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Abstract—Modern software development extensively depends
on existing libraries written by other developer teams from the
same or a different organization. When a developer executes
the software, the execution trace may go across the boundaries
of multiple software products and create cross-project failures
(CPFs). Existing studies show that a stand-alone executable
failure report may enable the most effective communication, but
creating such a report is often challenging due to the complicated
files and dependencies interactions in the software ecosystems.
In this paper, to solve the CPF report trilemma, we developed
PExReport, which automatically creates stand-alone executable
CPF reports. PExReport leverages build tools to prune source
code and dependencies, and further analyzes the build process
to create a pruned build environment for reproducing the CPF.
We performed an evaluation on 74 software project issues with
198 CPFs, and the evaluation results show that PExReport can
create executable CPF reports for 184 out of 198 test failures
in our dataset, with an average reduction of 72.97% on source
classes and the classes in internal JARs.

Index Terms—cross-project failure, executable failure report,
failure reproduction, build tool, build environment, debloating

I. INTRODUCTION

With the assistance of third-party infrastructures and

functional components, software ecosystems have expanded

tremendously over the past several decades. The prevalent

usage of third-party software libraries has significantly reduced

the cost of software development and improved the quality

of software. As the size and complexity of software prod-

ucts increase, developers introduce more and more software

dependencies via software libraries. However, the intricate

dependencies among different software projects raise new

maintenance challenges. When a developer executes the soft-

ware, the execution trace often goes across the boundaries of

multiple software products. So, for some execution failures, it

may not be easy to determine which software project should

take responsibility for and fix its code. In this paper, we refer

to such failures as cross-project failures (CPFs). For example,

when a developer upgrades a software library and encounters

a software failure, it may be caused by either a backward

incompatibility bug in the software library or a non-robust

usage of the library API.

This work is supported by NSF Grants CCF-1846467, CCF-2007718, and
CSPECC-1736209.

Resolving CPFs usually requires the cooperation and nego-

tiation of more than one project as opposed to intra-project

failures (IPFs), so the failure needs to be reported from its

observing software project to other projects. However, creating

a good failure report is not trivial. A previous study on

desirable bug reports [1] shows that a stand-alone executable

test case is the most desirable information to be included in

reports. A textual failure report from client developers may

not be very helpful for the library developers to investigate

or reproduce the failure. Since CPFs are typically triggered

at the interface between the client code and the third-party

software libraries, a thorough explanation of such issues in

a failure report at least needs to involve some client-side

software artifacts. However, in some situations, even if the

client developers provide some code, the failure can also be

hard to reproduce. For example, in the comment section of

an Apache Issue (Issue 2497 in Apache TIKA project) [2],

an Apache TIKA developer complained that “I’m not able to

reproduce it w/in Solr in the unit tests with your file.”. If the

failure report contains a test case that can be compiled and

executed in a stand-alone way, it would greatly simplify the

diagnosis process.

An ideal failure report should satisfy three essential re-

quirements: Executability, Readability, and Conciseness. Our

pilot research reveals the existence of a trilemma when client

developers try to create CPF reports using existing techniques.

In particular, static and dynamic slicing techniques [3], [4], can

both prune source code based on a given seed code, but they

do not take into account the build process or the execution

dependencies, so the generated slices may not be compiled

or executed as a stand-alone project. Software debloating [5]

is a practical technique for pruning software releases, but it

focuses on destination code and execution-time dependencies

instead of source code and compilation-time dependencies, so

applying it to source code will cause the pruned code to be

uncompilable. Finally, packaging the entire client software and

sending it together as the CPF report is typically not a realistic

solution, considering the numerous redundant dependencies

that may (1) significantly increase the size of the report;

(2) bring in lots of noise to the debugging process; (3)

unintentionally leak internal information and proprietary code

from other parties.

20
23

 IE
EE
/A
CM

 4
5t
h 
In
te
rn
at
io
na

l C
on

fe
re
nc
e 
on

 S
of
tw

ar
e 
En

gi
ne

er
in
g 
(IC

SE
) |

 9
78

‐1
‐6
65

4‐
57

01
‐9
/2
3/
$3

1.
00

 ©
20

23
 IE
EE
 |
 D
OI
: 1

0.
11

09
/IC

SE
48

61
9.
20

23
.0
00

27

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on February 29,2024 at 18:05:00 UTC from IEEE Xplore.  Restrictions apply. 



In this paper, to achieve all three requirements, we devel-

oped the PExReport, a framework for generating executable

pruned CPF reports. Given a CPF, PExReport performs a

three-step analysis to trace the source code and object code

(e.g., Java bytecode), which were loaded at compilation and

run time. In the build process, it gradually identifies all the

required source code and dependencies for compiling the tests

and reproduces the CPFs. Besides source code and depen-

dencies, PExReport further identifies the required portion of

build configuration, resource files, and generated source code.

Finally, PExReport extracts all identified required files from

the original build environment and reconstructs a stand-alone

project that can compile and reproduce the CPF.

We implemented PExReport for Maven [6] and Java combi-

nation, and performed an evaluation on 198 CPFs in 74 issues.

Our results show that PExReport can reproduce 184 out of

the 198 CPFs and achieve a pruning rate of 72.97% on source

classes and the classes from internal JAR files.

To sum up, this paper makes the following contributions.

• A novel framework, PExReport, to extract both code and

build dependencies and create pruned executable CPF

reports.

• Three technical enhancements of PExReport to handle

build configuration, resource files, and generated source

code when performing automatic creation.

• An evaluation of PExReport on 198 cross-project failures

from 74 software project issues, showing the effectiveness

of PExReport on CPF reproduction and project pruning,

as well as impacts of each enhancement.

II. MOTIVATION

In this section, we conducted a pilot study in Java software

ecosystems to provide real-world insights into good CPF re-

ports and to illustrate the trilemma faced by current techniques,

which motivates the design of our techniques.

