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Abstract

We propose endogenous Bayesian risk minimization (EBRM) over policy sets as an approach to online
learning across a wide range of settings. Many real-world online learning problems have complexities such
as action- and belief-dependent rewards, time-discounting of reward, and heterogeneous costs for actions and
feedback; we find that existing online learning heuristics cannot leverage most problem-specific information,
to the detriment of their performance. To this end, we introduce a belief-space Markov decision process
(BMDP) model that can capture these complexities, and further apply the concepts of aleatoric, epistemic,
and process risks to online learning. These risk functions describe the difficulty of the learning problem, the
state of the agent’s knowledge, and the quality of its policy, respectively. We demonstrate how computing and
minimizing these risk functions guides the online learning agent towards the optimal exploration-exploitation
trade-off in any stochastic online learning problem, constituting the basis of the EBRM approach. We also
show how Bayes’ risk, the minimization objective in stochastic online learning problems, can be decomposed
into the aforementioned aleatoric, epistemic, and process risks.

In simulation experiments, EBRM algorithms achieve state-of-the-art performance across various classi-
cal online learning problems, including Gaussian and Bernoulli multi-armed bandits, best-arm identification,
mixed objectives with action- and belief-dependent rewards, and dynamic pricing, a finite partial monitoring
problem. To our knowledge, it is also the first computationally efficient online learning approach that can
provide online bounds on an algorithm’s Bayes’ risk. Finally, because the EBRM approach is parameter-
ized by a set of policy algorithms, it can be extended to incorporate new developments in online learning
algorithms, and is thus well-suited as the foundation for developing real-world learning agents.

Keywords: Bayesian risk, stochastic online learning, multi-armed bandits, partial monitoring

1. Introduction

There is a trend towards autonomous decision-making in increasingly unstructured and complex tasks and
environments, as autonomous decision-making agents become increasingly pervasive in many societies. Fully
self-driving vehicles move passengers throughout cities, algorithms help diagnose and prescribe treatments
to ill patients, and autonomous robots operate in environments ranging from homes and assisted-living
facilities to Mars and the deep sea. While these agents attempt to make the best decisions possible despite
limited information, decision-making under uncertainty always carries risk, and taking risks results in an
accumulation of regret over past decisions. Maximizing long-term performance in some task is equivalent to
minimizing the accumulation of this regret, and to do so autonomous agents employ algorithms for online
learning, which describe techniques for “learning while doing”.

Practitioners often use heuristics designed to optimally solve simple, archetypal online learning problems
(OLPs) to instead solve all kinds of complex, real-world OLPs. These heuristics generally work well when
compared to näıve strategies that do not leverage insights from online learning research. However, the
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Figure 1: Consider a simulation where algorithms sequentially choose which of 4 candidate treatments is administered to each
of 423 patients in a clinical trial (see “Multi-Arm Trial Setting” in [1]). The treatment with the highest empirical success
rate in the trial is administered to a global patient population. The y-axis indicates the number of failed treatments among
the patients in the trial, while the x-axis shows the expected excess failure rate of the treatment administered to the global
population compared to if the true best treatment were identified. Algorithms further left explore more, ensuring that the
best performing treatment is confidently identified, while algorithms further down exploit more, finding greater success among
the 423 trial patients. The EBRM algorithm (blue curve) optimizes this trade-off by taking the global patient population size
(annotations) into account in its parametric reward objective. Abbreviations are defined in Subsection 6.1.

complexities of real-world online learning problems cannot be accounted for by simple heuristics, despite
the often important role of such complexities in determining the performance of a particular strategy. Due
to their ease of use, practitioners faced with complex and novel online learning problems often choose to
apply popular heuristics regardless, or to develop a new heuristic. This has led to a multitude of heuristics,
many of which must be tuned for each new problem before they can achieve good performance. Furthermore,
thorough analysis is required to determine whether the design of a candidate heuristic conflicts with desirable
behaviour for the learning agent.

The most challenging part of designing an online learning algorithm is deciding how it will navigate
the exploration-exploitation trade-off. Exploitation refers to an agent taking an action consistent with a
plan that maximizes the agent’s expected long-term task performance, where that plan is based on a model
of the likelihood of possible outcomes for each action. Finding such a plan, or a close approximation,
can be achieved by a variety of planning algorithms, however such a plan is often poorly suited to discover
inaccuracies in the model it is optimized for. Exploration is, conversely, the act of taking one or more actions
expected to reveal missing information in the model, which may thereby enable a better (exploitative) plan
to be developed for later use.

Finding and applying the correct balance between exploration and exploitation in a given task is a key
online learning challenge for both researchers and practitioners; the optimal balance can shift for even slight
changes in task, or in how task performance is defined. For example, Figure 1 describes a clinical trial
online learning problem based on the work of [1]. This problem was complicated by dual objectives; the
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main goal of a clinical trial is to identify the best treatment among a set of candidates, but the well-being
of the participants is also valued and thus it is preferable to assign as many of them to the best candidate
treatments as possible. Some exploration is required to identify the leading treatments, while exploration
beyond this point (i.e. continuing to assign participants to less-tested, but seemingly inferior, treatments)
is beneficial for confirming the identity of the best treatment but is harmful to the study participants. Each
online learning heuristic balances the trade-off differently. For this particular challenge, the researchers
needed to develop a new heuristic to appropriately balance between these objectives [1].

As a result of such complexities, the field has seen the development of an overwhelming number of online
learning heuristics [2–19], many of which require extensive work to be tuned to a specific problem [20], and
most offering performance guarantees in only archetypal OLPs, if any. A priority for the online learning
community is to distill previous insights into an approach that is easy to use, computationally efficient,
provides performance guarantees and can model various goals and common complexities. This work is a
step in that direction, in which we present endogenous Bayesian risk minimization (EBRM) as an approach
to solve a wide range of stochastic online learning problems efficiently, with risk (performance) bounds, and
taking common complexities into account. In our tests, the EBRM-based algorithms demonstrate leading
performance even in the well-studied archetypal OLPs that previous state-of-the-art algorithms compared
against were designed for, while surpassing them to a greater degree in more complex and realistic problems.

An agent using an EBRM algorithm begins with a base “open-loop policy”, which is the agent’s best
guess of which fixed sequence of future actions would maximize its overall task performance as measured by
some reward function. The proposed Greedy-EBRM approach reasons about how much immediately useful
information each available action may provide about the hidden parameters of the online learning problem.
If the total risk of taking some action and then following an improved (posterior) policy is expected to be less
than the risk of the base (prior) policy, a Greedy-EBRM algorithm takes that action. AsympGreedy-EBRM,
the main focus of this work, is an improvement on Greedy-EBRM which ensures asymptotic convergence to
an optimal policy by taking into account the long-term value of the information provided by each action.
EBRM approaches produce agent policies tailored to particular OLP specifications; thus, unlike when using
heuristic approaches, the behaviour of agent is always aligned with the OLP goals (i.e., the reward function)
without any hyperparameter tuning. We describe the EBRM approach in more detail in Section 5.

1.1. Summary of Contributions

We present a mix of theoretical analysis and practical algorithms that serve as the foundation for further
work in applying online learning principles and insights towards being able to efficiently solve complex real-
world online learning problems. In particular, our contributions are applicable to a wide range of stochastic
online learning problems, including problems augmented with belief-dependent rewards, time-discounted
rewards, and action feasibility criteria. Specifically, we contribute:

• The decomposition of Bayes’ risk into aleatoric, epistemic and process risks, which bound the expected
regret and provide insights into the optimal exploration-exploitation trade-off.

• The AsympGreedy-EBRM approach to online learning, which enables risk-bounded, high performance
online learning in complex OLPs while remaining computationally tractable, and with guaranteed
asymptotic convergence in problems with identifiable hidden parameters.

• Empirical results demonstrating the superior performance of EBRM algorithms against state-of-the-art
baselines in online learning problems representative of real-world problems, including:

– multi-armed bandit optimization,

– best-arm identification,

– dynamic pricing, and

– a problem with mixed objectives, specifically rewards derived from a combination of the agent’s
actions and its posterior beliefs of the unknown problem parameters.

• Methods to efficiently compute, across a wide range of stochastic online learning problems, online
regret bounds and the expected risk and value-of-information for various actions.
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2. Related Works

The field of online learning has been strongly motivated by practical applications since the seminal
work of Thompson in the 1930s [21]. The original motivating idea of exploring the efficacy of a discrete
set of medical treatments while simultaneously exploiting the leading treatments to save lives continues
to be a research interest [1] and is an exemplar of the ubiquitous stochastic multi-armed bandit (MAB)
problem [16]. In this terminology, the “arms” of the bandit represent, for example, different treatments.
In stochastic multi-armed bandits, an observation is generated each round from an unknown distribution
specific to the arm played that round, and the reward is the sum of the observations. Multi-armed bandits
are a good structure with which to approximate many real-world problems, and there are a variety of
successful online learning algorithms designed for them. Variations on this structure include infinite-time
and time-discounted bandits, as well as best-arm identification.

Partial monitoring is a generalization of multi-armed bandits that allows for more general relationships
between observations and rewards [22]. Partial monitoring problems are characterized by different levels of
observability, which bound how well any algorithm can perform [23, 24]. For example, the dynamic pricing
problem models how adjusting the price of a product changes profits when different customers are willing
to pay different prices [25]. The lack of local observability in dynamic pricing makes some instances of this
problem fundamentally harder than bandit problems [26].

Unfortunately, most real-world problems do not fit perfectly into common OLP structures or the as-
sumptions of common online learning algorithms. As discussed in Section 1, the objective of identifying the
best treatment from a range of options is well modelled as best-arm identification, but this approach is detri-
mental to the objective of exploiting effective dosages for the sample population [27]. Similarly, algorithms
which had the most patient recoveries among a sample population tended to have insufficient statistical
power to achieve the clinical trial’s goal of supporting the superiority of a specific treatment [1]. Precisely
controlling the balance between such objectives is not a feature of previous online learning heuristics.

2.1. Online Learning Algorithms and Design Principles

Decades of research into online learning problems have generated a variety of widely adopted algorithm
design principles. For example, “optimism in the face of uncertainty” [28, 29] is the driving principle be-
hind the popular and well-studied family of Upper Confidence Bound algorithms, which achieve optimal
asymptotic performance bounds in many OLPs [2, 8, 30]. Other design principles, such as “maximize the
expected improvement” [12, 31] and “follow the knowledge gradient” [7] have similarly led to the devel-
opment of online learning algorithms with strong guarantees and empirical results. In particular, many of
these algorithms are “no-regret”, in that the regret between of the policy grows sublinearly, so the average
regret over some horizon decays asymptotically to zero. Information-directed sampling (IDS) is perhaps the
best of the state-of-the-art strategies for long-/infinite-horizon multi-armed bandits, and introduces novel
information-theoretic techniques with strong finite-time regret bounds [13]. While the EBRM algorithms
presented in this work are more flexible and generally outperform IDS even on bandit problems, there may
be an opportunity for future work to develop even more effective “information-directed” EBRM techniques.

The most similar online learning algorithm to the proposed EBRM strategy is likely the Knowledge
Gradient (KG) algorithm, which greedily chooses informative actions in order to increase the expected
performance of a simple “stop-learning” policy [7]. As such, the Greedy-EBRM approach can be viewed
as a generalization of the KG approach to incorporate additional problem complexities and constraints.
Furthermore, we extend KG principles beyond multi-armed bandits, and produce similar results to that of
knowledge-gradient optimality for monotone submodular value-of-information functions [32], but for broader
classes of OLPs. Strategies for best-arm identification include Top-Two Thompson Sampling [15], and the
original KG exploration algorithm [3, 33]. The current state-of-the-art is the Top-Two Expected Improve-
ment algorithm [12], which builds upon the ideas in these strategies and provides improved performance
and regret bounds.
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2.2. Markov Decision Processes and Partial Observability

Markov Decision Processes (MDPs) [34] are a highly flexible framework that can model a much broader
range of decision problems than online learning problems. In particular, partially observable Markov decision
processes (POMDPs) [35] can describe any problem in which there is some hidden state (set of parameters),
which may change, and the consequences of actions taken by an agent depend on the value of that state.
The agent’s goal is to collect reward (a performance metric), but the amount of reward collected typically
depends on the state; like in OLPs, the agent must generally trade-off between taking actions that help
to reveal the hidden state (explore), or actions that collect reward (exploit) [36, 37]. The solution of a
(PO)MDP is a policy (strategy for choosing actions), often found with reinforcement learning [38, 39].

The “Markovian” property of POMDPs require that the effects of an action depend only on the current
state, but the model is otherwise able to capture many kinds of complexities, such as competing reward
objectives, action costs or constraints, and complex state transition dynamics. POMDP models have been
used to develop solutions for problems as diverse as railroad maintenance planning [40], unmanned aerial
vehicle contingency management [41], recommendation systems [42], and treatment planning for sepsis
patients [43]. However, many practitioners instead use online learning heuristic algorithms that ignore these
complexities. A major factor in this decision is that specifying the components of a POMDP and computing
its optimal solution tends to be tedious and computationally expensive, if not entirely infeasible [16].

Bayes-Adaptive MDPs (BAMDPs) [44] are a subclass of POMDPs which describe problems in which
a fully observable state is separate from a stationary (fixed) hidden state. In this work, we consider all
problems which can be represented by BAMDPs, with the additional constraints that the state transition
following an action is deterministic given only the observable state, while the (possibly stochastic) reward
of an action depends only on the hidden state. We formulate stochastic online learning as a fully-observable
belief-space MDP (BMDP) [35], where “belief states” represent the BAMDP observable state combined with
a probability distribution over possible hidden states. As the hidden state is stationary, an agent navigating
a BMDP begins with a belief state which broadly distributes probability across many possible values of the
hidden parameters, but moves towards one which concentrates probability on the most likely values.

2.3. Risk Quantification, Decomposition, and Minimization

The risk of a policy describes the degree to which the performance of that policy may exceeded by some
other policy; even if a policy may produce good results in expectation, it may still carry substantial risk.
Most autonomous agents use risk-neutral decision making, which only considers the expected performance of
a policy. However, this can lead to undesirable behaviours, particularly in social or safety-critical contexts.
Risk quantification is essential to developing risk-aware and risk-averse (or risk-sensitive) agents [45–47].
A risk-aware agent is capable of, for example, reporting to the user when it is in a high-risk state (i.e., a
situation for which there is no low risk policy) [48]. A risk-averse agent goes further by actively avoiding
high risk states even if they would, in expectation, lead to better outcomes [46, 47].

It is often useful to separate a policy’s risk into aleatoric and epistemic risks [49–51]. The aleatoric
component describes how much a strategy’s results depend on random processes in the environment, while
the epistemic component describes how much risk could be eliminated through better knowledge of the
environment [51, 52].1 Actions which reveal information on the hidden state of the POMDP reduce epistemic
risk. Conversely, aleatoric risk cannot be avoided in OLPs, as it is constant for a fixed hidden state.

In this work, we consider the Bayesian setting where the hidden state is modelled as being drawn
from a “prior” distribution; the Bayes’ risk of a policy is the expected risk for a random hidden state
distributed according to this prior. This setting is explored in Bayesian reinforcement learning [38, 53, 54],
and techniques have been developed to learn risk-aware and risk-averse policies for general BAMDPs [37, 55].
However, such approaches require training a policy by running many episodic simulations of the problem. We
propose EBRM as a risk-aware solution which, like the online learning heuristics discussed in Subsection 2.1,
does not require any training, thus making it far more convenient to use.

1Intuitively, aleatoric risk is due to the inherent unpredictability of “dice rolls”, while epistemic risk is due to uncertainty
in whether the “dice” is loaded (and how).
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Figure 2: The online learning problem formulation. The Environment (red) picks a set of hidden parameters θ. The User
(blue) specifies the learning agent’s initial state S0 and a policy function π that defines the distribution from which to draw
each action, such that at ∼ π(St−1). The goal is to find a policy that maximizes the amount of reward (yellow) collected, R,
which depends on the action-outcome pairs (xt, at) for t = 1, . . . , T , and on the agent’s final state ST . Dashed arrows represent
random sampling from a probability distribution, and dotted arrows represent omitted parts of the graph. All variables and
their relationships are defined in Table 1.

3. Online Learning as a Belief-Space Markov Decision Process

We begin by formulating stochastic online learning problems (OLPs), depicted in Figure 2, as belief-space
Markov decision processes (BMDPs) with particular structure. We will then discuss how the performance
of a policy is measured in an OLP, and how this relates to defining the risk of that policy.

Notation. We index variables related to sequential decisions (BMDP states) using the time t ∈ N>0. We
define [K] := {1, . . . ,K} for K ∈ N>0. We denote the space of probability measures over a Borel measurable
set X as P(X ), and the power set of a set X as P(X ). The indicator function 1 is defined as 1(True) = 1
and 1(False) = 0.

