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A B S T R A C T   

Cognitive performance models have been used in several human factors domains such as driving and human- 
computer interaction. However, most models are limited to expert performance with rough adjustments to 
consider novices despite prior studies suggesting novices’ cognitive, perceptual, and motor behaviors are 
different from experts. The objective of this study was to develop a cognitive performance model for novice law 
enforcement officers (N-CPM) to model their performance and memory load while interacting with in-vehicle 
technology. The model was validated based on a ride-along study with 10 novice law enforcement officers 
(nLEOs). The findings suggested that there were no significant differences between the N-CPM and observation 
data in most cases, while the results of the benchmark model were different from that of N-CPM. The model can 
be applied to improve future nLEO’s patrol mission performance through redesigning in-vehicle technologies and 
training methods to reduce their workload and driving distraction.   

1. Introduction 

Motor vehicle crashes (MVCs) are a major cause of death in the U.S. 
In 2021, an estimated 46,000 people lost their lives to car crashes and 
about 5.2 million people were seriously injured in crashes (NSC, 2022). 
MVCs are also a leading cause of line-of-duty deaths for public safety 
workers, especially law enforcement officers (LEOs) (BLS, 2020). LEOs 
are involved in a significantly higher number of fatal MVCs as compared 
to firefighters and emergency medical services workers (BLS, 2019). The 
rate of LEO MVCs is also 2.5 times higher than the national average 
among all occupations (Maguire et al., 2002). The main contributors to 
these crashes include officers’ use of in-vehicle technologies while 
driving (Yager et al., 2015), fatigue (Vila and Kenney, 2002), and lack of 
sufficient training in handling high-demand situations (e.g., pursuit 
situations, multi-tasking) (Hembroff et al., 2018). Prior investigations 
(Park et al., 2020; Shupsky et al., 2021; Zahabi and Kaber, 2018a, 
2018b; Zahabi et al., 2020a) have identified the mobile computer ter
minal (MCT) (a laptop that provides real-time information to LEOs) and 
radio as the most important and frequently used in-vehicle technologies 
while driving. Use of these technologies has increased LEOs’ distraction 
and cognitive load while driving (Shahini et al., 2020). 

1.1. Modeling novice law enforcement officers’ (nLEOs) performance 

Cognitive performance modeling is an approach to model human 
information processing or a pattern of actions carried out to satisfy an 
objective (Zhang and Wu, 2017). Creating a cognitive performance 
model (CPM) provides several advantages over human subject experi
ments, particularly during the initial phases of a design process (Park 
and Zahabi, 2022). CPM is a faster and safer approach compared to 
experimental studies because it minimizes human subjects’ involve
ment. Furthermore, the models can quantify and predict human be
haviors in natural tasks while also being easily modifiable (Salvucci 
et al., 2005; Zahabi et al., 2019b; Zhang and Wu, 2017). The CPM 
approach has been applied in a diverse range of human factors domains, 
including aerospace systems (Redding, 1992), augmented cognition 
(Fincham, 2005), computer systems (St. Amant et al., 2004), healthcare 
(Zahabi and Lyman, 2019), human-AI-robot teaming (Dudzik, 2019), 
perception and performance (Jeffrey Bolkhovsky et al., 2018), surface 
transportation (Tsimhoni and Reed, 2007), and user testing and evalu
ation (Oyewole et al., 2011). For surface transportation, using the CPM 
method is a safer approach than naturalistic studies (due to safety 
concerns) or driving simulation experiments which might cause simu
lator sickness. 
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Considering the seriousness of LEO MVCs and the main contributors 
of these crashes, there are several reasons why modeling the behavior of 
novice LEOs (nLEOs) is important. First, previous models cannot model 
time-sensitive situations such as emergency operations of nLEOs 
because they assume experts perform all tasks in a specific order and do 
not make mistakes. The new model for novices should reflect their 
cognitive, perceptual, and motor demands while driving. Additionally, 
conventional training approaches used to instruct nLEOs such as 
training videos, classroom education, vehicle owner manuals, and on- 
the-road skill training have been demonstrably ineffective at 
improving multi-tasking performance (Christie, 2001; Peck, 2011). The 
high cognitive workload created by patrol situations reduces the effec
tiveness of recall for information used for performing secondary tasks 
such as managing information on a MCT or responding to calls on a radio 
(Galy et al., 2012). Models of nLEOs’ performance in these demanding 
situations can estimate their recall probability and ultimately, enhance 
the design of training methods and in-vehicle technologies to better fit 
the needs of novice officers. 

1.2. Challenges in current CPMs 

There are two major limitations in existing CPMs that need to be 
addressed. First, current CPMs are limited to evaluating expert perfor
mance with rough adjustments to consider novice users, as the purpose 
of the models was to improve the design of interfaces in human-system 
interaction. For example, models under the Goals, Operators, Methods, 
and Selection rules (GOMS) family assume the user is an expert 
performer. These models include simple ones like Keystroke-Level 
Models (KLM) and more detailed models, such as Natural GOMS Lan
guage (NGOMSL), and Critical Path Method GOMS (CPM-GOMS (John 
and Gray, 1995)). However, GOMS models suffer from several limita
tions. For example, the models are only appropriate for routine cognitive 
tasks (i.e., the user knows exactly what to do in the task situation) and 
represent expert task performance without errors or have very rough 
estimations to account for novice users (e.g., use of mental operators 
“M” in KLM models for novice users) (John and Kieras, 1996). 

More advanced CPMs such as Executive Process-Interactive Control 
(EPIC) (Kieras and Meyer, 1997), Queueing Network – Model Human 
Processor (QN-MHP) (Liu et al., 2006b), and Adaptive Control of 
Thought (ACT-R) (Anderson et al., 1997) provided the capability to 
model parallel activities, included detailed sensory inputs and outputs, 
and were implemented in different software packages such as LISP, 
C++, VBA, Cogulator, and CogTool. Some other models such as the 
State, Operator, And Result (SOAR) (Laird et al., 1991) model does not 
clearly state whether they have the capability to model novices (Laird 
and Congdon, 2015). Among those advanced models, the QN family of 
models and ACT-R have the capability to model novices’ performance 
for some domains. For example, the QN-MHP accounts for the effect of 
age differences on mental workload by using an age factor (A) repre
senting young vs. older adults. In addition, ACT-R was used to investi
gate the characteristics of novices’ collision avoidance braking behavior 
(Cao et al., 2014; Zhang et al., 2022). ACT-R was advanced to account 
for multitasking behavior such as novices’ text entry performance using 
cell phone keypads (Das and Stuerzlinger, 2007). The model predicted 
the amount of time that unskilled users spent finding a key on a keypad 
and pressing it repeatedly. The QN approach (Liu et al., 2006a) has been 
improved with some error modeling capabilities such as a wrongly 
processed entity or character (Wu and Liu, 2008) and errors in numer
ical typing (Lin and Wu, 2012). However, these errors were meant to 
account for experts potentially committing errors due to their cognitive 
workload rather than to model novices’ perceptual, cognitive, and 
motor characteristics. 