A. Characteristics of Ideal CPF Reports

We conducted our pilot study using the JIRA issue tracker

from Apache [7]. Upgrade incompatibility failures are strongly

related to CPFs; therefore, we used three keywords (upgrade,

incompatible, and Java) to retrieve 147 CPF reports from 32

Apache projects and tried to reproduce them.

Two researchers with more than five years of experience in

software development were involved in this study. The first

researcher recorded the CPF report and tried to reproduce the

same failure in our build environment with the information

from the report. If failure was not reproducible, the first

researcher wrote down the reason, and the second researcher

validated the reason. In cases where there was a conflict

between the two researchers, a discussion was raised until

all issues reached an agreement. Eventually, two researchers

were only able to reproduce two of the 147 real-world CPF

reports. We summarized the following reasons why these 145

CPF reports are difficult to reproduce; if a CPF report has

more than one failed reason, we select the most direct one;

the attached number is the frequency of reasons:

• Never Reproduced (18). The client reporter provided

an inaccurate test case, so the library developer never

reproduced it either.

• Environment Specific (43). The failure is environment

specific, so researchers cannot reproduce it without know-

ing the environment settings.

• Misuse (16). The client reporter misused the library, and

the developer explained the reason.

• No Test Code (41). The CPF report is pure textual, and

researchers failed to create a test to reproduce the same

behavior.

• Fixed without Record (27). The failure was fixed with-

out the specified fix commit, so researchers could not find

the code version to reproduce it.

We believe these CPF reports do not deliver enough infor-

mation for reproduction, especially for new developers who

are not familiar with the software project’s historical status.

A previous study on desirable bug reports [1] also suggests a

mismatch between what developers consider most helpful and

what users provide. Based on these findings, we summarize

the following characteristics of ideal CPF reports:

• Executability. A ideal CPF report should be easily repro-

duced by developers. An executable test case is the most

desirable information to be included in reports. Consid-

ering the difference in build environments of client and

library software projects, required code dependencies,

configuration settings, and resource files should also be

integrated into the test case.

• Readability. Keeping source code accessible is essential

for developers to understand the issue. With a helpful

code snippet, developers could accurately identify poten-

tial misuse to address CPFs for reporters. Due to the

difficulty in locating the CPFs, a good report should

retain all the related source code. Destination code is not

equivalent to the source code for compiled languages.

For example, Java bytecode is more readable than most

other destination code, but its decompiled source code

with the highest ranking decompiler retains only 78% of

its semantics, according to a recent study [8].

• Conciseness. Considering a failure is typically triggered

by a single execution, low redundancy is preferred in

reporting scenarios, which could bring many benefits. A

smaller report will reduce the time for network transmis-

sion and the space needed for storage (especially when

there are many reports). Removing unnecessary code can

significantly reduce the noise and accelerate the diagnosis

progress. Furthermore, pruning redundant dependencies

may also help avoid unintentionally sharing sensitive

information or proprietary software artifacts.

B. Cross-Project Failure Report Trilemma

To further understand the obstacles in creating CPF reports,

we explored existing automatic build tools and code pruning

techniques. Figure 1 shows the CPF report trilemma in cre-

ating ideal CPF reports with current techniques, which may
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partially explain why most reporters cannot create CPF reports

effectively.

Fig. 1. Cross-Project Failure Report Trilemma

Modern automatic build tools. Maven [6] and Gradle [9]

are popular tools for building and testing software in Java

software ecosystems. Although both tools are designed to be

platform-independent, we noticed that they lack features to

extract a stand-alone test case. Using these tools can only pro-

vide an entire code base with public dependencies. Since these

tools cannot identify unrelated dependencies, reporters only

could attach the entire private dependencies to the test case.

In brief, modern automatic tools only achieve executability and

readability but do little to reduce redundant dependencies.

Program slicing. Program slicing [3] is a dataflow-based

technique for pruning source code based on a specified seed,

which is known to have limits owing to not working well

with dynamic features. In addition, program slicing does

not consider the execution environment or the build process.

Therefore, the created slices of failures cannot be compiled or

executed by themselves, which means it lacks executability.

Software debloating. In real-world ecosystems, debloating

the size of applications is vital in embedded systems and

application distribution. There are many practical tools and

research studies [5] in this area. For example, ProGuard [10]

is integrated into the Android build system, which only runs

when building the application in release mode. It detects and

removes unused classes, fields, methods, and attributes. In

Java applications, released software does not contain source

code. Because the output of compiled code is not equivalent

to the source code, the developers will receive the CPF report

with low readability. In short, the software debloat technique

focuses on the software release stage, which does not consider

the readability in the test stage.

None of the current techniques can perfectly solve this

trilemma, which motivates the design of our approach to create

a practical framework–PExReport, to focus on providing CPF

reports with Executability, Readability, and Conciseness.

III. PEXREPORT

In this section, we present PExReport, a framework de-

signed to create pruned executable cross-project failure reports

automatically. Figure 2 shows an overview of PExReport’s

Fig. 2. Overview of the PExReport Workflow

workflow. PExReport is designed based on prevalent tasks of

modern build tools involved in the lifecycle of CPFs. The

input to PExReport is a failed test from an existing build

environment, and the output is a pruned stand-alone executable

CPF project. PExReport contains two major phases: (1) the

collection phase to collect information about necessary source

code, dependencies, and build environment by monitoring the

underlying platforms: OS, the build tool (e.g., Maven), the

compiler (e.g., Javac), and runtime (e.g., JVM), in the essential

tasks of the modern build process; (2) the reconstruction phase

to reconstruct a stand-alone build environment for the failed

test based on the collected information. We name the collected

information of a failed test from the first phase as failure

traces. The arrows show the information flow between each

component of PExReport. The reconstructed project for failure

reporting will be automatically validated by checking whether

the same error messages are triggered as in the original failure.

