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ABSTRACT 16 

Characterization of cell populations and identification of distinct subtypes based on surface 17 
markers are needed in a variety of applications from basic research and clinical assays to cell 18 
manufacturing. Conventional immunophenotyping techniques such as flow cytometry or 19 
fluorescence microscopy require immunolabeling of cells, expensive and complex 20 
instrumentation, skilled operators, and are therefore incompatible with field deployment and 21 
automated cell manufacturing systems. In this work, we introduce an autonomous microchip that 22 
can electronically quantify the immunophenotypical composition of a cell suspension. Our 23 
microchip identifies different cell subtypes by capturing each in different microfluidic chambers 24 
functionalized against the markers of the target populations. All on-chip activity is electronically 25 
monitored by an integrated sensor network, which informs an algorithm determining 26 
subpopulation fractions from chip-wide immunocapture statistics in real time. Moreover, optimal 27 
operational conditions within the chip are enforced through a closed-loop feedback control on 28 
the sensor data and the cell flow speed, and hence, the antibody-antigen interaction time is 29 
maintained within its optimal range for selective immunocapture. We apply our microchip to 30 
analyze a mixture of unlabeled CD4+ and CD8+ T cell sub-populations and then validated the 31 
results against flow cytometry measurements. The demonstrated capability to quantitatively 32 
analyze immune cells with no labels has the potential to enable not only autonomous biochip-33 
based immunoassays for remote testing but also cell manufacturing bioreactors with built-in, 34 
adaptive quality control.  35 

 36 
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1. INTRODUCTION 1 

A special set of proteins and carbohydrates known as cell surface antigens, or markers, are 2 
expressed on the cell membrane of cells (Kalina et al., 2019; Zola et al., 2007). These markers 3 
present a rich and unique set of information about a cell, including health, age, growth, stage of 4 
differentiation and so on (Goodwin et al., 2020; Jensen et al., 2016; Trusler et al., 2018). In the 5 
case of immune cells, surface markers have been employed extensively to identify to which 6 
subpopulation a cell belongs (Brown & Greaves, 1974; Priyadarssini et al., 2016). Quantifying 7 
the prevalence of immune cell types within a sample forms the basis for many types of 8 
diagnoses, and underpins a wide variety of standard clinical practices, ranging from clinical trial 9 
qualification to drug development. Beyond these fields, immunophenotyping has been used to 10 
diagnose immunodeficiency disorders(Bright et al., 2013; Gutierrez et al., 2018; Mishra et al., 11 
2014), perform subclassification of leukemia and lymphoma (Burger et al., 1999; Chiaretti et al., 12 
2014; Comazzi & Gelain, 2011), monitor the immune system health in HIV patients (Barnett et 13 
al., 2008; Gojak et al., 2019) and those undergoing immunosuppressive therapy (Furlanetto et al., 14 
2017; Spec et al., 2016), to mention a few. 15 

Multicolor flow cytometry has thus far served as the gold standard for immunophenotype 16 
measurements due to its unique ability to process large populations of cells and quantify the 17 
expression level of multiple surface markers simultaneously at the single cell level (Baumgarth 18 
& Roederer, 2000; Finak et al., 2016) . In this process, cells are first pre-labeled with specific 19 
antibodies that have been conjugated with fluorochromes and then interrogated under laser 20 
illumination as they flow in a single file through an aperture (Cho et al., 2010). While 21 
expressions of different membrane antigens from individual cells can be rapidly and precisely 22 
measured from the fluorescence emission intensity, flow cytometry is a specialized and laborious 23 
technique that can only be implemented in centralized research and clinical laboratory settings 24 
(Abraham & Aubert, 2016; Saeys et al., 2016), where the assay complexity, high operational 25 
cost, and large instrumental footprint as well as employing skilled operators could be justified 26 
(Grant et al., 2021).   27 

Seeking to create low-cost, portable cell immunophenotyping assays, researchers have developed 28 
microchip-based technologies. Typically, such systems drive a cell suspension through an 29 
antibody-functionalized microchip which in turn screens the cell population constituents using 30 
immunoaffinity as the discriminatory mechanism (Y. Liu et al., 2014; Qasaimeh et al., 2017; 31 
Vickers et al., 2012). Though most of the implementations of this approach relied on microscopy 32 
for measurements (Huang et al., 2012; M Weerakoon-Ratnayake et al., 2020; Zhang et al., 2018), 33 
other techniques that integrated sensing elements within the microchip for on-chip quantification 34 
of the population constituents have also been demonstrated (Civelekoglu et al., 2019; 35 
Civelekoglu et al., 2022; R. Liu et al., 2020). One such work reports a microfluidic device that 36 
electrically counts CD4+ and CD8+ lymphocytes present within a whole blood sample after 37 
lysing the erythrocytes on the chip (Watkins et al., 2013). Another approach, known as the 38 
electronic antibody microarray, utilizes a set of microfluidic capture chambers that have each 39 
been functionalized against different antigens present on target subpopulations of a given 40 
sample. The capture statistics are collected using an embedded electrical sensor network for 41 
combinatorial analysis of multiple antigens at the population level (R. Liu et al., 2019). While 42 
successfully achieving portability, these miniaturized microfluidic systems require user 43 
intervention during runtime to keep the operational conditions within favorable bounds 44 
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(Civelekoglu et al., 2022; Wang et al., 2021). Without intervention, process components that 1 
fluctuate over time such as sample concentration, size and speed might hinder device operation 2 
or compromise the accuracy of the assay, rendering these approaches unsuitable for use in 3 
applications like cell manufacturing processes, which require automated, continuous, closed-4 
system conditions. 5 

