T cells from whole blood
sample, peripheral blood mononuclear cells (PBMC) were first isolated from whole blood using
density gradient medium (Lymphoprep, STEMCELL Technologies). Then, naive CD4+ and
CD8+ T cells were isolated from PBMC using the immunomagnetic negative selection process.
This procedure involves labelling unwanted PBMC cells with antibody complexes and magnetic
particles (EasySep™ Human Naive CD4+ T Cell Isolation Kit I, EasySep™ Human Naive
CD8+ T Cell Isolation Kit II, STEMCELL Technologies) and then separating the magnetically
labelled cells using a magnet (EasySep™ Magnet, STEMCELL Technologies) followed by
pouring the desired cell population (naive CD4+ and CD8+ T cell) into a new tube. The entire
process of isolating T cells from whole blood took ~2.5 h.

2.6. Preparation of commercial T-cell samples for processing

First, frozen human naive CD4+ T cells (STEMCELL Technologies) and naive CD8+ T cells
(STEMCELL Technologies) were thawed using manufacturer protocol in ~30 mins. The initial
concentration of both cell samples was 5x10° cells/mL. Then, both cell samples were diluted to
obtain stock samples each with a concentration of 1x10° cells/mL. If a heterogeneous sample
that contained both T cell types was required for an experiment, a final volume and mixing ratio
were first determined, then the appropriate volumes of cells were taken from the previously
prepared CD4+ and CD8+ stock solutions and mixed in the same sample tube. For the BSA
concentration experiment, the final volume was 400 pL with a 1:1 mixing ratio. For the
subpopulation analysis experiment, three samples were prepared, each with a final volume of
400 pL and mixing ratios of 1:1, 1:2, and 2:1.

2.7. Experimental setup

The cell suspension was loaded into a reservoir, which is a 1 mL syringe barrel sealed with a
custom-made airtight cap. This cap is ported to accept a 1.5 mm diameter tube running from the
pressure pump. The electrical sensor network is excited with a 2 Vpp sinusoidal wave at 550 kHz
through the input pads, and the output currents at the positive and negative pads were amplified
via transimpedance amplifiers before being sampled by the lock-in amplifier (HF2LI, Zurich
Instruments). The lock-in amplifier output was sampled into a computer using a standalone
analog to digital converter (PCle-6361, National Instruments) to be passed on to the algorithm
suite for real-time analysis of cell events on the microchip.



2.8. Flow cytometry validation

The experimental results were verified by analyzing the sample processed by our microchip in a
flow cytometer. The sample was labeled with FITC anti-CD4 antibody (OKT4 clone, Biolegend)
and APC anti-CD8 antibody (SK1 clone, Biolegend). This labeled sample was introduced into
the flow cytometer (LSR-II, BD Biosciences) and subsequently, the laser power values were
configured for optimal measurement (FSC: 275 V, SSC: 250 V, FITC: 390 V and APC: 390 V).
The processing was halted after 10,000 events were recorded for every sample. Finally, FlowJo
(FlowJo, LLC) software was used to analyze the flow cytometry data.

3. RESULTS

3.1. System overview and microchip design

Our autonomous microchip-based immunoassay consisted of a microchip, a signal processing
scheme and a feedback control loop. The microchip itself was composed of fluidic and electrical
components (Fig. 1b). The microfluidic layer was made out of polydimethylsiloxane (PDMS)
that accommodated the cascaded cell capture chambers. The cells flowed through those
chambers sequentially and interacted with the different types of antibodies, resulting in the target
cell subpopulation of each chamber getting immobilized on contact. An electrical sensor network
based on the Microfluidic CODES (R. Liu et al., 2016, 2017) platform monitored cell flow at
strategically placed locations. Specifically, a count was kept of every cell that entered the
microchip, exited the first chamber to enter the second, and exited the second channel to leave
the microchip. Using these counts in a mass balance equation revealed the antigen-positive cell
count in each capture chamber. A sensor was defined as a series of interdigitated electrode pairs,
comprised of positive and negative output electrode fingers, which served as current sinks, and a
common input electrode, which served as the current source, that meandered throughout the
length of the sensor and formed pairs with the output electrodes. All of the electrode fingers were
5 um wide and were spaced apart by 5 um (Fig. 1b). Each sensor in the network had 15 pairs and
generated a waveform with as many peaks of varying polarities effectively producing a unique
code for each sensor. The specific sequence of these polarities followed the prescribed physical
ordering of input-output electrode finger pairs, and ultimately determined the unique shape of the
generated waveform. Our system used the uniqueness of each waveform during signal
processing to determine from which sensor a particular waveform originated.