Once the project is validated, it can serve as a reproduction

package of the original failed test and will be reported as a

pruned executable CPF report to the developers.

The fundamental insight of PExReport is that it first iden-

tified and addressed the problem of pruning the build and

execution environment of a test failure on top of code depen-

dencies. This is crucial for cross-project-failure reproduction

because the environment is essential for a high reproduction
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rate and cannot be easily shared. To overcome this problem,

we develop Hybrid Backward Failure Tracing (Section III-C)

which extracts and prunes the failure by monitoring the

underlying platforms in essential build tasks (i.e., Compile,

TestCompile, and Test) of the modern build process.

It takes advantage of the fact that the underlying platforms

already resolve all necessary dependencies in an on-demand

build process and their resolutions are the most trustworthy

for reproduction. Following the same insight, we further

developed three novel enhancements (Section III-D) to support

more heterogeneous build environment.

A. Principles of Design

PExReport should be easy to use and compatible with

real-world projects and build ecosystems. We introduce the

following principles to help reach the goals.

Source code preservation. When clients misuse the library,

a snippet of source code can be extremely helpful. Developers

could also easily trace the source code to identify the fault

location. Considering that even the highest ranking decompiler

does not always create semantically equivalent source code [8],

source code preservation becomes more critical in CPF reports.

Build environment adaptation. A real-world project con-

tains not only source code and dependencies; the build envi-

ronment is also crucial. Modern build tools, such as Maven and

Gradle, have been widely used by library developers. Given

that PExReport requires CPF reports to be executable, it should

be highly adaptable to modern build ecosystems.

Incremental creation of build environment. As the size

and complexity of projects increase, modern build tools be-

come complex and highly customizable. Identifying the re-

dundant build environment could be inexhaustible and hard to

scale. Therefore, PExReport opts for an incremental approach

that creates the build environment by identifying necessary

build dependencies, as opposed to a pruning method.

B. Prevalent Tasks for the Lifecycle of CPFs

The following tasks of modern build tools form the typical

lifecycle of CPFs. These tasks are generally executed in the

order below, but some tasks may be omitted if not required

for the current project.

• Generate sources (optional). Generate additional source

code for inclusion in compilation.

• Process resources (optional). Copy and process the

resource files into the destination directory.

• Compile (mandatory). Compile the application source

code of the project.

• TestCompile (mandatory). Compile the test source code,

which is not coupled with the application source code.

• Test (mandatory). Run tests using a suitable testing

framework; execute object code (e.g., bytecode) compiled

from application and test source code.

The three mandatory tasks, namely Compile,

TestCompile and Test, are the basic steps used by

build tools to reproduce a test failure. The main reason to use

both Compile and TestCompile to compile source code

Fig. 3. Exemplar Three Tasks Build Process of Java Project

is to make the application source code independent of the

test source code. Code generation and resource management

are quite popularly used in complex real-world applications.

Although they are optional tasks, we should not underestimate

them in reproducing real-world CPFs.

C. Base Approach: Hybrid Backward Failure Tracing

In the collection phase, our base component is hybrid back-

ward failure tracing, a three-step analysis that traces failure-

related source code and library dependencies. This component

compiles and executes the failed test in its original build

environment, and tracks items at Test, TestCompile and

Compile tasks, which are essential for any failure source

code to be compiled and executed.

Figure 3 shows the dependency tree in a build process for

a failed test of Java project with three basic tasks. We refer

to source code and object code (bytecode) as items, which are

used to compile and execute the failed test, respectively. All

the circles are the items of the Java project, a black circle

means a failure item, and a white circle means an irrelevant

item. The dotted line arrow is for class loading, so the two Item
1 in the two tasks are equivalent but in a different form (source

code in TestCompile task, bytecode in Test task). The

solid line arrows show the static dependencies, and the dashed

line arrows show the dynamic dependencies. Following the

build process order, the compiled application source code in

Compile task is provided to the subsequent TestCompile
task as dependencies, after that, the compiled test source code

of TestCompile is loaded to Test task for execution.

For example, the Compile task compiles Item 3 (application

source code), which is provided to TestCompile task as

a reference later; the Item 1 (bytecode) of TestCompile
task is loaded to Test task. The build process must be

irreversible to ensure that the previous item will not depend

on the later item. Given that the build process cannot predict

the required items for the subsequent task, PExReport must

perform the build process in three rounds to track all failure

items. For example, in Figure 3, the reference 1 → 2 can only

be discovered in Test task, reference 1 → 3 can only be

discovered in TestCompile task, and the reference 3 → 5
can only be discovered in Compile task. If a CPF occurs, as

failures happen at the end of the build process (Test task), a

backward tracing will be performed to obtain the failure traces.
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The details of Hybrid Backward Failure Tracing are described

in Algorithm 1.

Algorithm 1 Hybrid Backward Failure Tracing Algorithm

Input: Failed test t, all test source code Ct, all application

source code Cs, all library object code Ol

Output: Traces
1: Initialize trace of Ct: Set T ← ∅
2: Initialize trace of Cs: Set S ← ∅
3: Initialize trace of Ol: Set L ← ∅
4: Round 1:
5: Compile: Object code Os ← Compile Cs by referenc-

ing Ol;

6: TestCompile: Object code Ot ← Compile Ct by

referencing Os and Ol;

7: Test(t): Record R1 ← Execute t by dynamic loading

Os, Ot and Ol;

8: T, S, L ← DynamicTracer(R1);
9: Round 2:

10: Compile: reuse Os;

11: TestCompile(T ): Record R2 ← On-demand compile

test source code in T by referencing Os and Ol;

12: T, S, L ← StaticAnalyzer(R2);
13: Round 3:
14: Compile(S): Record R3 ← On-demand compile ap-

plication source code in S by referencing Ol;

15: S,L ← StaticAnalyzer(R3);
16: return Traces{T, S, L}

In Round 1, PExReport runs the whole build process to the

last task–Test with entire code base and library dependencies

for both Compile and TestCompile tasks, and executes

only the target failed tests in the Test task. PExReport uses

the log of build tool to record all dynamically loaded items in

the Test task. These items are required for the execution

of the failed test in run-time, so we refer to them as R1.