ACT-R has also been widely studied for surface transportation 
domain. Like, QN family of models, ACT-R can model driving perfor
mance (Salvucci and Gray, 2004; Salvucci et al., 2007) and interaction 
with in-vehicle technologies (Salvucci, 2005; Salvucci et al., 2004, 2005; 

Salvucci and Macuga, 2002). However, the models were not developed 
for novices. In another ACT-R study, researchers manipulated the 
model’s knowledge and strategies and implemented different produc
tion rules for novice and expert models (Cao et al., 2014). However, the 
objective of this manipulation was to investigate the effect of driving 
experience on collision avoidance braking behavior. There has not been 
any study that used advanced CPM techniques to model novices’ per
formance when they are interacting with in-vehicle technologies. 

Another major limitation of current CPMs is the accessibility of the 
models and the difficulty associated with using them for beginners. 
Some of the developed models (e.g., SOAR and EPIC (Kieras and Meyer, 
1997)) are difficult to use for practitioners and experts in domains other 
than the domain they were originally created for even though there is 
detailed documentation for the methods (Kieras, 1999). In addition, 
there are very limited resources such as well-structured manuals, 
guidelines, or tutorials for learning the basics of each modeling lan
guage. An exception to this rule is ACT-R, which has been continuously 
updated with manuals and tutorials available on its website (http:// 
act-r.psy.cmu.edu/software/) and Github (https://github.com/HOM 
lab/QN-ACTR-Release). Unfortunately, there is no similar information 
available for other models except for the material provided in published 
articles which is not sufficient for beginners to learn the modeling logic. 
This issue can make the learning process difficult for analysts and 
practitioners because they might not understand the details of each 
model (e.g., parameters, inputs, outputs) or whether the method is 
appropriate to use for their specific application in the first place. Only 
some GOMS studies share the full source or pseudo codes of the model in 
the appendix of their manuscripts (Manes, 1997; Paelke, 1993; 
Schneegaβ et al., 2011). Overall, there is limited information available 
to allow researchers to replicate the findings of these models, which is 
essential for their validation (Al Seraj et al., 2018; Wilson et al., 2019). 
To help alleviate this issue, reproducible practices are needed by 
emerging technologies such as dynamic document generation tools (e.g., 
R Markdown), version control and code/data sharing platforms (e.g., 
Github), and containerization technology (e.g., Docker). 

1.3. Differences between novices and experts 

A critical difference between novice and expert drivers is the level of 
cognitive workload (CW) they experience while driving. CW can be 
defined as “the relation between the function describing mental re
sources demanded by a task and those resources available to be supplied 
by the human operator” (Parasuraman et al., 2008, pp. 145–146). 
Novices tend to look through many chunks of data to find what they 
need while experts are able to filter extraneous information and find the 
specific chunks they need more quickly than novices (Carmichael et al., 
2010; Sharif et al., 2012). The frequency of saccades and fixations for 
novices are higher than experts and it takes more time for novices to 
detect anomalies on roads than experts (Kundel and Nodine, 1975). This 
is because novices are usually inclined to fixate on visually salient in
formation before focusing on useful semantic information while experts 
directly focus on semantic information (Sharif et al., 2012). Regarding 
cognitive processes, experts can deal with more parallel cognitive ac
tions than novices (Kavakli and Gero, 2003). Concerning memory, ex
perts have advantages in chunking ability (Kavakli and Gero, 2003) and 
the amount of information stored in long-term memory (Sohn and 
Doane, 2003). For example, expert chess players can easily find and 
remember positions as familiar configurations or chunks of pieces that 
they encountered previously (Chase and Simon, 1973). With regards to 
motor aspects, reaction times for novices are longer compared to experts 
(Hick, 1952; Hyman, 1953). Experts exhibit fewer motor operators both 
at the level of central neural programming and subsequent motor unit 
activation (Davids et al., 2006; McCaskie et al., 2011; Milton et al., 
2007). This is evident by novices demonstrating higher engagement in 
cognitive activity than experts to execute a motor skill that they are 
learning (McCaskie et al., 2011). 
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In the surface transportation domain in particular, the CW of novices 
is significantly correlated with their reduced task performance in high- 
demand driving conditions (Drummond, 1989). Novices scan more 
frequently for hazards on the roads (Underwood, 2007) and must put 
conscious effort into their steering and speed control to avoid road 
hazards while experts have ‘hazard-avoidance schemas’ that can be 
executed in need. This is irrespective of the familiarity of the road and 
does not imply that expert drivers always avoid hazards, merely that 
they can respond to adverse situations faster. Novices also lack schema, 
experiences, and relevant rules of behaviors to effectively complete their 
tasks in a vehicle (Borowsky et al., 2008). In addition, they have inad
equate situation awareness, (McKenna and Crick, 1994) exhibited by 
shorter glances and longer response times on the phone while driving 
(Smiley et al., 2007). 

1.4. Research objective 

The objective of this study was to develop a cognitive performance 
model for novice law enforcement officers (N-CPM) to model their 
performance (in terms of the perceptual, cognitive, and motor demands, 
and task completion time) while interacting with in-vehicle technology. 
N-CPM is an extension of the original CPM-GOMS model which can be 
used to model novice behavior. To validate the model, we conducted a 
ride-along study with novice law enforcement officers (nLEOs) as police 
operations create high-demand driving conditions for nLEOs (Shahini 
et al., 2020; Zahabi and Kaber, 2018b). Since this was a naturalistic 
driving study and officers were on duty, we could not control the tasks 
that officers performed and instead we identified the most common tasks 
performed among all participants based on our observation. In addition 
to the ride-along study, a benchmark model was developed using the 
CPM-GOMS method and ACT-R working memory formulation in Cogu
lator software (Estes, 2017) to be compared with the developed N-CPM. 

2. Method 

The N-CPM is developed to model nLEOs’ interaction with in-vehicle 
technologies. The fundamental human behavior principles in N-CPM are 
based on Model Human Processor (MHP) (Card and Newell, 1986), 
CPM-GOMS, and working memory structure in ACT-R. The GOMS 
family of models have been successful in modeling driver interaction 
with in-vehicle technology in part because of its simplicity due to being 
based on MHP (Lee et al., 2019; Liu, 2019; Park et al., 2020; Park and 
Zahabi, 2022; Purucker et al., 2017; Yang et al., 2019; Zahabi, 2017; 
Zahabi et al., 2019a). However, GOMS is limited when it comes to 
providing information regarding working memory process during a task. 
Therefore, we used the formulations for working memory activation and 
decay based on ACT-R (which is similar to the logic used in Cogulator 
software) to address the limitations of GOMS. 