The dimensions of the microfluidic pathways were optimized based on the target cell population,
which in this case were naive T cells that have an average diameter of ~7 um. The capture
chambers measured 7 mm in length and 5 mm in width and featured 60 um diameter pillars
patterned with a 72 um pitch (Fig. 1b). The channel height over the capture region was designed
to be 15 um. The pillar dimensions and pitch were optimized to maximize interaction between
the cell and the antibody coated pillars while still allowing sufficient clearance to prevent
clogging. The pillars also served a secondary function of structurally supporting the ceiling of
the chamber against collapse. The capture chambers also featured a set of auxiliary
functionalization ports and channels located close to the inlet and outlet of each chamber. Each
of these auxiliary channels featured a diamond-shaped, micropillar array-based particulate filter
to prevent pollutants entering the capture chambers during the multi-step functionalization
process. This setup allowed exclusive delivery of functionalization reagents to the desired
chamber. Following the functionalization process, the auxiliary ports were sealed to prevent
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leakage during the assay operation, and the microchip was interfaced via a single fluidic inlet and
outlet.

In operation, cells, flowing through the microchip, passed over each of the sensors embedded in
the channel floor. The output of the whole sensor network was a differential electrical waveform
that was first amplified by a pair of transimpedance amplifiers, processed by the lock-in
amplifier (LIA) before being sampled into the computer via an analog to digital converter (ADC)
(Materials and methods). The digitized sensor waveform was then processed by a deep learning
model in real time to compute subpopulation fractions. Frequencies of different subpopulations
were quantitatively determined by analyzing the differential cell counts at the entry and exit of
each chamber. Cell speed was continuously computed from the sensor network data and was
used to concurrently inform the feedback control system on the instantaneous operational status
of the microchip. We used the cell speed as a process parameter to actively control the drive
pressure and maintain a closed loop (Fig. 1c). This feedback control scheme enabled efficient
immunocapture of cells without prior knowledge of the device dimensions and channel fluidic
resistance.

3.2. Surface modification and optimization of cell capture parameters

To target different subpopulations of T cells, anti-CD4 and anti-CD8 antibodies were
immobilized in different cell capture chambers through avidin-biotin chemistry (Materials and
methods) via the auxiliary functionalization ports (Fig. 1b). First, the center auxiliary ports of the
microchip were used to infuse the reagents common to both chambers, namely, (3-
aminopropyl)triethoxysilane (APTES) glutaraldehyde, neutravidin, BSA and glycine. Then,
through the outer two auxiliary ports, the chamber-specific antibodies were infused into the
corresponding chambers simultaneously at the same laminar flow rate. The symmetric design of
the chambers ensured the chambers were infused equally and neither antibody solution
overflowed its chamber and mixed with the other.

To investigate the immobilization specificity of the capture antibodies in their designated capture
chambers, we first functionalized capture chambers with antibodies conjugated with
fluorophores of dissimilar colors (FITC anti-CD4 antibody and APC anti-CDS antibody).
Fluorophore-conjugated antibodies were concurrently delivered to different capture chambers
and fluorescence emission was analyzed with fluorescence microscopy. Our results confirmed
that each capture chamber was successfully coated with the desired antibody and that the
fluorescence signal was uniform across each chamber, suggesting an even coating throughout
(Fig. 2a). Furthermore, each antibody was confined to their target chambers and had not leaked
into adjacent chambers.

