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Cognitive performance models have been used in several human factors domains such as driving and human-
computer interaction. However, most models are limited to expert performance with rough adjustments to
consider novices despite prior studies suggesting novices’ cognitive, perceptual, and motor behaviors are
different from experts. The objective of this study was to develop a cognitive performance model for novice law
enforcement officers (N-CPM) to model their performance and memory load while interacting with in-vehicle

technology. The model was validated based on a ride-along study with 10 novice law enforcement officers
(nLEOs). The findings suggested that there were no significant differences between the N-CPM and observation
data in most cases, while the results of the benchmark model were different from that of N-CPM. The model can
be applied to improve future nLEO’s patrol mission performance through redesigning in-vehicle technologies and
training methods to reduce their workload and driving distraction.

1. Introduction

Motor vehicle crashes (MVCs) are a major cause of death in the U.S.
In 2021, an estimated 46,000 people lost their lives to car crashes and
about 5.2 million people were seriously injured in crashes (NSC, 2022).
MVCs are also a leading cause of line-of-duty deaths for public safety
workers, especially law enforcement officers (LEOs) (BLS, 2020). LEOs
are involved in a significantly higher number of fatal MVCs as compared
to firefighters and emergency medical services workers (BLS, 2019). The
rate of LEO MVGCs is also 2.5 times higher than the national average
among all occupations (Maguire et al., 2002). The main contributors to
these crashes include officers’ use of in-vehicle technologies while
driving (Yager et al., 2015), fatigue (Vila and Kenney, 2002), and lack of
sufficient training in handling high-demand situations (e.g., pursuit
situations, multi-tasking) (Hembroff et al., 2018). Prior investigations
(Park et al., 2020; Shupsky et al., 2021; Zahabi and Kaber, 2018a,
2018b; Zahabi et al., 2020a) have identified the mobile computer ter-
minal (MCT) (a laptop that provides real-time information to LEOs) and
radio as the most important and frequently used in-vehicle technologies
while driving. Use of these technologies has increased LEOs’ distraction
and cognitive load while driving (Shahini et al., 2020).

1.1. Modeling novice law enforcement officers’ (nLEOs) performance

Cognitive performance modeling is an approach to model human
information processing or a pattern of actions carried out to satisfy an
objective (Zhang and Wu, 2017). Creating a cognitive performance
model (CPM) provides several advantages over human subject experi-
ments, particularly during the initial phases of a design process (Park
and Zahabi, 2022). CPM is a faster and safer approach compared to
experimental studies because it minimizes human subjects’ involve-
ment. Furthermore, the models can quantify and predict human be-
haviors in natural tasks while also being easily modifiable (Salvucci
et al.,, 2005; Zahabi et al., 2019b; Zhang and Wu, 2017). The CPM
approach has been applied in a diverse range of human factors domains,
including aerospace systems (Redding, 1992), augmented cognition
(Fincham, 2005), computer systems (St. Amant et al., 2004), healthcare
(Zahabi and Lyman, 2019), human-Al-robot teaming (Dudzik, 2019),
perception and performance (Jeffrey Bolkhovsky et al., 2018), surface
transportation (Tsimhoni and Reed, 2007), and user testing and evalu-
ation (Oyewole et al., 2011). For surface transportation, using the CPM
method is a safer approach than naturalistic studies (due to safety
concerns) or driving simulation experiments which might cause simu-
lator sickness.
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Considering the seriousness of LEO MVCs and the main contributors
of these crashes, there are several reasons why modeling the behavior of
novice LEOs (nLEOs) is important. First, previous models cannot model
time-sensitive situations such as emergency operations of nLEOs
because they assume experts perform all tasks in a specific order and do
not make mistakes. The new model for novices should reflect their
cognitive, perceptual, and motor demands while driving. Additionally,
conventional training approaches used to instruct nLEOs such as
training videos, classroom education, vehicle owner manuals, and on-
the-road skill training have been demonstrably ineffective at
improving multi-tasking performance (Christie, 2001; Peck, 2011). The
high cognitive workload created by patrol situations reduces the effec-
tiveness of recall for information used for performing secondary tasks
such as managing information on a MCT or responding to calls on a radio
(Galy et al., 2012). Models of nLEOs’ performance in these demanding
situations can estimate their recall probability and ultimately, enhance
the design of training methods and in-vehicle technologies to better fit
the needs of novice officers.

1.2. Challenges in current CPMs

There are two major limitations in existing CPMs that need to be
addressed. First, current CPMs are limited to evaluating expert perfor-
mance with rough adjustments to consider novice users, as the purpose
of the models was to improve the design of interfaces in human-system
interaction. For example, models under the Goals, Operators, Methods,
and Selection rules (GOMS) family assume the user is an expert
performer. These models include simple ones like Keystroke-Level
Models (KLM) and more detailed models, such as Natural GOMS Lan-
guage (NGOMSL), and Critical Path Method GOMS (CPM-GOMS (John
and Gray, 1995)). However, GOMS models suffer from several limita-
tions. For example, the models are only appropriate for routine cognitive
tasks (i.e., the user knows exactly what to do in the task situation) and
represent expert task performance without errors or have very rough
estimations to account for novice users (e.g., use of mental operators
“M” in KLM models for novice users) (John and Kieras, 1996).

More advanced CPMs such as Executive Process-Interactive Control
(EPIC) (Kieras and Meyer, 1997), Queueing Network — Model Human
Processor (QN-MHP) (Liu et al., 2006b), and Adaptive Control of
Thought (ACT-R) (Anderson et al., 1997) provided the capability to
model parallel activities, included detailed sensory inputs and outputs,
and were implemented in different software packages such as LISP,
C++, VBA, Cogulator, and CogTool. Some other models such as the
State, Operator, And Result (SOAR) (Laird et al., 1991) model does not
clearly state whether they have the capability to model novices (Laird
and Congdon, 2015). Among those advanced models, the QN family of
models and ACT-R have the capability to model novices’ performance
for some domains. For example, the QN-MHP accounts for the effect of
age differences on mental workload by using an age factor (A) repre-
senting young vs. older adults. In addition, ACT-R was used to investi-
gate the characteristics of novices’ collision avoidance braking behavior
(Cao et al., 2014; Zhang et al., 2022). ACT-R was advanced to account
for multitasking behavior such as novices’ text entry performance using
cell phone keypads (Das and Stuerzlinger, 2007). The model predicted
the amount of time that unskilled users spent finding a key on a keypad
and pressing it repeatedly. The QN approach (Liu et al., 2006a) has been
improved with some error modeling capabilities such as a wrongly
processed entity or character (Wu and Liu, 2008) and errors in numer-
ical typing (Lin and Wu, 2012). However, these errors were meant to
account for experts potentially committing errors due to their cognitive
workload rather than to model novices’ perceptual, cognitive, and
motor characteristics.