We initially considered using QN-MHP or ACT-R as a basis for N- 
CPM, as our recent literature review study found that these models were 
frequently used as human performance models in the surface trans
portation domain (Park and Zahabi, 2022). However, due to the 
following reasons, we decided to use MHP/CPM-GOMS instead of 
QN-MHP. First, the models that used novice drivers were focused on 
estimating the primary task performance (e.g., braking) (Cao et al., 
2014; Zhang et al., 2022) and not drivers’ interaction with in-vehicle 
technologies, which was the focus of our study. Similarly, ACT-R was 
advanced in specific applications to account for novices’ text entry 
performance using cell phone keypads (Das and Stuerzlinger, 2007) and 
was not used to model drivers’ interaction with in-vehicle technology. 
Second, implementing the logic in ACT-R requires development of 
numerous production rules and modifications to its internal logic (e.g., 
Fitts’ law). Our goal was to provide a simple model that can be used by 
analysts without expertise in human performance modeling. Due to the 
modeling complexity of both ACT-R and QN-MHP, we decided to use 
MHP/COM-GOMS models as a basis for N-CPM. 

The language used to develop the scenarios followed the program
ming language used in the Cogulator software. The outcomes from N- 
CPM are task completion time (TCT) based on the summation of the time 
of all perceptual, cognitive, and motor operators for a given task while 
considering parallel activities. Additionally, the model provides the 
number of memory chunks (MC), and perceptual/motor/cognitive op
erators used during the task. N-CPM also has the capability to develop a 
scenario or cognitive model (defined as a series of perceptual/cognitive/ 
motor operators, methods, and selection rules used by an individual to 
accomplish a specific goal) using a graphical user interface (GUI). The 
developed N-CPM can be downloaded from Github (https://github. 
com/hsilab/ncpm_v1.0) and installed in Rstudio as a package. The R 
version used for the model development was 4.0.5. There are some 
prerequisite packages that must be installed before using this package, 
including devtools (Wickham and Chang, 2016), ellipsis (Wickham, 
2021), vctrs (Wickham et al., 2022), shiny (Rstudio, 2014), Rcpp 
(Eddelbuettel et al., 2022), and skimr (Waring et al., 2022). 

2.1. Operators 

To develop the N-CPM, a logic was needed to differentiate the 
number of operators between novices and experts. Operators in N-CPM 
refer to basic actions of users, which can be categorized as perceptual (e. 
g., vision), cognitive (e.g., memory retrieval), or motor (e.g., moving 
hands) operators. Previous models were developed based on the 
assumption that experts do not commit errors. The experts’ performance 
in N-CPM has the same assumption. Therefore, the time to execute each 
operator for experts came from previous studies and was described in 
the glossary tab of the model GUI (Card and Newell, 1986; John and 
Gray, 1995; Kieras, 1997; Kim and Myung, 2016; Nyström, 2018; Park 
and Zahabi, 2021). To adjust the operators to account for novices’ 
behavior, we used the Rasmussen (1983)’s Skill-Rule-Knowledge (SRK) 
based human behavior framework and prior studies that compared the 
performance of novices and experts. 

Rasmussen (1983) classified types of human behaviors in three 
levels. Skill-based behavior (SBB) occurs in a known context and the 
skill-based tasks are performed without conscious attention or control 
(Rasmussen, 1983; Reason, 1990). Skill-based responses are generally 
initiated by some specific event, such as an experienced driver stopping 
at a stop sign. Several police in-vehicle tasks require only skill-based 
interactions such as “picking up the phone.” At the skill-based level, 
only perceptual operators were inflated to account for differences in 
perception of novices and experts as novices can have additional pursuit 
eye movements than experienced drivers (Mourant and Rockwell, 
1972). Skill-based tasks require a minimal number of cognitive opera
tors (Rasmussen, 1983; Reason, 1990). However, even for minimal 
attention, at least two cognitive operators are required: initiation and 
verification (Embrey, 2005). 

Rule-based behavior (RBB) occurs in familiar contexts with envi
ronmental information being sensed as signs (i.e., to modify pre- 
determined actions based on convention or previous knowledge). 
Rule-based tasks are performed based on stored rules or procedures. 
Rules can be thought of as “if-then” associations between inputs and 
appropriate actions (Embrey, 2005). Knowledge-based behavior (KBB) 
occurs in unfamiliar contexts, with the environmental information being 
sensed as symbols (i.e., information used to predict or explain 
non-familiar situations). Conscious problem solving and planning is 
required in KBB, which requires significantly more attentional resources 
compared to the skill- and rule-based behaviors. Reason (1990) stated 
that more cognitive activities are needed for knowledge-based tasks as 
compared to skill-based tasks. Examples of knowledge-based tasks in the 
vehicle are those secondary tasks that require multiple interactions with 
the technology and include perceptual and motor operators as well as 
additional cognitive operators. 

We conducted a literature review to quantify the differences between 
novices and experts and used that to modify the operators to account for 
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novice performance in N-CPM. However, using this approach might 
have some limitations as not all previous studies were focused on nov
ices’ interaction with in-vehicle technologies. We assumed that novices 
can have 1 or 2 more perceptual operators than experts when per
forming the same task based on Law et al. (2004). This study compared 
the frequency of fixations between experts (8.9%) and novices (26.7%) 
during a surgery task and found that the number of fixations for novices 
was three times higher than that of experts. 

Another assumption is that novices use 2 or 3 times more cognitive 
operators when performing a task than experts. This assumption was 
based on a study by Kavakli and Gero (2003) that found novices had 2.8 
times as many segments (i.e., cognitive actions that appear to occur 
simultaneously) as expert designers. Related to this, McCaskie et al. 
(2011) found that novices engage in more cognitive activities than ex
perts while learning motor skills (McCaskie et al., 2011). 

Some studies found that novices use 1 or 2 more motor operators 
than experts due to the errors made while performing a task (Goode 
et al., 1998; Milton et al., 2007; Wiedenbeck, 1985). For example, in 
sports, the error rate in performing motor activities for experts was 
7.7%, while the error rate for novices was 11.9% (Goode et al., 1998; 
Milton et al., 2007). Experts are faster and more accurate in recognizing 
patterns and are better able to plan actions in advance (Goode et al., 
1998; Milton et al., 2007). Experts also perceive kinematic information 
better, produce more consistent and adaptable movement patterns, use 
domain-specific information more effectively and efficiently, and have 
superior procedural and declarative knowledge (Goode et al., 1998; 
Milton et al., 2007). 