We then aimed to determine the optimal antibody concentration for surface functionalization. In
this process, we functionalized different microfluidic capture chambers by incubating with anti-
CD4 antibodies at different concentrations (1-50pg/mL) and measured the resulting
immunocapture efficiencies for CD4+ T cells as a function of incubation antibody concentration
(Fig. S2). We found the cell immunocapture efficiency to be highly dependent on antibody
concentration when it is <10pg/mL, while the gains in immunocapture efficiency being minimal
for antibody concentrations of >25ug/mL, which suggested a saturation of the functionalized
surface. Based on these results, 25ug/mL was chosen as the optimal antibody concentration for
surface functionalization and was employed for the rest of the experiments in this work.
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Next, we investigated the effect of cell flow speed on the immunocapture efficiency. The cell
immunocapture efficiency, a performance metric we sought to maximize, is primarily dictated by
the antibody-antigen interaction time in addition to the affinity between the two. Too high a flow
speed leads to an inadequately low interaction time, resulting in false negatives in the form of
uncaptured target T cells. Conversely, too low a flow speed causes non-specific binding,
resulting in false positives due to non-target cells adhering to chamber surface. To determine the
optimal flow speed, we processed a homogeneous naive CD4+ T cell population, under different
driving pressures and measured the percentage of the total incoming cells that were arrested in
the capture chamber functionalized with anti-CD4 antibody to calculate capture efficiency. We
achieved a 93% capture rate at flow speed of 30 um/ms while increasing the flow speed to 150
pm/ms led to a reduction in capture rate to 80% (Fig. 2b). The selected operating flow speed was
60 um/ms as it exhibited a relatively high (92%) capture rate while crucially avoiding non-
specific adhesion artifacts and sedimentation issues that the slower flow speeds were prone to.

To minimize the non-specific adhesion, and hence, to increase the specificity of our assay, we
investigated blocking the microchip with bovine serum albumin (BSA) and glycine. In order to
determine the optimal BSA concentration for blocking, we measured false-capture rates of non-
target cells (CD8+ T cells) in devices functionalized with anti-CD4 antibody, 1.5 mg/mL of
glycine and different concentrations of BSA (Materials and methods). For samples processed at
the optimized cell flow speed of 60 um/ms, we found that BSA concentrations of < 3% led to
non-specific capture of CD8+ T cells, leading to false positive results of up to 42%. Increasing
BSA concentration to 3% reduced non-specific adhesion to < 3% and was chosen as the optimal
concentration for studies in this paper (Fig. 2c).

Finally, we tested the specificity of our assay with optimized surface chemistry in a multi-
chamber configuration. In these experiments, microchips were functionalized either with anti-
CD4 or anti-CDS8 antibody and only at the first capture chamber. The second chamber was
intentionally left unfunctionalized for all microchips in order to observe non-specific capture.
When homogeneous populations of naive CD4+ T cells and naive CD8+ T cells, each obtained
from a commercial vendor (Materials and methods), were processed at 60 um/ms, we observed T
cells to be captured predominantly (~92% of CD4+ T cells and ~87% of CD8+ T cells) in the
chamber functionalized with the matching antibody (Fig. 2d and e). Moreover, across different
microchips, the non-specific capture rate was ~3% on average. Considering the fact that the
samples we process already contained impurities per vendor-provided datasheets (CD4+ T cell
sample purity: 94% and CD8+ T cell sample purity: 88%), these results demonstrated virtually
almost all T cells expressing target antigens were captured by the optimized device with minimal
non-specific capture.

3.3. Real-time determination of cell immunocapture statistics

To process electrical signals produced by the microchip, we designed a data processing pipeline
that amplified, digitized and analyzed the waveform in real time (Fig. 3a). The front-end of this
system was comprised of transimpedance amplifiers that conditioned the signal and passed it
onto a lock-in amplifier (Materials and methods), which in turn produced the raw signal stream
(Fig. 3b) and provided it to a digitizer connected to a computer. Once digitized, the signal was
processed by a suite of algorithms written in Python, starting with automatically extracting valid
cell events from the raw signal stream which included undesired idle sensor signals as well. This
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was done by continuously running a sliding window on the raw signal stream, computing the
signal power within the window and saving the windows that exceed a threshold. This threshold
was determined using the first 5 seconds of program runtime by aggregating several thousand
windows, identifying 100 windows with the lowest powers, and computing their average. This
average was designated as the noise floor power, and an empirically determined threshold of 14
dB relative to this noise floor power was used as the threshold for all signals processed. The
detected cell event segments were then subject to a boundary refinement routine, where the
minor extraneous idle sections of the signal on the leading and trailing ends of the segment are
discarded. This routine first identifies the first and last peaks of the signal, then follows outer
halves of these peaks until their first inflection points. The segment is trimmed to start and end
within these new points.