ACT-R has also been widely studied for surface transportation
domain. Like, QN family of models, ACT-R can model driving perfor-
mance (Salvucci and Gray, 2004; Salvucci et al., 2007) and interaction
with in-vehicle technologies (Salvucci, 2005; Salvucci et al., 2004, 2005;
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Salvucci and Macuga, 2002). However, the models were not developed
for novices. In another ACT-R study, researchers manipulated the
model’s knowledge and strategies and implemented different produc-
tion rules for novice and expert models (Cao et al., 2014). However, the
objective of this manipulation was to investigate the effect of driving
experience on collision avoidance braking behavior. There has not been
any study that used advanced CPM techniques to model novices’ per-
formance when they are interacting with in-vehicle technologies.

Another major limitation of current CPMs is the accessibility of the
models and the difficulty associated with using them for beginners.
Some of the developed models (e.g., SOAR and EPIC (Kieras and Meyer,
1997)) are difficult to use for practitioners and experts in domains other
than the domain they were originally created for even though there is
detailed documentation for the methods (Kieras, 1999). In addition,
there are very limited resources such as well-structured manuals,
guidelines, or tutorials for learning the basics of each modeling lan-
guage. An exception to this rule is ACT-R, which has been continuously
updated with manuals and tutorials available on its website (http://
act-r.psy.cmu.edu/software/) and Github (https://github.com/HOM
lab/QN-ACTR-Release). Unfortunately, there is no similar information
available for other models except for the material provided in published
articles which is not sufficient for beginners to learn the modeling logic.
This issue can make the learning process difficult for analysts and
practitioners because they might not understand the details of each
model (e.g., parameters, inputs, outputs) or whether the method is
appropriate to use for their specific application in the first place. Only
some GOMS studies share the full source or pseudo codes of the model in
the appendix of their manuscripts (Manes, 1997; Paelke, 1993;
Schneegaf et al., 2011). Overall, there is limited information available
to allow researchers to replicate the findings of these models, which is
essential for their validation (Al Seraj et al., 2018; Wilson et al., 2019).
To help alleviate this issue, reproducible practices are needed by
emerging technologies such as dynamic document generation tools (e.g.,
R Markdown), version control and code/data sharing platforms (e.g.,
Github), and containerization technology (e.g., Docker).

1.3. Differences between novices and experts

A critical difference between novice and expert drivers is the level of
cognitive workload (CW) they experience while driving. CW can be
defined as “the relation between the function describing mental re-
sources demanded by a task and those resources available to be supplied
by the human operator” (Parasuraman et al., 2008, pp. 145-146).
Novices tend to look through many chunks of data to find what they
need while experts are able to filter extraneous information and find the
specific chunks they need more quickly than novices (Carmichael et al.,
2010; Sharif et al., 2012). The frequency of saccades and fixations for
novices are higher than experts and it takes more time for novices to
detect anomalies on roads than experts (Kundel and Nodine, 1975). This
is because novices are usually inclined to fixate on visually salient in-
formation before focusing on useful semantic information while experts
directly focus on semantic information (Sharif et al., 2012). Regarding
cognitive processes, experts can deal with more parallel cognitive ac-
tions than novices (Kavakli and Gero, 2003). Concerning memory, ex-
perts have advantages in chunking ability (Kavakli and Gero, 2003) and
the amount of information stored in long-term memory (Sohn and
Doane, 2003). For example, expert chess players can easily find and
remember positions as familiar configurations or chunks of pieces that
they encountered previously (Chase and Simon, 1973). With regards to
motor aspects, reaction times for novices are longer compared to experts
(Hick, 1952; Hyman, 1953). Experts exhibit fewer motor operators both
at the level of central neural programming and subsequent motor unit
activation (Davids et al., 2006; McCaskie et al., 2011; Milton et al.,
2007). This is evident by novices demonstrating higher engagement in
cognitive activity than experts to execute a motor skill that they are
learning (McCaskie et al., 2011).
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In the surface transportation domain in particular, the CW of novices
is significantly correlated with their reduced task performance in high-
demand driving conditions (Drummond, 1989). Novices scan more
frequently for hazards on the roads (Underwood, 2007) and must put
conscious effort into their steering and speed control to avoid road
hazards while experts have ‘hazard-avoidance schemas’ that can be
executed in need. This is irrespective of the familiarity of the road and
does not imply that expert drivers always avoid hazards, merely that
they can respond to adverse situations faster. Novices also lack schema,
experiences, and relevant rules of behaviors to effectively complete their
tasks in a vehicle (Borowsky et al., 2008). In addition, they have inad-
equate situation awareness, (McKenna and Crick, 1994) exhibited by
shorter glances and longer response times on the phone while driving
(Smiley et al., 2007).

1.4. Research objective

The objective of this study was to develop a cognitive performance
model for novice law enforcement officers (N-CPM) to model their
performance (in terms of the perceptual, cognitive, and motor demands,
and task completion time) while interacting with in-vehicle technology.
N-CPM is an extension of the original CPM-GOMS model which can be
used to model novice behavior. To validate the model, we conducted a
ride-along study with novice law enforcement officers (nLEOs) as police
operations create high-demand driving conditions for nLEOs (Shahini
et al., 2020; Zahabi and Kaber, 2018b). Since this was a naturalistic
driving study and officers were on duty, we could not control the tasks
that officers performed and instead we identified the most common tasks
performed among all participants based on our observation. In addition
to the ride-along study, a benchmark model was developed using the
CPM-GOMS method and ACT-R working memory formulation in Cogu-
lator software (Estes, 2017) to be compared with the developed N-CPM.

2. Method

The N-CPM is developed to model nLEOs’ interaction with in-vehicle
technologies. The fundamental human behavior principles in N-CPM are
based on Model Human Processor (MHP) (Card and Newell, 1986),
CPM-GOMS, and working memory structure in ACT-R. The GOMS
family of models have been successful in modeling driver interaction
with in-vehicle technology in part because of its simplicity due to being
based on MHP (Lee et al., 2019; Liu, 2019; Park et al., 2020; Park and
Zahabi, 2022; Purucker et al., 2017; Yang et al., 2019; Zahabi, 2017;
Zahabi et al., 2019a). However, GOMS is limited when it comes to
providing information regarding working memory process during a task.
Therefore, we used the formulations for working memory activation and
decay based on ACT-R (which is similar to the logic used in Cogulator
software) to address the limitations of GOMS.