A summary of the operators in N-CPM is shown in Table 1. The 
inflated operators for novices are multiple instances of the same activity 
(e.g., perceptual operators can range from 1–4). The N-CPM randomly 
select a number within this range in each run. For example, novices 
might need to look at a display more than experts to confirm the in
formation. However, due to individual differences, some novices might 
have similar behavior as experts. Table 1 can be used as a general rule- 
of-thumb regarding the differences in the number of operators between 
experts and novices and is not intended to be used for a specific domain. 
The adjustment to the noise parameter is discussed in the following 
section. 

2.2. Working memory 

Activation is a degree of association between previous experiences 
and current context which describes whether a chunk will be helpful at 
any given moment (Bothell, 2017). Chunks are the elements of declar
ative knowledge in the ACT-R theory and are used to communicate in
formation among modules through the buffer (Bothell, 2020). The 
activation of a memory trace is calculated using the following equation 
(Altmann and Schunn, 2019; Estes, 2015): 

Activation = ln
(

n
̅̅̅̅
T

√

)

(1)  

where n is the number of times that chunk is rehearsed, and T is the total 

time the trace is held in memory (or age of the item). The number of 
rehearsals refers to the familiarity of a chunk. The default value of this 
parameter was set as 3, a plausible level of rehearsal that exhibited the 
best overall fit (Estes, 2015). However, for the information from 
long-term memory (LTM) or recall information, the number of re
hearsals was set to 10 to indicate that a chunk from LTM is difficult to be 
forgotten. (Estes, 2021). This number can be updated while the model is 
running. For example, if the number of rehearsals increases, the acti
vation also increases, leading to higher recall probability. 

In order to mimic the division of activation across all working 
memory chunks, the activation was reduced as a function of the number 
of chunks in the problem span based on the logic in Cogulator software 
(Estes, 2021). Therefore, the divided activation in N-CPM was calculated 
as shown in Equation (2) (Estes, 2015). 

Divided activation = Activation +
1

stack depth
− 1 (2) 

“Stack depth” is the number of chunks the activation must be divided 
among. For example, if a chunk was added as a third chunk in the 
memory, the stack depth becomes 3. The idea of limited activation 
source pools and their distribution among all the chunks held in working 
memory has been previously documented in the literature (Anderson 
et al., 1996). Equations (1) and (2) allowed the N-CPM to model a 
relationship between the number of chunks to be memorized (e.g., vi
sual pattern span), decay over time, and a subjective rating of mental 
demand. 

Memory load was defined as the overall occupancy of chunks in the 
entire task and was calculated using Equation (3), which divides the 
summation of the duration of all chunks by the total task duration (Estes, 
2015, 2021). 

Memory load =

∑7

i=1
(chunk duration)i

total task duration
(3)  

2.3. Recall probability 

Based on the activation calculated from Equation (2), recallability 
was calculated as shown in Equation (4) (Dehban et al., 2015; Estes, 
2021). 

Pi =
1

1 + e
τ−Ai

s

(4) 

In this equation, τ is a threshold to forget the chunk (−1), s is the 
noise or the variance from one scenario to another (Bothell, 2017), 
which is set to 0.8 based on Estes and Masalonis (2003), and Ai is the 
activation value from equation (1). Finally, Pi refers to the recall prob
ability of the ith chunk. The default value of threshold and noise came 
from the Cogulator software as the model assumes the user is an expert. 
The N-CPM assumes that the speed at which memory decays for novices 
will be faster than experts by adjusting the noise parameter in equation 
(4). As observed in expert’s behavior, continued training leads to a 
reduction in reaction time and errors, and eventual power law shape of 

Table 1 
Summary of parameters for novices and experts in N-CPM.  

Parameters Level of expertise 

Experts Novices References 

Skill-based 
behaviors 

Rule-based and Knowledge-based 
behaviors 

Perceptual 
operators 

Inflation factor 1 1~2 1~4 Law et al. (2004) 

Cognitive 
operators 

Inflation factor 1 1 1~3 Kavakli and Gero (2003) 
Noise in Recall 
probability 

0.2 0.8 Dehban et al. (2015); Di Nota and Huhta (2019); Estes 
(2021); Estes (2015); 

Motor operators Inflation factor 1 1 1~4 McCaskie et al. (2011)  
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performance to execute now-automatized behaviors (Fitts and Posner, 
1967; Ritter and Schooler, 2001). In addition, expert sensorimotor 
networks facilitate decision-making, performance, and novel motor 
learning that is faster and more accurate than novices. Thus, N-CPM 
assumes the noise (or variance between the scenarios) parameter for 
experts is smaller than that of novices (s for experts = 0.2; s for novices 
= 0.8). 

2.4. How to use N-CPM? 

When analysts run the N-CPM after installing the package, they first 
see the screen displayed in Fig. 1. Analysts can directly develop a sce
nario or load a developed scenario if one is already prepared in CSV 
format. 

To develop a scenario, analysts can select operators from the screen 
after clicking on the “Develop a Scenario” tab. Chunk names and de
scriptions of each line can also be added. The created scenario/code will 
then be shown on the right side of the window. Fig. 2 illustrates an 
example of the “Develop a Scenario” tab. Note the example code on the 
right side of the screen. 

The scenario can be generated from “Scenario development” tab 
(Fig. 1), notepad, or Cogulator. For example, in Fig. 2, the goal of the 
scenario is to check a vehicle plate number. A memory chunk used 
during the task is modeled with a bracket (”<” and “>“). For example, in 
Fig. 2, “<HZO>” was used as one chunk because it was the first half of 
the plate number and “<01 K>” is another chunk which is referring to 
the second part of the plate number. 

In the “Results Summary” tab (Fig. 3), all the outcomes for novices 
are presented including the task completion time, memory load, and 
number of operators. In addition, the information contained in each 
chunk is presented in a table format. In this table, there are columns for 
the number of rehearsals (the number of accesses on that specific chunk 
during the task), activation (calculated from Equations (1) and (2)), and 
probability of recall (calculated based on Equation (4)). 

As soon as the analyst develops a cognitive performance model, N- 
CPM counts the number of cognitive operators. Then, based on the rule 
described in Table 1, N-CPM applies the additional operators. All the 
comparisons between novices and experts are located in the “Novices 
and Expert Comparison” tab (Fig. 4). 

Lastly, the N-CPM provides tutorials for scenario development and 
editing within the “Help” tab as shown in Fig. 5. The description and 
duration for all operators including references is found in the “Glossary” 
tab (Fig. 6). 

