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Abstract

Vehicles can easily lose control unexpectedly when encountering unforeseen hazardous road friction conditions. With
automation and connectivity increasingly available to assist drivers, vehicle performance can significantly benefit from a
road friction preview map, particularly to identify where and how friction ahead of a vehicle may be suddenly decreasing.
Although many techniques enable the vehicle to measure the local friction as driving upon a surface, these encounters limit
the ability of a vehicle to slow down before a low-friction surface is already encountered. Using the connectivity of connected
and autonomous vehicles (CAVs), a global road friction map can be created by aggregating information from vehicles. A
challenge in the creation of these global friction maps is the very large quantity of data involved, and that the measurements
populating the map are generated by vehicle trajectories that do not uniformly cover the grid. This paper presents a road
friction map generation strategy that aggregates the measured road-tire friction coefficients along the individual trajectories
of CAVs into a road surface grid. In addition, through clustering the friction grids further, an insight of this work is that the
friction map can be represented compactly by rectangular boxes defined by a pair of corner coordinates in space, a friction
value, and a confidence interval within the box. To demonstrate the method, a simulation is presented that integrates traffic
simulations, vehicle dynamics and on-vehicle friction estimators, and a highway road surface, where friction is changing in
space, particularly over a bridge segment. The experimental results indicate that the road friction distribution can be measured
effectively by collecting and aggregating the friction data from CAVs.
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Introduction

In the field of transportation, significant research, develop-
ment, and performance improvements have been enabled
by digitally mapping the topology and geometry of the
road network. These maps can aid drivers: for example,
with the help of a digital road network and traffic map,
drivers can easily find the fastest route to their destina-
tions. As well, drivers can aid map development: the data
from the drivers’ phones and traffic sensors can be con-
nected and utilized to generate a live traffic map for choos-
ing the best route (Jain et al. 2019).

In impacting vehicle stability and safety, few data are
as important as maps of road surface conditions and the
friction between tires and the road surface. Some research
has been conducted in this area (Chen et al. 2017; Merritt
et al. 2015), yet actionable road-friction maps are not yet
widely available. Vehicles are highly likely to spin out or
skid unexpectedly when encountering unforeseen hazard-
ous road friction conditions, such as snow, ice, rain, etc.
(Hebden et al. 2004). It is well known that these low-fric-
tion conditions can even result in traffic crashes (Alhasan
et al. 2018; Pu et al. 2020). The Federal Highway Adminis-
tration reports that approximately 20% of all crashes occur
in adverse road conditions. Drivers and driving algorithms
can compensate by assuming worst-case conditions and
driving slowly, yet this practice can lead to a low level of
service (LOS), where the throughput of the highway is not
fully utilized. It is known, for example, that light rain or
snow can reduce average traffic flow volume by 5-10% on
the highway (Highway 2020).

Research has proved that prior estimation of friction
allows significant improvements in vehicle chassis control
systems (Falcone et al. 2007). Specifically, a vehicle can
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proactively plan appropriate paths and velocities with the
preview of friction distribution, particularly where and
how friction ahead of a vehicle may be suddenly decreas-
ing (Cao et al. 2017; Gao et al. 2021a, b). In addition, the
availability of friction previews could enhance the per-
formance and reliability of driver-assist systems, such as
stability control, adaptive cruise control, and electronic
braking. The potential benefit of a friction map to mitigate
the impact of road surface conditions on traffic safety and
mobility via providing a preview is obvious, but mapping
road friction is a challenging problem. Thus, an efficient
and cost-effective road surface friction mapping and data-
sharing methodology are needed.

Even as vehicles are increasingly equipped to produce
friction data to populate friction maps for transportation
networks, an additional challenge arises in the representa-
tion and sharing of this friction data effectively. This paper
aims to address this challenge by proposing a compact two-
dimensional (2D) data representation of location-specific
road friction information, accounting for several data prop-
erties that are road-specific, specifically: that data tends to
align in the direction of vehicle travel, and that data regions
are most usefully defined by boundaries allowing entry/exit
conditions of vehicle stability to be analyzed. The proposed
strategy is demonstrated by the authors in ongoing work
using Connected and Autonomous Vehicles (CAVs) to
aggregate the measured road-tire friction coefficients from
a fleet of CAVs.