We initially considered using QN-MHP or ACT-R as a basis for N-
CPM, as our recent literature review study found that these models were
frequently used as human performance models in the surface trans-
portation domain (Park and Zahabi, 2022). However, due to the
following reasons, we decided to use MHP/CPM-GOMS instead of
QN-MHP. First, the models that used novice drivers were focused on
estimating the primary task performance (e.g., braking) (Cao et al.,
2014; Zhang et al., 2022) and not drivers’ interaction with in-vehicle
technologies, which was the focus of our study. Similarly, ACT-R was
advanced in specific applications to account for novices’ text entry
performance using cell phone keypads (Das and Stuerzlinger, 2007) and
was not used to model drivers’ interaction with in-vehicle technology.
Second, implementing the logic in ACT-R requires development of
numerous production rules and modifications to its internal logic (e.g.,
Fitts’ law). Our goal was to provide a simple model that can be used by
analysts without expertise in human performance modeling. Due to the
modeling complexity of both ACT-R and QN-MHP, we decided to use
MHP/COM-GOMS models as a basis for N-CPM.
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The language used to develop the scenarios followed the program-
ming language used in the Cogulator software. The outcomes from N-
CPM are task completion time (TCT) based on the summation of the time
of all perceptual, cognitive, and motor operators for a given task while
considering parallel activities. Additionally, the model provides the
number of memory chunks (MC), and perceptual/motor/cognitive op-
erators used during the task. N-CPM also has the capability to develop a
scenario or cognitive model (defined as a series of perceptual/cognitive/
motor operators, methods, and selection rules used by an individual to
accomplish a specific goal) using a graphical user interface (GUI). The
developed N-CPM can be downloaded from Github (https://github.
com/hsilab/nepm_v1.0) and installed in Rstudio as a package. The R
version used for the model development was 4.0.5. There are some
prerequisite packages that must be installed before using this package,
including devtools (Wickham and Chang, 2016), ellipsis (Wickham,
2021), vetrs (Wickham et al., 2022), shiny (Rstudio, 2014), Rcpp
(Eddelbuettel et al., 2022), and skimr (Waring et al., 2022).

2.1. Operators

To develop the N-CPM, a logic was needed to differentiate the
number of operators between novices and experts. Operators in N-CPM
refer to basic actions of users, which can be categorized as perceptual (e.
g., vision), cognitive (e.g., memory retrieval), or motor (e.g., moving
hands) operators. Previous models were developed based on the
assumption that experts do not commit errors. The experts’ performance
in N-CPM has the same assumption. Therefore, the time to execute each
operator for experts came from previous studies and was described in
the glossary tab of the model GUI (Card and Newell, 1986; John and
Gray, 1995; Kieras, 1997; Kim and Myung, 2016; Nystrom, 2018; Park
and Zahabi, 2021). To adjust the operators to account for novices’
behavior, we used the Rasmussen (1983)’s Skill-Rule-Knowledge (SRK)
based human behavior framework and prior studies that compared the
performance of novices and experts.

Rasmussen (1983) classified types of human behaviors in three
levels. Skill-based behavior (SBB) occurs in a known context and the
skill-based tasks are performed without conscious attention or control
(Rasmussen, 1983; Reason, 1990). Skill-based responses are generally
initiated by some specific event, such as an experienced driver stopping
at a stop sign. Several police in-vehicle tasks require only skill-based
interactions such as “picking up the phone.” At the skill-based level,
only perceptual operators were inflated to account for differences in
perception of novices and experts as novices can have additional pursuit
eye movements than experienced drivers (Mourant and Rockwell,
1972). Skill-based tasks require a minimal number of cognitive opera-
tors (Rasmussen, 1983; Reason, 1990). However, even for minimal
attention, at least two cognitive operators are required: initiation and
verification (Embrey, 2005).

Rule-based behavior (RBB) occurs in familiar contexts with envi-
ronmental information being sensed as signs (i.e., to modify pre-
determined actions based on convention or previous knowledge).
Rule-based tasks are performed based on stored rules or procedures.
Rules can be thought of as “if-then” associations between inputs and
appropriate actions (Embrey, 2005). Knowledge-based behavior (KBB)
occurs in unfamiliar contexts, with the environmental information being
sensed as symbols (i.e., information used to predict or explain
non-familiar situations). Conscious problem solving and planning is
required in KBB, which requires significantly more attentional resources
compared to the skill- and rule-based behaviors. Reason (1990) stated
that more cognitive activities are needed for knowledge-based tasks as
compared to skill-based tasks. Examples of knowledge-based tasks in the
vehicle are those secondary tasks that require multiple interactions with
the technology and include perceptual and motor operators as well as
additional cognitive operators.

We conducted a literature review to quantify the differences between
novices and experts and used that to modify the operators to account for
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novice performance in N-CPM. However, using this approach might
have some limitations as not all previous studies were focused on nov-
ices’ interaction with in-vehicle technologies. We assumed that novices
can have 1 or 2 more perceptual operators than experts when per-
forming the same task based on Law et al. (2004). This study compared
the frequency of fixations between experts (8.9%) and novices (26.7%)
during a surgery task and found that the number of fixations for novices
was three times higher than that of experts.

Another assumption is that novices use 2 or 3 times more cognitive
operators when performing a task than experts. This assumption was
based on a study by Kavakli and Gero (2003) that found novices had 2.8
times as many segments (i.e., cognitive actions that appear to occur
simultaneously) as expert designers. Related to this, McCaskie et al.
(2011) found that novices engage in more cognitive activities than ex-
perts while learning motor skills (McCaskie et al., 2011).

Some studies found that novices use 1 or 2 more motor operators
than experts due to the errors made while performing a task (Goode
et al., 1998; Milton et al., 2007; Wiedenbeck, 1985). For example, in
sports, the error rate in performing motor activities for experts was
7.7%, while the error rate for novices was 11.9% (Goode et al., 1998;
Milton et al., 2007). Experts are faster and more accurate in recognizing
patterns and are better able to plan actions in advance (Goode et al.,
1998; Milton et al., 2007). Experts also perceive kinematic information
better, produce more consistent and adaptable movement patterns, use
domain-specific information more effectively and efficiently, and have
superior procedural and declarative knowledge (Goode et al., 1998;
Milton et al., 2007).

A summary of the operators in N-CPM is shown in Table 1. The
inflated operators for novices are multiple instances of the same activity
(e.g., perceptual operators can range from 1-4). The N-CPM randomly
select a number within this range in each run. For example, novices
might need to look at a display more than experts to confirm the in-
formation. However, due to individual differences, some novices might
have similar behavior as experts. Table 1 can be used as a general rule-
of-thumb regarding the differences in the number of operators between
experts and novices and is not intended to be used for a specific domain.
The adjustment to the noise parameter is discussed in the following
section.