2.5. Model validation 

A ride-along study was conducted with 10 nLEOs (Age: M = 28.6 yrs, 
SD = 5.64 yrs) (Wozniak et al., 2022). Each participant was observed for 
a period of at least 3 h. The study protocol was approved by the Texas 
A&M institutional review board (IRB 2021-0757D). In the following 
sections, we describe the participant demographic information, study 
equipment and procedure, and analysis approaches. 

All officers were novices, defined as having fewer than five years of 
experience as a primary patrol officer (Patrol officer experience: M =
2.15 yrs, SD = 1.23 yrs) (Filtness et al., 2013). To control for driving 
experience being a factor in novice performance, participants were 
required to have at least 1.5 years of driving experience. The study was 
conducted during officers’ regular work shifts in mornings and after
noons. Weather during these ride-alongs ranged from sunny to overcast 
to rainy. 

A dash camera was attached to the roof of the vehicle to observe the 
officer’s interactions with their in-vehicle technology. The study began 
with participants filling out an informed consent form and a de
mographic questionnaire. Several in-vehicle devices were used for the 
patrol mission as shown in Fig. 7. After the data collection, the partici
pant returned to their office. The participant was then provided with a 
copy of the informed consent form for their reference and thanked for 
their time. 

The Cogulator software which uses the CPM-GOMS method (to 
model expert performance) as its logic was used as a benchmark model 
in this study. After researcher 1 finalized task identification and analysis, 
they created initial benchmark models. Then, researcher 2 reviewed and 
revised the models. Once researcher 1 and 2 agreed on all the models, 
researcher 3 reviewed the models. Lastly, researcher 1 and 2 revised the 
models based on researcher 3’s feedback to reach 100% intercoder 
agreement. 

2.6. Data pre-processing and analysis 

Task analysis was conducted based on the recorded videos using 
VideoPad v6.26 software. Perceptual and motor operators were manu
ally identified from the video analysis and timed to the 33.3 ms (30 
frames per second). The video quality was sufficient to see the field of 
view (windshield) of the driver and the in-vehicle technology. This also 
allowed for the identification of patterns of repetitive perceptual and 
motor operators that were incorporated into the N-CPM as shown in 
Table 1. The timing of the visual operators initiated when the officers’ 
eyes started moving from the windshield to a target (e.g., MCT). The 
timing of auditory operators began from the onset of the auditory 
stimuli. In addition, motor operators were tracked from onset of 

Fig. 1. Initial (Main) screen of N-CPM.  
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movement to completion. 
Based on the task analysis and the most frequent tasks performed 

during the ride-alongs by the participants, we extracted 16 scenarios as 
shown in Table 2. These 16 scenarios also represent the most frequently 
performed activities in police vehicles based on prior studies (Zahabi 
and Kaber, 2018b; Zahabi et al., 2019a). TCT, the number of perceptual 
operators (nP), and motor operators (nM) for each scenario were 
extracted from this process. In addition, the cognitive models for experts 
were developed after the task analysis as described in the model vali
dation section. From Cogulator, TCT, nP, number of cognitive operators 
(nC), nM, and memory chunks were calculated for experts. The N-CPM 
also generated the same metrics for both novices and experts. 

Statistical analysis was conducted using JMP 16 and R 4.0.5 soft
ware. The statistical models were tested for normality and equality of 
variance, however none of the assumptions were met for the human data 
collected from the ride-along observations and the benchmark model 
data. Therefore, the nonparametric Wilcoxon test was conducted. The p- 
value, Z score, and effect size were reported for each test. We used an 
alpha level of .05 for all statistical tests. There were 70.36 data points on 
average from each participant (SD = 43.82). This means that each 
participant exhibited about 70 in-vehicle interactions on average. From 
the tasks’ point of view, each task was performed by officers 48.38 times 
on average (SD = 61.65). As this study was a naturalistic ride-along 
study, we did not limit the number or types of tasks. Furthermore, the 
normality and equality of the variance assumptions were not met, as 
each participant was in a different situation. That is, some officers 

performed the tasks more frequently or exhibited longer task completion 
times than other officers. Also, the violation of assumptions in the 
benchmark model data might have occurred due to the deterministic 
nature of the model and since the outcomes of the models are based on 
expert performance. 

2.7. Hypotheses 

Scenarios S2, S5, and S6 were removed from statistical analysis due 
to the lack of sufficient data points obtained from the video analysis as 
officers did not typically perform these scenarios across all the ride- 
along samples. These scenarios are still mentioned because they repre
sent important tasks that officers must complete during their patrol task, 
even if they are not performed as frequently as some other tasks. The 
hypotheses shown in Table 3 below were only generated for the TCT 
measure because all three sources (i.e., N-CPM, benchmark model, and 
observation data) could generate TCT, while the number of cognitive 
operators and memory chunks could only be calculated from N-CPM and 
Cogulator. In total, three hypotheses were formulated as shown in 
Table 3. 

The scenarios were categorized as simple or complex scenarios based 
on the “15-Second Rule” (Green, 1999, 2008), which is the recom
mended maximum time for drivers to complete 
in-vehicle-information-system-related tasks involving visual displays 
and manual controls. The hypotheses are only focused on complex tasks 
because simple tasks did not have enough operators and by extension a 

Fig. 2. “Scenario development” screen.  
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high enough TCT for average novice performance to be significantly 
different from expert performance, meaning that experience was not a 
significant factor in performing simple tasks. Simple tasks can be iden
tified as tasks that naturally fall under the control of skill-based behavior 
under Rasmussen’s SRK model (Rasmussen, 1983). These tasks can be 
completed without much conscious input from the participant due to 
being completed frequently in other contexts that do not have to do with 
the driving task. Additionally, by definition, more complex tasks engage 
rule-based and knowledge-based behaviors that create differences be
tween novice and expert drivers, with rule-based complex tasks pri
marily consisting of tasks that participants are not as familiar with and 
knowledge-based complex tasks presenting new scenarios that novice 
drivers are not prepared to address. Therefore, the following hypotheses 
in Table 3 were formulated around the complex tasks. 

3. Results 

A summary of the mean results for each task’s TCT is shown in 
Table 4. Table 5 summarizes the results for the number of operators for 
each task as well as the memory chunks. The number of cognitive op
erators or memory chunks could not be captured from the observation 
data because they are implicit variables. Simple task results are included 
here to demonstrate the differences between these tasks and complex 
tasks as well as to indicate why the task load on officers is so high while 
they complete the patrol task. This is also done to indicate that there are 
several tasks that fall in line with expert performance while highlighting 
the importance of designing technology around tasks that novices would 
struggle more than experts. Benchmark models were only run once to 
obtain a TCT because they only generate a single output due to being 
based on expert performance. TCT for observation data was based on the 
average of all performances of the tasks by participants. N-CPM TCT was 
determined using the average of multiple runs for each scenario. The N- 

Fig. 3. “Results Summary” screen.  