We present here, an autonomous microchip-based immunoassay that continuously updates 6 
runtime parameters to maintain optimal operation conditions on the analytical chip for cell 7 
analysis. To achieve this capability, our work combines microfluidics, integrated on-chip 8 
sensors, computation and real time feedback control. Specifically, the presented microchip 9 
utilizes a multi-chamber immunocapture scheme that separates cell subpopulations by capturing 10 
them based on their surface markers and an integrated electrical sensor network to quantify the 11 
capture statistics (Fig. 1a). The readout produced by the sensor network is analyzed by our 12 
custom-built deep learning algorithms to compute population-level insights. These algorithms 13 
also inform a runtime feedback control algorithm that continually monitors the cell flow 14 
dynamics and updates the sample drive pressure to maintain optimal cell flow conditions for 15 
immunocapture. 16 
 17 
2. MATERIAL AND METHODS  18 
 19 

2.1. Chemicals and materials 20 

APTES was purchased from Gelest, Inc. (Morrisville, PA), Neutravidin and BSA were purchased 21 
from Thermo Scientific (Rockford, IL), Glutaraldehyde, and trichloro(octyl)silane were purchased 22 
from Sigma-Aldrich (St. Louis, MO), 200 proof ethanol was purchased from Decon Labs, Inc. 23 
(Kings of Prussia, PA), 1 × PBS was purchased from Mediatech (Manassas, VA), all chemicals 24 
are analytical grade. All water used for the experiment was deionized (DI) water. 25 

FITC anti-CD4 antibody (OKT4 clone), APC anti-CD8 antibody (SK1 clone), Biotin anti-CD4 26 
antibody (SK3 clone), Biotin anti-CD8 antibody (SK1 clone) and APC anti-CD33 (WM53 clone) 27 
antibody were all purchased from Biolegend (San Diego, CA). 28 

Density gradient medium Lymphoprep™ (Catalog #07801), EasySep™ Buffer (Catalog 29 
#20144), EasySep™ Human Naïve CD4+ T Cell Isolation Cocktail II (Catalog # 17555), Human 30 
Naïve CD8+ T Cell Isolation Cocktail II (Catalog # 17968), polystyrene round-bottom tube 31 
(Catalog # 38007), EasySep™ Magnet (Catalog # 18000), SepMate™-50 (IVD) (Catalog # 32 
85450) and ImmunoCult™-XF T Cell Expansion Medium (Catalog # 10981) were all purchased 33 
from STEMCELL Technologies (Vancouver, Canada).  34 

Human Peripheral Blood CD4+CD45RA+ T Cells, Frozen (Catalog # 70029; Lot # 2206403013) 35 
and Human Peripheral Blood CD8+CD45RA+ T Cells, Frozen (Catalog # 70030; Lot # 36 
200180505C, 200173103C) were purchased from STEMCELL Technologies (Vancouver, 37 
Canada).  38 

4-inch silicon wafers were purchased from UniversityWafer, Inc. (South Boston, MA), SU-8 39 
2000 series photoresist was purchased from MicroChem (Westborough, MA), NR9-1500PY 40 
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negative photoresist was purchased from Futurrex, Inc. (Franklin, NJ), polydimethylsiloxane 1 
(PDMS) elastomer Sylgard 184 was purchased from Dow Corning (Auburn, MI). 2 
 3 
2.2. Fabrication 4 

The microchip was fabricated using soft lithography and surface micromachining techniques. To 5 
fabricate the microfluidic layer, at 15 μm thick negative photoresist SU-8 (SU-8 2015, 6 
MicroChem) was spin coated onto a silicon wafer. The design pattern was transferred to the 7 
resist layer by exposing the resist layer using a maskless aligner (MLA-1500, Heidelberg) and 8 
then, the uncured photoresist was developed using SU-8 developer and treated with 9 
trichloro(octyl)silane in a desiccator for 8 h. Then, a mixture of PDMS elastomer and its 10 
crosslinker (Sylgard 184 kit, Dow Corning) was prepared at a 10:1 ratio (by weight) and poured 11 
onto the mold, degassed and cured for 4 h at 65°C. Finally, the cured PDMS was peeled off and 12 
cut into individual chips. To fabricate the electrical sensor network, 1.5 μm thick negative 13 
photoresist (NR9-1500PY, Futurrex) was spin coated onto a 2-inch by 3-inch glass microscope 14 
slide (6101, Premiere). The electrode pattern was transferred to the resist layer using a maskless 15 
aligner (MLA-1500, Heidelberg) and developed using photoresist developer (RD6 developer, 16 
Futurrex). Then, the glass slides were treated with reactive ion etcher for descumming followed 17 
by e-beam deposition of 20 nm-thick Cr and 250 nm-thick Au film stacks. The sacrificial 18 
photoresist layer was lifted-off by submerging the glass substrate into an acetone bath under mild 19 
sonication. Finally, the PDMS layer and the glass substrate were treated with oxygen plasma for 20 
1 min for surface activation before being aligned under microscope and bonded at 65 °C to create 21 
the final microchip. 22 
 23 
2.3. Capture chamber modification for CD4+ and CD8+ T cells 24 

Our microchip was functionalized using avidin-biotin functionalization protocol. First, the 25 
microfluidic device was wetted with ethanol within 10 mins of the oxygen plasma assisted 26 
PDMS-glass bonding. Then, APTES with ethanol (3% v/v) was introduced to the device. 27 
Following 1 h incubation at room temperature, the microchip was washed with ethanol and 28 
incubated at 110°C in a vacuum oven. Next, the microchip was washed with DI water and 29 
infused with a glutaraldehyde solution in DI water (3% v/v).  After 1 h incubation at room 30 
temperature, the microchip was washed with DI and PBS before introducing a 1 mg/mL solution 31 
of neutravidin in PBS into the microchip and incubating for 4 h. The microchip was then rinsed 32 
with PBS and incubated with a solution of 3% BSA blocking buffer and 1.5 mg/mL glycine for 1 33 
h to block nonspecific binding sites. Once complete, the microchip was washed with PBS and 34 
capture chambers were incubated with biotin conjugated antibodies for 2 h. Finally, the 35 
microchip was washed with PBS to remove unbound antibodies. 36 
 37 
2.4. Measurement of false positive capture rate 38 