2.2. Working memory

Activation is a degree of association between previous experiences
and current context which describes whether a chunk will be helpful at
any given moment (Bothell, 2017). Chunks are the elements of declar-
ative knowledge in the ACT-R theory and are used to communicate in-
formation among modules through the buffer (Bothell, 2020). The
activation of a memory trace is calculated using the following equation
(Altmann and Schunn, 2019; Estes, 2015):

Activation =1n (%) (€9)

where n is the number of times that chunk is rehearsed, and T is the total

Table 1
Summary of parameters for novices and experts in N-CPM.
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time the trace is held in memory (or age of the item). The number of
rehearsals refers to the familiarity of a chunk. The default value of this
parameter was set as 3, a plausible level of rehearsal that exhibited the
best overall fit (Estes, 2015). However, for the information from
long-term memory (LTM) or recall information, the number of re-
hearsals was set to 10 to indicate that a chunk from LTM is difficult to be
forgotten. (Estes, 2021). This number can be updated while the model is
running. For example, if the number of rehearsals increases, the acti-
vation also increases, leading to higher recall probability.

In order to mimic the division of activation across all working
memory chunks, the activation was reduced as a function of the number
of chunks in the problem span based on the logic in Cogulator software
(Estes, 2021). Therefore, the divided activation in N-CPM was calculated
as shown in Equation (2) (Estes, 2015).

(2)

Divided activation = Activation + ———— — 1
stack depth

“Stack depth” is the number of chunks the activation must be divided
among. For example, if a chunk was added as a third chunk in the
memory, the stack depth becomes 3. The idea of limited activation
source pools and their distribution among all the chunks held in working
memory has been previously documented in the literature (Anderson
et al.,, 1996). Equations (1) and (2) allowed the N-CPM to model a
relationship between the number of chunks to be memorized (e.g., vi-
sual pattern span), decay over time, and a subjective rating of mental
demand.

Memory load was defined as the overall occupancy of chunks in the
entire task and was calculated using Equation (3), which divides the
summation of the duration of all chunks by the total task duration (Estes,
2015, 2021).

7
> (chunk duration),

M. load=2=—
emory fod total task duration ®

2.3. Recall probability

Based on the activation calculated from Equation (2), recallability
was calculated as shown in Equation (4) (Dehban et al., 2015; Estes,
2021).

p— ! @

A

71+e\

In this equation, 7 is a threshold to forget the chunk (—1), s is the
noise or the variance from one scenario to another (Bothell, 2017),
which is set to 0.8 based on Estes and Masalonis (2003), and A; is the
activation value from equation (1). Finally, P; refers to the recall prob-
ability of the ith chunk. The default value of threshold and noise came
from the Cogulator software as the model assumes the user is an expert.
The N-CPM assumes that the speed at which memory decays for novices
will be faster than experts by adjusting the noise parameter in equation
(4). As observed in expert’s behavior, continued training leads to a
reduction in reaction time and errors, and eventual power law shape of

Parameters Level of expertise
Experts  Novices References
Skill-based Rule-based and Knowledge-based
behaviors behaviors
Perceptual Inflation factor 1 1~2 1~4 Law et al. (2004)
operators
Cognitive Inflation factor 1 1 1~-3 Kavakli and Gero (2003)
operators Noise in Recall 0.2 0.8 Dehban et al. (2015); Di Nota and Huhta (2019); Estes
probability (2021); Estes (2015);
Motor operators Inflation factor 1 1 1~4 McCaskie et al. (2011)
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performance to execute now-automatized behaviors (Fitts and Posner,
1967; Ritter and Schooler, 2001). In addition, expert sensorimotor
networks facilitate decision-making, performance, and novel motor
learning that is faster and more accurate than novices. Thus, N-CPM
assumes the noise (or variance between the scenarios) parameter for
experts is smaller than that of novices (s for experts = 0.2; s for novices
=0.8).

2.4. How to use N-CPM?

When analysts run the N-CPM after installing the package, they first
see the screen displayed in Fig. 1. Analysts can directly develop a sce-
nario or load a developed scenario if one is already prepared in CSV
format.

To develop a scenario, analysts can select operators from the screen
after clicking on the “Develop a Scenario” tab. Chunk names and de-
scriptions of each line can also be added. The created scenario/code will
then be shown on the right side of the window. Fig. 2 illustrates an
example of the “Develop a Scenario” tab. Note the example code on the
right side of the screen.

The scenario can be generated from “Scenario development” tab
(Fig. 1), notepad, or Cogulator. For example, in Fig. 2, the goal of the
scenario is to check a vehicle plate number. A memory chunk used
during the task is modeled with a bracket ("< and “>*). For example, in
Fig. 2, “<HZO>" was used as one chunk because it was the first half of
the plate number and “<01 K> is another chunk which is referring to
the second part of the plate number.

In the “Results Summary” tab (Fig. 3), all the outcomes for novices
are presented including the task completion time, memory load, and
number of operators. In addition, the information contained in each
chunk is presented in a table format. In this table, there are columns for
the number of rehearsals (the number of accesses on that specific chunk
during the task), activation (calculated from Equations (1) and (2)), and
probability of recall (calculated based on Equation (4)).

As soon as the analyst develops a cognitive performance model, N-
CPM counts the number of cognitive operators. Then, based on the rule
described in Table 1, N-CPM applies the additional operators. All the
comparisons between novices and experts are located in the “Novices
and Expert Comparison” tab (Fig. 4).

Lastly, the N-CPM provides tutorials for scenario development and
editing within the “Help” tab as shown in Fig. 5. The description and
duration for all operators including references is found in the “Glossary”
tab (Fig. 6).
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2.5. Model validation

A ride-along study was conducted with 10 nLEOs (Age: M = 28.6 yrs,
SD = 5.64 yrs) (Wozniak et al., 2022). Each participant was observed for
a period of at least 3 h. The study protocol was approved by the Texas
A&M institutional review board (IRB 2021-0757D). In the following
sections, we describe the participant demographic information, study
equipment and procedure, and analysis approaches.

All officers were novices, defined as having fewer than five years of
experience as a primary patrol officer (Patrol officer experience: M =
2.15 yrs, SD = 1.23 yrs) (Filtness et al., 2013). To control for driving
experience being a factor in novice performance, participants were
required to have at least 1.5 years of driving experience. The study was
conducted during officers’ regular work shifts in mornings and after-
noons. Weather during these ride-alongs ranged from sunny to overcast
to rainy.

A dash camera was attached to the roof of the vehicle to observe the
officer’s interactions with their in-vehicle technology. The study began
with participants filling out an informed consent form and a de-
mographic questionnaire. Several in-vehicle devices were used for the
patrol mission as shown in Fig. 7. After the data collection, the partici-
pant returned to their office. The participant was then provided with a
copy of the informed consent form for their reference and thanked for
their time.

The Cogulator software which uses the CPM-GOMS method (to
model expert performance) as its logic was used as a benchmark model
in this study. After researcher 1 finalized task identification and analysis,
they created initial benchmark models. Then, researcher 2 reviewed and
revised the models. Once researcher 1 and 2 agreed on all the models,
researcher 3 reviewed the models. Lastly, researcher 1 and 2 revised the
models based on researcher 3’s feedback to reach 100% intercoder
agreement.