The data flow of this strategy is illustrated in Fig. 1. In the
framework, the estimated raw road friction data streaming
from a fleet of vehicles driving on a road segment is shared
with a database; then, the raw data are aggregated into a fric-
tion map and shared back to vehicles for appropriate driving
planning. A naive approach is to finely grid the road surface
in the data aggregation step at levels similar to the fidelity

Database
Server

R

Raw Database

low friction region(e.g. ice, snow, water)

Fig.1 Road friction map generation strategy by aggregating the measured road-tire friction coefficients along the individual trajectories of

CAVs through a shared roadside database
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of tire position accuracy and contact patch size, generally on
the order of 10 cm; however, if one wishes to maintain this
resolution then such databases, even for modest-sized roads,
rapidly become prohibitively large. This insight motivated
efforts in this paper, such that the friction map can be rep-
resented compactly by rectangular boxes defined by a pair
of corner coordinates in space and a friction value within
the box.

More specifically, this paper demonstrates a data aggre-
gation process to generate a full road surface friction map.
This process is explained in detail in the sections that fol-
low, but to summarize: the road surface is first tiled into
static roadway-aligned grids with a spatial resolution of
10 cm by 10 cm in a careful choice of the tiling coordinate
system. Then, the measured raw friction data are associated
with each grid cell and the friction value in each grid is
represented by the average value of associated raw friction
coefficient measurements, the number of associated meas-
urement points, and the confidence interval. In this way, a
grid-based road friction map with a high spatial resolution
is generated. However, the data size of this friction map is
too large for fast sharing. To represent the map more com-
pactly, the grids with similar friction values and confidence
intervals are clustered into a few regions using the K-Means
method. The regions are further partitioned into a collec-
tion of rectangular boxes to represent them efficiently. As
a result, the road surface condition map can be generated
quickly and represented compactly as the partition of axis-
aligned rectangular boxes with associated friction coefficient
values and confidence intervals. To present this process in
more detail, the remainder of this paper is organized as fol-
lows: related prior works and theoretical background are
discussed in "Related Work ". Sample road patterns and
friction data acquisition are introduced in "Friction Data
Measurement and Collection". The data aggregation and
friction map representation are presented in "Friction Data
Aggregation". The discussions for the methodology perfor-
mance are reported in "Analysis and Discussion". Finally,
the conclusions and future work of the study are given in
"Conclusions and Future Work".

Related Work

The challenge of friction map development involves road
friction estimation, raw data aggregation, and map data
delivery. Significant research has proven the viability and
performance of vehicle-based road friction estimation tech-
niques, which can be broadly categorized as non-contact and
contact techniques. Non-contact methods generally utilize
special camera-based sensors and computer algorithms to
recognize road texture and thereby estimate friction (Roy-
chowdhury et al. 2018; Santini et al. 2021), and such sensors

can be installed in a vehicle (Teconer 2020) or a fixed sta-
tion (Vaisala 2021) to provide measurement and preview.
The contact methods measure the interplay force between
tires and pavement surface and thereby estimate the friction
coefficient based on vehicle dynamics (Acosta et al. 2017,
Beal 2019). These techniques enable the individual vehicle
to measure the local friction when driving upon a surface
or provide some friction preview to other vehicles imme-
diately following, but this approach limits the ability of an
individual vehicle to slow down before a sudden decrease
in surface friction, especially when vehicles are operating
on hills or sharp corners. For one vehicle’s data to benefit
the performance of another vehicle that is not in direct com-
munication, methods are needed to collect and aggregate
friction data from individual vehicles to thereby map road
surface conditions. Furthermore, these methods need to be
extensible for large-scale traffic systems.

By utilizing the data collected by existing sensing tech-
nologies, several data aggregation and representation mod-
els for road surface condition-related parameters descrip-
tion have been developed in the literature. Nordic countries
including Finland, Norway, Estonia, etc. have developed
online road surface condition maps (Mobile Road Condition
Map 2021) with data from roadside road condition sensors.
In (Panahandeh et al. 2017) machine learning models were
trained to estimate and predict the friction class (slippery
or non-slippery) for specific road segments using the fric-
tion data from connected Volvo cars and data from weather
stations. The time-series features from station friction sens-
ing data have been utilized in prior work to improve fric-
tion predictive performance (Pu et al. 2020). However, in
these studies, the road and thereby friction distributions are
represented as one-dimensional line segment features, and
common heterogeneous lateral friction features, for example,
the “snow rut” scenario (Hussein 2016), are thus neglected.
In addition, the station sensors cannot provide the full road
network surface map, as they are located on main roads and
usually at far distances from each other (Zhan et al. 2020).
This work is the first contribution toward providing an accu-
rate 2D spatially dependent friction mapping for an entire
road surface through the aggregation of the measured road-
tire friction coefficients from a fleet of CAVs.