To minimize false positive capture in the capture chamber, bovine serum albumin (BSA) and 39 
glycine were used. To find the false positive capture rate, a single-chamber microchip was 40 
assembled and functionalized the capture chamber with anti-CD4 antibody, BSA and glycine. 41 
Then, a mixed population of CD4+ T cells and CD8+ T cells were driven through the 42 
functionalized device at optimal flow speed. The false positive capture rate was calculated as (a) 43 
the total number of CD8+ T cells immobilized in the anti-CD4 functionalized chamber divided 44 
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by (b) the total number of cells processed through the microchip. To determine (a), the microchip 1 
was post-labeled with FITC anti-CD4 antibody to first distinguish the correctly captured CD4+ 2 
expressors in the chamber. This count was then subtracted from the total captured cells to 3 
determine the population of incorrectly captured, CD4-expressors present in the chamber. To 4 
determine (b), the sum of the total number of cells captured in the chamber and the total number 5 
of uncaptured cells present in the liquid ejected from the microchip were computed. 6 
 7 
2.5. T cell isolation from whole blood 8 

30 mL blood samples were collected from healthy donors according to an IRB-approved 9 
protocol. All blood samples were collected in BD EDTA tubes in order to prevent coagulation 10 
and placed on a rocker at room temperature. Blood samples were always processed within 4 h of 11 
the blood withdrawal. To successfully separate naïve CD4+ and CD8+ T cells from whole blood 12 
sample, peripheral blood mononuclear cells (PBMC) were first isolated from whole blood using 13 
density gradient medium (Lymphoprep, STEMCELL Technologies). Then, naïve CD4+ and 14 
CD8+ T cells were isolated from PBMC using the immunomagnetic negative selection process. 15 
This procedure involves labelling unwanted PBMC cells with antibody complexes and magnetic 16 
particles (EasySep™ Human Naïve CD4+ T Cell Isolation Kit II, EasySep™ Human Naïve 17 
CD8+ T Cell Isolation Kit II, STEMCELL Technologies) and then separating the magnetically 18 
labelled cells using a magnet (EasySep™ Magnet, STEMCELL Technologies) followed by 19 
pouring the desired cell population (naïve CD4+ and CD8+ T cell) into a new tube. The entire 20 
process of isolating T cells from whole blood took ~2.5 h. 21 
 22 
2.6. Preparation of commercial T-cell samples for processing 23 

First, frozen human naïve CD4+ T cells (STEMCELL Technologies) and naïve CD8+ T cells 24 
(STEMCELL Technologies) were thawed using manufacturer protocol in ~30 mins. The initial 25 
concentration of both cell samples was 5×106 cells/mL. Then, both cell samples were diluted to 26 
obtain stock samples each with a concentration of 1×106 cells/mL. If a heterogeneous sample 27 
that contained both T cell types was required for an experiment, a final volume and mixing ratio 28 
were first determined, then the appropriate volumes of cells were taken from the previously 29 
prepared CD4+ and CD8+ stock solutions and mixed in the same sample tube. For the BSA 30 
concentration experiment, the final volume was 400 µL with a 1:1 mixing ratio. For the 31 
subpopulation analysis experiment, three samples were prepared, each with a final volume of 32 
400 µL and mixing ratios of 1:1, 1:2, and 2:1. 33 
 34 
2.7. Experimental setup 35 

The cell suspension was loaded into a reservoir, which is a 1 mL syringe barrel sealed with a 36 
custom-made airtight cap. This cap is ported to accept a 1.5 mm diameter tube running from the 37 
pressure pump. The electrical sensor network is excited with a 2 Vpp sinusoidal wave at 550 kHz 38 
through the input pads, and the output currents at the positive and negative pads were amplified 39 
via transimpedance amplifiers before being sampled by the lock-in amplifier (HF2LI, Zurich 40 
Instruments). The lock-in amplifier output was sampled into a computer using a standalone 41 
analog to digital converter (PCIe-6361, National Instruments) to be passed on to the algorithm 42 
suite for real-time analysis of cell events on the microchip. 43 
 44 
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2.8. Flow cytometry validation 1 

The experimental results were verified by analyzing the sample processed by our microchip in a 2 
flow cytometer. The sample was labeled with FITC anti-CD4 antibody (OKT4 clone, Biolegend) 3 
and APC anti-CD8 antibody (SK1 clone, Biolegend). This labeled sample was introduced into 4 
the flow cytometer (LSR-II, BD Biosciences) and subsequently, the laser power values were 5 
configured for optimal measurement (FSC: 275 V, SSC: 250 V, FITC: 390 V and APC: 390 V). 6 
The processing was halted after 10,000 events were recorded for every sample. Finally, FlowJo 7 
(FlowJo, LLC) software was used to analyze the flow cytometry data. 8 
 9 
3. RESULTS 10 
 11 