For example, in a Java project, R1 are the bytecode (object

code) loaded into JVM, also referred to as Java class. The

DynamicTracer analyzes R1, and collects the corresponding

traces (usage of items).

In Round 2, PExReport runs the build process up to

the TestCompile task, reusing the object code compiled

from all application source code in Compile task. For the

TestCompile task, PExReport on-demand compiles test

source code collected from Round 1 to avoid compiling

irrelevant items. In TestCompile task, PExReport records

all referred items as R2. These items are required for the

compilation of test source code, so StaticAnalyzer collects

and combines the corresponding traces.

In Round 3, PExReport runs a single Compile task of the

build process, trying to compile only the application source

code collected from Round 1 and Round 2. In the Compile
task, PExReport records all referred items as R3. These items

are required for the compilation of failure related application

source code, so StaticAnalyzer collects the corresponding

traces and combines them with previous traces.

Traces. PExReport returns the collected failure traces of test

source code, application source code and library object code in

Algorithm 1, and sends the traces to the failure report creation

component to be included in the executable CPF reports.

PExReport uses the build tools to resolve dependencies

to increase robustness and non-invasiveness. Modern build

tools can fetch information directly from compilers or virtual

machines, meaning the resolved dependencies are the most

trustworthy. The inferred dependencies from the analysis tools

may be incomplete due to the quality of the tools, and

some invasive tools can change the behavior of the analyzed

projects. However, the build tools only provide the resolved

dependencies without the dependency tree, which means that

PExReport cannot use all the items in each task that may

contain irrelevant items during the build process. As shown

in Algorithm 1, to solve this problem, PExReport uses on-

demand compilation1 to compile only the failure related source

code and then use the references of compilation as failure

traces.

The dynamic loading and static reference are handled

by the run-time environment and the compiler, respectively.

PExReport uses the dynamic tracer to monitor dynamic item

loading in the Test task and the static analyzer to monitor the

reference in the Compile and TestCompile tasks due to

the fact that the information provided by the build tools differs

between compilation and execution. The current PExReport

supports the default Java compiler and multiple customized

compilers, such as javac-with-errorprone; if any compiler is

not supported, PExReport only needs an adjustment to the

static analyzer. As the build tools sort different types of items

into different directories, the PExReport can accurately cate-

gorize items with the location information and further allow

the Failure Report Creator to place them in corresponding

directories.

D. Three Enhancements

As discussed in Section II, besides source code and library

dependencies, the build environment also plays an important

role in the reproduction of failed tests. Although the base

approach can still reproduce the failure with source code and

library dependencies in the minimal standard build environ-

ment, in order to enhance the reproduction rate for real-world

complex projects, we developed the following enhancements

over the base components to further reconstruct a reliable build

environment:

• Handling of the build configuration. In the collection

phase, the build configuration analyzer fetches the re-

solved build configuration and determines the necessary

values of them, which will be then inserted into the

template project by the build configuration extractor in

the reconstruction phase.

1On-demand compilation, such as the implicit compilation in Java, which
allows the compiler to search the required source code and dependencies to
compile the designated source code.
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• Handling of resource files. For the collection phase, we

developed the resource monitor to watch all file accesses

in the project directory during the test execution at the

operating system level. Then, in the reconstruction phase,

our resource extractor will copy and insert pruned re-

source files into the proper locations of the reconstructed

project.

• Handling of source code generation. Our source roots

tracer tracks source code generation in the collection

phase, and the generated code extractor locates the gen-

erated source code and extracts the needed source code

to skip unnecessary code generation and avoid code

generation conflicts.

Handling build configuration. Build configuration values

are necessary parts of an executable failure report. Including

unnecessary configuration values will lead to more noise

in the debugging phase (the debugging developer needs to

consider more factors), more information leaks (e.g., internal

emails and file paths), as well as potential build failures, for

example, the configuration values may refer to pruned source

code and dependencies which no longer exist. Therefore, we

enhance PExReport to further identify and extract only build

configuration values necessary for the failed test reproduction.
In the Collection Phase, the Build Configuration Analyzer

fetches the effective build configuration (e.g., Maven provides

help:effective-pom [11]), which the build tools use to build the

failed test at run time. The effective build configuration gathers

all build configuration values scattered in all build configura-

tion files, and resolves configuration value overwriting among

multiple configuration files based on the build configuration

hierarchy and resolution rules, for example, Maven picks the

“nearest definition” for resolving dependencies. However, the

effective build configuration is still redundant for reproducing

the failed test, compared with the required configuration values

of the three main build phases (compile, test-compile, and

test). Since tasks in the build process are performed by various

plug-ins and the plug-ins can be attached to different build

phases (e.g., the Java compiler plug-in can be attached to the

compile and test-compile phases), PExReport further leverages

the attachment relationship to identify all the plug-ins that are

attached to the three basic tasks. It also excludes code-style

checking and analysis plug-ins because they do not directly

affect the compilation or testing. After all necessary plug-ins

are identified, the Build Configuration Extractor extracts the

configuration of the plug-ins from the effective build config-
uration by querying with XPath. After modifying the static

information, such as the absolute project path, the extractor

feeds all the extracted information to the build configuration

file of the reconstructed project.
Handling resource files. The Resource Monitor identifies

necessary resource files for the failed test reproduction by

using file system monitoring API (e.g., inotify [12]–a Linux

kernel subsystem that monitors filesystem events) to watch

the resource file access during the Test phase. We use an

example in Figure 4 to illustrate how we monitor and extract

resource files, the left side is an original resource folder

src/main/res

data

data1.dat

data2.dat

form

form1.fm

form2.fm

target/classes

data

data1.dat

data2.dat

form

form1.fm

form2.fm

out

out1.log

Fig. 4. Exemplar Resource Directory Structure

existing before the build, and the right side is a target resource

folder generated after the build. The files/folders accessed

during testing are highlighted in bold font.