Friction Data Measurement and Collection

This section presents the friction coefficient data acquisi-
tion method from a fleet of connected vehicles when they
are driving on a sample highway road segment, where fric-
tion changes in space. The data acquisition process is simu-
lated based on the micro-simulation framework proposed
in (Gao et al. 2021a, b), wherein traffic simulation tools are
used to generate traffic-like trajectories of a large number
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of vehicles, and these trajectories are further refined via a
secondary layer of chassis dynamic simulations, wherein
simulated drivers follow the trajectories, while friction esti-
mation is occurring via chassis measurements.

Description of Testing Road Segment

In this work, a highway segment where friction changes in
space, particularly over a bridge, is selected as a sample to
demonstrate the friction map generation process. The geolo-
cation and geometry of the road segment are selected from
the Interstate-99 interstate highway, outside State College,
PA, USA, shown in Fig. 2a. It is a 496 m double-lane high-
way segment with a 3.8 m lane width.

Figure 2b shows a typical actual road friction distribu-
tion pattern with the occurrence of ice as well as real-world
photographs of bridges showing lateral snow ruts. A bridge
is exposed to cold air more than a normal road surface with
a solid roadbed. As a result, when it snows and the tem-
perature drops, a bridge tends to cool and accumulate snow
and ice much faster than the surrounding pavement. After
a while, the bridge may be completely covered in snow,
while the adjacent roads are completely snow-free (Robin-
son 2021). The transition from the clear road to snow can
take place in mere centimeters of travel. The most danger-
ous threat of this road condition is that it can be abrupt and
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Fig.2 Testing road segment and surface friction distribution: a the
geolocation of the road segment, b an actual friction distribution pat-
tern over a bridge, ¢, d the numerical representation of the road sur-
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unforeseen, which catches drivers off guard when they are
driving at full speed as the rest of the road is dry or slightly
wet. Consequently, vehicles with high speed may lose con-
trol unexpectedly when encountering the bridge with this
unforeseen sudden decrease in friction. Moreover, snow
ruts may occur along the wheel paths when vehicles drive
through the snowy bridge. Rutting is a transverse pavement
surface condition characteristic, which has a different fric-
tion feature from the adjacent road (Hussein 2016; Martin
and Schaefer 1996). Consequently, lane changing on roads
with snow ruts presents a potential threat to vehicle stability
and control. Thus, a road surface map that can provide a pre-
view of this scenario could enable human drivers or autono-
mous vehicles to plan appropriate driving strategies proac-
tively to avoid loss of control on this type of road segment.

Without loss of the generality, to represent the snowy
bridge and snow ruts, we synthetically generate a friction
distribution numerically as the “true” road surface condi-
tion in this work. These ground-truth data are shown in
Fig. 2c and d. To further align the data in directions that are
likely similar in friction, the location of the road segment
is first converted from latitude—longitude—altitude (LLA)
geographic coordinates into the east—north-up (ENU) car-
tesian coordinates. Next, to align the data with the local
roadway directions, the ENU coordinates are converted into
station-transverse-height (STH) curvilinear coordinates. In
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the curvilinear STH coordinates system, the station is the
distance traveled along the road segment reference line and
the transverse is orthogonal offset from the reference line.
The definition of STH is detailed further in "Grid-based
road surface representation". This process ensures that the
geometric length of road cells and travel distance are pre-
served; however, the resulting road grid introduces artifacts
such as geometric distortions for networks that span a sig-
nificant curvature of the earth’s sphere (~ 100 km or more).
The geolocational corrections necessary for data alignment
within very large-scale transportation networks are possible
with the careful design of road network databases, but this
is outside the scope of this paper.

Friction Data Acquisition Simulation

A micro-simulation framework proposed by Gao et al.
(2021a; b) is used in this study to simulate the friction coef-
ficient data acquisition process from a fleet of connected
vehicles. The simulation framework integrates traffic simula-
tion, chassis simulation, and a shared database for the simu-
lation of a database-mediated CAV study. Using the tool,
a highway traffic scenario was simulated for 30 min with
highway flow volumes during a winter day morning reported
by PennDOT at a traffic data collection site near the 199
segment (Pennsylvania Department of Transportation 2021)
shown in Fig. la. During this time, 1038 vehicles passed
through the road segment with the road friction distribution
described in Fig. 1c. In this simulated scenario, each vehicle
is assumed to operate a rapid road friction estimator that is
integrated into the vehicle dynamic model based on the work
by (Beal 2019). Specifically, the surface friction is estimated
through direct model inversion using the independent meas-
urements of the left- and right-side front steering torques.
White Gaussian noise with a 30 dB signal-to-noise ratio
(standard deviation of the noise is around 0.011) was added
to the simulated friction coefficient measurements and white
Gaussian noise with a 35 dB signal-to-noise ratio (stand-
ard deviation of the noise is around 0.025 m) (Abbous &

20 30

xEast [m] xEast [m]

Samama 2017; Diggelen 2007; Karlsson and Mohammadiha
2018) was added to position measurements to realistically
reproduce a real application.