Next, the refined segment was forwarded to our deep learning model (Wang et al., 2019, 2021)
for interpretation (Fig. 3c). The deep learning model could extract the information embedded in
the cell signals at a processing throughput exceeding 700 cells/s, a rate that allows real-time
operation in practice. Briefly, our model is comprised of two cascaded convolutional neural
networks, which are deep learning structures commonly used in signal processing. The first
stage, the region proposal network (RPN), designated the temporal location of each cell event by
estimating a bounding box for each signature waveform identified in addition to reporting the
cell speed. The second stage, the sensor classification network (SCN), performed classification
on every bounding box produced by the RPN that preceded it and reported the class, or sensor
ID, that corresponds to the waveform. While the functions of these two networks differ, their
structure is similar. They both featured 4 convolutional layers expecting input waveforms
normalized to 200 samples. The output of the SCN contained three nodes, each of which
represented one of the three sensors embedded in the microchip (Fig. 3d). The two outputs of the
deep learning model, namely the cell event sensor ID and cell speed were used by the chamber
capture counting routine and the feedback control algorithm, respectively.

The final stage in the data processing pipeline mapped each of the aggregated cell event sensor
IDs to their corresponding sensor on the microchip and computed the capture rate (Fig. 3d). Each
of the three sensors represented counts of a different cell population. The first sensor located
nearest to the inlet counted the total population of the processed cells, while the second sensor
located at the exit of the first chamber counted the subpopulation that was not immobilized in the
first chamber and was therefore a negative expressor of that target antigen, and finally the third
sensor located at the exit of the second chamber counted the subpopulation that was not
immobilized in the second chamber. In a microchip where the first and second chambers have
been functionalized with anti-CD4 and anti-CD8 antibodies, respectively, the count difference
between the first and second sensor represented the CD4+ fraction of the population, the count
difference between the second and third sensor represented the CD4- CD8+ fraction of the
population and finally, the count difference between the first and third sensor represented the
CD4- CD8- fraction of the total population.

3.4. Closed-loop feedback control of the cell-flow speed for optimal immunocapture

In order to autonomously maintain an optimal antibody-antigen interaction time for a given cell
population, we developed a feedback control algorithm that modulates the drive pressure of the
pressure pump pushing the cell sample based on the measured cell speed over the sensor network.

9
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The control algorithm ran in real time, concurrent with the capture statistics algorithm, and
continuously factored in new cell measurements while making necessary adjustments to the
pressure pump over a USB connection (Fig. 4a). The control algorithm received a segmented cell
event that has been baseline removed and determined the signal length. The cell speed is then
computed using the known physical dimension of the sensor and signal sample rate. Every such
cell speed measurement was added to a moving average of 9 cell events. If this average exceeded
the target by 10%, the drive pressure was reduced. Conversely, if this average was below the target
by 10%, the drive pressure was increased.

We abstracted the control routine into a plant and feedback controller scheme (Fig. 4b). The
programmable pressure pump, sensors and signal processing components comprise the plant and
produce the measured process variable, the average cell speed (y(?)). The operational target of the
feedback control system was to modulate the input, in this case the pump drive pressure, such
that the average cell speed approaches the target setpoint (r(z)). To accomplish this, the
discrepancy between the measured cell speed and the setpoint is computed as the error (e(?)) and
the feedback controller continually attempts to minimize this value by executing an adequate
correction value (u(2)) to the control input. Here, we implemented a proportional controller,
which adjusted the control input based on a weight applied to the error. As such, the adjustment
value passed to the pressure pump was given by:

u(t) = Ke(t),

where K was the feedback gain. K was determined heuristically to be 0.35, avoiding excessively
low values that resulted in prolonged time before converging on the target, and excessively high
values which led to overshooting (Fig. S1).