3.1. System overview and microchip design 12 

Our autonomous microchip-based immunoassay consisted of a microchip, a signal processing 13 
scheme and a feedback control loop. The microchip itself was composed of fluidic and electrical 14 
components (Fig. 1b). The microfluidic layer was made out of polydimethylsiloxane (PDMS) 15 
that accommodated the cascaded cell capture chambers. The cells flowed through those 16 
chambers sequentially and interacted with the different types of antibodies, resulting in the target 17 
cell subpopulation of each chamber getting immobilized on contact. An electrical sensor network 18 
based on the Microfluidic CODES (R. Liu et al., 2016, 2017) platform monitored cell flow at 19 
strategically placed locations. Specifically, a count was kept of every cell that entered the 20 
microchip, exited the first chamber to enter the second, and exited the second channel to leave 21 
the microchip. Using these counts in a mass balance equation revealed the antigen-positive cell 22 
count in each capture chamber. A sensor was defined as a series of interdigitated electrode pairs, 23 
comprised of positive and negative output electrode fingers, which served as current sinks, and a 24 
common input electrode, which served as the current source, that meandered throughout the 25 
length of the sensor and formed pairs with the output electrodes. All of the electrode fingers were 26 
5 µm wide and were spaced apart by 5 µm (Fig. 1b). Each sensor in the network had 15 pairs and 27 
generated a waveform with as many peaks of varying polarities effectively producing a unique 28 
code for each sensor. The specific sequence of these polarities followed the prescribed physical 29 
ordering of input-output electrode finger pairs, and ultimately determined the unique shape of the 30 
generated waveform. Our system used the uniqueness of each waveform during signal 31 
processing to determine from which sensor a particular waveform originated. 32 
The dimensions of the microfluidic pathways were optimized based on the target cell population, 33 
which in this case were naïve T cells that have an average diameter of ~7 µm. The capture 34 
chambers measured 7 mm in length and 5 mm in width and featured 60 µm diameter pillars 35 
patterned with a 72 µm pitch (Fig. 1b). The channel height over the capture region was designed 36 
to be 15 µm. The pillar dimensions and pitch were optimized to maximize interaction between 37 
the cell and the antibody coated pillars while still allowing sufficient clearance to prevent 38 
clogging. The pillars also served a secondary function of structurally supporting the ceiling of 39 
the chamber against collapse. The capture chambers also featured a set of auxiliary 40 
functionalization ports and channels located close to the inlet and outlet of each chamber. Each 41 
of these auxiliary channels featured a diamond-shaped, micropillar array-based particulate filter 42 
to prevent pollutants entering the capture chambers during the multi-step functionalization 43 
process. This setup allowed exclusive delivery of functionalization reagents to the desired 44 
chamber. Following the functionalization process, the auxiliary ports were sealed to prevent 45 
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leakage during the assay operation, and the microchip was interfaced via a single fluidic inlet and 1 
outlet. 2 
 3 
In operation, cells, flowing through the microchip, passed over each of the sensors embedded in 4 
the channel floor. The output of the whole sensor network was a differential electrical waveform 5 
that was first amplified by a pair of transimpedance amplifiers, processed by the lock-in 6 
amplifier (LIA) before being sampled into the computer via an analog to digital converter (ADC) 7 
(Materials and methods). The digitized sensor waveform was then processed by a deep learning 8 
model in real time to compute subpopulation fractions. Frequencies of different subpopulations 9 
were quantitatively determined by analyzing the differential cell counts at the entry and exit of 10 
each chamber. Cell speed was continuously computed from the sensor network data and was 11 
used to concurrently inform the feedback control system on the instantaneous operational status 12 
of the microchip. We used the cell speed as a process parameter to actively control the drive 13 
pressure and maintain a closed loop (Fig. 1c). This feedback control scheme enabled efficient 14 
immunocapture of cells without prior knowledge of the device dimensions and channel fluidic 15 
resistance. 16 
 17 
3.2. Surface modification and optimization of cell capture parameters 18 

To target different subpopulations of T cells, anti-CD4 and anti-CD8 antibodies were 19 
immobilized in different cell capture chambers through avidin-biotin chemistry (Materials and 20 
methods) via the auxiliary functionalization ports (Fig. 1b). First, the center auxiliary ports of the 21 
microchip were used to infuse the reagents common to both chambers, namely, (3-22 
aminopropyl)triethoxysilane (APTES) glutaraldehyde, neutravidin, BSA and glycine. Then, 23 
through the outer two auxiliary ports, the chamber-specific antibodies were infused into the 24 
corresponding chambers simultaneously at the same laminar flow rate. The symmetric design of 25 
the chambers ensured the chambers were infused equally and neither antibody solution 26 
overflowed its chamber and mixed with the other.  27 

To investigate the immobilization specificity of the capture antibodies in their designated capture 28 
chambers, we first functionalized capture chambers with antibodies conjugated with 29 
fluorophores of dissimilar colors (FITC anti-CD4 antibody and APC anti-CD8 antibody). 30 
Fluorophore-conjugated antibodies were concurrently delivered to different capture chambers 31 
and fluorescence emission was analyzed with fluorescence microscopy. Our results confirmed 32 
that each capture chamber was successfully coated with the desired antibody and that the 33 
fluorescence signal was uniform across each chamber, suggesting an even coating throughout 34 
(Fig. 2a). Furthermore, each antibody was confined to their target chambers and had not leaked 35 
into adjacent chambers.  36 