3.1. Bayesian Belief-Space Markov Decision Process Formulation of Stochastic OLPs

Let X = {xt ∈ X}t∈N>0 denote the hidden outcomes of the OLP. When an agent performs action at ∈ A
at time t, it produces an observation yt = Φ(xt, at) and a reward R(xt, at), according to known functions Φ
and R. A stochastic OLP is one in which each hidden outcome is assumed to be independently drawn from
gθ ∈ GΘ, where GΘ is a family of probability distributions over X parameterized by θ ∈ Θ; thus, the hidden
outcomes are i.i.d. given θ.

The agent’s actions are chosen by a policy π that takes into account the agent’s current belief of the
hidden parameters bt ∈ P(Θ) and an observable auxiliary state ξt ∈ Ξ. The belief describes the likelihood
of hidden parameter values, and is used to infer the expected reward of each action. The auxiliary state
indicates the time and resources available to the agent and determines which actions are feasible. Together,
these compose the agent’s belief state, St = {bt, ξt}. The policy generates actions according to at+1 ∼ π(St).

The auxiliary state ξt contains all information relevant to the agent’s decision making, other than the
hidden parameters. For example, if actions have time or resource costs, it indicates the agent’s remaining
time or spending budget. The auxiliary state changes according to ξt = δ(ξt−1, at); importantly, it changes
deterministically given sequence of actions. The feasibility criterion Ω(ξt) indicates which actions are avail-
able in each state, so a “feasible” policy π must satisfy Pr(at+1 ∈ Ω(ξt)) = 1 for at+1 ∼ π(St). The agent
ceases from taking further actions upon reaching a terminal state, indicated by Ω(ξt) = ∅.

The belief distribution bt characterizes the posterior likelihood of the hidden parameters θ based on past
action-observation pairs {(a1, y1), . . . , (at, yt)}. For convenience, we denote arbitrary belief distributions as
b or b′. The initial belief distribution b0(θ) is specified by the user as a prior over the hidden parameters.
The observation function Φ implicitly defines the likelihood Pr(yt | θ, at), and so bt is given by Bayes’ law,

bt(θ) := Pr(θ | a1:t, y1:t) =
Pr(yt | θ, at)bt−1(θ)

Pr(yt | at)
. (3.1)
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Table 1: Components of a Stochastic OLP. Vec: Vector. Dist: Distribution. Fn: Function. Comp: Compound.

OLP Parameter Observability Type Symbol Determined by Space

Hidden Parameters Inferred Vec. θ Environment Θ

Hidden Outcomes Inferred Vec. x xt ∼ gθ X
Actions Observed Vec. a at ∼ π(St−1) A
Observations Observed Vec. y yt = Φ(xt, at) Y
Auxiliary State Observed Vec. ξ ξt = δ(ξt−1, at) Ξ

Belief Distribution Observed Dist. b Eq. (3.1) P(Θ)

Belief State Observed Comp. S St = {bt, ξt} S = P(Θ)× Ξ

Policy Known Fn. π User S → P(A)
State Update Fn. Known Fn. δ OLP Ξ×A → Ξ

Action Reward Fn. Known Fn. R(x, a) OLP X ×A → R

Belief Reward Fn. Known Fn. R(b) OLP P(Θ)→ R

Observation Fn. Known Fn. Φ OLP X ×A → Y
Process Model Known Fn. gθ OLP Θ→ P(X )
Feasibility Criterion Known Fn. Ω OLP Ξ→ P(A)
Discount Factor Known Scalar γ OLP γ ∈ (0, 1]

We are often interested in counterfactual belief states, which may arise when considering a possible next
outcome-action pair (x, a). Such a belief state is denoted Sx,a

t+1 = {bx,at+1, ξ
a
t+1}, with

bx,at+1(θ) =
Pr(Φ(x, a) | θ, a)bt(θ)

Pr(Φ(x, a) | a)
, ξat+1 = δ(ξt, a). (3.2)

The components discussed thus far specify the BMDP context; the remaining part of the specification
is the BMDP goal. A variety of useful goals can be expressed through action-based rewards accumulated
as actions are taken and an information-based reward based on the terminal belief state. Accordingly, we
define the action reward R(x, a) ∈ R and belief reward R(b) ∈ R, such that the goal is to maximize the sum,

γTR(bT ) +
T∑

τ=1

γτR(xτ , aτ ), (3.3)

evaluated upon reaching a terminal state ST = {bT , ξT } where Ω(ξT ) = ∅. The discount factor γ ∈ (0, 1]
specifies the degree to which earlier rewards are preferred to later rewards. The BMDP specification requires
a Markovian reward model ρ, which depends only on the current state and action; it suffices to define,

ρ(St, a) := Ex|bt
[
R(x, a) +R(bx,at+1)1

(
Ω(ξat+1) = ∅

)]
, (3.4)

where bx,at+1 and ξat+1 are defined as in Eq. (3.2). Together, the reward model ρ and discount factor γ formally
specify the BMDP goal.

3.2. Optimal Online Learning

Every policy π has an associated value function, V π(S), defined recursively by the Bellman equation [34],

V π(St) := Ea∼π(St)

[
ρ(St, a) + Ex|bt

[
γV π(Sx,a

t+1)
]]
, (3.5)

Pr(x | bt) =
∫
Θ

gθ(x)bt(θ)dθ. (3.6)
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By construction, V π(S) is equal to the terminal reward expected to be received by following the policy π
until reaching a terminal state, as computed in Eq. (3.3).

The calculation in Eq. (3.5) assumes the distribution of each observation follows from the conditional
density Pr(x | b) generating the hidden outcome x based on the previous belief state. We also consider
conditional value functions V π(St; θ) and V π(St;X), which represent the reward achieved by the policy π
for a specific θ or sequence of hidden states X respectively,

V π(St; θ) := Ea∼π(St)

[
Ex|θ

[
R(x, a) +R(bx,at+1)1

(
Ω(ξat+1) = ∅

)
+ γV π(Sx,a

t+1; θ)
]]
, (3.7)

V π(St;X) := Ea∼π(St)

[
R(xt+1, a) +R(b

xt+1,a
t+1 )1

(
Ω(ξat+1) = ∅

)
+ γV π(S

xt+1,a
t+1 ;X)

]
. (3.8)

From these definitions, it follows that V π(St) ≡ Eθ|bt [V
π(St; θ)] ≡ EX|bt [V

π(St;X)].

3.2.1. Types of Policies

A deterministic policy π is one that always picks the same action for a given belief state; that is, if
a ∼ π(S) then ∃a′ : Pr(a = a′) = 1. Any policy which is not deterministic is called a stochastic policy. An
open-loop policy is one for which the action distribution is a function of only the auxiliary state ξt; that
is, one for which π(S) = π(S′) holds ∀S, S′ such that ξ = ξ′. Otherwise, the policy is a closed-loop policy.
A policy which is both deterministic and open-loop can be completely characterized, for a given initial
belief state, by the fixed sequence of actions that it would take from that state. We denote a deterministic
open-loop policy and its corresponding action sequence as π̂ and Aπ̂, respectively.

3.2.2. Policy Optimality

A b-optimal policy π⋆
b is a solution to, where Π is the set of all policies,

π⋆
b ∈ argmax

π∈Π
V π(S0). (3.9)

Such a policy achieves the most terminal reward possible, in expectation, from the initial state S0, assuming
that θ ∼ b0. Similarly, a θ-optimal policy π⋆

θ and X-optimal policy π⋆
X satisfy, from the initial state S0,

π⋆
θ ∈ argmax

π∈Π
V π(S0; θ), (3.10)

π⋆
X ∈ argmax

π∈Π
V π(S0;X). (3.11)

As we assume the hidden outcomes are independently and identically distributed, it suffices to search the
set of deterministic policies in order to find a b-, θ-, or X-optimal policy for an OLP.2

Most optimal policies are closed-loop, even if they are deterministic. However, deterministic open-loop
policies are useful to consider as they are straightforward to describe and analyze. In particular, later
sections will often refer to “optimal deterministic open-loop policies”, defined below.

Definition 1. An optimal deterministic open-loop (ODOL) policy π̂⋆
St

is characterized by, where

Π̂ ⊂ Π denotes the set of deterministic open-loop policies,

π̂⋆
St
∈ argmax

π̂∈Π̂

V π̂(St). (3.12)

3.3. Measuring Policy Risk

A risk function measures how much less reward is expected to be attained by one policy π1 compared
to another policy π2. We define three fundamental risk functions in Table 2.

2Prior works have explored optimal online learning policies when the hidden outcomes are generated by an adversarial
process, for which stochastic policies can greatly outperform deterministic ones.
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Table 2: Risk functions; the risk of policy π1 is defined with respect to policy π2.

Name Definition

Instance Risk r(π1∥π2;S,X) := V π2(S;X)− V π1(S;X)

Expected Risk r(π1∥π2;S, θ) := V π2(S; θ)− V π1(S; θ)

Bayesian Risk r(π1∥π2;S) := V π2(S)− V π1(S)

Risk is often defined relative to an optimal policy so that it represents a shortfall relative to the maximum
achievable reward.3 We define some Bayesian risks relative to the X- and θ-optimal policy “families”,

r(π∥π⋆
X ;St) := EX|bt [r(π∥π

⋆
X ;St, X)], (3.13)

r(π∥π⋆
θ ;St) := Eθ|bt [r(π∥π

⋆
θ ;St, θ)]. (3.14)

It is important to note the abuse of notation here, where the terms π⋆
θ and π⋆

X on the left side of each equation
are not specific policies, but rather represent conceptual policies optimal for any particular realization of
θ and X, respectively. We can think of π⋆

θ and π⋆
X in such contexts as “cheating” policies, which suggest

actions based on information unavailable in the belief state.
We demonstrate in Section 4 that insights can be made by considering the risk of a policy with respect

to the various optimal policies. Lemma 1 shows how a “hierarchy” of risk arises from comparing a policy π
against these different optimal policies.

Lemma 1. For any policy π ∈ Π and any belief state St ∈ S, we have that

r(π∥π⋆
X ;St) ≥ r(π∥π⋆

θ ;St) ≥ r(π∥π⋆
b ;St) ≥ 0.

Proof. Expand the risk functions in terms of the (conditional) value functions, express the values of optimal
policies as maximization problems based on Eqs. (3.9)–(3.11), and apply Jensen’s inequality.

3.4. Exogenous and Endogenous Metrics

We distinguish between exogenous and endogenous measures of a learning agent’s performance, which
characterize whether a metric is computed from only the belief state St, or from external information.

An exogenous metric is a function that requires inputs which are not part of St. This makes it a means of
external evaluation of the performance of a policy, as it requires knowing values of variables not provided to
the learning agent. This may include the true values of X and θ, which could be known under experimental
conditions by the experimentalist or in other settings by an “oracle”. Such a metric can be an effective tool
for evaluating different policies, but a real learning agent is unable to compute it online.

Conversely, an endogenous metric is any function of only St; as such, when agent estimates the risk of
its own policy we refer to it as an endogenous risk estimate. These are endogenous in that they can be
computed using only St, the information available to the agent at time t. The algorithms contributed by
this work are based on minimizing endogenous Bayesian risk online.

4. Online Computation of Endogenous Risks

Quantifying the risk of policies can be useful for many tasks, such as identifying the best policy from
some set or providing safety and performance guarantees. This section will explain how endogenous risk
measures provide insights into the nature of an OLP and into the behaviour of a specific policy, and will
discuss the feasibility of computing the risk and value of various classes of policies. Note that all measures
of risk in this section will be endogenous, in that X and θ are taken to be random variables distributed
according to Pr(X, θ | bt).

3In this case it also represents the (expected) future regret of a policy; regret is the evaluation metric for most online learning
problems. Appendix A presents further discussion on the relationship between risk and regret.
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4.1. Endogenous Bayesian Risk Functions

The risk of a policy, as defined in Subsection 3.3, is always given relative to some “reference” policy; the
choice of this reference policy offsets the risk estimate, as ∀π1, π2, π3,

r(π1∥π3;S) = r(π1∥π2;S) + r(π2∥π3;S). (4.1)

By choosing reference policies that are “optimal”, the risk computed can give insight into the OLP and
into policies of interest. The first, and perhaps most important, risk function is the total Bayesian risk.

Definition 2. The total Bayes’ risk of a policy π from some belief state S is

TotalRisk(π;S) := r(π∥π⋆
X ;S).

We refer to this quantity as the “total risk” because π⋆
X is the reference policy with the highest possible

value, so the total Bayes’ risk is the largest possible risk of π. The total risk has an intuitive interpretation:
it indicates how much better an agent following some policy π could perform if it instead made perfect use
of complete information regarding all of the hidden outcomes.

Total risk is a well-studied metric in online learning but is often challenging to compute, and considering
it in isolation conceals insights into the OLP structure, the belief state, and the policy. The remainder of this
subsection will explore a useful decomposition of the total risk into three distinct and edifying components:
the aleatoric and epistemic risks of a belief state and the process risk of the policy.

4.1.1. Aleatoric Risk

Due to the stochastic nature of the hidden outcomes X, even complete information about the parameters
θ is generally not enough for the agent to be able to achieve the maximum possible reward. This limitation
is inherent to the OLP itself, and is captured by the aleatoric risk. The aleatoric risk thus provides insight
into the difficulty of an OLP; if it is by far the largest component of the Bayes’ risk of a policy π, then most
of the risk of the policy is due to random chance and cannot be eliminated. If this risk is unacceptably high,
it may indicate that the OLP cannot be satisfactorily solved.

Definition 3. The aleatoric risk of an OLP with parameters θ is

AleatoricRisk(θ) := r(π⋆
θ∥π⋆

X ; θ).

The aleatoric Bayes’ risk of a belief state S is accordingly defined as

AleatoricBayesRisk(S) := r(π⋆
θ∥π⋆

X ;S) = Eθ|b[AleatoricRisk(θ)].

For any parameters θ, the aleatoric risk is non-negative (see Lemma 1), showing that even with perfect
knowledge of the parameters θ, the optimal policy π⋆

θ may not achieve the maximum possible reward. The
aleatoric Bayes’ risk of St measures how much aleatoric risk is expected to remain even after being given
complete information on θ, assuming the parameters θ were sampled from bt. Below, we provide an example
of computing aleatoric risk and aleatoric Bayes’ risk in a toy problem.

Problem 1. Suppose a coin flips heads with probability θ ∈ [0, 1] and produces hidden outcomes in X =
{Heads,Tails}. An agent has two actions A = {1, 2}, and the action reward function is:

R(x, 1) =

{
1, x = Heads,

0, x = Tails.
R(x, 2) =

{
0, x = Heads,

1, x = Tails.

There is no belief reward or discounting, so R(b) = 0 and γ = 1. The agent plays for n rounds, so Ω(ξt) = A
for t < n and Ω(ξn) = ∅. The initial belief distribution is b0 = Beta(1, 1).

10



Figure 3: Refer to Problem 1 and Example 1. Left: The aleatoric risk over θ ∈ [0, 1] assuming n = 10 rounds, shown with
three belief distribution densities. The aleatoric risk is highest for fair coins, for which each flip result is unpredictable, and
lowest for a trick coin that always lands on one side. Right: The aleatoric Bayes’ risk of belief distributions bt = Beta(α, β)
for various α, β ∈ R>0. Observe that aleatoric Bayes’ risk increases along the line α = β as α, β → ∞.

Example 1. In Problem 1, the unique X-optimal policy is to take action 1 when xt = Heads and action 2
when xt = Tails. An θ-optimal policy is to always take action 1 if θ > 0.5, and to take action 2 otherwise.
It is straightforward to compute that, over n rounds, V π⋆

X (S0; θ) = n and V π⋆
θ (S0; θ) = nmax{(1 − θ), θ}.

Thus AleatoricRisk(θ) = n−max{n(1− θ), nθ} and

AleatoricBayesRisk(b0) = Eθ|b0 [n− nmax{(1− θ), θ}],

=

∫ 0.5

0

(n− n(1− θ))dθ +

∫ 1

0.5

(n− nθ)dθ =
n

4
.

The aleatoric risk and aleatoric Bayes’ risk for various θ and b, respectively, are shown in Figure 3.

4.1.2. Epistemic Risk

As a learning agent gradually learns more about the hidden parameters θ, it is typically able to improve
its performance. While it can never eliminate the aleatoric risk inherent to the OLP, this learning process
reduces the epistemic (knowledge-based) risk of the belief state, defined as follows.4

Definition 4. The epistemic risk of a belief state St is

EpistemicRisk(St) := r(π̂⋆
St
∥π⋆

θ ;St).

By Lemma 1, the epistemic risk is always non-negative. Importantly, however, the epistemic risk of an
agent can be reduced through performing actions that lead to belief states with better estimates of the hidden
parameters. The reduction of epistemic risk to 0 depends on the hidden parameters being identifiable.