We were able to directly use the cell flow speed in the feedback control system to modulate the
drive pressure since these two parameters exhibited a linear, monotonic relationship with the
proportionality constant determined by the microchip hydraulic resistance (Fig. 4c). Every time
the average cell speed was updated, which occurred at every cell event detection, the error
between the measured and targeted cell speed was computed, and the feedback controller sent an
update to the pressure pump if needed.

We characterized the responsiveness of the feedback control loop by implementing a non-static
setpoint and monitoring the controller’s output (Fig. 4d). We programmed the cell speed setpoint
to follow a prescribed pattern, namely a linear ramp increasing from 35 pm/ms to 60 pm/ms, and
found that the controller was able to follow it successfully. Finally, we evaluated the effect of
disabling the feedback control algorithm on the capture rate (Fig. 4e). The system was run with a
sample of homogeneous CD4+ T cells and the instantaneous capture rate was computed for
every 16 cell events. Once the average instantaneous capture rate stabilized at ~88%, the
feedback control algorithm was disabled and the system state was perturbed by abruptly
increasing drive pressure to 950 mbar. The capture rate dropped to ~63% as a result. The
feedback control algorithm was then re-enabled and autonomously brought the average
instantaneous capture rate back to its previous ~88%. These results functionally demonstrated
the ability of the assay to operate under optimal conditions irrespective of external perturbations.
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3.5. Immunoanalysis of heterogenous T cell populations

We evaluated the performance of the complete system consisting of the developed hardware and
software by processing heterogenous samples of mixed T cell populations, specifically naive
CD4+ and CD8+ T cells isolated from whole blood (Materials and methods). To discriminate
between different T cell subpopulations, our microchip was functionalized such that the first
chamber would capture exclusively CD4+ T cells, the second chamber would capture CD8+ T
cells and the cells/particles expressing neither were evacuated from the device (Fig. 5a). Because
CD4 and CDS8 are rarely co-expressed by T cells in peripheral blood (Bohner et al., 2019;
Overgaard et al., 2015), our cascaded capture chambers effectively separated the two T cell
populations through immunocapture. In fact, we confirmed that both capture chambers were
capturing their intended target cell populations by labeling captured cell population on the
microchip with different-colored fluorophores (FITC anti-CD4 antibody and APC anti-CD8
antibody) and imaging them with fluorescence microscopy (Fig. 5a). Next, we tested the
feedback controller’s performance in maintaining the cell speed upon startup. The program was
first provided with a cell speed target and the allowed tolerance about this target, then launched
with an initial drive pressure of 500 mbar. The average cell speed was continuously computed as
the first few cells passing through the microchip were detected. The feedback control algorithm
gradually reduced the drive pressure until the average cell speed met the target and fluctuations
stayed within the target bounds. The optimal drive pressure was reached after acquiring signals
from observing 31 cell events and the target cell speed of 60 pm/ms was met, after which cell
capture statistics collection began (Fig. 5b). The whole process of analyzing ~12,000 T-cells and
computing the capture statistics required ~30 mins.

To test the accuracy of our system, we processed calibrated suspensions prepared by mixing
commercially acquired naive CD4+ T cells and naive CD8+ T cells at different ratios of 1:1, 1:2,
and 2:1 (Materials and methods). After processing each mixed sample through identically
designed microchips, we found that the immunophenotype composition ratio reported by our
system was in close agreement with the implemented mixing ratios (Fig. 5c). The discrepancy
between our results and the nominal mixing ratio were primarily attributed to impurity of
prepared T cell populations that resulted from lysed or dead cells, non-target particles, and
impurity of the source samples themselves. Our conclusions are supported by the fact that the
used CD4+ T cell and CD8+ T cell samples had manufacturer-reported purities of 94% and 93%,
respectively.