We then aimed to determine the optimal antibody concentration for surface functionalization. In 37 
this process, we functionalized different microfluidic capture chambers by incubating with anti-38 
CD4 antibodies at different concentrations (1–50µg/mL) and measured the resulting 39 
immunocapture efficiencies for CD4+ T cells as a function of incubation antibody concentration 40 
(Fig. S2). We found the cell immunocapture efficiency to be highly dependent on antibody 41 
concentration when it is <10µg/mL, while the gains in immunocapture efficiency being minimal 42 
for antibody concentrations of >25µg/mL, which suggested a saturation of the functionalized 43 
surface. Based on these results, 25µg/mL was chosen as the optimal antibody concentration for 44 
surface functionalization and was employed for the rest of the experiments in this work. 45 
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Next, we investigated the effect of cell flow speed on the immunocapture efficiency. The cell 1 
immunocapture efficiency, a performance metric we sought to maximize, is primarily dictated by 2 
the antibody-antigen interaction time in addition to the affinity between the two. Too high a flow 3 
speed leads to an inadequately low interaction time, resulting in false negatives in the form of 4 
uncaptured target T cells. Conversely, too low a flow speed causes non-specific binding, 5 
resulting in false positives due to non-target cells adhering to chamber surface. To determine the 6 
optimal flow speed, we processed a homogeneous naïve CD4+ T cell population, under different 7 
driving pressures and measured the percentage of the total incoming cells that were arrested in 8 
the capture chamber functionalized with anti-CD4 antibody to calculate capture efficiency. We 9 
achieved a 93% capture rate at flow speed of 30 µm/ms while increasing the flow speed to 150 10 
µm/ms led to a reduction in capture rate to 80% (Fig. 2b). The selected operating flow speed was 11 
60 µm/ms as it exhibited a relatively high (92%) capture rate while crucially avoiding non-12 
specific adhesion artifacts and sedimentation issues that the slower flow speeds were prone to. 13 

To minimize the non-specific adhesion, and hence, to increase the specificity of our assay, we 14 
investigated blocking the microchip with bovine serum albumin (BSA) and glycine. In order to 15 
determine the optimal BSA concentration for blocking, we measured false-capture rates of non-16 
target cells (CD8+ T cells) in devices functionalized with anti-CD4 antibody, 1.5 mg/mL of 17 
glycine and different concentrations of BSA (Materials and methods). For samples processed at 18 
the optimized cell flow speed of 60 µm/ms, we found that BSA concentrations of < 3% led to 19 
non-specific capture of CD8+ T cells, leading to false positive results of up to 42%. Increasing 20 
BSA concentration to 3% reduced non-specific adhesion to < 3% and was chosen as the optimal 21 
concentration for studies in this paper (Fig. 2c). 22 

Finally, we tested the specificity of our assay with optimized surface chemistry in a multi-23 
chamber configuration. In these experiments, microchips were functionalized either with anti-24 
CD4 or anti-CD8 antibody and only at the first capture chamber. The second chamber was 25 
intentionally left unfunctionalized for all microchips in order to observe non-specific capture. 26 
When homogeneous populations of naïve CD4+ T cells and naïve CD8+ T cells, each obtained 27 
from a commercial vendor (Materials and methods), were processed at 60 µm/ms, we observed T 28 
cells to be captured predominantly (~92% of CD4+ T cells and ~87% of CD8+ T cells) in the 29 
chamber functionalized with the matching antibody (Fig. 2d and e). Moreover, across different 30 
microchips, the non-specific capture rate was ~3% on average. Considering the fact that the 31 
samples we process already contained impurities per vendor-provided datasheets (CD4+ T cell 32 
sample purity: 94% and CD8+ T cell sample purity: 88%), these results demonstrated virtually 33 
almost all T cells expressing target antigens were captured by the optimized device with minimal 34 
non-specific capture. 35 
 36 
3.3. Real-time determination of cell immunocapture statistics 37 

To process electrical signals produced by the microchip, we designed a data processing pipeline 38 
that amplified, digitized and analyzed the waveform in real time (Fig. 3a). The front-end of this 39 
system was comprised of transimpedance amplifiers that conditioned the signal and passed it 40 
onto a lock-in amplifier (Materials and methods), which in turn produced the raw signal stream 41 
(Fig. 3b) and provided it to a digitizer connected to a computer. Once digitized, the signal was 42 
processed by a suite of algorithms written in Python, starting with automatically extracting valid 43 
cell events from the raw signal stream which included undesired idle sensor signals as well. This 44 
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was done by continuously running a sliding window on the raw signal stream, computing the 1 
signal power within the window and saving the windows that exceed a threshold. This threshold 2 
was determined using the first 5 seconds of program runtime by aggregating several thousand 3 
windows, identifying 100 windows with the lowest powers, and computing their average. This 4 
average was designated as the noise floor power, and an empirically determined threshold of 14 5 
dB relative to this noise floor power was used as the threshold for all signals processed. The 6 
detected cell event segments were then subject to a boundary refinement routine, where the 7 
minor extraneous idle sections of the signal on the leading and trailing ends of the segment are 8 
discarded. This routine first identifies the first and last peaks of the signal, then follows outer 9 
halves of these peaks until their first inflection points. The segment is trimmed to start and end 10 
within these new points.  11 
 12 
Next, the refined segment was forwarded to our deep learning model (Wang et al., 2019, 2021) 13 
for interpretation (Fig. 3c). The deep learning model could extract the information embedded in 14 
the cell signals at a processing throughput exceeding 700 cells/s, a rate that allows real-time 15 
operation in practice. Briefly, our model is comprised of two cascaded convolutional neural 16 
networks, which are deep learning structures commonly used in signal processing. The first 17 
stage, the region proposal network (RPN), designated the temporal location of each cell event by 18 
estimating a bounding box for each signature waveform identified in addition to reporting the 19 
cell speed. The second stage, the sensor classification network (SCN), performed classification 20 
on every bounding box produced by the RPN that preceded it and reported the class, or sensor 21 
ID, that corresponds to the waveform. While the functions of these two networks differ, their 22 
structure is similar. They both featured 4 convolutional layers expecting input waveforms 23 
normalized to 200 samples. The output of the SCN contained three nodes, each of which 24 
represented one of the three sensors embedded in the microchip (Fig. 3d). The two outputs of the 25 
deep learning model, namely the cell event sensor ID and cell speed were used by the chamber 26 
capture counting routine and the feedback control algorithm, respectively. 27 
 28 
The final stage in the data processing pipeline mapped each of the aggregated cell event sensor 29 
IDs to their corresponding sensor on the microchip and computed the capture rate (Fig. 3d). Each 30 
of the three sensors represented counts of a different cell population. The first sensor located 31 
nearest to the inlet counted the total population of the processed cells, while the second sensor 32 
located at the exit of the first chamber counted the subpopulation that was not immobilized in the 33 
first chamber and was therefore a negative expressor of that target antigen, and finally the third 34 
sensor located at the exit of the second chamber counted the subpopulation that was not 35 
immobilized in the second chamber. In a microchip where the first and second chambers have 36 
been functionalized with anti-CD4 and anti-CD8 antibodies, respectively, the count difference 37 
between the first and second sensor represented the CD4+ fraction of the population, the count 38 
difference between the second and third sensor represented the CD4- CD8+ fraction of the 39 
population and finally, the count difference between the first and third sensor represented the 40 
CD4- CD8- fraction of the total population.  41 
 42 
3.4. Closed-loop feedback control of the cell-flow speed for optimal immunocapture 43 