Fig. 4. “Novice and Expert Comparison - Task Completion Time” screen.  
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CPM model was run multiple times for each scenario depending on the 
number of observation data for that scenario to have a comparison be
tween the human data and model data. 

The results of the hypothesis tests are shown in Table 6. We did not 
find adequate evidence to reject our third hypothesis (i.e., there is no 
significant difference between N-CPM outcomes and observation data), 

Fig. 5. Help video for “Scenario Development".  

Fig. 6. Glossary.  

Fig. 7. A dashcam screenshot (ride-along).  
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except in S12 (i.e., have a conversation on a walkie). This means that the 
N-CPM was able to model the performance of novices with reasonable 
accuracy. Regarding H1, there were significant differences between N- 

CPM and benchmark model gathered from Cogulator for both simple 
and complex tasks. This is likely because the standard deviation of the 
benchmark results generated from Cogulator is smaller than the varia
tion in N-CPM (due to the inflation factors listed in Table 1) and 
observation data. These findings imply that the N-CPM results are 
significantly different from expert performance, and when combined 
with the findings from H3 implies that N-CPM more accurately models 
novice performance than expert performance for these tasks. The results 
for the simple tasks are included to be comprehensive but are not rele
vant to the findings of the hypothesis tests. 

To further verify the model, the root mean square error (RMSE) and 
R-squared were calculated (Wu, 2018). RMSE for TCT between the 
observation data and N-CPM was 3.49s with an R-squared value of 0.99, 
while RMSE of TCT between observation and the benchmark model was 
13.62s, with R-squared value of 0.88. Between the N-CPM and the 
benchmark model, RMSE was 15.26s and R-squared was 0.88. 

4. Discussion 

The results demonstrated several merits of N-CPM. We could not find 
adequate evidence to reject this hypothesis that the observation data 
were similar to N-CPM outcomes. Furthermore, both the N-CPM and 
observation results were significantly larger than the benchmark model 
outcomes for most complex tasks. For most simple tasks, the N-CPM and 
benchmark model outcomes were not significantly different from the 
observation data. Hypothesis 2 (H2) was only rejected for one complex 
scenario (i.e., S1) while H1 was supported for all complex scenarios. The 
N-CPM TCT results for simple tasks were also significantly higher than 
the benchmark data. Although the tasks were simple, benchmark models 
based on expert performance produced smaller standard deviations 
compared to the N-CPM results. Despite the simplicity of the task 
allowing novice performance modeled by the N-CPM to mimic expert 
performance, the lack of consistency compared to the expert benchmark 
performance was likely enough for the simple tasks to have a signifi
cantly higher N-CPM TCT compared to the benchmark TCT estimates. 
The merits of the N-CPM over a benchmark for novice performance are 
primarily demonstrated by the results of H3 and H1 for complex tasks. 
Despite the higher standard deviation in these complex tasks due to the 
variability in how they were approached by novices, the findings of N- 
CPM for complex tasks were found to not be significantly different from 
the observation data while also being significantly different from the 
benchmark data. This means that the N-CPM TCT estimates were more 
accurate at representing observation TCTs as opposed to benchmark 
TCTs. 

We intentionally placed several scenarios under each hypothesis to 
try to generalize the results of hypotheses testing across several in- 
vehicle technologies for nLEOs. However, H2 was not supported in 
one scenario (e.g., making a phone call). One reason for this was likely 
the small sample size (i.e., only 7 observations) and a consequentially 
higher than expected standard deviation of TCT for these tasks from 
observation. Tasks that included communication had much higher 
variation in duration which led to some significant differences not 
related to the complexity of the task. For example, H3 was rejected in 
one complex scenario (S12). One possible explanation for the difference 
between the observation data and the N-CPM outcomes in S12 (i.e., 
Have a conversation on a walkie) was the variations existed in the 
human data due to differences in the length of conversation for each 
participant. Overall, N-CPM could model novices’ cognitive perfor
mance accurately for most scenarios and performed better than the 
benchmark model in complex scenarios. This was predictable because 
the benchmark model is developed for experts. 

Other metrics besides TCT were also in line with the findings of 
previous studies (Chase and Simon, 1973; Sohn and Doane, 2003). The 
N-CPM consistently outputs more perceptual and motor operators than 
the benchmark model for most tasks, which is closer to the number of 
operators seen in observation tasks (Table 5). It was not possible to 

Table 2 
Scenario information.  

Scenario 
ID 

Title Description Device 

S1 Make a call Call someone or answer a call on the 
phone and have a conversation 

Phone 

S2 Move a phone Move a phone from one location to 
another within the vehicle 

Phone 

S3 Read a 
notification 

Look at a phone notification without 
opening the phone 

Phone 

S4 Read information Open the phone and read some 
information on it 

Phone 

S5 Reject a call Reject an incoming phone call Phone 
S6 Respond to text Read and respond to a text message 

on a phone 
Phone 

S7 Use map app Use the map application on a phone 
to input a destination 

Phone 

S8 Use touchscreen Use a smartwatch or other screen in 
the vehicle to read or find 
information 

Screen 

S9 Change music Change the music on a car radio Radio 
S10 Press button Press a button on a remote to check 

the speed of nearby cars. 
Remote 

S11 Use siren Press a button to turn on/off police 
sirens 

Siren 

S12 Communicate Have a conversation on a walkie Walkie 
S13 Pick up Pick up a walkie Walkie 
S14 Talk on Speak into a walkie and hear a 

response once 
Walkie 

S15 Read information Passive-level MCT task that involves 
reading information on the MCT 
without directly interacting with it 

MCT 

S16 Search and read 
information 

Active-level MCT task that involves 
typing or tapping on the MCT to find 
or input necessary information 

MCT 

*S2, S5, and S6 were removed from statistical analysis due to the lack of data 
samples. 

Table 3 
Hypotheses.  

Hypotheses (H) 

H1: TCT of N-CPM would be significantly higher than the benchmark model for 
complex tasks 

H2: TCT of observation would be significantly higher than the benchmark model for 
complex tasks 

H3: TCT of observation would be similar to the N-CPM for complex tasks  

Table 4 
Descriptive statistics of the TCT results for each scenario.  