Finally, we benchmarked our autonomous immunoanalysis system against a commercial
fluorescence-based flow cytometer. For flow cytometry analysis, samples, prepared by mixing
CD4+ and CD8+ T cells at a 1:1 ratio, were labeled with fluorophore-conjugated antibodies
against the same set of target antigens for flow cytometry analysis (Materials and methods).
Flow cytometry measurements were then gated based on surface expression for T cell
classification to calculate the frequency of each T cell subpopulation (Fig. 5d). The percentage of
CD4+CD8- T cells, CD4-CD8+ T cells, and CD4-CDS8- expressors were 48.3%, 46.8%, and
4.1% respectively as per flow cytometry results. These results were in good agreement with
those from our immunoanalysis system, which reported 49.3%, 43.8% and 6.9% as the
frequencies of aforementioned immunophenotypes. Considering the flow cytometry data as the
ground truth, these results amounted to an average of < 6% error rate (n=3), effectively
representing an accuracy of >94% for our biosensor (Fig. 5d). We attributed our measurement
errors to several factors: 1) our immunocapture-based technique is a completely different sensing
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modality from the laser-scatter technique that a flow cytometer is based on. This difference leads
to dissimilar discrimination criteria and will inevitably not match perfectly, 2) the multi-step
sample preparation process will unavoidably lead to cell loss and inclusion of non-target cell
particles, e.g., lysed residues and dead cells.

4. DISCUSSION

We have demonstrated a fully electronic, autonomous immunoanalysis microchip that performs
quantification of immune cell subtypes in a sample. A key feature of our approach is its innate
flexibility in terms of both scaling and use case. While we have shown immunophenotyping for
CD4+ and CD8+ T cells, a microchip that can target more or a different set of surface markers
can be readily created by employing different antibodies or more capture chambers in various
arrangements. Due to the already multiplexed nature of the Microfluidic CODES sensor network
we utilize, no additional signal input and output ports needed be designed for those expanded
systems. Instead, patterning additional sensors around the additional chambers is the only change
necessary.

Autonomous operation through a feedback loop is another important feature of the presented
system. Our platform can readily by adapted for use with process parameters other than our
demonstrated one, i.e., drive pressure. For instance, instead of using the measured cell speed to
modulate drive pressure, the feedback control algorithm can be adapted to use measured
subpopulation ratios to modulate process parameters like sample concentration. While we have
reported an immunophenotype application, the central components of this platform, namely the
sensor network and accompanying algorithm suite, microfluidic channel and feedback scheme
are abstracted enough to be readily adaptable to other applications that utilize a variety of
process parameters.

Finally, our approach presents several advantages over existing immunophenotype techniques.
First, unlike traditional approaches which require the sample to be prelabeled with fluorophore-
conjugated antibodies, our microchip accepts unlabeled immune cells directly isolated from
whole blood. Not only does this shorten assay time, but also makes immunophenotyping
available for applications where sample pre-labeling is not feasible. Second, our fully-electronic
sensing scheme allows the use of low-cost, commercially available components and circuits
which reduces system cost and complexity. While other electronic assays use cell size and
electrical properties to indirectly perform cytometry, ours can also access and utilize well-
established and specific biochemical markers. This brings with it more reliability and
compatibility with existing techniques for cell interrogation. Third, our automated processing
eliminates errors that clinical cytometry often suffers from, which is primarily caused by
variability in operators, laboratory conditions and result interpretation. Lastly, the inherent
adaptability of our platform for use with different configurations and operational settings means
the ability to perform immunophenotyping can be delivered beyond central laboratories. The
system we have presented here has the potential to serve in the next generation of field-deployed
analysis tools by leveraging its ability to perform autonomous, label free, real-time analysis.
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5. CONCLUSION