The measured data from each vehicle is obtained at
100 Hz and includes the friction coefficient and the cor-
responding road-tire contact coordinates; these are pushed
into a “raw data” database. In this study, all the data are
managed by a PostgreSQL 12.09 database server. The data
flow is shown in Fig. 1. Even within this very limited time
range and highly limited section of the road, the simulation
produces about 10 million raw friction measurement data
points, which take up 2.7 GB of database storage space.
The challenge to generate a compact friction map through
the aggregation of such large-size measurement data is
addressed in the next section.

Friction Data Aggregation

The goal of this study is to generate a road friction map
by aggregating the measured road-tire friction coefficients
along the individual trajectories of CAVs. The data flow
of this step is also shown in Fig. 1. To present the process,
this section begins by introducing the grid-based road sur-
face representation. This section then details the method to
aggregate the raw friction data based on the road surface
grid.

Grid-Based Road Surface Representation

Before any friction data aggregation steps, the local coor-
dinate system of the grid is carefully chosen as it plays an
essential role in defining data similarity and the success of
the data aggregation process. A path-aligned curved regular
grid is a common way to describe road surface data in high
spatial resolution (ASAM 2020). As illustrated in Fig. 3,
a road surface space as shown in Fig. 3a can be divided
into curved grid structures based on the road reference line
which is generally the curved road centerline. Longitudinal
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E -10 |

=20 |
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Fig.3 Grid-based road surface representation example: a true road sample, b curved road grids in EN coordinates, ¢ uncurved road grids in ST

coordinates
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Fig.4 Association of raw data into a road grid: a the number of raw
data in each cell is indicated by the colormap in each grid cell, b the
mean friction coefficient value is indicated by the colormap in each

cuts are parallel to the reference line, and the transverse
cuts are orthogonal to the road reference line. The curved
regular grid can be placed in an East—North (EN) Cartesian
coordinate shown in Fig. 3b. Based on the grid, any road
surface data, e.g., elevation and friction coefficients, is given
in the U-direction orthogonal to the E/N-plane. In this way,
a microscopic view of the road surface can be described in
a three-dimensional(3D) data structure.

But vehicle friction data typically exhibit similarities in
the travel or lateral directions. To enforce this similarity, the
grid was next placed in the curvilinear station-transverse
(ST) coordinate shown in Fig. 3c. ST is a right-handed coor-
dinate system. The station direction follows the tangent of
the road reference line and magnitude is the distance trave-
led along the road reference line from the beginning of the
reference line. The transverse direction is orthogonal to the
direction of station S and the magnitude is the offset distance
from the reference line. Road surface data can be given in
height (H)-direction orthogonal to the ST-plane. Using the
STH coordinates system, the road surface map can be repre-
sented with the uncurved grids and associated height values.
Under the STH frame, some frequently used mathematical
calculations, such as distance, projection, and transforma-
tion, can be highly simplified. It is also interesting to note
that in STH coordinates each grid cell can be regarded as an
image pixel, and thereby the road map can be represented
through an image. Consequently, by converting road data
into an STH frame, common digital image processing algo-
rithms and hardware (GPUs, for example) can be used for
road surface data processing.

In this work, to test the tire-based estimation of road
varying friction, the grid size is 10 cm by 10 cm square to
be comparable with a tire’s contact patch. To represent the
testing road segment surface shown in Fig. 2, about 382,000
grid cells are needed. In this study, the PostgreSQL database
with a spatial database extender PostGIS (PostGIS Project
Steering Committee 2021) is employed to manage the spatial

@ Springer

Station[m]

grid cell—the location of the icy bridge segment is visible clearly (no
measurement data in the grey area)

grid data; the GIS features of the database include spatial
query operations, nearest neighbor searches, and range
searching.