In order to autonomously maintain an optimal antibody-antigen interaction time for a given cell 44 
population, we developed a feedback control algorithm that modulates the drive pressure of the 45 
pressure pump pushing the cell sample based on the measured cell speed over the sensor network. 46 
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The control algorithm ran in real time, concurrent with the capture statistics algorithm, and 1 
continuously factored in new cell measurements while making necessary adjustments to the 2 
pressure pump over a USB connection (Fig. 4a). The control algorithm received a segmented cell 3 
event that has been baseline removed and determined the signal length. The cell speed is then 4 
computed using the known physical dimension of the sensor and signal sample rate. Every such 5 
cell speed measurement was added to a moving average of 9 cell events. If this average exceeded 6 
the target by 10%, the drive pressure was reduced. Conversely, if this average was below the target 7 
by 10%, the drive pressure was increased. 8 

We abstracted the control routine into a plant and feedback controller scheme (Fig. 4b). The 9 
programmable pressure pump, sensors and signal processing components comprise the plant and 10 
produce the measured process variable, the average cell speed (y(t)). The operational target of the 11 
feedback control system was to modulate the input, in this case the pump drive pressure, such 12 
that the average cell speed approaches the target setpoint (r(t)). To accomplish this, the 13 
discrepancy between the measured cell speed and the setpoint is computed as the error (e(t)) and 14 
the feedback controller continually attempts to minimize this value by executing an adequate 15 
correction value (u(t)) to the control input. Here, we implemented a proportional controller, 16 
which adjusted the control input based on a weight applied to the error. As such, the adjustment 17 
value passed to the pressure pump was given by: 18 
 19 

𝑢(𝑡) = 𝐾𝑒(𝑡), 20 
 21 
where K was the feedback gain. K was determined heuristically to be 0.35, avoiding excessively 22 
low values that resulted in prolonged time before converging on the target, and excessively high 23 
values which led to overshooting (Fig. S1). 24 
 25 
We were able to directly use the cell flow speed in the feedback control system to modulate the 26 
drive pressure since these two parameters exhibited a linear, monotonic relationship with the 27 
proportionality constant determined by the microchip hydraulic resistance (Fig. 4c). Every time 28 
the average cell speed was updated, which occurred at every cell event detection, the error 29 
between the measured and targeted cell speed was computed, and the feedback controller sent an 30 
update to the pressure pump if needed.  31 
 32 
We characterized the responsiveness of the feedback control loop by implementing a non-static 33 
setpoint and monitoring the controller’s output (Fig. 4d). We programmed the cell speed setpoint 34 
to follow a prescribed pattern, namely a linear ramp increasing from 35 µm/ms to 60 µm/ms, and 35 
found that the controller was able to follow it successfully. Finally, we evaluated the effect of 36 
disabling the feedback control algorithm on the capture rate (Fig. 4e). The system was run with a 37 
sample of homogeneous CD4+ T cells and the instantaneous capture rate was computed for 38 
every 16 cell events. Once the average instantaneous capture rate stabilized at ~88%, the 39 
feedback control algorithm was disabled and the system state was perturbed by abruptly 40 
increasing drive pressure to 950 mbar. The capture rate dropped to ~63% as a result. The 41 
feedback control algorithm was then re-enabled and autonomously brought the average 42 
instantaneous capture rate back to its previous ~88%. These results functionally demonstrated 43 
the ability of the assay to operate under optimal conditions irrespective of external perturbations. 44 
 45 
 46 
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3.5. Immunoanalysis of heterogenous T cell populations 1 

We evaluated the performance of the complete system consisting of the developed hardware and 2 
software by processing heterogenous samples of mixed T cell populations, specifically naïve 3 
CD4+ and CD8+ T cells isolated from whole blood (Materials and methods). To discriminate 4 
between different T cell subpopulations, our microchip was functionalized such that the first 5 
chamber would capture exclusively CD4+ T cells, the second chamber would capture CD8+ T 6 
cells and the cells/particles expressing neither were evacuated from the device (Fig. 5a). Because 7 
CD4 and CD8 are rarely co-expressed by T cells in peripheral blood (Bohner et al., 2019; 8 
Overgaard et al., 2015), our cascaded capture chambers effectively separated the two T cell 9 
populations through immunocapture. In fact, we confirmed that both capture chambers were 10 
capturing their intended target cell populations by labeling captured cell population on the 11 
microchip with different-colored fluorophores (FITC anti-CD4 antibody and APC anti-CD8 12 
antibody) and imaging them with fluorescence microscopy (Fig. 5a). Next, we tested the 13 
feedback controller’s performance in maintaining the cell speed upon startup. The program was 14 
first provided with a cell speed target and the allowed tolerance about this target, then launched 15 
with an initial drive pressure of 500 mbar. The average cell speed was continuously computed as 16 
the first few cells passing through the microchip were detected. The feedback control algorithm 17 
gradually reduced the drive pressure until the average cell speed met the target and fluctuations 18 
stayed within the target bounds. The optimal drive pressure was reached after acquiring signals 19 
from observing 31 cell events and the target cell speed of 60 µm/ms was met, after which cell 20 
capture statistics collection began (Fig. 5b). The whole process of analyzing ~12,000 T-cells and 21 
computing the capture statistics required ~30 mins. 22 