We demonstrate a microchip-based immunoassay to screen T cells for discriminating between
different subpopulations based on cell surface markers. To minimize human intervention during
operation, the system was designed to run in an automated, closed-loop manner and leveraged a
deep-learning based feedback system to enact prompt and accurate adjustments to the runtime
parameters during operation. Performing these corrections automatically realizes unique and
important advantages over traditional immunophenotyping methods. Specifically, our technique
requires no pre-labeling of the sample before running the assay, and crucially, the adaptive,
closed-loop operation frees our system from common errors in clinical cytometry primarily
caused by handling and environmental variations. While we have demonstrated a proof-of-
concept implementation that targets two surface markers, the scalable nature of our
immunocapture scheme enables a straightforward application of our approach to target a
multitude of surface markers by simply adding chambers to the design and functionalizing them
accordingly. Furthermore, the measurement throughput can be further increased by revising the
fluidic design to lower the hydraulic resistance. We believe that our low-cost platform that
delivers immunophenotyping capabilities in a disposable package will be invaluable to clinical
applications, cell manufacturing, and resource limited settings at the point of care.
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Fig. 1. Device and system overview. (a) A schematic illustrating the method for electronic
immune cell analysis. The drawing shows the placement of the antibody-functionalized capture
chambers on the microchip, the integrated barcoded sensor network that performs the
transduction of cell surface expression into electrical signals. The signal stream is subsequently
processed to match the barcode with the on-chip location where the cell event occurred and
aggregated to compute the total count of cells captured in each chamber to yield population-level
insights based on their surface biomarkers. (b) A photograph of the fabricated microchip
showing the microfluidic features filled with red dye for visualization and the electrical sensor
network formed by micropatterned gold electrodes. Insets show a close-up microscope image of
(top) one of the coded electrical sensors on the device along with the inter-chamber microfluidic
passage it monitors and (bottom) a group of micropillars within the capture chamber that cells
interact with as they flow through the device. (c) A schematic showing all of the components of
the developed autonomous microchip-based immunoassay system and their interaction.
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Fig. 2. Optimization and characterization of device functionalization. (a) A fluorescence
microscope image showing a device whose chambers were functionalized with fluorophore-
conjugated antibodies (FITC anti-CD4 (left) and APC anti-CD8 (right)). Each chamber
exclusively contained the intended capture antibody. (b) Measured CD4+ T cell capture rate in a
device functionalized with anti-CD4 antibodies as a function of cell flow speed. (c) Measured
false positive rate (i.e., rate of non-specific cell capture) as a function of concentration of BSA
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solution used to block the device. Schematics showing the functionalization layouts of analytical
devices that have only one of their two chambers functionalized with (d) anti-CD4 antibody and
(e) anti-CDS antibody (top) and the measured specific (1% chamber) and non-specific (2
chamber) cell capture rates in those devices (bottom).
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subsequent stage in the data processing pipeline in real-time. (b) A representative portion of a
sampled signal stream produced at the output of the signal conditioning stage. (c) Cell detection
signals from three different sensors segmented from the signal stream for further processing.
Deep neural networks are used for localization and classification. (d) A schematic depicting the
process to compute the capture rates in individual chambers. All the sensor ID outputs of the
classifier network were timestamped and matched to the physical sensor location they were
sourced from. This was used to calculate how many cells entered a chamber, and how many
exited from it, and ultimately the capture rate of both chambers.
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flowchart describing the feedback control algorithm. (b) A block diagram showing the
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e(t), was multiplied by the feedback gain parameter to produce the corrective drive pressure
value, u(), used to update the pressure pump. (c) A plot showing the measured cell flow speed as
a function of the drive pressure in our device. (d) A plot showing the target tracking performance
of our feedback controller. As the target cell speed was continuously ramped, the pressure
updates commanded by the feedback controller and the resulting cell speed were simultaneously
recorded and shown in the plot. (¢) A plot showing the instantaneous cell immunocapture rates
during both the presence and absence of feedback control. Feedback control was disabled and
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drive pressure was increased to simulate an external perturbation. The consequent dip in the cell

capture rate observed during inactive feedback control recovered when the feedback was turned
back on.
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Fig. 5. Immunoanalysis of heterogenous T cell populations. (a) A schematic of the device
showing the layout of capture chambers designed to capture CD4+ and CD8+ T cells and the
sensors monitoring cell capture. Insets show images of CD4+ (left) and CD8+ (right) cells
labeled fluorescently after they were captured on the device. Scale bar, 50 pm. (b) A plot
showing the time evolution of the cell flow speed under feedback control modulating the drive
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Flow Cytometer vs. Microchip-
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pressure to reach the prescribed target of 60 um/ms. (c) A plot showing the CD4+ and CD8+ T
cell subpopulation frequencies as reported by our system (color-filled bars) vs the nominal mix
ratio determined by hemocytometer (unfilled bars). (d) A plot (left) showing the results from
fluorescence-emission based classification of a sample made of equal parts CD4+ and CD8+ T
cells using flow cytometry. The other plot (right) shows the difference between the
subpopulation counts determined by flow cytometry vs. our microchip-based immunoassay.
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