Cluster the Friction Based on the Road Grids

The purpose of friction-data aggregation is to associate fric-
tion values with appropriate spatial context, which implies
raw data clustering. Clustering large-size data directly is
time-consuming (Aggarwal and Reddy 2014). Inspired
by the grid-based clustering algorithm which has a great
speed advantage when the data size is large compared to
the grid size (Aggarwal and Reddy 2014). In this study, the
database includes 10 million raw friction data points from
30 min of simulated measurements; these data are dense
when compared to the 382,000 static grid cells. However,
most of the 300 k cells are nearly identical to their neigh-
bors. To produce a compact representation, the raw data are
first clustered based on the pre-generated static road grid in
the database to expedite the friction map generation. Spe-
cifically, the raw data are assigned to each road grid using
nearest-neighbor searching, a fast process when using hier-
archical tree data structures within the PostgreSQL spatial
database. Next, the friction estimation in each grid is repre-
sented by the average friction coefficient value, the number
of raw data, and the confidence interval. The confidence
interval is calculated based on 95% probability intervals of
t-distribution. A smaller interval magnitude indicates a more
accurate estimation. The results are shown in Fig. 4.

From Fig. 4a, one can see that many measurements occur
at the locations of snow ruts. Furthermore, one can observe
that the right lane has more vehicle traffic and thus meas-
urement data than the left lane. The results are consistent
with the typical traffic pattern, wherein more vehicles pre-
fer to drive on the right driving lanes, especially on snowy
roads. In addition, one can also see, around the 20 m station
mark, that many vehicles change lanes before entering the
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Fig.5 Friction map after correcting for missing data: a the mean friction coefficient value of each grid cell (on a scale of 0 to 1), b the confi-
dence interval magnitude of each grid cell (95% probability intervals of t-distribution)

snowy bridge. The plot of Fig. 4b illustrates that there are
many grids, especially within the inter-lane area, that do not
have any measurement as no vehicles pass through these
areas—vehicles very rarely changed lanes on bridges in this
simulation. To deal with the problem of missing data, this
paper fills the friction mean value to the missing data grids
using its nearest non-missing grid data, and as well fills the
confidence values for missing data with the worst confidence
interval to indicate high uncertainty. The mean and confi-
dence interval are shown in Fig. 5. The camera-based fric-
tion estimation method (Roychowdhury et al. 2018) which
can cover a larger road surface area can also be utilized as
a supplement to the road-tire-based friction estimation in
future work.

The results in Fig. 5a include the mean and represent a
friction map of the road. Comparing the results with the true
friction distribution shown in Fig. 2d, one can see that the
boundaries between the snowy bridge and adjacent dry road
and the edges between snow ruts and loose snow road area
are mapped clearly. Quantitatively, the root-mean-square
error (RMSE) between this friction map and the true fric-
tion distribution was found to be 0.00440, which indicates
an accurate mapping. This map describes the entire road sur-
face with a high spatial resolution of 0.1 m by 0.1 m. How-
ever, a database of about 131 MB in data size is required to
store this less than 500 m road friction map information;
this is not scalable to large road networks. Moreover, con-
sidering these data may be shared with each vehicle in the
road segment for driving assistance, the large size limits the
practical data sharing and transfer in practical applications
of V2x systems.

Examining Fig. 5a data carefully, one observes that the
friction grids in some areas are similar to each other. Thus,
similar cells can be grouped into clustered regions to reduce
the data size. To achieve this, this paper uses a spatial clus-
tering method based on the K-Means clustering algorithm
(Aggarwal and Reddy 2014) due to its easy application and

high efficiency. K-Means clustering categorizes the N spa-
tial friction grids into K clusters in which each grid belongs
to the cluster with the nearest mean. Estimating the cluster
number K is a major challenge in applying the K-Means
algorithm. In this work, K is determined through the statis-
tics results of friction values and expected cluster resolution.
Specifically, the friction coefficient values at all grids are
grouped into 10 bins at every 0.1 interval ranging from 0.1
to 0.9 (<0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,>0.9), which
is shown in Fig. 6a. The number of clusters, K, was chosen
to be the number of bins whose percentage is larger than
1%. From the plot, K is equal to 6 in this case. Next, the
K-Means clustering algorithm is used to group the friction
grids, i.e., partitioning the road surface. Because clustering
seeks to maintain both constant spatial coordinates and con-
stant friction values, it is important that the scaling of spatial
information is similar to friction information. In particular,
the ST location values of grids are normalized into the same
scale (0-1) and a large weight (30) is assigned to the friction
attribute (on a scale of 0—1) when creating each cluster. The
clustering result is shown in Fig. 6b. It reveals that the fric-
tion grids are clustered into friction blocks and the friction
value of the grid within each block is nearly identical.
Comparing the clustering results with the true friction
distribution shown in Fig. 2d, one can see that the bounda-
ries between the snowy bridge and adjacent dry road and
the edges between the snow rut and loose snow are mapped
clearly. Quantitatively, the root-mean-square error (RMSE)
between this clustered friction map and the true friction dis-
tribution is 0.0180, the root-mean-square percentage error
RMSPE is 5.36%, and the maximum absolute error (MAE)
is 0.0453, which implies an accurate mapping. It should be
noted that the interval and thereby the cluster number K can
be tailored to get specific cluster results, which is further
discussed in "Granularity, data size, and mapping accuracy".
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Fig. 7 Confidence interval magnitude of each grid cell and the cluster
boundaries for the clustering results shown in Fig. 6b