Scenario Complexity Source 

ID TCT (s) 

Observation N-CPM Benchmark model 

Complex S1 80.9 90.28 59.3 
Complex S7 53.7 51.65 15.4 
Complex S12 25.2 31.7 15.9 
Complex S16 30.0 33.42 11.5 
Simple S3 9.87 7.63 5.2 
Simple S4 6.91 7.79 5.04 
Simple S8 7.01 7.29 5.71 
Simple S9 3.91 4.03 3.1 
Simple S10 2.2 2.12 1.8 
Simple S11 6.4 6.07 5.1 
Simple S13 4.08 4.02 4.02 
Simple S14 11.0 9.49 8 
Simple S15 8.39 6.34 5 

Note: TCT = Task completion time. 
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exactly match the number of operators from N-CPM with the operators 
captured from observations as the standard deviation of the number of 
operators from observations is large. This large standard deviation stems 
from the wide variety within each task that nLEOs have to contend with 
in each ride-along, increasing the opportunity for errors due to lower 
experience. This opportunity for errors was more present in the nLEOs 
recruited given that they had less than 5 years of experience and were 
more prone to making erroneous decisions. Increasing mistakes also 
increased the number of operators used for each task, which was re
flected in the design of the N-CPM. For complex tasks, the magnitude of 
inflated operators in N-CPM was larger than that of simple tasks, as 
complex tasks require more human information processing which is in 
line with previous studies (Fincham, 2005; Oyewole et al., 2011). 

There are several benefits of using N-CPM for researchers. First, there 
is no need to use a separate code to model novice behavior. The N-CPM 
has an algorithm to estimate the performance of both novices and ex
perts. This could make it easier for analysts to develop scenarios because 
they do not have to model repetitive interactions of novices, as the 
model already accounts for this. Furthermore, analysts could compare 
the outcomes of the model for novices and experts. Second, N-CPM 
codes/scenarios can also be run in Cogulator. Analysts can develop a 
scenario using the N-CPM GUI and paste it in Cogulator. Also, the N-CPM 
can run the model with a Cogulator scenario file (Microsoft CSV file). 
This can greatly improve the scenario development process, as some
times experienced analysts prefer working with spreadsheets rather than 
the GUI. N-CPM provides a venue (the “Scenario development” tab) for 
analysts who are not familiar with cognitive performance modeling to 
create models (Fig. 2). Third, N-CPM is the first CPM that was developed 
and released in R package format to Github (https://github.com/hsilab/ 
ncpm_v1.0). The outcome of the N-CPM can also easily be integrated 
with machine learning algorithms for future studies (Zahabi et al., 
2020b). Although N-CPM runs on R, its GUI was developed with the 
Shiny package, which makes the N-CPM accessible to anyone with basic 
knowledge of R. 

4.1. Practical implications 

The N-CPM can be applied to improve nLEO’s patrol mission per
formance through improving in-vehicle technology interaction and 
adaptive training based on their projected performance to reduce their 
workload and driving distraction. Potential examples of this include 
teaching officers on how to reduce the number of interactions with in- 
vehicle technologies that are linked to high workload by the N-CPM 
findings. 

The outcomes from the N-CPM can also be used to classify nLEO’s 

cognitive status in real-time with machine learning algorithms. This is 
most useful for identifying situations where the workload of nLEOs is the 
highest while operating their vehicle and recommending changes on 
how the in-vehicle technology should be designed or interacted with. It 
can also support the design of MCTs with regards to information pre
sentation or prioritization. For example, having a more adaptive design 
for the MCT screen would reduce CW if another task requiring high CW 
such as making a phone call or sending a text message had to be 
completed simultaneously. In addition, N-CPM can be used to provide 
adaptive training for nLEOs (Zahabi and Abdul Razak, 2020; Zahabi 
et al., 2020b), in which the problem, stimulus, or tasks dynamically 
change based on trainees’ performance (Kelley, 1969; Kelley, 1969). 
Previous adaptive training studies did not support modeling the cogni
tive process of novices or their prior knowledge that is essential for 
learning (Kozhevnikov, 2007). This can now be accomplished with the 
N-CPM. Observations from prior work conducted on adaptive driving 
simulation-based training and adaptive virtual reality-based training 
indicate that the implementation of these training protocols can enhance 
officer performance and reduce workload in high-demand situations. An 
example of this would be having an MCT that provides only the most 
necessary and salient information when it is detected that the officer is 
conducting high-cognitive-workload secondary tasks while driving. 
Simulating these scenarios will allow for the development of technology 
that can reduce officer cognitive workload. The N-CPM can be used to 
support this type of training by generating models of the perceptual, 
cognitive, and motor demands for different driving scenarios to be used 
as offline input measures for an adaptive driving simulation-based 
training system. N-CPM can also be applied to other human-machine 
interaction applications. For example, it can be used to test the usabil
ity of a newly designed mobile application for novice users. N-CPM is a 
quick solution (due to the use of a GUI) to compare performance of 
novices and experts during the early stages of the design and develop
ment process and once the analyst has access to initial prototypes. 

4.2. Limitations 

The major limitation of the N-CPM is that it did not delve into the 
fundamental human information processing principles with advanced 
quantification approaches. In other words, the model did not incorpo
rate humans’ brain activities as we analyzed the data based on the video 
recordings. The N-CPM uses the parameters from MHP and CPM-GOMS. 
The current model does not reflect the characteristics of novices’ 
memory decaying speed. Therefore, in the next version of the N-CPM, 
the model needs to be improved to include fundamental psychological 
principals for novices as other CPMs do (i.e., ACT-R or QN family of 

Table 5 
Descriptive statistics of the results for each scenario.   

ID (Complexity) 
Source 

Observation N-CPM Benchmark model 

nP nM nC nP nM MC nC nP nM MC 

S1 (C) 7.29 18.43 28.80 51.41 20.55 0.69 6 7 12 0.8 
S7 (C) 16.1 12.79 24.78 17.23 21.59 0.96 6 7 9 0.96 
S12 (C) 0.89 7.64 20 11 13.58 1.35 4 3 7 1.63 
S16 (C) 10.9 11.76 16.57 27.84 7.77 0.92 4 11 4 0.95 
S3 (S) 2.64 5.27 2.39 6.18 6.38 0.31 2 3 4 0.31 
S4 (S) 3.2 4.53 2.62 1.54 8.82 0.90 2 1 6 0.89 
S8 (S) 3.25 4.63 2.83 1.18 8.83 0.10 2 1 5 0.09 
S9 (S) 1.5 2.42 2.44 0 2.69 0.79 2 0 2 0.82 
S10 (S) 0.71 2.87 0 1.53 2 0 0 1 3 0 
S11 (S) 0.89 3.22 2.24 1.61 3.98 0 2 1 3 0 
S13 (S) 0.12 2.73 0.98 0 2.99 0 1 0 3 0 
S14 (S) 0.73 5.32 2,96 1.96 7 0.95 2 1 5 0.94 
S15 (S) 3.68 4.02 2.55 14.08 0 2.6 2 5 9 0.58 

Note: (C) = Complex task, (S) = Simple task, nC = Number of cognitive operators, nP = Number of perceptual operators, nM = Number of motor operators, MC =
memory chunks. 
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models). Furthermore, it should model the number of errors and provide 
a remediation strategy. 