Definition 5. Let
P−−−→

t→∞
denote convergence in probability. The hidden parameters θ are identifiable from

b0 if and only if there exists an infinite sequence of actions A ∈ A∞ such that ∀η ∈ Θ : |η − θ| > 0,

EX|θ

[
bX,A
t (η)

]
P−−−→

t→∞
0, (4.2)

where bX,A
t (η) is defined recursively by Bayes’s law as, with yt = Φ(X(t), A(t)) and bX,A

0 = b0,

bX,A
t (η) =

Pr(yt | θ,A(t))bX,A
t−1 (η)

Pr(yt | A(t))
. (4.3)

4In reinforcement learning, some works (e.g. [50, 56, 57]) refer to the epistemic risk of a learned policy, which results from
a lack of training data in the vicinity of the St. In our notation, this risk would be denoted as r(π∥π⋆

St
;St).

11



Figure 4: Refer to Problem 1 and Example 2. Left: The epistemic risk for various initial belief distributions, assuming n = 10
rounds. It is largest near the origin, for which the belief distribution is highly uncertain about which action is optimal. Right:
The contours highlight that identifying the best action is most difficult when α ≈ β; however, in contrast to the aleatoric Bayes’
risk (see Figure 3), the epistemic risk is asymptotically decreasing as α, β → ∞.

Theorem 1. Suppose the hidden parameters θ are identifiable over some infinite sequence of actions. Then,
over this sequence of actions,

EpistemicRisk(St)
P−−−→

t→∞
0. (4.4)

Proof. See Appendix D.

Theorem 1 implies that, if the belief distribution converges upon the true parameters θ, then the difference
in value between an ODOL policy π̂⋆

St
and any θ-optimal policy converges to 0. This reflects that π̂⋆

St

generally “improves” as actions are performed and the belief state converges. Estimates of the changes in
epistemic risk that would result from various actions are useful as they can guide the learning agent towards
states where the ODOL policy π̂⋆

St
is near-optimal; this strategy will be discussed further in Section 5.

Example 2 demonstrates how to compute epistemic risk in a simple OLP, while Figure 4 depicts how the
epistemic risk in Problem 1 varies with the belief distribution.

Example 2. In Problem 1, the deterministic open-loop-optimal policy is to choose action 1 if Eθ|b[θ] ≥ 0.5,
and action 2 otherwise. For a beta belief distribution b0 = Beta(α, β) with α, β ∈ R>0, then

Ex|b0
[
R(x, π̂⋆

S0
(S0)

]
=

max{α, β}
α+ β

=⇒ V π̂⋆
S0 (S0) =

nmax{α, β}
α+ β

Thus,

EpistemicRisk(Beta(α, β)) = Eθ∼Beta(α,β)[nmax{1− θ, θ}]− nmax{α, β}
α+ β

The epistemic risk for various belief distribution parameters α and β is presented in Figure 4.

4.1.3. Process Risk

Lastly, the process risk of any policy π is defined as the excess risk of π over an ODOL policy π̂⋆
St
.

Accordingly, the process risk of any open-loop policy is non-negative.

Definition 6. The process risk of a policy π in some belief state St is

ProcessRisk(π;St) := r(π∥π̂⋆
St
;St).

Unlike aleatoric and epistemic risk, the process risk can be negative; specifically, the process risk is
negative for any closed-loop policy that is able to, in expectation, leverage new observations to make better
decisions than π̂⋆

St
. Suppose that the agent is following some policy which cycles through various actions,
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Table 3: Definitions and interpretations of various endogenous Bayesian risk functions.

Risk Function Notation Key Determinant Description

Aleatoric Bayes Risk ¯̄r(π⋆
θ∥π⋆

X ;Bt) P (x | θ) Inherent OLP randomness

Epistemic Risk ¯̄r
(
π̂⋆
St
∥π⋆

θ ;Bt

)
bt Uncertainty of bt about θ

Process Risk ¯̄r
(
π∥π̂⋆

St
;Bt

)
π Relative risk of the policy π

Total Bayes’ Risk ¯̄r(π∥π⋆
X ;Bt) Cumulative risk of the above

gradually identifying the hidden parameters. Proposition 1 shows that if the parameters are identifiable,
the process risk of any other policy the agent might consider using becomes non-negative. This represents
improvement in the ODOL policies; perhaps unsurprisingly, it indicates that once the agent has complete
information about the hidden parameters θ, the posterior ODOL policy would perform at least as well as
any closed-loop policy, including the optimal closed-loop policy.

Proposition 1. Suppose θ are identifiable through some infinite sequence of actions. Over this sequence of
actions, then ∀π ∈ Π, ∃cπ ≥ 0 such that

ProcessRisk(π;St)
P−−−→

t→∞
cπ. (4.5)

Furthermore, the process risk of any policy is bounded below by the process risk of π⋆
b ,

ProcessRisk(π;St) ≥ ProcessRisk(π⋆
b ;St) ∀π ∈ Π, (4.6)

and so, over this same sequence of actions,

V π̂⋆
St (St)

P−−−→
t→∞

V π⋆
b (St) (4.7)

Proof. Eq. (4.5) follows from expanding r(π∥π⋆
θ ;S) = EpistemicRisk(S) + ProcessRisk(π;S) and applying

Lemma 1, followed by Theorem 1, and finally the continuous mapping theorem. Eq. (4.6) follows from
expanding the definition of process risk and applying Lemma 1, and then Eq. (4.7) follows from Eq. (4.5)
while noting that ProcessRisk(π⋆

b ;St) ≤ ProcessRisk(π̂⋆
St
;St) = 0.

Note that in Proposition 1, the sequence of actions taken is independent of the policy π for which the
risk is computed. This proposition reinforces that ODOL policies improve over time as long as the belief
distribution converges on θ, and furthermore that under such conditions they asymptotically match the
performance of even the best closed-loop policy π⋆

b .
Together, the aleatoric, epistemic, and process risks decompose the total risk according to

TotalRisk(π;S) ≡ AleatoricBayesRisk(S) + EpistemicRisk(S) + ProcessRisk(π;S). (4.8)

A summary of the definition and interpretation of each risk is presented in Table 3. The process risk of a
policy is the only component of the total risk that depends on the policy under consideration, π. Thus, a
policy with less process risk in some state than another policy also has less total risk than that policy. While
computing the process risk of a general policy is just as hard as computing that policy’s value, computing
the process risk of policies “similar” to the ODOL policy, such as lookahead policies, can be easier. This
provides an efficient way to compare such policies without needing to explicitly calculate each policy’s value
or total risk. This observation will be leveraged in Section 5 to enable computationally efficient estimates
of Bayes’ risk, and to efficiently identify the best policy to follow from any particular belief state.
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4.2. Computing Policy Value

Computing the risk of one policy relative to another is equivalent to comparing their respective values,
and the main obstacle to computing the value of a policy is the size of its reachable belief set.

Definition 7. The reachable belief set (RBS) from an initial state S0 is the set of all belief states that
could result from some sequence of actions A ∈

⋃∞
t=1At and observations Y ∈

⋃∞
t=1 Yt (where |A| = |Y |).

Definition 8. The π-reachable belief set (π-RBS) is the smallest subset of the RBS that contains all
belief states that a learning agent following the policy π, initialized at S0, could eventually transition into.

Definition 9. We call the reachable belief set unbounded if ∀h ∈ N>0, there exist a sequence of actions
a1:h that do not lead to a terminal state. Otherwise, the RBS is bounded with decision horizon h,
where h is the length of the longest sequence of actions that results in a terminal state.

Whether the RBS is bounded or unbounded depends on the specification of ξ0, δ, and Ω. Assuming
discrete action and observation sets, the size of a bounded RBS with decision horizon h is O(|A × Y|h).5
This rapid growth means it is generally impractical to compute the value of an arbitrary policy (where the
π-RBS may match the full RBS) using MDP algorithms like value iteration; even describing an arbitrary
policy requires O(|A × Y|h) values to encode the action distribution of the policy at every reachable state.
Accordingly, we focus our analysis on policies which have a small π-RBS, or otherwise have some structure
making it tractable to compute their value; in particular, this is the case for deterministic open-loop, m-
lookahead, X-optimal, and θ-optimal policies, which will be explored in the following subsections.

4.2.1. Deterministic Open-Loop Policies

We begin by defining the set of all terminating feasible action sequences from a state St = {bt, ξt},

A∞
Ω (ξt) =

A ∈
∞⋃

n=1

An

∣∣∣∣∣∣∣
ξt+τ = δ(ξt+τ−1, A(τ)) ∀τ ∈ {1, . . . , |A|},
A(τ) ∈ Ω(ξt+τ−1) ∀τ ∈ {1, . . . , |A|},
Ω(ξt+|A|) = ∅.

 (4.9)

A deterministic open-loop policy π̂ ∈ Π̂ takes a fixed sequence of actions Aπ̂ from state St, so its value is

V π̂(St) := EX|bt

γ|Aπ̂|R
(
bX,Aπ̂

t+|Aπ̂|

)
+

|Aπ̂|∑
τ=1

γτR
(
X(t+ τ), Aπ̂(τ)

), (4.10)

where bX,A
t+|A| denotes the posterior belief distribution of the terminal state reached after following the action

sequence A with corresponding hidden outcomes X. Now, since the set of all feasible deterministic open-loop
policies from the state St is isomorphic with A∞

Ω (ξt), the value of the ODOL policy π̂⋆
St

is the solution to a
maximization problem over A∞

Ω (ξt),

V π̂⋆
St (St) = max

A∈A∞
Ω (ξt)

EX|bt

γ|A|R
(
bX,A
t+|A|

)
+

|A|∑
τ=1

γτR(X(t+ τ), A(τ))

. (4.11)

Eq. (4.11) is a non-linear discrete optimization problem which may be, in general, very challenging to
solve. However, there are many conditions under which it is more tractable. For example, most classical
bandit and partial monitoring problems are formulated with some given T ∈ N>0 such that Ω(ξt) = A, ∀t <
T (and Ω(ξt) = ∅, ∀t ≥ T ) and R(bt) = 0 ∀bt. In such problems, Eq. (4.11) simplifies to

V π̂⋆
St (St) =

T∑
τ=t+1

max
aτ∈A

γτEx|bt [R(x, aτ )], (4.12)

where the (T − t) unconstrained maximization problems can be solved independently. Subsection 4.3 will
explore broader conditions under which Eq. (4.11) can be simplified and solved with suitable algorithms.

5For continuous action or observation sets, there is similarly exponential growth in the dimensionality of the RBS.
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4.2.2. Lookahead Policies

An m-step lookahead policy π is one which operates in closed-loop for m ∈ N>0 actions before transition-
ing to the ODOL policy for the posterior belief state. This results in a π-RBS of size O(|A×Y|m+ |Y|h−m).
The value of an m-lookahead policy is equal to the sum of the expected action rewards over the closed loop
phase and the total reward expected to be collected by the posterior ODOL policy from the posterior belief
state. This fact is leveraged by the proposed EBRM algorithms, and will be discussed further in Section 5.

4.2.3. X-Optimal Policies

An X-optimal policy is deterministic and open-loop because the belief and action rewards are determin-
istic with respect to the sequence of actions taken by the agent. The conditional value of π⋆

X in state St

given X is thus the solution of the maximization problem, with bX,A
t+|A| defined as previously,

V π⋆
X (St;X) := max

A∈A∞
Ω (ξt)

γ|A|R
(
bX,A
t+|A|

)
+

|A|∑
τ=1

γτR(X(t+ τ), A(τ))

. (4.13)

Subsection 4.3.2 will discuss conditions under which this problem can be further simplified.
Given a means to compute the conditionl value of the X-optimal policy for a particular realization of

the hidden outcomes, its unconditional value is an expectation over the belief distribution bt,

V π⋆
X (St) = EX|bt

[
V π⋆

X (St;X)
]
, (4.14)

which can be computed with sampling-based methods, even if it cannot be solved analytically.

4.2.4. θ-Optimal Policies

A θ-optimal policy is generally closed-loop, as despite knowing the exact distribution from which the
hidden outcomes are generated, maximizing the belief reward requires choosing actions based on how prior
observations have shaped the belief distribution. However, under certain conditions on the belief reward
function R(bt), there exists a deterministic open-loop θ-optimal policy. These conditions will be discussed
in Subsection 4.3.2, and enable efficient computation of the conditional value function V π⋆

θ (St; θ). Given a
means to compute this conditional value, the unconditional value of π⋆

θ is given by the expectation,

V π⋆
θ (St) = Eθ|bt

[
V π⋆

θ (St; θ)
]
. (4.15)

4.3. Efficient Construction of Optimal Deterministic Open-Loop Policies

This subsection will explore approaches to efficiently solve Eq. (4.11) and construct an ODOL policy π̂⋆
St

for the belief state St, under the following simplifying assumptions.

Assumption 1 (Bounded RBS). We assume that the RBS is bounded with some decision horizon h ∈ N>0.

Assumption 2 (Discrete Action Set). We assume that A is discrete and finite with cardinality K ∈ N>0.
Without further loss of generality, we can assume that A = [K].

Assumption 3 (Order-Independent Feasibility). We assume that, if A ∈ A∞
Ω (ξt) and A′ is a permutation

of A, then A′ ∈ A∞
Ω (ξt). This is equivalent to the following conditions on Ω and δ:

1. Ω(δ(ξ, a)) ⊆ Ω(ξ) ∀ξ, a : a ∈ Ω(ξ)

2. a2 ∈ Ω(δ(ξ, a1)) ⇐⇒ a1 ∈ Ω(δ(ξ, a2)) ∀ξ, a1, a2 : {a1, a2} ⊆ Ω(ξ)
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The key result of these assumptions is that the feasibility of a deterministic open-loop policy is determined
by its action counts N ∈ NK , where an action sequence A is “consistent with N” if and only if

N(k) =

|A|∑
τ=1

1(A(τ) = k) ∀k ∈ [K]. (4.16)

For any N ∈ NK , we can easily construct an action sequence A consistent with N by taking N(1) copies
of action 1, followed by N(2) copies of action 2, and so on. If we let A′ denote any permutation of A then,
by Assumption 3, A ∈ A∞

Ω (ξt) ⇐⇒ A′ ∈ A∞
Ω (ξt). We thus define NK

Ω (ξt) ⊆ NK such that

N ∈ NK
Ω (ξt) ⇐⇒ A ∈ A∞

Ω (ξt). (4.17)

So, we can determine whether N ∈ NK
Ω (ξt) by constructing A and testing if A ∈ A∞

Ω (ξt). Proposition 2
and its corollary will show that we can just as easily construct the optimal action sequence consistent with
N . First, however, we show that the expected posterior belief reward following any action sequence N is a
function of only the action counts, as seen in Lemma 2.

Lemma 2. Let A be any action sequence consistent with N ∈ NK
Ω (ξt) from some initial state St = {bt, ξt},

and let A′ be any permutation of A. Then,

EX|bt

[
R
(
bX,A
t+|A|

)]
= EX|bt

[
R
(
bX,A′

t+|A′|

)]
, (4.18)

where bX,A
t+|A| is the posterior belief distribution following action-observation pairs {(A(τ), Y (τ))}|A|

τ=1, with

Y (τ) = Φ(X(τ), A(τ)) for each hidden outcome X(τ), and the prior bt. For convenience, we thus define,

R̄(N ; bt) := EX|bt

[
R
(
bX,A
t+|A|

)]
. (4.19)

Proof. Refer to Appendix D.

Proposition 2. Let k1, . . . , kK be an ordering of the elements of A such that, given St,

Ex|bt
[
R
(
x, k1

)]
≥ Ex|bt

[
R
(
x, k2

)]
≥ · · · ≥ Ex|bt

[
R
(
x, kK

)]
. (4.20)

For any N ∈ NK
Ω (ξt), an optimal action sequence A⋆

N ∈ A∞
Ω (ξt) consistent with N can be constructed by

taking N(k1) copies of action k1, followed by N(k2) copies of action k2, and so on. The policy π̂⋆
N described

by A⋆
N satisfies,

V π̂⋆
N (St) ≥ V π̂(St) ∀π̂ : Aπ̂ is consistent with N. (4.21)

Accordingly, we define the action count optimal value function,

V̂ (N ;St) := V π̂⋆
N (St) (4.22)

= γnK R̄(N ; bt) +
K∑
i=1

γni−1
(
1− γN(ki)

)
1− γ

Ex|bt [R(x, ki)], (4.23)

where n0 := 0 and ni :=
∑i

j=1 N(kj), ∀i ∈ [K]. Note that limγ→1

[
γni−1

(
1− γN(ki)

)
(1− γ)−1

]
= N(ki).

Proof. Follows from Lemma 2 and the monotonically non-increasing weight of later action rewards.

Corollary 1. The value of the ODOL policy π̂⋆
St

in state St is

V π̂⋆
St (St) = max

N∈NK
Ω (ξt)

V̂ (N ;St). (4.24)

Corollary 1 means an exhaustive search for the ODOL policy can be done by evaluating the O(hK)
elements of NK

Ω (ξt), rather than all O(Kh) sequences in A∞
Ω (ξt). This is often an improvement as, typically,

h≫ K. Once N⋆ is found, an ODOL policy can be constructed by the approach used in Proposition 2.