Friction Grids Cluster Considering the Confidence
Interval

Aside from the mean value, the level of uncertainty associ-
ated with the friction measurements is also important for
friction representation (Beal and Brennan 2020; Walton
2018); this uncertainty can be captured by the confidence
interval value on the friction within each cluster. However,
the confidence intervals of each cell in a cluster may not be
uniform. For example, Fig. 7 plots the confidence interval
magnitude of each grid cell and the cluster boundaries for
the clustering results shown in Fig. 6b.

As one can see, even in the same cluster region, the mag-
nitude of each cell’s confidence interval may be significantly
different. One can create subclusters that match both the
friction magnitude and the confidence by applying a clus-
tering algorithm again within each friction cluster and then
sub-clustering cells based on the confidence interval of the
friction coefficient data.

@ Springer

The resulting subclusters, shown in Fig. 7, reveal friction
data that approximate regions, where the friction has similar
statistics as measured by the mean and variance. To deter-
mine the number of subclusters to use, one can use statistical
analysis of the subcluster values.

Because these data are simulated and the noise proper-
ties are simulated with well-conditioned statistical proper-
ties (e.g., normally distributed and unbiased), the data show
two very distinct confidence regions: (1) highly traveled
regions, where the vast majority of tire contact points (e.g.,
the “wheel rut” area of the roadway), and (2) all the other
areas that would only be traveled during excursions from
the lane, such as lane changes or large lane deviations. The
notion of two different areas of confidence is further seen
in a histogram analysis. Figure 8a shows the histograms (20
bins) of the confidence interval magnitude over all grids. It
can be seen that 2 clusters, one for tight confidence bounds
(less than 0.05) and one for large uncertainty (greater than
0.9) account for 97.5% of all data. Figure 8b shows the clus-
tering results of the confidence intervals imposing 2 confi-
dence categories. The subclusters are then found by K-means
clustering to produce subclusters and their boundaries. A
total of 98 subclusters are obtained and the results are shown
in Fig. 8b. Again, each friction subcluster now approximates
regions with the same mean value and confidence interval
on friction.

Represent the Friction Cluster Block
with Rectangular Boxes

Examining the clustering results shown in Fig. 6b, one can
see that the road surface is partitioned into friction blocks
which is a collection of road grids with identical friction
coefficient values. Fig. ure 9a provides an example of a fric-
tion block which is the region within the bold red polygon.
To represent friction blocks efficiently, they are further par-
titioned into a collection of rectangular boxes shown as the
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Fig.9 Partition cluster blocks into rectangular boxes: a a partition example for one clustering block, b AABB partition results for the clustering

shown in Fig. 6b

black boxes in Fig. 9a. The location and shape of the ith
STH-coordinate axis-aligned bounding box (AABB) can
be represented by the coordinates of the lower-left corner
(8;;,T;;) and upper-right corner (S;,,7},). Partitioning cluster
blocks shown in Fig. 6b into boxes results in the friction map
shown in Fig. 9b. In this simulation, 104 boxes are gener-
ated from the original 300 k friction cells. It is interesting
to note that, under the ST coordinates, nearly all the friction
boxes are intrinsically axis-aligned bounding boxes whose
width is always aligned to the S axis, and the height to the
T axis. Many spatial searching tasks thereby become trivial
with such an axis alignment feature. For example, one can
find which box a point (S,,7,) on the road belongs to via just
comparing its coordinates with all boxes’ corner locations,
respectively. This is useful for vehicles to conduct spatial
friction queries very rapidly even without high computa-
tional loads.

With the grouping of friction into partitions considering
the mean value and confidence interval, the road friction

map can be represented as a set of axis-aligned bound-
ing boxes with associated friction coefficient values and
confidence intervals, as shown in Fig. 10. Queries of fric-
tion boxes can be managed efficiently through the spatial
database. In this study, the PostgreSQL database with a
spatial database extender PostGIS (PostGIS Project Steer-
ing Committee 2021) is employed to manage data. The
database can create a spatial index, a generalized search
tree (GiST) (Hellerstein et al. 1995), for the box object to
facilitate various spatial queries. A common spatial query
is to find the nearest box given a point. Furthermore, the
resulting database requires only about 260 KB of space
to store all 880 friction boxes. With this compact repre-
sentation, the friction map data can easily be shared with
the connected vehicles, as shown in Fig. 1, with less data
cost and time delay. With the friction map, the vehicle can
plan the driving style according to the available friction
(Gao et al. 2021a, b). For the friction scenario in Fig. 2b,
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Transverse[m]

N

Station[m]

Fig. 10 AABB partition results for the clustering shown in Fig. 8b.
Each friction box approximates regions with the same mean value
and confidence interval on friction. Black lines are the edges of the
friction 880 boxes

the vehicle may need to slow down when approaching the
snowy bridge and avoid lane changing for driving stability.