As shown in Figure 2, the resource monitor only out-

puts files accessed at Test task because the Process
resources task often copies all resource files to the target

folder (e.g., the whole directory structure on the left of

Figure 4). For necessary resource files accessed during the

compilation process (e.g., templates of generated source code),

we specially handled them by the Generated Code Extractor.

Our resource monitor also ignores all files/directories gener-

ated during the build/test process (e.g., folder out and file

out1.log in Figure 4, .class files) because these files should

not be included in the reproduction package (unnecessary

and causing path conflicts). For the files copied to the target

location from source locations (e.g., folders data and form
and all their files in Figure 4), we do not consider them as

generated files, because the Resource Monitor can trace back

to their source copies in the original project.

During the reconstruction phase, our Resource Extractor

extracts the files and directory structure from the original

project based on information collected by the Resource Mon-

itor. For copied resource files, the Resource Extractor uses

their source copies and paths tracked by the Resource Monitor

(e.g., extracting data2.dat from the original resource folder

because its copy in the target folder is accessed). Note that

maintaining the structure of an accessed directory is also

crucial for test reproduction. The failed test may access the

directory but never access the files under it (e.g., checking the

existence of a file), and some tests require a special directory

structure to reproduce successfully. The Resources Extractor

creates empty dummy files for the un-accessed files under

the accessed directory to retain the directory structure and

cover this situation. For example, in Figure 4, folder form
is accessed and can be traced back to the original resource

folder, but none of its files is, so the folder will be extracted,

and all its files will be replaced with empty files with same

names.

Handling source roots and generated code. The software

build process may generate new source code in various ways,
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such as creating code from template files, generating parsing

code from syntax/XML files, and even directly fetching source

code from remote locations. Furthermore, code generation is

often implemented in third-party tools and plugins. To handle

such high flexibility of code generation in a general way, we

enhance PExReport by omitting the code generation process

and directly including the generated source code in the test

reproduction package.

At Generate sources task, the build tools use source

code root paths (Source Roots) to locate all (original and gen-

erated) source code. In the Collection Phase, our Source Roots

Tracer tracks all the accessed source code root paths from the

debug information of compilation. Next, the Generated Code

Extractor utilizes the paths to identify the generated source

code and excludes all original source code. In addition, the

build tools may also generate some source code from code

annotation processing. Our Generated Code Extractor excludes

such code because it will cause compilation conflicts.

E. Automatic Creation of CPF Reports

In the reconstruction phase, our base component is failure

report creation. This component creates a template project with

a standard build configuration for the failure report and adds

the required source code and dependencies into the project.

The Failure Report Creator uses a customizable template

to generate a standard project structure for the reproduction

package. It uses different extractors to fetch required source

code, dependencies, resource files, and build configuration.

As two basic components shown in Figure 2, the Source

Code Extractor converts the required item name to code file

paths and copies these files to the generated reproduce project

while maintaining the original structure; the Dependencies

Extractor duplicates the local and remote dependencies and

reduces the unnecessary portion based on failure traces. The

generated project organizes and links the required source code

and dependencies in a standard build configuration file for

reproduction. As mentioned earlier, in many cases, we also

need to extract the build environment accordingly so that the

replication package can successfully reproduce the failure.

Therefore, the Failure Report Creator can further extract the

required build configuration, resource files, and generated code

by incorporating the Build Configuration Extractor, Resources

Extractor, and Generated Code Extractor, respectively.

F. Failure Report Validation

After the final executable failure report (i.e., reproduction

package) is constructed, the Report Validator uses a conserva-

tive strategy to ensure the report can reproduce the original test

failure. In particular, a report is validated only if it generates

the identical failure type and message after executing the

test. Note that this strategy may reject some successfully

reproduced test failures (e.g., when failure messages change

with date, time, or absolute path), but it allows developers

to trust the pruned failure report (and our evaluation to be

conservative). Note that in practice the reporter could still

manually validate the report when the automatic validation

fails.

IV. EVALUATION

This section presents our experimental results by answering

the following research questions:

• RQ1: How effective is PExReport in creating exe-
cutable CPF reports? (Executability) To answer this

research question, we counted the number of subjects that

PExReport can exactly reproduce with the same failure

type and message, and calculated the reproduction rate.

• RQ2: How does PExReport perform on project prun-
ing? (Conciseness) To answer this research question,

we calculate the reduction rates of different items from

subjects and present cumulative graphs to show the

performance of pruning. If a reproduction fails, we use

the entire project as the CPF report (0% reduction rate).

• RQ3: How effective are our techniques in PExReport
on solving the CPF report trilemma? To answer this

research question, we performed an ablation analysis

using reproduction and reduction rates.

A. Experiment Setup

We implemented PExReport in Python, based on Apache

Maven [6] build tool. Since Maven is used primarily for

Java, we chose Java projects as our target projects. The

Archetype [13], a Maven project template toolkit, is used for

generating a standard Maven project for reproduction.

We performed our experiment on a Linux server running

Ubuntu 16.04.5 LTS with two 8-core 2.6 GHz CPUs and

512 GB RAM. Apache Maven 3.6.3 was used to build and

run tests. To avoid race conditions, we solely executed each

build and test on the server. An automatic Failure Validator

examined the failure types and messages to ensure the failures

had been successfully reproduced. If a failed reproduction was

reported, the entire project was provided as a failure report for

evaluation.