2.6. Data pre-processing and analysis

Task analysis was conducted based on the recorded videos using
VideoPad v6.26 software. Perceptual and motor operators were manu-
ally identified from the video analysis and timed to the 33.3 ms (30
frames per second). The video quality was sufficient to see the field of
view (windshield) of the driver and the in-vehicle technology. This also
allowed for the identification of patterns of repetitive perceptual and
motor operators that were incorporated into the N-CPM as shown in
Table 1. The timing of the visual operators initiated when the officers’
eyes started moving from the windshield to a target (e.g., MCT). The
timing of auditory operators began from the onset of the auditory
stimuli. In addition, motor operators were tracked from onset of

Develop a Scenario

Edit a Scenario

Help

Novice - Cognitive Performance Model (N-CPM)

R

Model Overview: The purpese of this model is
to predict novices' task performance and
cognitive worklead. Click on the help tab or
upload a file to get started

Choose CSV File

Fig. 1. Initial (Main) screen of N-CPM.
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Perceptual Cognitive Motor Operators
Operators Operators Drag
Look Aftend Grasp
Read Initiate Hands
Search Ignore Keystroke
Saccade Recall Point
Hear Slore Swipe
cusfom Think Tap
Verify ® Touch
custom Turn
Type
Virite
Reach
Flick
Zoomin
Zoom out
Say
custom

You chose Touch
Touch: Press a virtual bution
Describe the use of the operator

license plate button

Parallel?

Add Goal?

Chunks System Code
Plate Number Wait Goal: Check
Street name the plate
Road Name nupber
cusiom Attend to MCT
Look =HZ0=
Look <01K:=

Store «<HZ D=
Store =01K=

Paint at the
MCT

Look at the:
MCT

Search for
license plate
bution

Touch license
plate button

Fig. 2. “Scenario development” screen.

movement to completion.

Based on the task analysis and the most frequent tasks performed
during the ride-alongs by the participants, we extracted 16 scenarios as
shown in Table 2. These 16 scenarios also represent the most frequently
performed activities in police vehicles based on prior studies (Zahabi
and Kaber, 2018b; Zahabi et al., 2019a). TCT, the number of perceptual
operators (nP), and motor operators (nM) for each scenario were
extracted from this process. In addition, the cognitive models for experts
were developed after the task analysis as described in the model vali-
dation section. From Cogulator, TCT, nP, number of cognitive operators
(nC), nM, and memory chunks were calculated for experts. The N-CPM
also generated the same metrics for both novices and experts.

Statistical analysis was conducted using JMP 16 and R 4.0.5 soft-
ware. The statistical models were tested for normality and equality of
variance, however none of the assumptions were met for the human data
collected from the ride-along observations and the benchmark model
data. Therefore, the nonparametric Wilcoxon test was conducted. The p-
value, Z score, and effect size were reported for each test. We used an
alpha level of .05 for all statistical tests. There were 70.36 data points on
average from each participant (SD = 43.82). This means that each
participant exhibited about 70 in-vehicle interactions on average. From
the tasks’ point of view, each task was performed by officers 48.38 times
on average (SD = 61.65). As this study was a naturalistic ride-along
study, we did not limit the number or types of tasks. Furthermore, the
normality and equality of the variance assumptions were not met, as
each participant was in a different situation. That is, some officers

performed the tasks more frequently or exhibited longer task completion
times than other officers. Also, the violation of assumptions in the
benchmark model data might have occurred due to the deterministic
nature of the model and since the outcomes of the models are based on
expert performance.

2.7. Hypotheses

Scenarios S2, S5, and S6 were removed from statistical analysis due
to the lack of sufficient data points obtained from the video analysis as
officers did not typically perform these scenarios across all the ride-
along samples. These scenarios are still mentioned because they repre-
sent important tasks that officers must complete during their patrol task,
even if they are not performed as frequently as some other tasks. The
hypotheses shown in Table 3 below were only generated for the TCT
measure because all three sources (i.e., N-CPM, benchmark model, and
observation data) could generate TCT, while the number of cognitive
operators and memory chunks could only be calculated from N-CPM and
Cogulator. In total, three hypotheses were formulated as shown in
Table 3.

The scenarios were categorized as simple or complex scenarios based
on the “15-Second Rule” (Green, 1999, 2008), which is the recom-
mended maximum time for drivers to complete
in-vehicle-information-system-related tasks involving visual displays
and manual controls. The hypotheses are only focused on complex tasks
because simple tasks did not have enough operators and by extension a
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Results

Task Completion Time (seconds):
10.92

Memory Load:

2.32

Perceptual Operators:

11

Cognitive Operators:

7

Motor Operators:

4

Chunk information

Chunk_Number Chunk_Name  Stack_Depth  Chunk_Arrival_Time
1.00 <HZO> 1.00 1700.00
2.00 <01K> 2.00 2800.00
3.00 <HZ0> 3.00 2950.00
400 O 0.00 0.00
500 0 0.00 0.00
6.00 0 0.00 0.00
7.00 0 0.00 0.00

* Note *

Chunk Number: Added chunk's number
Chunk_Name: Added chunk's name

Rehearsal: The number of rehearsals of chunk in working memory
Probability_of Recall: The probability to recall specfiic chunk

Chunk_Arrival_Time: The time when chunk was added to working memory (milliseconds)
Chunk_Elapsed_Time: The time that chunk remained in working memory (milliseconds)

Chunk_Elapsed_Time Rehearsal Activation Probability_of_Recall
9220.00 3.00 -0.01 0.77

8120.00 4.00 -0.16 0.74

7970.00 4.00 -0.32 0.70

0.00 3.00 0.00 0.00

0.00 3.00 0.00 0.00

0.00 3.00 0.00 0.00

0.00 3.00 0.00 0.00

Fig. 3. “Results Summary” screen.

Home

Develop a Scenario

Novice and Expert Comparison

Edit a Scenario

Results Summary

Help

Novice - Cognitive Performance Model (N-CPM)

The novice performance can be compared to the expert performance here. Click a tab to view each comparison.

Task completion time

Task completion time (seconds)

Memory chunks Number of operators

Novice Expert

10.92 4.49

Fig. 4. “Novice and Expert Comparison - Task Completion Time” screen.

high enough TCT for average novice performance to be significantly
different from expert performance, meaning that experience was not a
significant factor in performing simple tasks. Simple tasks can be iden-
tified as tasks that naturally fall under the control of skill-based behavior
under Rasmussen’s SRK model (Rasmussen, 1983). These tasks can be
completed without much conscious input from the participant due to
being completed frequently in other contexts that do not have to do with
the driving task. Additionally, by definition, more complex tasks engage
rule-based and knowledge-based behaviors that create differences be-
tween novice and expert drivers, with rule-based complex tasks pri-
marily consisting of tasks that participants are not as familiar with and
knowledge-based complex tasks presenting new scenarios that novice
drivers are not prepared to address. Therefore, the following hypotheses
in Table 3 were formulated around the complex tasks.