The second major limitation of N-CPM is its limited capability to 
quantify driving performance. The ACT-R or QN family of models could 
estimate lane deviation, steering angle, or acceleration. In future ver
sions of the N-CPM, we plan to enhance the model to estimate novices’ 
driving performance and validate the model with data from novice and 
expert drivers. In addition, the next version of the N-CPM should include 
the updated activation function. In ACT-R, activation is the summation 
of base-level activation (chunks’ usefulness to past experiences), 
spreading activation (chunk’s relevance to the current context), and 
partial matching activation (chunk’s similarity to other chunks) (Leiden 
and Best, 2005). Experts have these three activations, but novices lack 
past experiences or knowledge. Thus, the activation level of novices can 
be lower than that of experts which could lead to lower recall proba
bility. However, for this study, implementing this concept into the 
N-CPM was not possible as the activation function in current version of 
the N-CPM represents the base-level activation, which cannot directly be 
compared to the activation function in ACT-R. The third limitation is the 
model’s generalizability. The N-CPM was only validated with a specific 
population (i.e., novice LEO) in this study. Future studies should vali
date the model with novices in other domains to improve the model’s 
generalizability. 

Lastly, there were some technical and experimental limitations. We 
used a video analysis software with 30 fps, which could not exactly 
pinpoint the onset and end of the tasks in millisecond level. Future 
studies should use a higher resolution analysis software to generate 
more precise time estimates. Officers’ level of experience could also 
affect the outcomes. Although participants had to have less than five 
years of experience as a primary patrol officer to be included in the 
study, they were not exactly equivalent in their amount of practice with 
each scenario. Furthermore, issues related to lack of normality and equal 
variance might have been due the naturalistic study settings. For 
example, officers’ duties or time of the day can impact the frequency or 
duration in which officers used in-vehicle technologies. Some of our 
observations were conducted in mornings and some were conducted at 
noon or during afternoon shifts. The differences in the shift and traffic 
level might cause differences in officers’ duties and use of in-vehicle 
technologies. In addition, driving was always the primary task and the 
scenarios were secondary tasks for LEOs. The model does not account for 
the activities required in driving. Therefore, variation within individuals 
may arise because the LEOs were in different driving conditions as the 
secondary scenarios arose. 

Table 6 
Summary of hypotheses tests.  

Hypothesis Statistical analysis results (p- 
value, Z-score Z, effect size r) 

Hypothesis 
test 
Result 

Simple Tasks Complex Tasks 

H1. 
TCT of N-CPM would be 
significantly higher than 
benchmark for complex tasks 

S3: p = .002, 
Z = 3.50, r =
0.88 
S4. p =
.0012, Z =
3.83, r =
0.86 
S8. p = .004, 
Z = 2.67, r =
0.88 
S9. p = .005, 
Z = 5.09, r =
0.75 
S10. p <
.001, Z =
4.27, r =
0.53 
S11. p =
.003, Z =
3.29, r =
0.88 
S13. p <
.001, Z =
4.82, r =
0.71 
S14. p <
.001, Z =
1.75, r =
0.32 
S15. p <
.001, Z =
5.77, r =
0.43 

S1. p = .006, Z 
= 3.02, r =
0.87 
S7. p < .001, Z 
= 3.76, r =
0.86 
S12. p < .001, 
Z = 6.22, r =
0.92 
S16. p < .001, 
Z = 5.27, r =
0.43 

Supported 

H2. 
TCT of observation would be 
significantly higher than the 
benchmark for complex tasks 

S4. p = .12, Z 
= 1.53, r =
0.28 
S8. p = .43, Z 
= 0.58, r =
0.14 
S9. p = .34, Z 
= 0.95, r =
0.13 
S10. p = .33, 
Z = −1.80, r 
= 0.19 
S11. p = .72, 
Z = −0.43, r 
= 0.10 
S13. p = .57, 
Z = −0.57, r 
= 0.06 

S1. p = .70, Z 
= 0.37, r =
0.10 

Rejected 

S3. p = .04, Z 
= 1.77, r =
0.38 
S14. p <
.001, Z =
3.71, r =
0.57 
S15. p <
.001, Z =
4.66, r =
0.26 

S7. p < .001, Z 
= 5.45, r =
1.00 
S12. p < .001, 
Z = 3.29, r =
0.39 
S16. p < .001, 
Z = 8.13, r =
0.49 

Supported 

H3. 
TCT of observation would be 
similar to the N-CPM for 
complex tasks 

S3. p = .26, Z 
= 0.68, r =
0.17 
S4. p = .54, Z 
= −0.61, r =
0.14 
S8. p = .94, Z 
= −0.07, r =
0.02 
S9. p = .47, Z 

S1. p = .50, Z 
= −1.14, r =
0.33 
S7. p = 1.00, Z 
= 0.00, r =
0.00 
S16. p = .07, Z 
= −1.83, r =
0.15 

Not 
rejected  

Table 6 (continued ) 

Hypothesis Statistical analysis results (p- 
value, Z-score Z, effect size r) 

Hypothesis 
test 
Result 

Simple Tasks Complex Tasks 

= −0.72, r =
0.11 
S10. p = .11, 
Z = −1.79, r 
= 0.22 
S11. p = .42, 
Z = −0.80, r 
= 0.21 
S13. p = .80, 
Z = −0.25, r 
= 0.04 
S14. p = .36, 
Z = 0.91, r =
0.16 
S15. p = .92, 
Z = −0.02, r 
= 0.00  

S12. p < .001, 
Z = −1.82, r =
0.27 

Rejected  
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5. Conclusion 

The objective of this study was to propose an extension of CPM- 
GOMS for novice law enforcement officers to model their performance 
while interacting with in-vehicle technologies. To validate the model, 
we conducted a ride-along study with nLEOs. The findings suggested 
that the N-CPM could estimate nLEO’s performance for simple and 
complex tasks. Future studies will focus on applying the N-CPM model to 
more general driving domain tasks to validate the usefulness of the N- 
CPM for modeling novice driver performance. The model was developed 
in R package and released to Github and can be downloaded for free. 
Future versions of N-CPM should include fundamental human infor
mation processing principles and model driving performance similar to 
methods such as ACT-R or QN family of models. 
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