The results indicate that the road friction distribution
can be measured effectively by collecting and aggregating
the friction data from CAVs, with compact data sharing
defined by the axis-aligned rectangular friction boxes. This
road friction mapping strategy provides great potential for
improving CAVs' control performance and stability via
database-mediated feedback systems, with a cloud-based
data sharing method that is suited for real-time deploy-
ment in actual networks of CAVs.

Analysis and Discussion

In this section, the location accuracy of mapped friction
boundaries and several variations of the proposed map gen-
eration method are investigated.

Accuracy Analysis of the Location of Critical Friction
Boundaries

In "Friction grids cluster considering the confidence inter-
val", the accuracy of the friction value representation was
investigated. However, it is equally important to investigate
the accuracy of the location of friction boundaries, espe-
cially the critical friction boundaries. In this paper, the criti-
cal friction boundary is defined as the location, where the
friction changes abruptly (a variation of friction coefficient
by larger than 0.1), such as the edges of snow ruts and icy
bridges. When maneuvering through these boundaries at
high speed, vehicles are highly likely to spin out or skid
unexpectedly (Beal 2017; Hebden et al. 2004). Thus, it is
important that the critical friction boundaries are detected in
the correct location to provide an accurate friction preview.

@ Springer

Figure 11a illustrates the ground truth critical boundaries for
the true friction distribution shown in Fig. 2d. The detected
critical boundaries are shown in Fig. 11b.

To evaluate the accuracy of the detected friction bounda-
ries quantitively, three metrics were calculated based on the
difference between the detected boundaries and the ground
truth boundaries; RMSE, mean error, and MAE. The RMSE
is 4.4 mm, the mean error is 0.19 mm, and the MAE is
0.2 m. This error level is comparable to the positioning error
of a differential global positioning system (DGPS) (Karls-
son and Mohammadiha 2018; Specht 2020) which provides
improved location accuracy by enhancing the normal global
navigation satellite system. In addition, this error level is
smaller than the grid size used in this study (10 cm by 10 cm
square), implying good detection accuracy. This error analy-
sis also provides a way to evaluate the uncertainty of the
friction distribution estimation. For the implementation of
the estimated friction map, such as optimization-based path
tracking control with friction preview (Gao et al. 2022) and
path planning in response to the road-tire grip capability,
both the uncertainty of the boundary location and the fric-
tion values could be considered to improve the system's
robustness against that uncertainty. However, due to the non-
differentiability and even discontinuity of this friction map
at the boundaries, gradient-based solvers may be invalid, but
derivative-free solvers can be utilized, such as mesh adaptive
direct search (MADS) (Ravera et al. 2019) and Derivative-
free Trust-region method (DFTRM) (Dhlen et al. 2014).

Granularity, Data Size, and Mapping Accuracy

Recall "Cluster the friction based on the road grids", where
we utilize the K-Means algorithm to partition the friction
grids and the K is estimated via histogram statistics with
0.1 bin width. If one conducts the same clustering and fric-
tion boxes partition method but uses different bin widths
and thereby different K values, the number of friction boxes
and aggregation error between clustered friction map and
the true friction distribution will change. This test was
performed and the results are summarized in Table 1. The
results reveal the trade-off between the partition granularity,
i.e., the number of friction boxes, and mapping accuracy.
This trade-off can be tuned through the choice of cluster
number K. A relatively larger cluster number, K, results in
a higher mapping accuracy but also increases the number
of friction boxes, data aggregation times, and database size.
However, if the cluster number is too large, the accuracy may
deteriorate even with more clusters. As shown in Table 1,
when the cluster friction interval is smaller than 0.03, which
is approximately the three standard deviations of friction
measurement noise 0.011, the errors of the generated friction
map increase instead of decrease. This is because when the
cluster interval is small, the cluster may be formed due to
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the variation of noise value rather than the true value. Given
that at least 99.7% of measurement noise values lie within
three standard deviations for Gaussian noise, even with data
averaging in measurement grids, the clustering of noise val-
ues into too many partitions can lead to inaccuracies in the
generated friction map.