3. Results

A summary of the mean results for each task’s TCT is shown in
Table 4. Table 5 summarizes the results for the number of operators for
each task as well as the memory chunks. The number of cognitive op-
erators or memory chunks could not be captured from the observation
data because they are implicit variables. Simple task results are included
here to demonstrate the differences between these tasks and complex
tasks as well as to indicate why the task load on officers is so high while
they complete the patrol task. This is also done to indicate that there are
several tasks that fall in line with expert performance while highlighting
the importance of designing technology around tasks that novices would
struggle more than experts. Benchmark models were only run once to
obtain a TCT because they only generate a single output due to being
based on expert performance. TCT for observation data was based on the
average of all performances of the tasks by participants. N-CPM TCT was
determined using the average of multiple runs for each scenario. The N-
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Novice - Cognitive Performance Model (N-CPM)
Click on each tab for more information
Home Scenario Development Scenario Edit Glossary
ST The help page for developing scenarios goes here.
MNovice and Expert Comparison

Edit a Scenario

Results Summary

[ Quick-Start tutorial 1 ]
Scenario development

Fig. 5. Help video for “Scenario Development".

Scenario Development Scenario Edit Glessary
Glossary
Show 25 v entries Search
Task completion
Name Definition Reference time (ms)
Look Look at an item at a known position Kieras, 1997; John & Gray, 1995; Estes, 2017 550
Read Time to read a single word Kieras, 1997; Estes, 2017 260
Search Search for an item at an unknown position Kieras, 1997; Estes, 2017 1250
Saccade A single rapid eye movement Card et al., 1986 230
Hear Listen to someone speaking. Label should be the text  Kieras, 1997; John & Gray. 1995; Estes, 2017 400
of the speech

Fig. 6. Glossary.

& |

Mobile
Computer
1 Terminal (MCT)

Fig. 7. A dashcam screenshot (ride-along).

CPM model was run multiple times for each scenario depending on the The results of the hypothesis tests are shown in Table 6. We did not
number of observation data for that scenario to have a comparison be- find adequate evidence to reject our third hypothesis (i.e., there is no
tween the human data and model data. significant difference between N-CPM outcomes and observation data),
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Table 2
Scenario information.
Scenario Title Description Device
ID
S1 Make a call Call someone or answer a call on the ~ Phone
phone and have a conversation
S2 Move a phone Move a phone from one location to Phone
another within the vehicle
S3 Read a Look at a phone notification without =~ Phone
notification opening the phone
S4 Read information Open the phone and read some Phone
information on it
S5 Reject a call Reject an incoming phone call Phone
S6 Respond to text Read and respond to a text message Phone
on a phone
S7 Use map app Use the map application on a phone Phone
to input a destination
S8 Use touchscreen Use a smartwatch or other screen in Screen
the vehicle to read or find
information
S9 Change music Change the music on a car radio Radio
S10 Press button Press a button on a remote to check Remote
the speed of nearby cars.
S11 Use siren Press a button to turn on/off police Siren
sirens
S12 Communicate Have a conversation on a walkie Walkie
S13 Pick up Pick up a walkie Walkie
S14 Talk on Speak into a walkie and hear a Walkie
response once
S15 Read information Passive-level MCT task that involves ~ MCT
reading information on the MCT
without directly interacting with it
si6 Search and read Active-level MCT task that involves MCT

information

typing or tapping on the MCT to find
or input necessary information

*$2, S5, and S6 were removed from statistical analysis due to the lack of data

samples.

Table 3

Hypotheses.

Hypotheses (H)

H1: TCT of N-CPM would be significantly higher than the benchmark model for
complex tasks
H2: TCT of observation would be significantly higher than the benchmark model for
complex tasks

H3: TCT of observation would be similar to the N-CPM for complex tasks

Table 4

Descriptive statistics of the TCT results for each scenario.
Scenario Complexity Source

ID TCT (s)
Observation N-CPM Benchmark model

Complex S1 80.9 90.28 59.3
Complex S7 53.7 51.65 15.4
Complex S12 25.2 31.7 15.9
Complex S16 30.0 33.42 11.5
Simple S3 9.87 7.63 5.2
Simple S4 6.91 7.79 5.04
Simple S8 7.01 7.29 5.71
Simple S9 3.91 4.03 3.1
Simple S10 2.2 212 1.8
Simple S11 6.4 6.07 5.1
Simple S13 4.08 4.02 4.02
Simple S14 11.0 9.49 8
Simple S15 8.39 6.34 5

Note: TCT = Task completion time.

except in S12 (i.e., have a conversation on a walkie). This means that the
N-CPM was able to model the performance of novices with reasonable
accuracy. Regarding H1, there were significant differences between N-
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CPM and benchmark model gathered from Cogulator for both simple
and complex tasks. This is likely because the standard deviation of the
benchmark results generated from Cogulator is smaller than the varia-
tion in N-CPM (due to the inflation factors listed in Table 1) and
observation data. These findings imply that the N-CPM results are
significantly different from expert performance, and when combined
with the findings from H3 implies that N-CPM more accurately models
novice performance than expert performance for these tasks. The results
for the simple tasks are included to be comprehensive but are not rele-
vant to the findings of the hypothesis tests.

To further verify the model, the root mean square error (RMSE) and
R-squared were calculated (Wu, 2018). RMSE for TCT between the
observation data and N-CPM was 3.49s with an R-squared value of 0.99,
while RMSE of TCT between observation and the benchmark model was
13.62s, with R-squared value of 0.88. Between the N-CPM and the
benchmark model, RMSE was 15.26s and R-squared was 0.88.

4. Discussion

The results demonstrated several merits of N-CPM. We could not find
adequate evidence to reject this hypothesis that the observation data
were similar to N-CPM outcomes. Furthermore, both the N-CPM and
observation results were significantly larger than the benchmark model
outcomes for most complex tasks. For most simple tasks, the N-CPM and
benchmark model outcomes were not significantly different from the
observation data. Hypothesis 2 (H2) was only rejected for one complex
scenario (i.e., S1) while H1 was supported for all complex scenarios. The
N-CPM TCT results for simple tasks were also significantly higher than
the benchmark data. Although the tasks were simple, benchmark models
based on expert performance produced smaller standard deviations
compared to the N-CPM results. Despite the simplicity of the task
allowing novice performance modeled by the N-CPM to mimic expert
performance, the lack of consistency compared to the expert benchmark
performance was likely enough for the simple tasks to have a signifi-
cantly higher N-CPM TCT compared to the benchmark TCT estimates.
The merits of the N-CPM over a benchmark for novice performance are
primarily demonstrated by the results of H3 and H1 for complex tasks.
Despite the higher standard deviation in these complex tasks due to the
variability in how they were approached by novices, the findings of N-
CPM for complex tasks were found to not be significantly different from
the observation data while also being significantly different from the
benchmark data. This means that the N-CPM TCT estimates were more
accurate at representing observation TCTs as opposed to benchmark
TCTs.