16



4.3.1. Common Conditions for Integer Programming Solutions

The maximization problem in Eq. (4.24) is still a non-linear integer program without a general polynomial-
time solution. However, for many common feasibility criteria, reward functions, and discount factors, it can
be further simplified to be efficiently solved or approximated by existing algorithms.

The first element to consider is the feasibility criterion; most integer programming algorithms permit
only linear constraints on the optimization variable. This is equivalent to requiring that there exist a weight
matrix W ∈ RM×K and budget vector c ∈ RM such that N ∈ NK

Ω (ξt) ⇐⇒ WN ⪯ c. This requirement is
satisfied for temporal and knapsack feasibility criteria, defined below.

Definition 10. A temporal feasibility criterion is one defined as, given some horizon T ∈ N>0,

ξ0 = 0, δ(ξt−1, at) = ξt−1 + 1, Ω(ξt) =

{
A, ξt < T

∅, otherwise.

Definition 11. A knapsack feasibility criterion is defined as, given a budget c ∈ R>0, a weight vector
w ∈ RK

>0, and bounds u1, . . . , uK ∈ N ∪ {+∞},

ξ0 = 0K , δ(ξt−1, a) = ξt−1 + χa, k ∈ Ω(ξt) ⇐⇒

{
⟨w, ξt⟩+ w(k) ≤ c,

and ξt(k) < uk,

where the characteristic vector χk ∈ {0, 1}K satisfies χk(i) = 1 ⇐⇒ i = k.

Next, we consider how the action reward interacts with the feasibility criterion and discount factor. If
action rewards are negative, the agent may be driven towards a terminal state as quickly as possible if the
feasibility criterion permits it. As this may not be desirable behaviour in all cases, care must be taken when
defining action rewards or shifting their values by a constant. Furthermore, negative action rewards can
lead to the agent instead seeking delays, particularly if γ < 1; if taking an action with negative expected
reward is required to satisfy the feasibility criterion, the optimal solution may precede that action with an
arbitrarily long sequence of low or zero reward actions, in order to discount it.

Lastly, we consider how the belief reward interacts with the feasibility criterion and discount factor.
As with action reward, if the belief reward can be negative, the agent may seek out or delay termination;
as belief reward is earned only at termination, care must also be taken if actions can reduce the expected
posterior belief reward. The problem is thus simpler if the belief reward function is non-negative and
adaptive monotone [58]: ∀bt, ∀a, Ex|bt

[
R(bx,at+1)

]
≥ R(bt) ≥ 0. Such belief reward functions are common,

as belief rewards generally measure how much “information” has been learned about one or more of the
hidden parameters; as the hidden parameters θ are fixed, taking an action never causes a learning agent
to lose information. By Jensen’s inequality, adaptive monotonicity is satisfied if R(b) is convex in b; such
belief rewards include the negative entropy of b, and the log generalized-precision log detΣ−1, where Σ is the
covariance matrix of b. Even with a non-negative, adaptive monotone belief reward function, termination-
seeking behaviour may arise for a discount factor γ < 1; if the agent cannot increase its terminal belief
reward by a factor of at least γ−1 with each action, it will seek out a terminal state as quickly as possible.

Based on the issues discussed above, we assume a non-negative adaptive monotone belief reward and
either non-negative action rewards or a temporal feasibility criterion.6 Given these assumptions, the choice of
integer programming algorithm depends primarily on the discount factor and form of the expected posterior
belief reward as a function of N . For example, efficient algorithms are known for R̄(N ; bt) that are concave
and modular or submodular in N .7 The contribution of action reward as a function of N is linear and
modular when γ = 1, and generally M ♮-concave [59] and submodular otherwise. A non-exhaustive list of
algorithms for efficiently solving Eq. (4.24) given various combinations of feasibility criterion, belief reward,
and discount factor is presented in Table 4. The approximation factor measures the ratio between the value
of the policy found and the value of the true ODOL policy.

6These assumptions are also driven by practical considerations as solvers for many classes of integer programs, such as
knapsack problems, typically expect non-negative objectives.

7Submodularity is equivalent to only non-positive off-diagonal elements in the Hessian of R̄(N ; bt), while supermodularity
is equivalent to only non-negative off-diagonal elements. A modular function is both submodular and supermodular.
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Table 4: Solvers for Eq. (4.24) under common feasibility criteria and expected belief reward properties.

Feasibility
Criterion

γ R̄(N ; b) Problem Class Solver
Approx.
Factor

Runtime
Complexity

Temporal (0, 1] 0, ∀N Concave Maximization Greedy 1 O(K)

Temporal 1
Concave &
Modular

Separable Concave
Maximization

Iterative
Greedy

1 O(Kh)

Temporal (0, 1] M-Concave [60]
Integer M-Concave
Maximization [60]

Steepest
Ascent [61]

1 O(K2h)

Temporal (0, 1]
Concave &
Submodular

Monotone Submodular
Maximization [62]

Iterative
Greedy

1− e−1 O(Kh)

Knapsack 1
Linear &
Modular

(Un-)Bounded
Knapsack [63]

Dynamic
Program

1 O(Kh)

Knapsack (0, 1] 0, ∀N Submodular Cost, Sub-
modular Knapsack [64]

Iterative
Greedy

1− e−1 O(Kh)

Knapsack 1
Concave &
Submodular

4.3.2. Applications to Solving θ- and X-Optimal Policies

The condition which most simplifies finding and solving the value of θ-optimal policies is an observation-
independent belief reward, such that the reward assigned to a posterior belief distribution is a function of
only the initial belief distribution and the actions taken. As a common example, if the posterior belief
distribution b is normal with covariance matrix Σ, then a belief reward function satisfying ∃f : R(b) = f(Σ)
is observation-independent. Under this condition, finding the θ-optimal policy reduces to solving for action
counts, so one of the solvers from Table 4 may apply.

While there is always a deterministic open-loop X-optimal policy for a given X, the main source of
complexity in finding it and solving its value is, likewise, the belief reward function. A strong condition
which simplifies finding and solving the value of X-optimal policies is a separable belief reward and a temporal
feasibility criterion, such that ∃f : R(bx,at+1) = R(bt)+f(x, a). The problem still cannot be reduced to solving
for action counts, however it can be simplified into O(h) univariate optimization problems.

5. The Endogenous Bayesian Risk Minimization Approach

We propose Endogenous Bayesian Risk Minimization (EBRM) as a general-purpose approach to optimal
online learning. The goal of an EBRM policy is to, at each belief state St, find and imitate a policy that
is optimal from that state. To make this approach computationally tractable, we constrain our search to a
small set of simple candidate policies Πt ⊂ Π. In each state, the EBRM policy imitates the policy in Πt

with the maximum value,

πebrm(St) := argmax
π∈Πt

V π(St) (5.1)

The set of candidate policies is the only “hyperparameter” of an EBRM algorithm.
By imitating the candidate policy with the highest value in each decision step, the value of the best

candidate policy is a lower bound on the value of the EBRM policy, and the Bayes’ risk of the best candidate
policy similarly upper bounds the Bayes’ risk of EBRM. Thus an EBRM policy accumulates, in expectation,
more reward than any individual candidate policy would.
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5.1. Greedy-EBRM: EBRM using One-Step Lookahead Candidate Policies

Greedy-EBRM is the simple yet highly effective online learning algorithm which results from choosing
the candidate policy set composed of all deterministic 1-step lookahead policies,

Πt = {πt,a}a∈A, (5.2)

πt,a(St) = Take action a, observe y, then proceed according to the posterior ODOL policy. (5.3)

The value of a deterministic 1-step lookahead policy is therefore

V πt,a(St) = Ex|bt

[
R(x, a) + max

N∈NK
Ω (ξat+1)

γV̂
(
N ;Sx,a

t+1

)]
, (5.4)

where V̂ (N ;Sx,a
t+1), defined in Eq. (4.24), is the value of the best open-loop policy for Sx,a

t+1 = {bx,at+1, ξ
a
t+1}

consistent with action counts N . The maximization problem is equivalent to the one in Eq. (4.24), but
with a shorter decision horizon, so it can be calculated using the same algorithm that found the ODOL
policy. However, there is generally no closed-form solution to the expectation of the maximum, and so the
expectation often requires sampling-based methods to compute.

Fortunately, we can use the epistemic and process risk functions to help eliminate sub-optimal policies
and obtain probabilistic bounds on the expectation in Eq. (5.4). First, we observe that

π⋆
t ∈ argmax

π∈Πt

V π(St) ⇐⇒ π⋆
t ∈ argmin

π∈Πt

ProcessRisk(π;St). (5.5)

We then decompose the process risk of each πt,a into two terms: the immediate risk of a, which represents
the “opportunity cost” of choosing action a instead of following the ODOL policy, and the expected value of
information gained from the observation y which would be generated by the action a.

Algorithm 1: Greedy-EBRM

1 Given: OLP Specification
2 Input: Belief State St

3 InitialRisk(St)← AleatoricBayesRisk(St) + EpistemicRisk(St)
4 foreach a ∈ A:
5 ProcessRisk(πt,a;St)← ImmediateRisk(St, a)− γ · ExpectedVoI(St, a)
6 end foreach
7 a⋆t+1 ← argmina∈A[ProcessRisk(πt,a;St)] // Optimal action

8 Ut ← InitialRisk(St) + ProcessRisk(πt,a⋆
t+1

;St) // Upper bound on Greedy-EBRM Bayes’ risk

9 return a⋆t , Ut

We begin by defining the immediate risk of an action a, which quantifies how much better the current
ODOL policy is expected to perform than the best deterministic open-loop policy that begins by picking a.
Equivalently, this measures how much additional regret is expected to be incurred over the ODOL policy by
being forced to take action a as the next action. Importantly, both policies are constructed according only
to the current belief state, without considering possible observations.

Definition 12. The immediate risk of performing an action a ∈ A in a belief state St ∈ S is defined as

ImmediateRisk(St, a) := V π̂⋆
St (St)−

(
Ex|bt [R(x, a)] + max

N∈NK
Ω (ξat+1)

Ex|bt

[
γV̂
(
N ;Sx,a

t+1

)])
. (5.6)

The term on the right side of Eq. (5.6) represents the value of the best deterministic open-loop policy
which begins by taking action a.8 At least one of these policies is an ODOL policy for the state St; therefore,

8Recall that, even if the ODOL policy π̂⋆
St

would take action a at least once, it only begins with a if a ∈ argmaxa Ex|b[R(x, a)].
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computing all K immediate risks requires computing the value of exactly K deterministic open-loop policies,
and it holds ∀St, ∀a that ImmediateRisk(St, a) ≥ 0.

Next, the expected value of information of an action a, defined below, measures how much the value of
an ODOL policy for the posterior state Sx,a

t+1 constructed with the additional observation Φ(x, a) surpasses,
in expectation, one that is constructed without it.

Definition 13. The expected value of information gained by performing action a in belief state St is

ExpectedVoI(St, a) := Ex|bt

[
max

N∈NK
Ω (ξat+1)

V̂
(
N ;Sx,a

t+1

)]
− max

N∈NK
Ω (ξat+1)

Ex|bt

[
V̂
(
N ;Sx,a

t+1

)]
. (5.7)

While the expected value of information is driven by uncertainty in the belief distribution and the amount
of information gained from an observation, it is measured in units of real reward (value). It is also closely
related to epistemic risk, as shown in Lemma 3.

Lemma 3. The expected value of information is bounded according to,

0 ≤ ExpectedVoI(St, a) ≤ EpistemicRisk
(
Ex|bt

[
Sx,a
t+1

])
− Ex|bt

[
EpistemicRisk

(
Sx,a
t+1

)]
. (5.8)

Proof. Refer to Appendix E.

The expected value of information represents the rate of convergence of the value of the ODOL policy to
the value of the θ-optimal policy, as described in Theorem 1. Together, the expected value of information
and immediate risk measure the process risk of any 1-step lookahead policy:

ProcessRisk(πt,a;St) = ImmediateRisk(St, a)− γ · ExpectedVoI(St, a). (5.9)

The first practical result of this analysis, presented in Proposition 3, enables Greedy-EBRM to eliminate
from consideration policies in the candidate policy set that are known to be sub-optimal.

Proposition 3. If the immediate risk of an action a ∈ A exceeds the epistemic risk of the state Ex|bt
[
Sx,a
t+1

]
=

{bt, ξat+1}, then the deterministic 1-step lookahead policy πt,a is not a minimizer of the process risk. That is,

ImmediateRisk(St, a) > γ · EpistemicRisk
(
Ex|bt

[
Sx,a
t+1

])
=⇒ πt,a ̸∈ argmin

π∈Πt

ProcessRisk(π;St). (5.10)

Proof. Refer to Appendix E.

Applying the bound in Proposition 3 requires, for each action a ∈ A, both the immediate risk of the
action and the values of the ODOL and θ-optimal policies for the state Ex|bt

[
Sx,a
t+1

]
= {bt, ξat+1}, in order

to compute the epistemic risk bound. Then, estimating the process risk of each 1-step lookahead policy
πt,a (excluding those eliminated from consideration under Proposition 3) can be done using sampling-based
methods to estimate the expected value of information gained by action a. Using each sample to estimate
the value of information requires finding and computing the value of an ODOL policy, as shown in Lemma 4.

Lemma 4. Let xi
iid∼ Pr(x | bt) be independently and identically distributed hidden outcomes conditioned on

the belief distribution bt of state St = {bt, ξt}, and define

Na
t+1 ∈ argmax

N∈NK
Ω (ξat+1)

Ex|bt

[
V̂
(
N ;Sx,a

t+1

)]
. (5.11)

The estimated value of information gained by action a ∈ A in this state, based on n ∈ N>0 samples, is

νa(n) :=
1

n

n∑
i=1

[
max

N∈NK
Ω (ξat+1)

V̂
(
N ;Sxi,a

t+1

)
− V̂

(
Na

t+1;S
xi,a
t+1

)]
. (5.12)

By construction it holds that νa(n) ≥ 0, and by the linearity of expectation E[νa(n)] = ExpectedVoI(St, a).
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Following from Lemma 4, the value of information has finite variance if and only if ∃σa ∈ R such that

Ex|bt

( max
N∈NK

Ω (ξat+1)
V̂
(
N ;Sx,a

t+1

)
− V̂

(
Na

t+1;S
x,a
t+1

)
− ExpectedVoI(St, a)

)2
 = σ2

a. (5.13)

We further call the value of information bounded by Ma ∈ R if and only if

Pr

(
max

N∈NK
Ω (ξat+1)

V̂
(
N ;Sx,a

t+1

)
− V̂

(
Na

t+1;S
x,a
t+1

)
≤Ma

)
= 1. (5.14)

Assuming the value of information has finite variance, Theorem 2 provides probabilistic bounds on
whether πt,a ∈ argminπ ProcessRisk(π;St). These bounds depend on the number of samples used to estimate
the value of information of each action. Corollary 2 shows how the number of samples can be picked to
reach any desired level of confidence that a policy πt,a is sub-optimal, before rejecting it. Under the stronger
condition that the value of information is bounded, Theorem 3 provides a lower bound on the number of
samples required to bound the expected risk of rejecting a policy πt,a to some value ϵ > 0. Proofs for these
results are provided in Appendix E.

Theorem 2. Suppose that for each a ∈ A, na > 0 samples have been used to estimate the expected value of
information gained by action a in the belief state St. Then, define

k ∈ argmin
a′

[
ImmediateRisk(St, a

′)− γ · νa′(na′)
]
, (5.15)

µa := (ImmediateRisk(St, a)− ImmediateRisk(St, k))− γ(νa(na)− νk(nk)). (5.16)

If the values of information gained by actions a and k have finite variances σ2
a and σ2

k, respectively, then

µa > 0 =⇒ Pr

(
πt,a ̸∈ argmin

π∈Πt

ProcessRisk(π;St)

)
≥ µ2

anank

γ2(σ2
ank + σ2

kna) + µ2
anank

. (5.17)

Corollary 2. It follows algebraically from Theorem 2 that, ∀ϵ > 0 and ∀a : µa > 0,

nk ≥
⌈
2σ2

kγ
2(1− ϵ)

µ2
aϵ

⌉
, na ≥

⌈
2σ2

aγ
2(1− ϵ)

µ2
aϵ

⌉
=⇒ Pr

(
πt,a ∈ argmin

π∈Πt

ProcessRisk(π;St)

)
≤ ϵ. (5.18)

Theorem 3. Suppose that the value of information gained by each action a ∈ A is bounded by Ma, and
na = nk = n. Then, following the notation of Theorem 2 and Corollary 2, by Hoeffding’s inequality [65],

Pr

(
πt,a ̸∈ argmin

π∈Πt

ProcessRisk(π;St)

)
≥ 1− exp

(
−2nµ2

a

γ2(Ma +Mk)
2

)
. (5.19)

Under these assumptions, ∀ϵ > 0 and ∀a : µa > 0, if

n ≥

⌈
γ2(Ma +Mk)

2

2µ2
a

ln

(
γ(Ma +Mk)

ϵ

)⌉
(5.20)

then the expected risk of eliminating policy πt,a is bounded above by ϵ.