B. Metrics

To answer RQ2, we need to use some general metrics

to compare pruning performance among all subjects. Well-

defined metrics could also help us to understand the results

correctly. PExReport prunes the entire building environment

of the failed test, including source code, dependencies, build

configuration, and resource files. So, our metrics should mea-

sure the pruning on all of them and we define the following

metrics:

• # Internal classes: The number of classes from the

JAR dependencies within the same organization of the

subject. In the Maven convention, the same organization

typically shares the same domain name in their group ID

of libraries. So, we compare the group IDs to identify

internal libraries and count the internal classes inside

libraries.

• # Source classes: the number of classes compiled from

the Java source code.
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• # Source+Internal classes: The total number of source

and internal classes. Our subjects have vastly differ-

ent distribution strategies for main classes and internal

classes. So, we combine these classes to provide a more

generic metric and reduce the interference of different

code distribution strategies. Since we measured the total

of source and internal classes, and classes could be

compressed in JARs, we chose the number of classes

instead of the size of classes.

• Size of build configuration: The total number of char-

acters from the loaded POMs (Maven build configuration

files), excluding the whitespace and dependencies section

for a fair comparison. We uses # internal classes as a

metric for dependencies, which is more precise.

• # Resources: The number of resource files within the

resource directories of the project.

• Percentage of reduction: The percentage of reduced

items, defines as the ratio of removed items to original

items. For example, the percentage of reduction of inter-

nal classes is the ratio of the number of pruned internal

classes to the total number of internal classes in original

projects.

C. Dataset Construction

Our experiment dataset is constructed from the benchmark

dataset of a research project–Sensor [14], which triggers

failures by changing dependency versions of open-source

Java projects. The Sensor ground truth dataset contains 316

semantic conflicts confirmed by researchers. In our dataset,

we refer to one unique failed project-library pair as one cross-

project issue and one failed test case as one CPF. Although

PExReport can handle CPFs raised by multiple test cases

(treat multiple tests as one test), clustering tests based on

dependencies is beyond the scope. Given that each issue may

contain multiple CPFs, our experiment dataset consists of 74

issues with 198 CPFs.

We do not use every CPF in Sensor dataset as subjects

to evaluate PExReport because (1) some issues are irrepro-

ducible due to environmental change; (2) some CPFs are

irreproducible solely since they are dependent on other CPFs

(clustering non-independent tests is beyond the scope of this

paper); (3) some CPFs have random factors or are flaky, so

they may cause uncertainties during validation; and (4) many

CPFs in one issue are identical, so using all of these repetitive

failures will dominate the results. Therefore, we performed the

selection for representative CPFs in the following steps:

• Step 1: Verifying failed issues. After removing du-

plicated project-library pairs, we downloaded projects

into our server and executed them without applying any

changes. For those successfully executed projects, we re-

executed them with conflicting libraries based on the

Sensor dataset. Then, we selected all the issues that

only failed with changed dependencies in our experiment

environment. We set a 900-second time limit for each

execution and removed all projects with timeout and

compilation failures. Only three issues were discarded

due to timeout; 119 issues were collected throughout this

step.

• Step 2: Clustering CPFs. We executed all CPFs three

times and removed all CPFs with inconsistent output over

three executions, after which five issues were discarded.

For each of the remaining issues, we clustered CPFs with

the identical failure type and message (failure group)

into one cluster. As a result, we clustered 6,415 CPFs

into 1,020 failure groups from 114 issues. The maximal

number of failure groups within an issue is 367.

• Step 3: Selecting representative CPFs as subjects. We

observed that an issue may have significantly more failure

groups (i.e., 367) than others because test failures whose

messages contain unique numbers (e.g., Java Object ID)

are clustered into distinct failure groups. In addition,

ninety percent of failure types contain no more than

four failure groups. To avoid over-representation, we

further considered failure types (e.g., Assertion Failure,

No Such Method) by selecting up to four failure groups at

random for each failure type and issue, and then randomly

selecting one representative CPF for each selected failure

group. In this step, we only selected CPFs that are solely

reproducible; 105 out of 395 (26.5%) failure groups and

45 out of 238 (18.9%) failure types have been discarded

due to none of their CPFs being solely reproducible. We

observed that 33 of the 107 selected issues lack internal

libraries. For a more comprehensive and consistent eval-

uation, we only use the 74 issues with internal libraries.2

TABLE I
THE STATISTICS OF THE COLLECTED ISSUES.

Item Min. Max. Mean Med. �=0

# Internal classes 32 36,389 3,848 955 74
# Source classes 8 2,457 265 144 74
# Source+Internal cls 90 36,417 4,113 1,331 74
Size of Config 8,428 77,735 25,349 21,746 74
# Resources 0 655 55 8 68

# Total issues 74

Eventually, we collected 198 representative CPFs from 74

issues. Table I shows the statistics of the issues in our dataset.

The symbol �=0 means not equal to zero. The �=0 column

shows the count of issues that have at least one corresponding

item. For instance, an issue that does not have any resource

files will not be counted.. The statistics show that the issues in

our final dataset have a large number of classes (4,113 Mean

and 1,331 Median of # Source+Internal classes).

We further categorized the 198 CPFs based on their failure

type to show the diversity of failures in our dataset. The

total number of different failure types is 31, and the top 10

failure types are shown in Figure 5. The top two failure types

are assertion-related, representing more than half of CPFs.

2The data used in this paper and PExReport implementation are available at
https://doi.org/10.5281/zenodo.7578677; additional evaluation results for the
33 issues and concrete examples can be found on our website: https://sites.
google.com/view/PExReport/home
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Fig. 5. Top 10 Failure Types in Representative CPFs

The assertion-related errors indicate that the actual variable

values are not equal to the expected values. Another common

failure type is “not found”. If the dependency change modified

class/method signatures, the program could still fail in the

Test task in the case of reflection.