We intentionally placed several scenarios under each hypothesis to
try to generalize the results of hypotheses testing across several in-
vehicle technologies for nLEOs. However, H2 was not supported in
one scenario (e.g., making a phone call). One reason for this was likely
the small sample size (i.e., only 7 observations) and a consequentially
higher than expected standard deviation of TCT for these tasks from
observation. Tasks that included communication had much higher
variation in duration which led to some significant differences not
related to the complexity of the task. For example, H3 was rejected in
one complex scenario (S12). One possible explanation for the difference
between the observation data and the N-CPM outcomes in S12 (i.e.,
Have a conversation on a walkie) was the variations existed in the
human data due to differences in the length of conversation for each
participant. Overall, N-CPM could model novices’ cognitive perfor-
mance accurately for most scenarios and performed better than the
benchmark model in complex scenarios. This was predictable because
the benchmark model is developed for experts.

Other metrics besides TCT were also in line with the findings of
previous studies (Chase and Simon, 1973; Sohn and Doane, 2003). The
N-CPM consistently outputs more perceptual and motor operators than
the benchmark model for most tasks, which is closer to the number of
operators seen in observation tasks (Table 5). It was not possible to
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Table 5
Descriptive statistics of the results for each scenario.
Source
ID (Complexity) Observation N-CPM Benchmark model
nP nM nC nP nM MC nC nP nM MC
S1 (C) 7.29 18.43 28.80 51.41 20.55 0.69 6 7 12 0.8
S7 (C) 16.1 12.79 24.78 17.23 21.59 0.96 6 7 9 0.96
S12 () 0.89 7.64 20 11 13.58 1.35 4 3 7 1.63
S16 (C) 10.9 11.76 16.57 27.84 7.77 0.92 4 11 4 0.95
S3 (S) 2.64 5.27 2.39 6.18 6.38 0.31 2 3 4 0.31
S4 (S) 3.2 4.53 2.62 1.54 8.82 0.90 2 1 6 0.89
S8 (S) 3.25 4.63 2.83 1.18 8.83 0.10 2 1 5 0.09
S9 (S) 1.5 2.42 2.44 0 2.69 0.79 2 0 2 0.82
$10 (S) 0.71 2.87 0 1.53 2 0 0 1 3 0
S11 (S) 0.89 3.22 2.24 1.61 3.98 0 2 1 3 0
S13 (S) 0.12 2.73 0.98 0 2.99 0 1 0 3 0
S14 (S) 0.73 5.32 2,96 1.96 7 0.95 2 1 5 0.94
S15 (S) 3.68 4.02 2.55 14.08 0 2.6 2 5 9 0.58

Note: (C) = Complex task, (S) = Simple task, nC = Number of cognitive operators, nP = Number of perceptual operators, nM = Number of motor operators, MC =

memory chunks.

exactly match the number of operators from N-CPM with the operators
captured from observations as the standard deviation of the number of
operators from observations is large. This large standard deviation stems
from the wide variety within each task that nLEOs have to contend with
in each ride-along, increasing the opportunity for errors due to lower
experience. This opportunity for errors was more present in the nLEOs
recruited given that they had less than 5 years of experience and were
more prone to making erroneous decisions. Increasing mistakes also
increased the number of operators used for each task, which was re-
flected in the design of the N-CPM. For complex tasks, the magnitude of
inflated operators in N-CPM was larger than that of simple tasks, as
complex tasks require more human information processing which is in
line with previous studies (Fincham, 2005; Oyewole et al., 2011).

There are several benefits of using N-CPM for researchers. First, there
is no need to use a separate code to model novice behavior. The N-CPM
has an algorithm to estimate the performance of both novices and ex-
perts. This could make it easier for analysts to develop scenarios because
they do not have to model repetitive interactions of novices, as the
model already accounts for this. Furthermore, analysts could compare
the outcomes of the model for novices and experts. Second, N-CPM
codes/scenarios can also be run in Cogulator. Analysts can develop a
scenario using the N-CPM GUI and paste it in Cogulator. Also, the N-CPM
can run the model with a Cogulator scenario file (Microsoft CSV file).
This can greatly improve the scenario development process, as some-
times experienced analysts prefer working with spreadsheets rather than
the GUL N-CPM provides a venue (the “Scenario development” tab) for
analysts who are not familiar with cognitive performance modeling to
create models (Fig. 2). Third, N-CPM is the first CPM that was developed
and released in R package format to Github (https://github.com/hsilab/
ncpm_v1.0). The outcome of the N-CPM can also easily be integrated
with machine learning algorithms for future studies (Zahabi et al.,
2020b). Although N-CPM runs on R, its GUI was developed with the
Shiny package, which makes the N-CPM accessible to anyone with basic
knowledge of R.

4.1. Practical implications

The N-CPM can be applied to improve nLEO’s patrol mission per-
formance through improving in-vehicle technology interaction and
adaptive training based on their projected performance to reduce their
workload and driving distraction. Potential examples of this include
teaching officers on how to reduce the number of interactions with in-
vehicle technologies that are linked to high workload by the N-CPM
findings.

The outcomes from the N-CPM can also be used to classify nLEO’s
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cognitive status in real-time with machine learning algorithms. This is
most useful for identifying situations where the workload of nLEOs is the
highest while operating their vehicle and recommending changes on
how the in-vehicle technology should be designed or interacted with. It
can also support the design of MCTs with regards to information pre-
sentation or prioritization. For example, having a more adaptive design
for the MCT screen would reduce CW if another task requiring high CW
such as making a phone call or sending a text message had to be
completed simultaneously. In addition, N-CPM can be used to provide
adaptive training for nLEOs (Zahabi and Abdul Razak, 2020; Zahabi
et al., 2020b), in which the problem, stimulus, or tasks dynamically
change based on trainees’ performance (Kelley, 1969; Kelley, 1969).
Previous adaptive training studies did not support modeling the cogni-
tive process of novices or their prior knowledge that is essential for
learning (Kozhevnikov, 2007). This can now be accomplished with the
N-CPM. Observations from prior work conducted on adaptive driving
simulation-based training and adaptive virtual reality-based training
indicate that the implementation of these training protocols can enhance
officer performance and reduce workload in high-demand situations. An
example of this would be having an MCT that provides only the most
necessary and salient information when it is detected that the officer is
conducting high-cognitive-workload secondary tasks while driving.
Simulating these scenarios will allow for the development of technology
that can reduce officer cognitive workload. The N-CPM can be used to
support this type of training by generating models of the perceptual,
cognitive, and motor demands for different driving scenarios to be used
as offline input measures for an adaptive driving simulation-based
training system. N-CPM can also be applied to other human-machine
interaction applications. For example, it can be used to test the usabil-
ity of a newly designed mobile application for novice users. N-CPM is a
quick solution (due to the use of a GUI) to compare performance of
novices and experts during the early stages of the design and develop-
ment process and once the analyst has access to initial prototypes.