In practice, tighter bounds may be possible by taking into account the problem-specific structure of
the action count value function V̂ (N ;St). It is worth noting that while the number of samples required to
confidently reject a policy πt,a grows as µa → 0, small values of µa indicate that the expected difference in
process risk (value) compared to the best reference policy πt,k is small, so the expected risk of rejecting πt,a

may be small even if there is a non-trivial probability that it is optimal. Furthermore, even a single sample
of the expected value of information for each action is sufficient to provide an unbiased estimate of the best
policy in the policy set. Thus, these results are best applied in settings where risk quantification is critical;
in most cases, the number of samples is likely chosen based on the computational resources available.
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5.2. Overcoming the Myopia of One-Step Lookahead Policy Sets

The expected value of information for 1-step lookahead policies cannot account for the value of infor-
mation from multiple actions. Consequentially, these policies tend to have poor performance when multiple
actions must be taken in order to produce any change in the epistemic risk; an excellent discussion of this
issue with respect the Knowledge Gradient algorithm [7] for MAB problems is presented in [13]. We present
a simple instance of the problem here.

Problem 2 (Apple Tasting). The apple tasting problem is characterized by X = {1, 2}, A = {1, 2} and

W =

[
1 0
0 1

]
, O =

[
1 0
0 0

]
,

such that R(x, a) = W (x, a) and Φ(x, a) = O(x, a). Suppose xt = 1 with probability θ ∈ [0, 1], and bt(θ) =
Beta(θ;αt, βt). If the agent takes action 1, it receives a binary observation that it can use to update its belief
distribution according to

αt+1 = αt + yt+1, βt+1 = βt + (1− yt+1).

However, if the agent takes action 2 it receives the same observation regardless of xt, and so gains no
information. There is a temporal feasibility criterion and no belief reward or discounting.

Example 3 (Failure of Greedy-EBRM). The ODOL policy for Problem 2 is to always take action 1 if
E[θ] ≥ 0.5, and to otherwise take action 2. Suppose that at time t, the belief state is characterized by
(αt, βt) = (1, 3), so E[θ] = 0.25. If the agent takes action 1, the possible posterior belief distribution
parameters are (2, 3) or (1, 4); in either case, the posterior ODOL policy will be unchanged as it will still
hold that E[θ] < 0.5. Similarly, if the agent takes action 2, its belief state is not updated and so the ODOL
policy is unchanged. Therefore, as the ODOL policy in every possible posterior state is unchanged, the
expected value of information from either action is zero; the agent will thus continue to select action 2
forever, gaining no new information and incurring linear regret.9

Accordingly, we present an asymptotic value of information approximation as a simple alteration to
Greedy-EBRM that guarantees, over enough decisions, convergence on the optimal policy if the parameters
θ are identifiable, as discussed in Theorem 1. This technique is discussed in the following subsection.

5.2.1. AsympGreedy-EBRM: Leveraging the Asymptotic Value of Information

The main limitation of Greedy-EBRM is that the expected value of information does not capture the
value of information gained only from multiple actions. AsympGreedy-EBRM overcomes this issue by relying
on a secondary, asymptotic measure of the value of information provided by some action. First, we introduce
the Fisher information matrix Ia corresponding to action a, which is defined as, with D := dim θ,

Ia(θ0) := −


Ey

[
∂2

∂θ2
1
log p(y | θ, a)

∣∣∣θ = θ0

]
· · · Ey

[
∂2

∂θD∂θ1
log p(y | θ, a)

∣∣∣θ = θ0

]
...

. . .
...

Ey

[
∂2

∂θD∂θ1
log p(y | θ, a)

∣∣∣θ = θ0

]
· · · Ey

[
∂2

∂θ2
D
log p(y | θ, a)

∣∣∣θ = θ0

]
, (5.21)

p(y | θ, a) =
∫
X
1(Φ(x, a) = y)gθ(x)dx. (5.22)

Informally, the matrix Ia encodes how changes in the hidden parameters change the likelihood of the random
variable y conditioned on an action a. There are cases where one or more hidden parameters do not play
a role in the likelihood of the observation produced by a particular action; for example, in Problem 2, the

9Note that, as applied to Problem 2, Greedy-EBRM reduces to the Knowledge Gradient algorithm [7].
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hidden parameter does not affect the likelihood of the observation y for a = 2. In such cases, Ia is singular.
However the combined Fisher information matrix,

IA(θ) :=
∑
a∈A
Ia(θ), (5.23)

is non-singular if and only if the parameters θ are identifiable, as defined in Subsection 4.1.2. In fact, the
Bernstein-von Mises theorem [66] implies that, if the parameters are identifiable and every action is taken
at least n ∈ N>0 times, the belief distribution converges to a multivariate Gaussian such that

lim
n→∞

bK·n(θ)→ N
(
θ; θ⋆, n−1IA(θ⋆)−1

)
, (5.24)

where θ⋆ is the true value of the hidden parameters.
Importantly, the Fisher information matrices {Ia}a∈A provide an indication of which actions provide

information, and which parameters they provide information about. Thus, even if the 1-step expected value
of information for an action a is zero, a non-zero matrix Ia (even if singular) indicates that the action still
provides information about one or more parameters. In fact, the Bernstein-von Mises theorem implies the
asymptotic value of the information. This concept is formalized in Theorem 4.

Theorem 4. Let Σt denote the covariance of the belief distribution bt and define θ̂t = Eθ|bt [θ]. Suppose

IA(θ̂) is non-singular, Θ = RD, and the regularity conditions of the Bernstein-von Mises theorem are
satisfied [66].10 As t→∞, if every action is taken at least ⌊t|A|−1⌋ times, then the epistemic risk of state
St = {bt, ξt} decreases in expectation according to

EpistemicRisk(St)− Ex|a
[
EpistemicRisk(Sx,a

t+1)
] P−−−→

t→∞
EpistemicRisk(S̃t)− EpistemicRisk(S̃a

t+1), (5.25)

b̃t = N
(
θ̂t,Σt

)
, (5.26)

b̃at+1 = N
(
θ̂t,
(
Σ−1

t + Ia(θ̂t)
)−1

)
, (5.27)

where S̃t = {b̃t, ξt} and S̃a
t+1 = {S̃a

t+1, δ(ξt, a)}.

Proof. As the number of actions tends to infinity, the relative weight of the prior goes to zero, and so θ̂ → θ⋆

and Σt → n−1IA(θ⋆)−1; then, the theorem holds by application of Bernstein-von Mises theorem.

We define the quantity in the right side of Eq. (5.25) to be the asymptotic value of information,

AsymptoticVoI(St, a) := EpistemicRisk(S̃t)− EpistemicRisk(S̃a
t+1). (5.28)

The asymptotic value of information calculation assumes that the parameters θ have approximately con-
verged on their true value, and thus measures how the epistemic risk will change as the uncertainty of the
belief distribution decreases while the expectation of the parameters stays constant. As long as the param-
eters are identifiable and the epistemic risk is non-zero, the asymptotic value of information will be strictly
positive, as seen in Corollary 3.

Corollary 3. If the parameters θ are identifiable, then

EpistemicRisk(St) > 0 =⇒ ∃a ∈ A : AsymptoticVoI(St, a) > 0. (5.29)

Proof. By contradiction; if ∀a, AsymptoticVoI(St, a) = 0, then epistemic risk has converged. By Theorem 1,
the epistemic risk must then be zero, since the parameters are identifiable.

10Among these, the one most of note is that ∀θ ∈ Θ, we require the prior to satisfy b0(θ) > 0.
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Corollary 3 implies that, for any OLP in which the parameters are identifiable, the asymptotic value
of information will guide the agent towards complete knowledge of the parameters even if no single action
is sufficient to gain useful information. Furthermore, the asymptotic value of information is measured in
units of reward (value), and parallels the expected value of information in modelling how the epistemic risk
changes as actions are taken. We therefore introduce, in Algorithm 2, AsympGreedy-EBRM, a modification
of Greedy-EBRM for problems where the expected value information from any single action may be zero,
even if significantly more information could be gained from a bit more exploration.

Algorithm 2: AsympGreedy-EBRM

1 Given: OLP Specification
2 Input: Belief State St

3 InitialRisk(St)← AleatoricBayesRisk(St) + EpistemicRisk(St)
4 foreach a ∈ A:
5 ProcessRisk(πt,a;St)←

ImmediateRisk(St, a)− γ ·max{ExpectedVoI(St, a), AsymptoticVoI(St, a)}
6 end foreach
7 a⋆t+1 ← argmina∈A[ProcessRisk(πt,a;St)] // Optimal action

8 Ut+1 ← InitialRisk(St) + ProcessRisk(πt,a⋆
t+1

;St) // Upper bound on AsympGreedy-EBRM Bayes’ risk

9 return a⋆t+1, Ut+1

Remark 1. The assumption Θ = RD in Theorem 4 does not always hold; in this case, while the belief
distribution still converges locally to a multivariate Gaussian, it may not be possible to compute the epistemic
risk for a Gaussian belief. In such cases, a heuristic solution is for the agent to use the original belief
distribution family for the asymptotic belief distributions, with b̃t = bt and the parameters of b̃at+1 chosen to

maximize its similarity to N (θ̂t, (Σ
−1
t + Ia(θ̂t))−1), such as by moment matching.

5.2.2. Other Approaches

An alternative approach to overcome the myopia of 1-step lookahead policies is to consider the larger
set of m-step lookahead policies, as for a sufficiently large m the best m-step lookahead policy is equivalent
to the optimal closed-loop policy π⋆

b .
11 However the computational complexity of finding the best m-step

lookahead policy is exponential in m. This large set can be reduced to only linear lookahead policies, which
consider taking the same action multiple times but not combinations of actions; this strategy is used by the
KG* algorithm [6], however it has been shown to remain overly myopic [13].

Alternatively, one may include other non-myopic policies in the candidate policy set. The EBRM solution
outperforms any of the individual policies in the candidate policy set, so adding more policies generally
improves the EBRM solution. The challenge of this approach is finding policies for which the value can be
computed efficiently. In any case, the epistemic and immediate risk functions can be used to lower bound
the process risk of any policy, even a stochastic one, as seen in Proposition 4.

Proposition 4. The process risk, in the belief state St ∈ S, of any policy π is bounded below as

ProcessRisk(π;St) ≥ Ea∼π(St)

[
ImmediateRisk(St, a)− Ex|bt

[
EpistemicRisk(Sx,a

t+1)
]]
. (5.30)

Proof. The process risk of an action is lower bounded by the regret incurred immediately by action a and the
minimum possible process risk of any policy in the posterior belief state. The process risk of the posterior
belief state Sx,a

t+1 is bounded below by −EpistemicRisk(Sx,a
t+1) (refer to Lemma 5 in Appendix E).

11This occurs by m = h− 1, where h is, as previously, the decision horizon.

24



Table 5: Multi-armed bandit problems (MAB) characteristics.

OLP Component MAB Definition

Hidden Outcomes xt ∈ X ⊆ RK

Actions at ∈ A = {1, . . . ,K}
Observations yt ∈ Y ⊆ R

Observation Fn. Φ(xt, at) = xt(at)

Table 6: OLP component specifications for various stochastic bandits. p.s.d.: Positive semi-definite.

OLP Component Gaussian Bandit Bernoulli Bandit Beta Bandit

θ Hidden Parameters µ ∈ RK µ ∈ [0, 1]
K

- Known Parameters Σ ∈ RK×K (p.s.d.) None ν ∈ R>0

fθ Process Model N (µ,Σ) Bernoulli(µ) Beta(µν, (1− µ)ν)

bt Belief Distribution N
(
µ̂t, Σ̂t

)
Beta(αt, βt)

- Belief Parameters µ̂t ∈ RK , Σ̂t ∈ RK×K αt ∈ RK
>0, βt ∈ RK

>0

5.3. Anytime-EBRM: AsympGreedy-EBRM for Unknown Time Horizons

Many classical OLPs are studied in the context of an infinite time horizon with no feasibility constraints
(i.e. ∀ξ,Ω(ξ) = A), to make it easier to study the asymptotic behaviour of online learning algorithms. This
is closely related to the case of an OLP that stops randomly, where algorithms are expected to minimize
accumulated regret over any time horizon.

The AsympGreedy-EBRM algorithm cannot generally be implemented for an infinite time horizon with-
out discounting, since it leads to infinite risk values. So, we introduce a modified Anytime-EBRM algorithm,
which assumes that the remaining time is always equal to the current time (i.e., that it is always “halfway
done”). Thus, at time t, it considers an artificial temporal feasibility criterion Ωt such that,

Ωt(ξ) =

{
A, ξ < 2t+ 1,

∅, otherwise.
(5.31)

This provides a means to study the asymptotic behaviour of the AsympGreedy-EBRM approach and how
it performs without knowledge of the time horizon. We compare Anytime-EBRM to the other EBRM
algorithms and baselines in Section 6.

6. Experimental Results

In this section we explore the performance of EBRM algorithms across a range of common benchmark
OLPs as well as some novel experiments that reflect real-world applications. Different OLPs are characterized
by different specifications of the components listed in Table 1.

6.1. Bandit Optimization and Best-Arm Identification

Stochastic multi-armed bandits are a longstanding benchmark with which to evaluate online learning
algorithms. The distinguishing features of stochastic MABs are presented in Table 5. We will begin by
evaluating AsympGreedy-EBRM algorithms alongside popular online learning heuristics across a variety of
stochastic bandits, described in Table 6, as well as both archetypal OLP goals of bandit optimization and
best-arm identification as described in Table 7.
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Table 7: OLP specification for bandit optimization and best-arm identification.

OLP Component Bandit Optimization Best-Arm Identification

R(xt, at) Action Reward xt,at 0

R(bt) Belief Reward 0
maxk Eµ|bt [µ(k)] = maxk µ̂t(k)

maxk P (µ(k) > µj ∀j ̸= k | bt)
γ Discount Factor (0, 1] N/A

Ω(ξ) Feasibility Criterion Temporal with horizon T ∈ N>0

The defining characteristic of a bandit problem is “bandit feedback”; this refers to the observation
function Φ(xt, at) = [xt]at

, which indicates that after each action the agent is provided with only the hidden
outcome corresponding to that action. The bandit optimization (BDO) goal is to choose actions that
maximize the sum of these observations; this is a classic exploration-exploitation problem, as the agent must
explore different actions before it can begin to identify and exploit the action with the largest observation
mean. The metric for performance in bandit optimization is (exogenous) average expected regret,

t−1 ·R(Aπ
t ;S0, θ) =

1

t

t∑
τ=1

(
max
k∈[K]

Ex|θ[R(x, k)]− Ex|θ[R(x, at)]

)
. (6.1)

Lower average expected regret values are better; for algorithms which are asymptotically optimal at BDO,
the average expected regret should tend to 0. The average expected regret represents how much larger the
average reward of the θ-optimal policy is than the average reward of each online learning algorithm. For
experiments in which θ ∼ b0, the terminal regret of each algorithm is, in expectation, equal to the Bayes’
risk of that algorithm relative to the θ-optimal policy from the initial state S0 = {b0, ξ0}. Another popular
metric is average instance regret, equal to the average expected regret plus the average aleatoric regret; the
aleatoric regret is, in expectation, the same for all algorithms in an experiment.

The goal of best-arm identification (BAI) is to identify the action with the largest observation mean,
without regard to which actions are taken to do so. As seen in Table 7, success in this objective can be
measured in two ways. The first is by maxk µ̂t(k), which represents the mean action reward of the best
action identified by time t [4]. This encourages identifying the action with the largest mean, and the penalty
of identifying a different action is proportional to the difference in their respective action reward means. We
will focus on the “Epistemic Uncertainty”,

Eµ|bt

[
max
k∈[K]

µ(k)− max
k∈[K]

µ̂k

]
, (6.2)

which is directly proportional to maxk µ̂k, and represents how much the observation mean of the true best
action is expected to exceed the largest observed observation mean. As such, this metric converges to 0 as
the agent becomes increasingly certain that no action has a larger observation mean than the best one it
has identified.

Another popular metric of success in best-arm identification is the maximum probability for which any
particular action is best [12]; this metric is intuitive and representative of many real-world problems, however
it is difficult to optimize when the best n > 1 actions perform very similarly. In fact, this metric fluctuates
asymptotically if the top n actions have equal observation means. As such it is poorly suited as a belief
reward; we will, however, use it as an evaluation metric in some experiments. Since confidence values are
often very close to 1, we display this metric in figures as “Log Uncertainty”, computed as,

ln

(
1− max

k∈[K]
P (µ(k) > µj ∀j ̸= k | bt)

)
. (6.3)
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Table 8: Bayes-EBRM Algorithm Components.