To test the accuracy of our system, we processed calibrated suspensions prepared by mixing 23 
commercially acquired naïve CD4+ T cells and naïve CD8+ T cells at different ratios of 1:1, 1:2, 24 
and 2:1 (Materials and methods). After processing each mixed sample through identically 25 
designed microchips, we found that the immunophenotype composition ratio reported by our 26 
system was in close agreement with the implemented mixing ratios (Fig. 5c). The discrepancy 27 
between our results and the nominal mixing ratio were primarily attributed to impurity of 28 
prepared T cell populations that resulted from lysed or dead cells, non-target particles, and 29 
impurity of the source samples themselves. Our conclusions are supported by the fact that the 30 
used CD4+ T cell and CD8+ T cell samples had manufacturer-reported purities of 94% and 93%, 31 
respectively. 32 

Finally, we benchmarked our autonomous immunoanalysis system against a commercial 33 
fluorescence-based flow cytometer. For flow cytometry analysis, samples, prepared by mixing 34 
CD4+ and CD8+ T cells at a 1:1 ratio, were labeled with fluorophore-conjugated antibodies 35 
against the same set of target antigens for flow cytometry analysis (Materials and methods). 36 
Flow cytometry measurements were then gated based on surface expression for T cell 37 
classification to calculate the frequency of each T cell subpopulation (Fig. 5d). The percentage of 38 
CD4+CD8- T cells, CD4-CD8+ T cells, and CD4-CD8- expressors were 48.3%, 46.8%, and 39 
4.1% respectively as per flow cytometry results. These results were in good agreement with 40 
those from our immunoanalysis system, which reported 49.3%, 43.8% and 6.9% as the 41 
frequencies of aforementioned immunophenotypes. Considering the flow cytometry data as the 42 
ground truth, these results amounted to an average of ≤ 6% error rate (n=3), effectively 43 
representing an accuracy of >94% for our biosensor (Fig. 5d). We attributed our measurement 44 
errors to several factors: 1) our immunocapture-based technique is a completely different sensing 45 
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modality from the laser-scatter technique that a flow cytometer is based on. This difference leads 1 
to dissimilar discrimination criteria and will inevitably not match perfectly, 2) the multi-step 2 
sample preparation process will unavoidably lead to cell loss and inclusion of non-target cell 3 
particles, e.g., lysed residues and dead cells. 4 
 5 
4. DISCUSSION 6 
 7 
We have demonstrated a fully electronic, autonomous immunoanalysis microchip that performs 8 
quantification of immune cell subtypes in a sample. A key feature of our approach is its innate 9 
flexibility in terms of both scaling and use case. While we have shown immunophenotyping for 10 
CD4+ and CD8+ T cells, a microchip that can target more or a different set of surface markers 11 
can be readily created by employing different antibodies or more capture chambers in various 12 
arrangements. Due to the already multiplexed nature of the Microfluidic CODES sensor network 13 
we utilize, no additional signal input and output ports needed be designed for those expanded 14 
systems. Instead, patterning additional sensors around the additional chambers is the only change 15 
necessary.  16 
 17 
Autonomous operation through a feedback loop is another important feature of the presented 18 
system. Our platform can readily by adapted for use with process parameters other than our 19 
demonstrated one, i.e., drive pressure. For instance, instead of using the measured cell speed to 20 
modulate drive pressure, the feedback control algorithm can be adapted to use measured 21 
subpopulation ratios to modulate process parameters like sample concentration. While we have 22 
reported an immunophenotype application, the central components of this platform, namely the 23 
sensor network and accompanying algorithm suite, microfluidic channel and feedback scheme 24 
are abstracted enough to be readily adaptable to other applications that utilize a variety of 25 
process parameters. 26 
 27 
Finally, our approach presents several advantages over existing immunophenotype techniques. 28 
First, unlike traditional approaches which require the sample to be prelabeled with fluorophore-29 
conjugated antibodies, our microchip accepts unlabeled immune cells directly isolated from 30 
whole blood. Not only does this shorten assay time, but also makes immunophenotyping 31 
available for applications where sample pre-labeling is not feasible. Second, our fully-electronic 32 
sensing scheme allows the use of low-cost, commercially available components and circuits 33 
which reduces system cost and complexity. While other electronic assays use cell size and 34 
electrical properties to indirectly perform cytometry, ours can also access and utilize well-35 
established and specific biochemical markers. This brings with it more reliability and 36 
compatibility with existing techniques for cell interrogation. Third, our automated processing 37 
eliminates errors that clinical cytometry often suffers from, which is primarily caused by 38 
variability in operators, laboratory conditions and result interpretation. Lastly, the inherent 39 
adaptability of our platform for use with different configurations and operational settings means 40 
the ability to perform immunophenotyping can be delivered beyond central laboratories. The 41 
system we have presented here has the potential to serve in the next generation of field-deployed 42 
analysis tools by leveraging its ability to perform autonomous, label free, real-time analysis. 43 
 44 
 45 
 46 
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5. CONCLUSION 1 
 2 