D. Evaluation Results

1) The answer to RQ1:
To answer the RQ1, we executed PExReport on 198 represen-

tative CPFs and summarized the results in Table II. PExReport

successfully reproduced 184 out of 198 CPFs with exact

failure types and messages, and achieved a high reproduction

rate of 92.93%.

TABLE II
REPRODUCED CPFS

Implementation # Repro. CPFs Repro. Rate Perf.(sec)

PExReport 184 92.93% 73.03
w/o Dynamic 48 24.24% 66.51
Source & Deps. 46 23.23% 51.22
w/o Build Config 101 51.01% 65.79
w/o Resources 104 52.53% 68.61
w/o Generated Code 146 73.74% 55.08

# Total CPFs 198

We investigated the 14 unreproduced CPFs to understand

why PExReport cannot reproduce them. 9 of the 14 CPFs

failed because of the unsupported compilers (i.e., Groovy [15]

compiler), which could not provide the class reference in-

formation for Hybrid Backward Failure Tracing. The rest of

the 5 unreproduced test cases are missing required classes at

run time. We believe the Java Runtime failed to provide all

the information on required classes during the test execution.

The mistracking could happen when a program checks the

existence of a class but never access it.

2) The answer to RQ2:
We further calculated the percentage of reduction for each

metric and presented Table III to show the statistics of the

percentage of reduction. PExReport performed a 55.37% of

average reduction rate on required source classes and out-

performed on internal classes, source+internal classes, build

TABLE III
THE STATISTICS OF REDUCTION RATE

Percent Reduction Min. Max. Mean Med.

# Internal classes 0.00% 100.00% 75.94% 84.67%
# Source classes 0.00% 99.05% 55.37% 64.39%
# Source+Internal cls 0.00% 99.65% 72.97% 79.95%
Size of Config 0.00% 96.76% 82.96% 89.02%
# Resources 0.00% 100.00% 74.18% 90.91%

configuration, and resources with 75.94%, 72.97%, 82.96%,

and 74.18%, respectively.

We assume the reporter still wants to use the entire project

as a failure report if PExReport fails to reproduce the failure.

Therefore, the percentage of reduction is 0% for unrepro-

duced subjects. We presented the cumulative plot of results

in Figure 6. The S+I represents Source+Internal, shown as the

orange curve. The y-axis is the fraction of x that has satisfied

the ≥ condition, which means that the fraction of results have

at least a certain percentage of reduction. For example, a point

(x = 60%, y = 0.79) on the blue curve (Internal) shows

that 79% of CPFs have a reduction rate over 60% on internal

classes.

Fig. 6. Cumulative Step Graph of Reduction Rates

PExReport performed impressively on almost all the met-

rics. As the source code can provide excellent readability to

developers, we believe 55.37% of the average reduction rate is

acceptable in the CPF report. Our investigation shows that the

high reduction rate for build configuration is based on non-

test-related configuration, such as the deployment settings and

unused plugin settings. Figure 6 shows that PExReport could

provide a stable reduction rate for the redundant dependencies.

In conclusion, the high reduction rates indicate that PExReport

could provide conciseness to CPF reports.
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Fig. 7. Comparison of Different PExReport Techniques

3) The answer to RQ3:
Besides the Hybrid Backward Failure Tracing, PExReport

applies three enhancements to handle build configurations,

resource files and generated code. We performed an ablation

analysis on PExReport and calculated reproduction and reduc-

tion rates.

w/o Dynamic represents PExReport without the dynamic

tracer (JVM monitoring), which still retains the static analyzer

and three enhancements. As shown in Table II, w/o Dynamic
only achieved a low reproduction rate of 24.24% by repro-

ducing 48 of 198 CPFs. Compared with the high reproduction

rate of 92.93% from PExReport, it states that pure static

analysis could perform terribly in real-world Java applications

as large Java applications use various dynamic features. Source
& Deps. represents PExReport without three enhancements,

which provides source code and dependency packages with

the standard Maven build configuration. The Source & Deps.
only reached 23.23% (46 of 198 CPFs), a low reproduction

rate. Although source code and dependencies contain the most

information that developers expect the reporter to provide, it

is still highly likely that developers cannot use them with the

standard build setting to reproduce the CPF, as exemplified

in Section II. To better understand the effectiveness of the

three enhancements, we turned off each enhancement one by

one and compared the results with the integrated PExReport.

As shown in Table II, the impacts of these enhancements are

large. The reproduction rate reduces from 92.93% to 51.01%

and 52.53% without enhancements on build configuration

and resource files, respectively. Without the generated code

enhancement, 73.74% of CPFs can still be reproduced because

code generation is not a must for many Java projects. In

contrast, developers need to deal with build configuration

in every project, so the corresponding enhancement has the

largest impact.

We also presented the reduction results of ablation analysis

in Figure 7, using cumulative plots to intuitively compare our

techniques. As shown in the performance column of Table II,

PExReport’s execution time is not heavily affected by these

enhancements. As creating CPFs is not a repeated activity like

the standard build process, the average reproduction finished

in a minute or so should be acceptable.

Overall, PExReport reproduced the majority (92.93%) CPFs

and provided executable cross-project failure reports with an

average of 72.97%, 82.96%, and 74.18% reduction rate for

source and internal classes, build configuration, and resources,

respectively.

E. Threats to Validity

The major internal threat to validity is the potential errors in

our scripts and tool building. To reduce this threat, we carefully

checked the implementation and shared them for peer review.

The major external threat to validity is the variance of projects

and test failures that may not be covered by our evaluation.

To reduce this threat, we constructed our dataset based on the

ground truth research dataset–Sensor [14] and carefully chose

CPFs to avoid bias. Although PExReport is designed to work

on all reproducible failures, our evaluation does not consider

flaky tests and non-independent tests to avoid uncertainties

and inconsistencies. Consistently reproducing and clustering

failures are beyond the scope of this paper, but may also

require future research.