EBRM Function Bayes-EBRM

ImmediateRisk maxk µ̂t(k)− µ̂t(a)

EpistemicRisk (T − t)Eµ|bt [maxk µ(k)−maxk µ̂t(k)]

ExpectedVoI (T − t− 1)Ex|bt
[
maxk µ̂

x,a
t+1(k)−maxk µ̂t(k)

]
AsymptoticVoI (T − t− 1)

(
Eµ|b̃t [maxk µ(k)]− Eµ|b̃at+1

[maxk µ(k)]
)

Table 9: Epi-EBRM Algorithm Components.

EBRM Function Epi-EBRM

ImmediateRisk 0

EpistemicRisk Eµ|bt [maxk µ(k)−maxk µ̂t(k)]

ExpectedVoI Ex|bt
[
maxk µ̂

x,a
t+1(k)−maxk µ̂t(k)

]
AsymptoticVoI Eµ|b̃t [maxk µ(k)]− Eµ|b̃at+1

[maxk µ(k)]

Table 10: Anytime-EBRM Components for Multi-Armed Bandits (MABs).

EBRM Function Anytime-EBRM

ImmediateRisk maxk µ̂t(k)− µ̂t(a)

EpistemicRisk (t+ 1)Eµ|bt [maxk µ(k)−maxk µ̂t(k)]

ExpectedVoI t · Ex|bt
[
maxk µ̂

x,a
t+1(k)−maxk µ̂t(k)

]
AsymptoticVoI t ·

(
Eµ|b̃t [maxk µ(k)]− Eµ|b̃at+1

[maxk µ(k)]
)
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6.1.1. AsympGreedy-EBRM Algorithms

All AsympGreedy-EBRM algorithms operate according to Algorithm 2; however, the immediate risk and
value of information of each action depend on the OLP specification. The definitions of these functions for
bandit optimization and best-arm identification objectives are presented in Tables 8 and 9. We show the
corresponding functions for bandit optimization with Anytime-EBRM in Table 10. As a result of the choice
of metric used for best-arm identification, epistemic risk for both tasks differ only by a scaling that depends
on the time horizon; as such, the expected value of information and asymptotic value of information are also
similarly defined for the two problems. The key difference is that in bandit optimization problems there is
an immediate risk to taking an action with a lower observation mean, which does not apply to best-arm
identification problems.

To distinguish between AsympGreedy-EBRM algorithms for bandit optimization and best-arm identifi-
cation, we label the former as Bayes-EBRM and the latter as Epi-EBRM. This naming convention is based
on how AsympGreedy-EBRM for best-arm identification is equivalent to a bandit optimization algorithm
that chooses actions to minimize only the posterior epistemic risk (i.e., maximize value of information).
Conversely, Bayes-EBRM chooses actions to minimizes the Bayes’ risk by identifying the 1-step lookahead
candidate policy with minimal process risk.

6.1.2. Baseline Algorithms

In order to provide a baseline against which to compare the EBRM algorithms, we evaluated several
reference online learning algorithms. These algorithms are presented below, in groups distinguished by their
design goals and whether they take the time horizon (for temporal feasibility criteria) into account.

General Online Learning Algorithms. These algorithms, like the EBRM algorithms, can be applied to any
OLPs which can described by the BMDP formulation presented in Section 3.

• Thompson Sampling (TS; also known as Posterior Sampling) [21]: Samples a set of hidden parameters
θ from the belief distribution bt, and then chooses at+1 to be whichever action action is optimal (for
bandit optimization) according to the sampled parameters. It can be easily extended to a wide range
of OLPs by instead choosing the first action of the ODOL policy for the sampled parameters; we
call this approach Generalized TS. Thompson sampling, first proposed in 1933, is remarkably effective
given its simplicity [10, 67]. While classical Thompson sampling requires no tuning, recent works have
added hyperparameters that can be tuned for better performance on specific bandit problems [20].

Best-Arm Identification. Best-arm identification is one of the earliest fields of online learning, and is often
called “pure exploration”. Oftentimes, bandit optimization algorithms are used with their hyperparameters
tuned to encourage exploration. We consider three dedicated BAI algorithms.

• KG Explore [3, 68]: Chooses the arm with the highest knowledge gradient. This “gradient” represents
how much the largest posterior arm mean is expected to exceed the largest prior (current) arm mean,
multiplied by the remaining time (T − t). KG Explore is the Greedy-EBRM algorithm for BAI, as
this gradient is exactly equal the expected value of information in Eq. (5.7); unlike Epi-EBRM, KG
Explore does not consider the asymptotic value of information.

• KG* Explore [6]: Improves upon KG Explore by computing the knowledge gradient based on repeating
each action m = {1, . . . , T − t} times, and chooses the m for which the knowledge gradient weighted by
m−1 is largest. This is more effective heuristic, but expensive to compute for long time horizons [13].

• Top-Two Expected Improvement (TTEI) [12]: Operates by biasing sampling towards the two actions
with the highest mean observations; the probability that the heuristic chooses the second-best action is
controlled by a hyperparameter, but TTEI generally works well even when this hyperparameter is set
to its default value. It has demonstrated superior performance when compared to various alternatives,
including KG Explore [12].
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Finite-Time Bandit Optimization. These algorithms are designed to minimize regret in stochastic bandit
optimization problems, and take into account the finite time horizon T .

• UCB-MOSS [69]: Chooses the action (arm) with the highest observation mean, with an added bias
proportional to the remaining time horizon (T − t) and inversely proportional to the number of times
that action has been used so far. This bias is designed to be minimax optimal in stochastic bandit
optimization problems with binary rewards.

• Knowledge Gradient (KG) [7]: The same as KG Explore, but adds the observation mean to the
gradient. KG is the Greedy-EBRM algorithm for BDO and, unlike Bayes-EBRM, does not consider
the asymptotic value of information.

• KG* [6]: The same as KG* Explore, but adds the observation mean to the gradient. It still requires
O(Kh) computations for each decision, making it expensive to compute for long time horizons [13].

Asymptotic Bandit Optimization. These algorithms are designed to incur the minimum worst-case regret
in stochastic bandit optimization problems with unknown time horizons (including infinite horizons). Thus
they are generally expected to underperform finite-time bandit optimization algorithms when T is given.

• Double Sampling (DS) [67]: A recent improvement upon Thompson sampling that makes modifications
for a more efficient exploration-exploitation trade-off. It performs similarly to TS when the probability
of any particular action being optimal is low, but chooses the action with the highest observation mean
when the probability of that action being optimal is high. DS uses a variable number of samples to
make each decision, inversely proportional to its confidence in the best action.

• UCB1 [2]: Perhaps the most popular heuristic for bandit optimization problems; as an upper confidence
bound algorithm, it chooses the action with the highest observation mean, biased by an amount that
is inversely proportional to the number of times that action has been chosen in the past. This bias is
often multiplied by a scalar hyperparameter, which can be tuned for better performance on specific
OLPs; a larger scalar encourages exploration over exploitation.

• Information Directed Sampling (IDS/V-IDS) [13]: Chooses actions by minimizing the squared regret
that the agent incurs per bit of information gained by the agent about the optimal action. This works
well across a variety of bandit optimization problems, although it can be computationally expensive
to compute the number of bits of information expected to gained by some action; variance-based IDS
(V-IDS) instead uses a lower bound estimate of this quantity that is much more efficient to compute.

• Any-MOSS (MOSS-anytime) [70]: A variant of UCB-MOSS, this heuristic is designed to be minimax
optimal for asymptotic bandit optimization problems.

6.1.3. Experimental Methodology

All trials used a temporal feasibility criterion with finite horizon T ∈ N>0. Each trial is characterized by
a specific set of hidden parameters θ and hidden outcomes X. In some experiments, the hidden parameters
are fixed, while in others they were randomly generated from the prior belief distribution b0. Regardless,
T hidden outcomes x1, . . . , xT were randomly sampled from the stochastic process fθ. In each round t =
1, . . . , T of each trial, each algorithm chose one action at, and received the observation Φ(xt, at). The same
hidden outcome xt was used to generate the observations and action rewards for all algorithms. The number
of trials varied between experiments, as some experiments required more in order to achieve sufficiently low
standard errors. All figures show 95% confidence intervals of the mean.

6.1.4. Results and Discussion

We evaluated the performance of the AsympGreedy-EBRM algorithms in a variety of numerical experi-
ments, many of which are baselines established by or based on prior works.

One of the most comprehensive comtemporary comparisons of online learning algorithms for bandit
optimization was made by Russo et al. [13]. Table 11 replicates their experiment consisting of a 10-arm
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(a) Anytime-EBRM and DS over-exploit early in each trial, while
Bayes-EBRM outperforms them at BDO by reaching the optimal
level of epistemic uncertainty before exploiting the best arm.

(b) The stark contrast in BAI performance between Epi-EBRM
and KG Explore highlights the importance of using the asymp-
totic value of information to escape bad local minima.

Figure 5: Performance of algorithms in BDO and BAI objectives while making decisions in a 10-arm Bernoulli bandit problem
over 104 turns; lower values indicate better performance. Shaded regions indicate 95% confidence intervals over 5000 trials.

Bernoulli bandit with hidden parameters sampled according to µ ∼ b0, with b0 = Beta(1, 1), and a time
horizon of T = 1000. The columns show the Bayes regret computed from 2000 trials, followed by various
percentiles of Bayes regret. The algorithms which make use of the time horizon T are listed first, with a
double line separating them from the algorithms designed for asymptotic performance.

As Bernoulli bandits with beta priors are among the simplest and most well studied OLPs, it is un-
surprising that Bayes-EBRM makes only a slight, although statistically significant, improvement upon the
previous state-of-the-art for bandit optimization in this problem. More interestingly, it has more consistent
performance than the other leading heuristics, including KG*, IDS, and V-IDS; this is particularly noticeable
in the 90th and 95th percentile results. Anytime-EBRM performs comparably to IDS/V-IDS, demonstrating
that the value of information computed by the AsympGreedy-EBRM approach is similarly useful to the IDS
value of information function, and the performance improvement of Bayes-EBRM is mostly driven by taking
the time horizon into account. The KG heuristic has been noted to perform particularly poorly for bandit
problems with binary rewards [13].

In a similar Bernoulli bandit experiment with a time horizon of T = 104, shown in Figure 5, we find
that Bayes-EBRM continues to outperform the other algorithms in bandit optimization. Similarly, for
best-arm identification, Epi-EBRM achieves lower epistemic uncertainty than any baseline algorithm. This
figure demonstrates aspects of the exploration-exploitation trade-off; in general, algorithms which focus on
minimizing Bayes regret will explore less and have higher epistemic uncertainty [4]. However, for a finite-
time horizon there is an optimal amount of exploration required to do well at bandit optimization; as seen
in Figure 5, Bayes-EBRM spends approximately the first 4000 turns reducing its epistemic uncertainty, and
performs worse on the bandit optimization objective than Anytime-EBRM or DS until this point; then, it
surpasses them both by exploiting its more complete knowledge of the best action. The other algorithms all
over-explore, with the UCB-based algorithms having orders of magnitude larger Bayes regret.

We next consider a 10-arm Gaussian bandit problem with time horizon T = 1000, and b0 a zero-mean
uncorrelated multivariate Gaussian distribution with unit variances. The results are presented in Table 12
and in Figure 6. This is another archetypal online learning problem, and Bayes-EBRM again demonstrates
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Table 11: Bayes Regret. 10-arm Bernoulli Bandit, 1000 Turns. Average over 2000 trials. (1)Results from [13].

Algorithm Mean 10% 25% 50% 75% 90% 95%

Bayes-EBRM 17.2 ±0.3 6.9 9.0 13.2 20.1 30.7 40.6
UCB-MOSS 51.2 ±0.2 41.3 44.8 49.8 55.3 63.0 68.4

KG(1) 51.0 ±1.5 0.7 2.9 11.9 82.3 159.0 204.2

KG*(1) 18.4 ±0.6 2.9 5.4 8.7 16.3 46.9 76.6

Anytime-EBRM 19.8 ±0.4 3.6 8.6 15.9 24.7 37.9 51.4

IDS(1) 18.0 ±0.4 3.6 7.4 13.3 22.5 35.6 51.9

V-IDS(1) 18.1 ±0.4 5.2 8.1 13.5 22.3 36.5 48.8
DS 23.5 ±0.4 9.4 12.7 18.7 29.2 43.7 52.0
TS 28.4 ±0.3 13.1 17.5 25.1 35.3 47.9 56.1

Any-MOSS 53.9 ±0.2 43.7 47.7 52.1 57.9 64.5 71.6
UCB1 133.6 ±0.4 106.7 119.9 135.0 148.0 158.1 164.1

Table 12: Bayes Regret. 10-arm Gaussian Bandit, 1000 Turns. Average over 5000 trials. (1)Results from [13].

Algorithm Mean 10% 25% 50% 75% 90% 95%

Bayes-EBRM 49.6 ±0.6 28.4 34.0 42.1 53.8 69.1 85.5
UCB-MOSS 51.2 ±0.6 29.6 34.0 40.2 50.2 71.0 107.3

KG 63.0 ±1.7 16.3 20.3 25.8 35.7 141.9 303.5
KG* 52.4 ±1.3 18.6 23.3 29.4 39.4 79.0 196.3

Anytime-EBRM 57.2 ±0.8 24.7 30.9 41.6 60.5 98.8 145.6

V-IDS(1) 58.4 ±1.7 24.0 30.3 39.2 56.3 104.6 158.1
DS 66.5 ±0.8 31.2 40.6 54.8 75.5 105.9 136.2
TS 69.5 ±0.5 39.4 48.9 61.7 81.4 106.2 125.5

Any-MOSS 58.0 ±0.8 30.8 35.1 41.3 53.8 96.4 152.2
UCB1 94.4 ±0.4 64.3 74.5 90.3 109.5 129.7 143.7

Table 13: Bayes Regret. 10-arm Gaussian Bandit, 10 time horizons. Average over 2000 trials. (1)Results from [13].

Algorithm
Time Horizon T

10 25 50 75 100 250 500 750 1000 2000

Bayes-EBRM 9.1 14.8 19.7 23.1 24.9 33.5 40.8 45.4 47.6 58.1
UCB-MOSS 15.3 21.2 26.2 29.2 31.1 38.0 43.2 46.0 49.6 57.2

KG 9.1 15.0 19.8 23.6 25.7 36.0 42.1 53.6 61.5 83.7
KG* 9.1 14.9 19.8 23.6 25.7 34.9 40.3 47.8 51.6 61.3

Anytime-EBRM 9.3 15.3 21.4 25.9 29.3 39.9 45.9 51.7 54.6 67.8

V-IDS(1) 9.8 16.1 21.1 24.5 27.3 36.7 48.2 52.8 58.3 68.4
DS 12.0 21.6 29.2 34.1 37.0 47.9 54.6 61.5 65.0 76.6
TS 12.1 21.8 29.8 34.7 37.9 49.4 58.2 64.3 67.8 80.6

Any-MOSS 15.3 20.9 25.5 28.9 30.9 40.1 47.0 51.7 56.3 67.3
UCB1 15.3 24.1 34.3 40.9 45.9 63.0 77.5 86.5 93.4 112.5
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(a) KG and KG* initially over-exploit the BDO objective, result-
ing in lower initial Bayes regret but ultimately performing worse
than Bayes-EBRM and UCB-MOSS, which wait to be more con-
fident in the best arm before exploiting it.

(b) The upper dashed line represents 95% confidence in having
found the best arm, while the lower dashed line represents 99.99%
confidence. Epi-EBRM achieves vastly higher confidence in the
best arm than TTEI or KG* Explore over long horizons.

Figure 6: Performance of algorithms in BDO and BAI objectives while making decisions in a 10-arm Gaussian bandit problem
over 1000 turns. Shaded regions indicate 95% confidence intervals over 2000 trials.

leading performance by a small margin.12 We also experiment with varying the time horizon as in [13].
Each of the values in Table 13 represents the mean expected regret over 2000 trials, so the table represents
20000 trials for each of 9 algorithms. We observe that Bayes-EBRM is the only algorithm which performs
consistently well across all time horizons; KG and V-IDS each perform similarly well to Bayes-EBRM for
short time horizons, but begin to perform much worse from T = 500. Eventually, UCB-MOSS manages to
outperform Bayes-EBRM, despite poor performance over short time horizons.

In best-arm identification on the 10-arm Gaussian bandit problem, we find that Epi-EBRM significantly
outperforms the previous state-of-the-art beyond the first 100 turns. TTEI performs well up to this point,
but its focus on the top-two arm candidates causes it to neglect the other 8 arms which may each still have
a non-negligible chance of being the largest.