We demonstrate a microchip-based immunoassay to screen T cells for discriminating between 3 
different subpopulations based on cell surface markers. To minimize human intervention during 4 
operation, the system was designed to run in an automated, closed-loop manner and leveraged a 5 
deep-learning based feedback system to enact prompt and accurate adjustments to the runtime 6 
parameters during operation. Performing these corrections automatically realizes unique and 7 
important advantages over traditional immunophenotyping methods. Specifically, our technique 8 
requires no pre-labeling of the sample before running the assay, and crucially, the adaptive, 9 
closed-loop operation frees our system from common errors in clinical cytometry primarily 10 
caused by handling and environmental variations. While we have demonstrated a proof-of-11 
concept implementation that targets two surface markers, the scalable nature of our 12 
immunocapture scheme enables a straightforward application of our approach to target a 13 
multitude of surface markers by simply adding chambers to the design and functionalizing them 14 
accordingly. Furthermore, the measurement throughput can be further increased by revising the 15 
fluidic design to lower the hydraulic resistance. We believe that our low-cost platform that 16 
delivers immunophenotyping capabilities in a disposable package will be invaluable to clinical 17 
applications, cell manufacturing, and resource limited settings at the point of care. 18 
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Fig. 1. Device and system overview. (a) A schematic illustrating the method for electronic 1 
immune cell analysis. The drawing shows the placement of the antibody-functionalized capture 2 
chambers on the microchip, the integrated barcoded sensor network that performs the 3 
transduction of cell surface expression into electrical signals. The signal stream is subsequently 4 
processed to match the barcode with the on-chip location where the cell event occurred and 5 
aggregated to compute the total count of cells captured in each chamber to yield population-level 6 
insights based on their surface biomarkers. (b) A photograph of the fabricated microchip 7 
showing the microfluidic features filled with red dye for visualization and the electrical sensor 8 
network formed by micropatterned gold electrodes. Insets show a close-up microscope image of 9 
(top) one of the coded electrical sensors on the device along with the inter-chamber microfluidic 10 
passage it monitors and (bottom) a group of micropillars within the capture chamber that cells 11 
interact with as they flow through the device. (c) A schematic showing all of the components of 12 
the developed autonomous microchip-based immunoassay system and their interaction. 13 
 14 
 15 
 16 



20 
 

 1 

Fig. 2. Optimization and characterization of device functionalization. (a) A fluorescence 2 
microscope image showing a device whose chambers were functionalized with fluorophore-3 
conjugated antibodies (FITC anti-CD4 (left) and APC anti-CD8 (right)). Each chamber 4 
exclusively contained the intended capture antibody. (b) Measured CD4+ T cell capture rate in a 5 
device functionalized with anti-CD4 antibodies as a function of cell flow speed. (c) Measured 6 
false positive rate (i.e., rate of non-specific cell capture) as a function of concentration of BSA 7 
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solution used to block the device. Schematics showing the functionalization layouts of analytical 1 
devices that have only one of their two chambers functionalized with (d) anti-CD4 antibody and 2 
(e) anti-CD8 antibody (top) and the measured specific (1st chamber) and non-specific (2nd 3 
chamber) cell capture rates in those devices (bottom). 4 
 5 
 6 
 7 
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 1 
Fig. 3. Real-time determination of cell immunocapture statistics. (a) A flowchart describing our 2 
algorithm that extracted relevant events from the signal stream and passed it along to the 3 
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subsequent stage in the data processing pipeline in real-time. (b) A representative portion of a 1 
sampled signal stream produced at the output of the signal conditioning stage. (c) Cell detection 2 
signals from three different sensors segmented from the signal stream for further processing. 3 
Deep neural networks are used for localization and classification. (d) A schematic depicting the 4 
process to compute the capture rates in individual chambers. All the sensor ID outputs of the 5 
classifier network were timestamped and matched to the physical sensor location they were 6 
sourced from. This was used to calculate how many cells entered a chamber, and how many 7 
exited from it, and ultimately the capture rate of both chambers. 8 
 9 
 10 
 11 
 12 
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 1 
 2 
Fig. 4. Closed-loop feedback control of the cell-flow speed for optimal immunocapture. (a) A 3 
flowchart describing the feedback control algorithm. (b) A block diagram showing the 4 
proportional controller implemented in the real-time feedback control algorithm. The error term, 5 
e(t), was multiplied by the feedback gain parameter to produce the corrective drive pressure 6 
value, u(t), used to update the pressure pump. (c) A plot showing the measured cell flow speed as 7 
a function of the drive pressure in our device. (d) A plot showing the target tracking performance 8 
of our feedback controller. As the target cell speed was continuously ramped, the pressure 9 
updates commanded by the feedback controller and the resulting cell speed were simultaneously 10 
recorded and shown in the plot. (e) A plot showing the instantaneous cell immunocapture rates 11 
during both the presence and absence of feedback control. Feedback control was disabled and 12 
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drive pressure was increased to simulate an external perturbation. The consequent dip in the cell 1 
capture rate observed during inactive feedback control recovered when the feedback was turned 2 
back on. 3 
 4 
 5 
 6 
 7 
 8 
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 1 

 2 

Fig. 5. Immunoanalysis of heterogenous T cell populations. (a) A schematic of the device 3 
showing the layout of capture chambers designed to capture CD4+ and CD8+ T cells and the 4 
sensors monitoring cell capture. Insets show images of CD4+ (left) and CD8+ (right) cells 5 
labeled fluorescently after they were captured on the device. Scale bar, 50 µm. (b) A plot 6 
showing the time evolution of the cell flow speed under feedback control modulating the drive 7 
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pressure to reach the prescribed target of 60 µm/ms. (c) A plot showing the CD4+ and CD8+ T 1 
cell subpopulation frequencies as reported by our system (color-filled bars) vs the nominal mix 2 
ratio determined by hemocytometer (unfilled bars). (d) A plot (left) showing the results from 3 
fluorescence-emission based classification of a sample made of equal parts CD4+ and CD8+ T 4 
cells using flow cytometry. The other plot (right) shows the difference between the 5 
subpopulation counts determined by flow cytometry vs. our microchip-based immunoassay.  6 
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