V. DISCUSSION

Generalization to Other Languages and Building Tools.
PExReport is designed based on Maven and implemented

for Java programming language. However, the idea of our

approach is general and may be applied to other program-

ming languages and build tools. The dependency analysis

and enhancements for build configuration, resource files, and

generated code are generalizable to most JVM languages,

but compiler integration may be different from language to

language, so the Hybrid Backward Failure Tracing component

needs to be adjusted to support new languages. Other build

tools such as Gradle / Make may allow more complicated file

operations so more advanced analysis of the build process may

be required.

Duplicate Failure Reports. PExReport takes a single CPF

as its input, but one issue may generate more than one

CPFs. PExReport does not resolve the potential duplication

of CPFs but it can be resolved using test failure clustering

and selection of representative CPF from each cluster. In our

experiment, such clustering largely reduced the client CPFs

to be considered. In practice, the developer may manually
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determine which CPF should be reported and which one

should not, and select a representative CPF. Furthermore, even

if the developer chose two CPFs with a similar root cause,

after the pruning, representative CPFs sharing the same root

cause may be reduced to similar executable CPF reports. In

such cases, the client developer may need to double-check the

similarity between executable CPF reports before submitting

them.

VI. RELATED WORK

Though we are not aware of any research efforts creat-

ing pruned executable CPF reports to solve the CPF report

trilemma, our techniques are related to existing efforts on bug

reproduction, program slicing, software de-bloating, and fault

localization.

Bug and Crash Reproduction. Recently, JCHARM-

ING [16] uses crash traces and model checking to identify

program statements needed to reproduce a crash. Liu et

al. proposed DoubleTake [17], which uses evidence-based

analysis to largely reduce the cost of recording erroneous

states. Huang and Zhang proposed LEAN [18] to reduce

the complexity of the replayed trace and the length of the

replay time without losing the determinism in reproducing

concurrency bugs. Weeratunge et al. [19] propose a novel

approach that performs a lightweight analysis of a failing

execution in a multi-core environment and reproduces the bug

in a single-core system, under the control of a deterministic

scheduler. Herbold et al. [20] proposed a generic and non-

intrusive GUI usage monitoring mechanism to record and

replay GUI bugs. Moran et al. [21] proposed a technique that

records user action steps when reproducing an Android bug,

and automatically fills them into a bug report. Some other

research efforts [22] [23] try to automatically construct build

or execution environments but they have not been applied to

bug reproduction. Compared with existing approaches in this

area, our approach focuses on the pruning and reconstruction

of the build environment for buggy execution, including build

configuration, resource files, and generated code.

Program Slicing. Program slicing [3] is a technique to

carve from a large program a smaller program that implements

one or multiple features of the larger program. Program slicing

often relies on code dependency graph [24] [25] and has

been used to prune a lot of targets from source code [26]

to pre/post conditions [27], paths [28], and databases [29].

Dynamic slicing [4] [30] identifies the statements that the

buggy output depends on. Executable union slicing preserves

the meaning of the original program using conditioned slic-

ing. [31] Compared with program slicing, PExReport focuses

more on the build environment. The low reproduction rate of

PExReport’s variant without enhancements shows that fetching

only code dependency is not sufficient. On the other hand,

PExReport’s enhancements can also be viewed as a slicing of

the build environment, including the build configuration and

the resource files.

Software De-bloating. Software de-bloating techniques

prune a released software package to remove unnecessary

dependencies and thus reduce its size, loading time, and

attack surface. Pure static de-bloating techniques such as

ProGuard [10] and Jax [32] rely on static program slicing

and more recent work such as JShrink [5] further consider

runtime dependencies. Although both pruning code, compared

with PExReport, the goal of de-bloating is to retain software

features instead of reproducing a single execution. Also,

although de-bloating may generate executable pruned code by

tracking execution dependencies, it does not work on source

code and does not retain the build environment.

Fault Localization. Statistical fault localization [33] [34]

gives a suspicious score to each statement (or other types

of code structures such as sub-control-flow-graphs [35]) ac-

cording to the number of successful and failed test cases that

cover the statement. IR-based fault-localization [36] evaluate

suspiciousness scores of statements by their textual similarity

to the descriptions in a given bug report. Change-aware fault

localization, such as Delta-debugging [37] [38] [39] considers

the scenario of localizing regression faults when the history

between the successful version and failed version is available.

Other approaches [40] [41] perform impact analysis on code

changes to localize faults. Hassan and Wang [42] studied

localization and repair of bugs in build scripts. On cross-

project bugs, Mostafa et al. [43] and Chen et al. [44] stud-

ied behavior backward incompatibilities and their detection.

Compared with all these techniques, PExReport focuses on

reproduction instead of localization of bugs, so it needs to

further identify and package all dependencies of a bug in its

build and execution process.

VII. FUTURE WORK

In the future, we plan to enhance our research in the

following directions. First of all, we plan to enlarge our dataset

to evaluate PExReport on more CPFs in more projects. Second,

we plan to further prune the created executable CPF reports

with finer-grained analysis and perform source code detailed

reduction. Third, we plan to perform user studies to understand

how much our tool can help developers in reproducing real-

world bugs. Fourth, we plan to expand PExReport with other

build tools by developing more advanced features for different

software ecosystems.

VIII. CONCLUSIONS

An executable test case is one of the most desirable fea-

tures of failure reports. When reporting cross-project failures
(CPFs) to library developers, a test case is even more helpful

because code is a natural way to describe interactions between

library code and client code. In this paper, we developed

PExReport, a framework to automatically create pruned ex-

ecutable CPF reports for developers, and solve the CPF

report trilemma. PExReport uses Hybrid Backward Failure

Tracing to identify the necessary source and dependencies,

and has further enhancements to handle build configurations,

resource files, and generated code. Our evaluation shows that

PExReport can produce pruned executable CPF reports for 184

of 198 CPFs with an average reduction rate of 72.97%.
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