In Appendix B, we present the results of additional experiments involving a 2-arm Bernoulli bandit,
a 5-arm Gaussian Bandit, and a 10-arm Beta bandit with time horizons of T = 200, T = 100, and T =
104, respectively. These results are qualitatively similar to the previous results, demonstrating that the
AsympGreedy-EBRM algorithms match or surpass state-of-the-art performance in bandit optimization and
best-arm identification regardless of the type of bandit, the number of arms, or the time horizon.

6.1.5. Hyperparameter Tuning

As noted in previous sections, some online learning heuristics have hyperparameters that can be tuned in
order to achieve better performance on specific OLPs. NoTeS is a tuning algorithm designed specifically to
optimize the hyperparameters of online learning algorithms in order to minimize Bayes’ regret (risk) [20]. It
is an iterative algorithm, which reports the best hyperparameters found by the time it reaches a user-defined
tuning budget (number of iterations). It outperformed various baseline algorithms in being able to find the
lowest Bayes’ regret tuning in the smallest tuning budget [20].

12IDS is missing from this comparison as the authors note that it is too computationally expensive, and V-IDS achieves
comparable performance [13].
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Table 14: Bayes Regret, Bernoulli Bandits. Values averaged over 104 trials. *Results from [20].

2 Arms, 200 Turns, µ =
[
0.4 0.6

]
10 Arms, 104 Turns, µ(k) ∼ Beta(1, 1)

Algorithm Tuning Budget Tuning Budget
Initial 50* 200* 1000* Max* Initial 50* 200* 1000* Max*

UCB1 10.2 5.3 4.7 4.4 4.2 357.7 63.6 52.5 49.2 47.2
TS 5.5 5.1 4.8 4.6 4.3 46.3 74.9 42.9 36.4 33.8

Bayes-EBRM 3.8 — — — — 32.8 — — — —
Anytime-EBRM 4.2 — — — — 37.2 — — — —

DS 5.2 — — — — 38.4 — — — —
UCB-MOSS 7.4 — — — — 99.4 — — — —

Table 14 presents the average Bayes’ regret of UCB1 and TS for 2- and 10-arm Bernoulli bandit problems
with T = 200 and T = 104 respectively, alongside the results for Bayes-EBRM, Anytime-EBRM, DS, and
UCB-MOSS. Bayes-EBRM and Anytime-EBRM outperform UCB1 and TS in both experiments, even when
the latter are tuned over 1000 iterations. As usual, Bayes-EBRM demonstrates better performance than
Anytime-EBRM by taking the time horizon into account.

6.1.6. Computational Decision Complexity Comparison

Most of the baseline algorithms are designed to be fast, and use O(K) computations to compute some
simple heuristic; often, these require taking a sample from bt, or computing functions of its mean or covari-
ance. The exceptions are KG*, which use O(KT ) computations, and DS, which uses a tunable number of
samples from bt for each decision. The EBRM algorithms require sampling to compute the expected value
of information function for each action; in bandit problems, each action only provides information about
one hidden parameter and constructing an ODOL policy from this information has cost O(1), so the cost
of generating a sample is O(1). Thus, assuming a fixed number of samples, EBRM bandit decisions have a
time complexity of O(K). The actual decision time, however, depends heavily on the cost of each sample.
In practice, for bandit problems we can accurately compute the expected value of information by using
integration by quadrature at a relatively small, fixed number of sample locations in Θ.

In Figure 7, we explore how the choice of the fixed number of samples used to estimate the expected
value of information for each action affects the performance and running time of Bayes-EBRM. In general,
we find that BDO performance is largely insensitive to the number of samples used. Furthermore, unlike
KG*, the time for an EBRM algorithm to make a bandit decision is independent of the time horizon T .

6.2. Combined Belief- and Action- Rewards

As noted in Section 1, and highlighted in Figure 1, online learning algorithms must balance between
multiple competing OLP objectives. For all of the baseline algorithms discussed thus far, this balance is
an implicit, fixed parameter of the algorithm. However, EBRM-based approaches are uniquely capable of
achieving OLP objectives that can be expressed as the sum of action-based and belief-based rewards which
meet the conditions described in Section 3. We demonstrate this by revisting the example in Figure 1.

Suppose there is a clinical trial to be conducted with a study group of 423 patients. The four treatments
to be tested have a priori unknown success rates, µ1 = µ2 = µ3 = 0.3 and µ4 = 0.5. After the trial
is completed, the best performing treatment will be administered to N patients outside of the trial who
are likewise awaiting treatment. The goal is to have as many successful outcomes as possible across all
423+N patients; the Task Regret represents the number of unsuccessful treatment outcomes. This example
is adapted from the multi-arm trial setting considered in [1].

The AsympGreedy-EBRM algorithm for this problem is trivial to design, and presented in Table 15 as
Task-EBRM. Note that in this example, epistemic uncertainty and instance regret are equivalent to the x-
and y-axis labels in Figure 1, respectively. This algorithm is parameterized by N , and directly attempts
to maximize the total number of successful patient outcomes. For N = 0 Task-EBRM is equivalent to
Bayes-EBRM, while as N → ∞ its behaviour approaches that of Epi-EBRM. We evaluate this algorithm
for various N alongside the baseline algorithms, and present the results in Figure 8.
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(a) The quality of Bayes-EBRM decisions with 100 samples
is indistinguishable from its performance with only 10 in this
Bernoulli bandit problem, resulting in a single blue-green curve.

(b) The Bayes-EBRM methods for this 10-arm Bernoulli bandit
problem use comparable amounts of computation to the non-
UCB baselines.

(c) The quality of Bayes-EBRM decisions with 1000 samples is
indistinguishable from its performance with 200 in this Gaussian
bandit problem, producing a single solid blue-green curve.

(d) Bayes-EBRM decisions with 200 samples require a fifth as
much computation time as those with 1000 in this problem. We
also see the proportionality of the KG* decision time to T − t.

Figure 7: We re-evaluate the performance of Bayes-EBRM for the Bernoulli and Gaussian bandit experiments, from Figures 5
and 6 respectively, each with 10-arms and T = 103, with different numbers of samples used to estimate the expected value of
information. We further report the average time for each algorithm to make a decision as a function of the turn number.
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Table 15: Task-EBRM Algorithm Components.

EBRM Component Task-EBRM

ImmediateRisk(Bt, a) maxk µ̂t(k)− µ̂t(a)

EpistemicRisk(Bt) (N + T − t)Eµ|bt [maxk µ(k)−maxk µ̂t(k)]

ExpectedVoI(Bt, a) (N + T − t− 1)Ex|bt
[
maxk µ̂

x,a
t+1(k)−maxk µ̂t(k)

]
AsymptoticVoI(Bt, a) (N + T − t− 1)Eµ|b̃at+1

[maxk µ(k)]− Eµ|b̃t [maxk µ(k)]

Table 16: Partial Monitoring Problem Characteristics.

OLP Component Partial Monitoring Definition

X Hidden Outcomes X = {1, . . . ,M}
A Actions A = {1, . . . ,K}
Θ Hidden Parameters Θ = ∆M := {θ ∈ RM

≥0 : ∥θ∥1 = 1}

fθ Process Model Pr(x | θ) = θ(x)

Φ Observation Model Φ(x, a) = H(x, a)

- Known Parameters H ∈ YM×K

R(x, a) Action Reward R(x, a) = −L(x, a)
- Known Parameters L ∈ RM×K

R(b) Belief Reward R(b) = 0 ∀b
Ω(ξ) Feasibility Criterion Temporal with horizon T ∈ N>0

As expected, the relative performance of most algorithms varies greatly for different values of N , while
Task-EBRM consistently achieves the least task regret. For example, TTEI performs relatively poorly even
when N = 2500, but is the best of the baseline algorithms as N → ∞. Similarly, DS and Anytime-EBRM
perform very well for N ≤ 500, but perform poorly for N ≥ 2500. UCB-MOSS and Any-MOSS are the most
versatile of the baseline algorithms, but choosing either of these still results in up to three times as many
unsuccessful patient outcomes as N →∞. In fact, by evaluating Task-EBRM at additional values of N we
find that AsympGreedy-EBRM dominates the baseline algorithms, in that for any of the baseline algorithms,
there is a value of N ≥ 0 such that Task-EBRM simultaneously achieves both lower epistemic uncertainty
and less Bayes’ regret. This is presented in Figure 1, where the x-axis shows epistemic uncertainty scaled by
103. These results support that AsympGreedy-EBRM algorithms are the superior solutions for real-world
OLPs.

6.3. Partial Monitoring and Dynamic Pricing

Partial monitoring is a more general class of online learning than bandit optimization, and enables
the study of more interesting reward and observation models. Stochastic partial monitoring is a specific
case of the OLP structure presented in Section 3, characterized by finite action and outcome sets with an
“observation matrix” H and a “loss matrix” L, which define the observation model and action rewards,
respectively. The full specification, less problem-specific components, is given in Table 16.

Dynamic Pricing is a prototypical partial monitoring problem which has complexities beyond that of
bandit optimization. In it, each of the K actions represent a “sales price”, and each of the M = K
hidden outcomes represents a customer’s “willingness to pay”. If the sales price is higher than a customer’s
willingness to pay, there is no sale and the agent incurs some fixed loss c ∈ R>0. Otherwise, a sale is made,
and the agent incurs a loss based on how much lower the price was than the customer’s willingness to pay.
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(a) At N = 500, we see similar relative performance as for the
BDO objective in the Bernoulli bandit experiment from Fig-
ure 5, as Task-EBRM approximates Bayes-EBRM.

(b) At N = 2500, the lack of exploration performed by DS
and Anytime-EBRM relative to Task-EBRM results in more
unsuccessful outcomes among post-trial patients.

(c) At N = 25000, the large amount of exploration preferred by
the UCB-based algorithms and TTEI begins to result in rela-
tively strong performance.

(d) By N = 50000, we see similar relative performance as for the
BAI objective in the Bernoulli bandit experiment from Figure 5,
as Task-EBRM approximates Epi-EBRM.

Figure 8: Performance of the AsympGreedy-EBRM and baseline algorithms on the task described in 6.2, for various sizes of
global patient population N . Task regret indicates the number of failed treatments among 423 + N patients.
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Importantly, the customer’s willingness to pay is never directly revealed. The dynamic pricing specification,
of H and L is thus, as given in [71] and where “y” denotes a sale and “n” denotes no sale,

H =


y · · · · · · y
n y · · · y
...

. . .
. . .

...
n · · · n y

, L =


0 1 · · · K − 1
c 0 · · · K − 2
...

. . .
. . .

...
c · · · c 0

. (6.4)

Dynamic pricing is more difficult than bandit optimization because the problem is not locally observable.
In short, this means that the relative expected reward (equivalently, loss) of some pairs of actions a1, a2
cannot be determined without taking a third action a3. This presents an issue if a1, a2 are candidates for
the best action, while a3 has much lower expected reward. In our formulation, this is a case where the
(expected) value of information of various actions is highly correlated with their immediate risk, as the
actions with low risk provide little or no information. A more thorough analysis of the issue, and its related
implications to the difficulty of partial monitoring problems, is given by [24].

Letting µ = ⟨−L, θ⟩ and µ̂t = Eθ|bt [µ], the immediate risk, epistemic risk, EVoI and AVoI of the Asymp-
Greedy algorithm for dynamic pricing match those of the Bayes-EBRM algorithm, as given in Table 8. The
ODOL policy in any belief state is to choose the action with the highest expected reward, argmaxk∈[K] µ̂t(k).

6.3.1. Experimental Methodology

To generate each dynamic pricing problem instance, we generated a hidden parameter vector from a
uniform distribution over the K-dimensional probability simplex Θ. The initial belief distribution, however,
was taken to be a normal distribution with mean E[θ] and an identity covariance matrix IK . While this
prior is unbiased, it is not the actual distribution from which hidden parameters are drawn. We generated
5000 problem instances for each experiment, and set the fixed cost for no sale to c = 2.

We use the BPM (Bayes-update Partial Monitoring) approach presented in [71] to generate a Gaussian
posterior belief distribution following each new action-observation pair. Samples taken from these belief
distributions may lie outside of the probability simplex Θ; in such cases, as in [71], we project these samples
to the nearest point in Θ. We compare against the BPM-TS algorithm presented in [71], which is the
generalized Thompson sampling strategy (discussed in Subsection 6.1.2) using the same BPM update rule.

6.3.2. Results and Discussion

Figures 9 and 10 show average Bayes’ regret and epistemic uncertainty for each of the two experiments,
with time horizons T = 103 and T = 104, respectively. The results parallel those of the bandit experiments;
the Bayes- and Anytime-EBRM algorithms outperform the baseline by effectively managing the trade-off
between exploration and exploitation, balancing immediate risk with the expected and asymptotic values
of information. Knowledge of the time horizon enables Bayes-EBRM to outperform Anytime-EBRM, but
the gap shrinks over longer horizons. The Greedy-EBRM algorithm, which ignores the asymptotic value of
information, fails to sufficiently explore and incurs linear regret.

6.3.3. Impact of Prior Misspecification

As noted previously, the normal prior used in the dynamic pricing experiments does not match the true
uniform distribution from which the hidden parameters are drawn. To determine the sensitivity of the
algorithms to the choice of prior, we explored scaling the prior covariance matrix to sIK , for some s > 0.

The results for s ∈ {2, 10, 0.5, 0.1} are presented in Figure 11. In general, the most algorithms show
little performance change over the wider priors s ∈ {2, 10, 0.5}, but performance degrades when s = 0.1.
This is to be expected, as a wide prior can be compensated for by taking a few actions with high value
of information, and any corresponding immediate risk incurred has little impact over longer time horizons.
Conversely, a narrow prior can cause algorithms to underestimate the value of exploration and, in the case
of EBRM, encourages following a sub-optimal ODOL policy.
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(a) The Anytime-EBRM algorithm excels at minimizing Bayes
regret at the beginning of each experiment, but insufficient ex-
ploration causes it to fall behind Bayes-EBRM for t > 500.

(b) By reasoning explicitly about the value of information, Epi-
EBRM reduces the agent’s epistemic uncertainty significantly
faster than BPM-TS.

Figure 9: Results of the dynamic pricing experiment with T = 103. The Greedy-EBRM algorithm fails to sufficiently explore,
suffering linear regret. The Anytime-EBRM algorithm, like BPM-TS, lacks knowledge of the time horizon but achieves superior
performance by explicitly reasoning about immediate risks and the expected and asymptotic values of information. By further
taking the time horizon into account, Bayes-EBRM significantly outperforms the other methods.

(a) While broadly similarly to the results in Figure 9(a), the
difference in average Bayes regret between the Anytime-EBRM
and Bayes-EBRM algorithms is reduced.

(b) While Epi-EBRM continues to most effectively reduce epis-
temic uncertainty, as the behaviour of BPM-TS gradually shifts
away from exploration.

Figure 10: Results of the dynamic pricing experiment with T = 104.
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(a) At s = 2, we see very similar performance as for the baseline
case s = 1, shown in Figure 9, across all algorithms.

(b) At s = 10, Anytime-EBRM alone shows a noticeable in-
crease in average regret.

(c) At s = 0.5, Anytime-EBRM and Bayes-EBRM each demon-
strate a slight increase in performance.

(d) At s = 0.1, Anytime-EBRM and Bayes-EBRM are both
negatively impacted.

Figure 11: Performance of the EBRM algorithms and BPM-TS on the dynamic pricing task for various priors, differing only in
the scale of their respective covariance matrices, s. In general, “wider” priors result in better performance than overly “tight”
or “narrow” priors, which can cause the algorithms to under-explore.
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7. Conclusions & Future Work

The belief-space Markov Decision Process model in Section 3 provides a standard way to model online
learning problems with combined action- and belief-based rewards, action-based costs and various feasibility
criterion. The notion of measuring risk with respect to X- and θ-optimal policies as well as ODOL policies
presents new ways to understand online learning problems and analyze policies through aleatoric, epistemic,
and process risks. The EBRM-approach of searching for policies with minimal process risk has been shown to
be feasible and highly effective at solving bandit problems, with AsympGreedy-EBRM algorithms matching
or exceeding the state of the art in every experiment. The proposed approach is unique in that deriving the
immediate risk and value-of-information functions corresponding to a particular online learning problem is
enough to characterize the AsympGreedy-EBRM algorithm for that problem.

The EBRM approach represents a change in direction from previous online learning algorithms, which
were each designed for optimal performance over some archetypal class of online learning problem and
objective, to the design of an algorithm that is parameterized by the online learning problem specification
itself. While more complicated, this ensures that the behaviour of an EBRM algorithm is always aligned
with the task goals, and eliminates the need for hyperparameters. As such, EBRM approaches are a
highly effective compromise between POMDP solutions like reinforcement learning, which can optimally
solve complex online learning problems but often have significant setup and computational costs, and online
learning heuristics, which are easy to implement and compute but cannot capture the complexities of specific
online learning problems.