4.2. Limitations

The major limitation of the N-CPM is that it did not delve into the
fundamental human information processing principles with advanced
quantification approaches. In other words, the model did not incorpo-
rate humans’ brain activities as we analyzed the data based on the video
recordings. The N-CPM uses the parameters from MHP and CPM-GOMS.
The current model does not reflect the characteristics of novices’
memory decaying speed. Therefore, in the next version of the N-CPM,
the model needs to be improved to include fundamental psychological
principals for novices as other CPMs do (i.e., ACT-R or QN family of
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Table 6 Table 6 (continued)
Summary of hypotheses tests. Hypothesis Statistical analysis results (p- Hypothesis
Hypothesis Statistical analysis results (p- Hypothesis value, Z-score Z, effect size r) test
value, Z-score Z, effect size r) test Simple Tasks Complex Tasks Result
Simple Tasks Complex Tasks Result _ o —
=-0.72,r=
H1. S3:p=.002, Sl.p=.006,Z Supported 0.11
TCT of N-CPM would be Z=350,r= =3.02r= §10.p = .11,
significantly higher than 0.88 0.87 Z=-179r
benchmark for complex tasks ~ S4.p = S§7.p <.001, Z =0.22
0012, Z = =3.76,r= S11.p = .42,
3.83,r= 0.86 Z=-0.80,r
0.86 S12.p < .001, =0.21
S8.p=.004, Z=622r= S13.p = .80,
Z=267,r= 092 Z=-0.25r
0.88 S16.p < .001, =0.04
$9.p=.005, Z=527,r= §14.p = .36,
Z=509r= 043 Z=091,r=
0.75 0.16
$10.p < §15.p = .92,
.001,Z = Z=-0.02,r
4.27,r = =0.00
0.53 S12.p < .001, Rejected
S1l.p= Z=-182r=
.003,Z = 0.27
3.29, 1 =
0.88
S13.p < models). Furthermore, it should model the number of errors and provide
-00L, z = a remediation strategy.
g:gf’ = The second major limitation of N-CPM is its limited capability to
Sl4.p < quantify driving performance. The ACT-R or QN family of models could
.001,Z = estimate lane deviation, steering angle, or acceleration. In future ver-
175, r= sions of the N-CPM, we plan to enhance the model to estimate novices’
0.32 driving performance and validate the model with data from novice and
.501051' ’p Z<: expert drivers. In addition, the next version of the N-CPM should include
5.77,r = the updated activation function. In ACT-R, activation is the summation
0.43 of base-level activation (chunks’ usefulness to past experiences),
H2. ) $4.p=.12,Z Sl.p=.70,Z  Rejected spreading activation (chunk’s relevance to the current context), and
;Z:lgi;)::@r;?g}:’; :‘;}Z‘ﬂ‘i}i N ; 21 ;3’ r= 0:.10(')37’ r= partial matching activation (chunk’s similarity to other chunks) (Leiden
benchmark for complex tasks ~ $8.p = .43, Z and Best, 2005). Experts have these three activations, but novices lack
—0.58,r= past experiences or knowledge. Thus, the activation level of novices can
0.14 be lower than that of experts which could lead to lower recall proba-
§9.p=.34,2 bility. However, for this study, implementing this concept into the
;10 3'95’ T N-CPM was not possible as the activation function in current version of
S10.p = .33, the N-CPM represents the base-level activation, which cannot directly be
Z=-180,r compared to the activation function in ACT-R. The third limitation is the
=019 model’s generalizability. The N-CPM was only validated with a specific
;1:1' f 0?4'372; population (i.e., novice LEO) in this study. Future studies should vali-
_ol10 date the model with novices in other domains to improve the model’s
$13.p = .57, generalizability.
Z=-0.57,r Lastly, there were some technical and experimental limitations. We
= 0.06 used a video analysis software with 30 fps, which could not exactly
S:31p 7; ‘:)1’ z 5:7; 4;’ ;021, Z  Supported pinpoint the onset and end of the tasks in millisecond level. Future
0.38 1.00 studies should use a higher resolution analysis software to generate
Sl4.p < S12.p < .001, more precise time estimates. Officers’ level of experience could also
001,z = Z=329r= affect the outcomes. Although participants had to have less than five
32; r= 2'136?17 - 001 years of experience as a primary patrol officer to be included in the
S15.p < Z-813,r _ study, they were not exactly equivalent in their amount of practice with
001, Z = 0.49 each scenario. Furthermore, issues related to lack of normality and equal
4.66, 1 = variance might have been due the naturalistic study settings. For
0.26 example, officers’ duties or time of the day can impact the frequency or
H3. ) 53.p=.26,Z S1.p=50,Z  Not duration in which officers used in-vehicle technologies. Some of our
TCT of observation would be =0.68, 7= =-114,r= rejected A A i
similar to the N-CPM for 0.17 0.33 observations were conducted in mornings and some were conducted at
complex tasks S4.p=.54,Z S7.p=1.00,Z noon or during afternoon shifts. The differences in the shift and traffic
=-06lL,r=  =0.00r= level might cause differences in officers’ duties and use of in-vehicle
0.14 0.00 technologies. In addition, driving was always the primary task and the
S8.p=.94,Z S16.p=.07,Z .
— 007,r—= —-183,r— scenarios were secondary tasks for LEOs. The model does not account for
0.02 0.15 the activities required in driving. Therefore, variation within individuals
S9.p=.47,Z may arise because the LEOs were in different driving conditions as the
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secondary scenarios arose.



J. Park et al.

5. Conclusion

The objective of this study was to propose an extension of CPM-
GOMS for novice law enforcement officers to model their performance
while interacting with in-vehicle technologies. To validate the model,
we conducted a ride-along study with nLEOs. The findings suggested
that the N-CPM could estimate nLEO’s performance for simple and
complex tasks. Future studies will focus on applying the N-CPM model to
more general driving domain tasks to validate the usefulness of the N-
CPM for modeling novice driver performance. The model was developed
in R package and released to Github and can be downloaded for free.
Future versions of N-CPM should include fundamental human infor-
mation processing principles and model driving performance similar to
methods such as ACT-R or QN family of models.
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