7.1. Future Work

The success of AsympGreedy-EBRM based algorithms in the experiments in Section 6, and specifically
the clinical trial experiment in Subsection 6.2, motivates developing EBRM algorithms for other impact-
ful real-world applications. Furthermore, designing new EBRM candidate policy sets, and techniques to
compute the process risk of policies beyond 1-step lookahead policies, will enable the development of new
EBRM-based algorithms that may provide further performance improvements upon Greedy-EBRM, and
represents a new direction of research in online learning theory. A promising initial step in this direction is
the incorporation of information-directed sampling techniques [13] and the related theoretical analyses into
new techniques to estimate changes in epistemic risk.

There are a wide variety of real-world online learning problems with complexities that could benefit
from EBRM approaches. For example, problems with continuous action spaces, typically modelled as linear
bandits, should see similar improvements through EBRM-based algorithms. However, they introduce new
computational challenges; in particular, the one-step lookahead candidate policy set is infinite given a
continuous action space, and so the agent cannot check every policy. Developing techniques to identify the
one-step lookahead policy with minimal process risk in a continuous policy set is thus one research priority.

Action costs and cost budgets are additional problem complexities that have been the subject of limited
study but have valuable real-world applications. For example, autonomous vehicles and robots may use
online learning to learn hidden parameters in their environment; observations could represent using a sensor
to take a measurement, or asking a question of a human in order to learn their preferences or objectives.
Sensing or communicating such information generally has costs, which may be based on energy used or time
spent communicating, and real-world systems have limits on these costs. EBRM-based approaches are well
suited to capture these costs and budgets in the action-based reward and feasibility criterion, respectively.
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Appendix A. Contrasting Risk and Regret

A regret function measures how much less reward was attained, in a posterior sense, by some policy
than would have been by the X-optimal policy. That is, if Aπ

t = {aπτ }tτ=1 is the sequence of actions generated
by a policy π from an initial belief state S0, and Sπ

t = {bπt , ξπt } is the corresponding terminal belief state,
then for some hidden outcomes X the instance regret is

R(Aπ
t ;S0, X) := V π⋆

X (S0;X)−

(
γtR(bπt ) +

t∑
τ=1

γτR(xτ , a
π
τ )

)
. (A.1)

The expected and Bayesian regrets are similarly defined,

R(Aπ
t ;S0, θ) := EX|θ[R(Aπ

t ;S0, X)], (A.2)

R(Aπ
t ;S0, bt) := Eθ|bt

[
R(Aπ

t ;S0, θ)
]
. (A.3)

These quantities are defined with respect to a particular sequence of actions and observations made by the
agent, unlike risk which is computed based on all possible sequences of actions the agent might perform from
some initial state. The risk of a policy relative to the X-optimal policy is therefore equal to the expected
amount of regret that will be incurred by that policy.

Once incurred, regret is “permanent”; by the Tower rule, the Bayesian regret of a sequence of actions
does not change, in expectation, due to future actions and observations:

Ex|bt

[
R(Aπ

t ;S0, b
x,a
t+1)

]
= R(Aπ

t ;S0, bt), ∀a ∈ A. (A.4)

Conversely, the agent can reduce its risk (i.e., its future regret) by taking an action providing information
enabling it to make better decisions in the future.
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Appendix B. Additional Experiments

(a) The AsympGreedy-EBRM approaches are highly successful at
reducing the average Bayes regret, even over relatively few trials.

(b) In this simple setting, the UCB algorithms are nearly as effec-
tive at reducing epistemic uncertainty as Epi-EBRM.

Figure B.12: The results of this 2-arm Bernoulli bandit experiment from [20] clearly demonstrates the exploration-exploitation
trade-off, where the algorithms with the lowest average instance regret tend to have the higher epistemic uncertainty, and
vice-versa. In particular, observe how Bayes-EBRM rapidly switches from exploration to exploitation around t = 75 in order
to maximally leverage its accumulated information over the remaining time.
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(a) The y-axis shows average sample regret, the bandit opti-
mization metric for which lower is better. Asymp-EBRM has
the least average regret initially, before being overtaken by KG
and Bayes-EBRM.

(b) The y-axis shows log uncertainty; lower values indicates
higher confidence in the best-arm identification. The upper
dashed line represents 95% confidence in having found the best
arm, while the lower dashed line represents 99.99% confidence.

Figure B.13: Performance of algorithms in bandit optimization and best-arm identification while making decisions in 5-arm
Gaussian Bandit problem over 100 turns. Shaded regions indicate 95% confidence intervals over 2000 trials.

(a) TS, DS, Asymp-EBRM and Bayes-EBRM perform nearly
identically over the first 4000 turns, after which Bayes-EBRM
begins to significantly outperform the rest.

(b) The y-axis shows epistemic uncertainty; lower values indi-
cate better BAI performance. Epi-EBRM achieves the lowest
epistemic uncertainty across trials.

Figure B.14: Performance of algorithms in BDO and BAI objectives while making decisions in a 10-arm Beta bandit problem
over 104 turns. Shaded regions indicate 95% confidence intervals over 2000 trials.
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Appendix C. Example Clinical Research Trial Scenarios

In this section we describe some theoretical clinical research scenarios to highlight the limitations of
existing online learning heuristics.

Problem 3 (Villar et al., [1]). Consider 423 patients sequentially assigned to various treatments within
a randomized controlled trial. Which assignments best address the competing objectives of (1) maximizing
the number of successful patient outcomes by assigning as many as possible to the best treatments, and (2)
achieving sufficient statistical power to detect a significant difference between treatments?

The study which presented Problem 3 found that several leading online learning algorithms each failed to
balance between these two objectives [1]. This is due to their inability to account for a second variable, like
statistical power in a weighted objective (e.g. maximize a weighted sum of statistical power and successful
patient outcomes). The EBRM approach presented in this work can directly model this type of objectives.

Problem 4. The goal of a similar trial to that in Problem 3 is to determine which treatment to distribute
nationally/globally to a much larger population of N patients. Which assignments result in the highest
number of successful patient outcomes across all (N + 423) patients who will receive treatments?

Problem 4 is concerned with ensuring that the treatment recommended for broad distribution is the most
effective one, or nearly so. This is a different metric than statistical power or confidence, and one which is
not directly targeted by any existing algorithm. Furthermore, this problem introduces an explicit weighting;
for N = 104, identifying a treatment that has a 1% higher success rate will result in 100 more successful
outcomes across the patient population. In Section 6, we see that the EBRM approach results in the most
successful patient outcomes in this type of scenario, for various N . Importantly, the EBRM algorithm does
not require any “tuning” to achieve these results; it simply takes N as a parameter.

Problem 5. As an extension to Problem 4, suppose that there is are costs to enrolling patients in the trial,
and a unique cost for administering each type of treatment. What are the optimal trial size and treatment
assignments in order to maximize successful patient outcomes given a budget constraint?

Most existing online learning heuristics lack the ability to model heterogeneous costs across different
actions (treatments). Recent work has begun to model such complexities (e.g., [72]), however the approach
required developing another heuristic which focuses on maximizing reward per unit cost. The EBRM
approach automatically takes into account various feasibility criterion, including those driven by action
costs.
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Appendix D. Proof of Section 4 Results

Proof of Theorem 1

First observe that, as a result of Eq. (4.2), the continuous mapping theorem [73] implies

Ex|bt [f(·)]
P−−−→

t→∞
Ex|θ[f(·)].

As the belief reward is bounded and continuous, then, also by the continuous mapping theorem, there
exists some c ∈ R such that

R(bt)
P−−−→

t→∞
c.

As the belief reward converges in probability to a constant as t→∞, we have that

EpistemicRisk(St) = Eθ|bt

[
V π⋆

θ (St; θ)
]
− V π̂⋆

t (St)

P−−−→
t→∞

∞∑
n=1

Ex|θ
[
γn−1R(x, π⋆

θ(St+n−1))
]
−

∞∑
n=1

Ex|θ
[
γn−1R(x, π̂⋆

t (St+n−1))
]

As each sum is independent of any future observations or hidden variables, they can be each be maximized
by some deterministic open-loop policy π̂ ∈ Π̂ and thus

Ex|θ[R(x, π̂⋆
t (St))]

P−−−→
t→∞

Ex|θ[R(x, π⋆
θ(St))].

Proof of Lemma 2

Let σ be the permutation function that satisfies A′ = σ(A), and let X ′ = σ(X) be the corresponding
permutation of X. First, we observe,

xτ
iid∼ P (x | bt) =⇒ Pr(X ′ | bt) = Pr(X | bt).

Furthermore, denoting y′τ = Φ(x′
τ , a

′
τ ) and yτ = Φ(xτ , aτ ) for τ = 1, . . . , |A|,

xτ
iid∼ P (x | bt) =⇒ Pr(y′1:|A′| | θ, a

′
1:|A′|) = Pr

(
y1:|A| | θ, a1:|A|

)
,

=⇒ bX
′,A′

t+|A′|
(
θ
)
= bX,A

t+|A|
(
θ
)
, ∀θ ∈ Θ.

Appendix E. Proofs of Section 5 Results

Proof of Lemma 3

The adaptive monotonicity of R(b) and the convexity of the expectation operator imply

Ex|bt

[
max

N∈NK
Ω (ξat+1)

V̂
(
N ;Sx,a

t+1

)]
≥ max

N∈NK
Ω (ξat+1)

Ex|bt

[
V̂
(
N ;Sx,a

t+1

)]
≥ max

N∈NK
Ω (ξat+1)

V̂
(
N ;Ex|bt

[
Sx,a
t+1

])
.

The lemma follows from expanding Eq. (5.8) with the definition of each term and applying this inequality.
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Proof of Proposition 3

We introduce Lemma 5 to simplify the proof.

Lemma 5. The process risk of the best deterministic 1-step lookahead policy is bounded, ∀St,

−EpistemicRisk(St) ≤ min
a∈A

ProcessRisk(πt,a;St) ≤ 0. (E.1)

The lower bound of Lemma 5 follows from, ∀π and ∀St, (see Lemma 1)

0 ≤ r(π∥π⋆
θ ;St) = EpistemicRisk(St) + ProcessRisk(π;St).

The upper bound follows from Lemma 3, using the fact that ImmediateRisk(St, πt,a) = 0 if a = π̂⋆
St
(St).

According to Lemma 5, the best 1-step lookahead policy has non-positive process risk, but by Lemma 3,

ProcessRisk(St, a) = ImmediateRisk(St, a)− γ · ExpectedVoI(St, a)

≥ ImmediateRisk(St, a)− γ · EpistemicRisk
(
Ex|bt

[
Sx,a
t+1

])
.

The proposition follows.

Proof of Theorem 2

Consider E[µa] = ProcessRisk(πt,a;St)− ProcessRisk(πt,k;St), and by construction µa ≥ 0. Therefore,

E[µa] > 0 =⇒ ProcessRisk(πt,k;St) < ProcessRisk(πt,a;St). (E.2)

Next, Var[µa] = γ2(σ2
an

−1
a + σ2

kn
−1
k ) follows from the independence of νa(na) and νk(nk), which are

generated from IID samples of the hidden outcomes. The theorem follows from Cantelli’s inequality [74]
applied to Pr(µa − E[µa] < µa).

Proof of Theorem 3

Following from the proof of Theorem 2, observe that ∀n > 0,

max
N∈NK

Ω (ξat+1)
V̂
(
N ;Sx,a

t+1

)
− V̂

(
Na

t+1;S
x,a
t+1

)
≤Ma =⇒ νa(n) ≤Ma, (E.3)

=⇒ µa ≤ (ImmediateRisk(St, a)− ImmediateRisk(St, k)) + γMk, (E.4)

=⇒ µa ≥ (ImmediateRisk(St, a)− ImmediateRisk(St, k))− γMa. (E.5)

Next, we consider that for na = nk = n, then nµa is equal to the sum of n IID samples of the difference in
process risk between policies πt,a and πt,k,

nµa =
n∑

i=1

[
ImmediateRisk(St, a)− γ

(
max

N∈NK
Ω (ξat+1)

V̂
(
N ;Sxi,a

t+1

)
− V̂

(
Na

t+1;S
xi,a
t+1

))

−

(
ImmediateRisk(St, k)− γ

(
max

N∈NK
Ω (ξkt+1)

V̂
(
N ;Sxi,k

t+1

)
− V̂

(
Nk

t+1;S
xi,k
t+1

)))]
, (E.6)

with E[nµa] = n(ProcessRisk(πt,a;St)− ProcessRisk(πt,k;St)). Then, applying Hoeffding’s inequality,

Pr(nµa − E[nµa] ≥ c) ≤ exp

(
−2c2

n(γMk + γMa)2

)
. (E.7)

The theorem follows from taking c = nµa and recognizing that the largest amount of regret which could be
incurred by rejecting policy πt,a in favor of πt,k is γ(Ma +Mk), and the probability of incurring this regret
is Pr

(
πt,a ∈ argminπ∈Πt

ProcessRisk(π;St)
)
≤ Pr(E[nµa] < 0).
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[71] H. P. Vanchinathan, G. Bartók, A. Krause, Efficient partial monitoring with prior information, in: Z. Ghahra-

mani, M. Welling, C. Cortes, N. Lawrence, K. Weinberger (Eds.), Advances in neural information processing sys-
tems, volume 27, Curran Associates, Inc., 2014. URL: https://proceedings.neurips.cc/paper_files/paper/2014/file/
0a113ef6b61820daa5611c870ed8d5ee-Paper.pdf, tex.ids= Vanchinathan.

49

https://doi.org/10.1115/1.4054088
http://dx.doi.org/10.1115/1.4054088
http://arxiv.org/abs/2206.01558
http://dx.doi.org/10.48550/arXiv.2206.01558
http://arxiv.org/abs/2109.07827
http://dx.doi.org/10.48550/arXiv.2109.07827
https://proceedings.neurips.cc/paper_files/paper/2022/hash/6f7d90b1198fec96defd80b5ebd5bc81-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/6f7d90b1198fec96defd80b5ebd5bc81-Abstract-Conference.html
https://www.jair.org/index.php/jair/article/view/10853
https://www.jair.org/index.php/jair/article/view/10853
http://dx.doi.org/10.1613/jair.4117
http://arxiv.org/abs/1810.01014
http://dx.doi.org/10.48550/arXiv.1810.01014
http://arxiv.org/abs/1906.06273
http://dx.doi.org/10.48550/arXiv.1906.06273
http://arxiv.org/abs/2212.00124
http://dx.doi.org/10.48550/arXiv.2212.00124
https://epubs.siam.org/doi/book/10.1137/1.9780898718508
http://dx.doi.org/10.1137/1.9780898718508
https://epubs.siam.org/doi/10.1137/1.9780898718508.ch6
https://epubs.siam.org/doi/10.1137/1.9780898718508.ch6
http://dx.doi.org/10.1137/1.9780898718508.ch6
https://epubs.siam.org/doi/10.1137/1.9780898718508.ch10
http://dx.doi.org/10.1137/1.9780898718508.ch10
https://doi.org/10.1007/BF01588971
http://dx.doi.org/10.1007/BF01588971
https://doi.org/10.1007/978-3-540-24777-7_7
https://doi.org/10.1007/978-3-540-24777-7_7
http://dx.doi.org/10.1007/978-3-540-24777-7_7
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fourth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/On-Sequences-of-Sums-of-Independent-Random-Vectors/bsmsp/1200512603
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fourth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/On-Sequences-of-Sums-of-Independent-Random-Vectors/bsmsp/1200512603
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fourth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/On-Sequences-of-Sums-of-Independent-Random-Vectors/bsmsp/1200512603
http://link.springer.com/10.1007/978-1-4612-4946-7
http://dx.doi.org/10.1007/978-1-4612-4946-7
http://arxiv.org/abs/1709.03162
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1080.0314
http://dx.doi.org/10.1287/ijoc.1080.0314
http://dx.doi.org/10.1287/ijoc.1080.0314
http://jmlr.org/papers/v11/audibert10a.html
https://proceedings.mlr.press/v48/degenne16.html
https://proceedings.mlr.press/v48/degenne16.html
https://proceedings.neurips.cc/paper_files/paper/2014/file/0a113ef6b61820daa5611c870ed8d5ee-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/0a113ef6b61820daa5611c870ed8d5ee-Paper.pdf


[72] S. Cayci, A. Eryilmaz, R. Srikant, Budget-Constrained Bandits over General Cost and Reward Distributions, in:
S. Chiappa, R. Calandra (Eds.), Proceedings of the Twenty Third International Conference on Artificial Intelli-
gence and Statistics, volume 108 of Proceedings of Machine Learning Research, PMLR, 2020, pp. 4388–4398. URL:
https://proceedings.mlr.press/v108/cayci20a.html, arXiv: 2003.00365.

[73] H. B. Mann, A. Wald, On Stochastic Limit and Order Relationships, The Annals of Mathematical Statistics 14 (1943)
217–226. URL: https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-14/issue-3/

On-Stochastic-Limit-and-Order-Relationships/10.1214/aoms/1177731415.full. doi:10.1214/aoms/1177731415,
publisher: Institute of Mathematical Statistics.
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