For all cases examined, the percentage reduction in data
size exceeded 99.5%, indicating a higher level of compact-
ness and efficiency in the boxes-based representation com-
pared to grid-based road friction maps. Conducting the data
aggregation process in "Friction Data Aggregation” to the
true friction data shown in Fig. 2, where no measurement
noise is involved, only 47 friction boxes are generated,
whereas 104 friction boxes are generated when aggregating
the noisy measured friction data from vehicles. Compar-
ing the results, we find that the additional boxes are mainly
located in the uneven transition boundaries resulting from
the data noise between friction blocks.

To further evaluate the mapping performance, we con-
duct the friction mapping process for the same road section
shown in Fig. 2 but with two extreme friction distribution
scenarios. The first scenario assumes a trivial case, where
the true friction coefficient at each friction grid is identically
0.65, meaning there is no spatial variation in the friction

distribution, and thus only one friction partition would be
needed in theory. The mapping results of this scenario are
presented in Table 2. A comparison with the snowy bridge
mapping results in Table 1 shows that the mapping accuracy
is much higher, and the number of friction boxes is much
lower for this trivial friction pattern. This implies a more
compact and accurate data representation for simple road
scenarios, such as uniform dry or wet roads.

In the second scenario, the true friction coefficient
at each grid has a value drawn from the same normal
distribution with 0.65 mean and 0.1 standard deviations,
resulting in a friction distribution with a large value and
spatial variance. The data aggregation outcomes are listed
in Table 3. In comparison with the results in Table 1, the
mapping accuracy is lower and the number of friction
boxes is higher for this friction pattern. There are two
main reasons: first, most of the measurements occur at the
locations of the driving lane as indicated in Fig. 4a and as
a result, the location without measurement but with large
variance degrades the overall mapping accuracy. Second,
the large spatial variance, namely, each grid, tends to have
a significantly different friction coefficient value from the
neighbor, and consequently, much more friction boxes
are required to map the variation. However, even for this

Table 1 Friction mapping

. ; Interval K Number of Data size reduction Number of RMSE RMSPE (%) MAE

Performance with various friction boxes percentage (%) friction blocks

interval values for the snowy

bridge 0.01 40 751 99.6716 223 0.0164 4.24 0.0115
0.02 22 392 99.8317 175 0.0142 3.80 0.0092
0.03 15 285 99.9371 136 0.00761 2.24 0.0055
0.05 10 177 99.9614 91 0.0114 3.22 0.0080
0.1 6 104 99.9771 55 0.0180 5.36 0.0127
0.15 5 85 99.9812 47 0.0234 6.61 0.0165
0.25 4 67 99.9852 30 0.0302 8.90 0.0213
0.3 3 54 99.9881 15 0.0467 15.67 0.0330
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Table 2 Friction mapping

Interval K Number Data size reduc-  Number RMSE#*10° RMSPE*10* MAE*10°
performanc.e for a road L of friction tion percentage of friction (%)
se gn}ent'wuh constant friction boxes (%) blocks
distribution
0.01 3 152 99.9665 3 25.3 34.1 24.99
0.02 2 30 99.9934 2 18.8 25.2 17.87
0.03 1 1 99.9998 1 5.84 7.79 5.841
0.05 1 1 99.9998 1 5.84 7.79 5.841
0.1 1 1 99.9998 1 5.84 7.79 5.841
0.3 1 1 99.9998 1 5.84 7.79 5.841
Table 3 Friction mapping Interval K Number of Data size reduction Number of RMSE RMSPE MAE
p c-:lrformance fgr a r"a‘? se'gmejnt friction boxes  percentage (%) friction blocks
with normal friction distribution
0.01 26 204,321 55.0021 93,500 0.0763 12.7777 0.0487
0.02 15 171,120 62.3140 89,899 0.0760 12.7608 0.0483
0.03 11 149,662 67.0397 78,129 0.0759 12.7500 0.0482
0.05 8 130,552 71.2484 63,171 0.0762 12.8392 0.0495
0.1 4 93,640 79.3775 28,621 0.0776 13.1689 0.0536
0.3 2 44,955 90.0995 8564 0.0836 14.3829 0.0628

extreme case, which closely resembles a real-world gravel
road surface but is rare for a highway, the friction map has
considerable compactness and accuracy with an interval
of 0.1. Moreover, the driving lane with high mapping esti-
mation confidence as shown, for example, Fig. 5b could
provide a drivable route with good friction knowledge on
the road for vehicle navigation.

From all the mapping scenarios in this work, it is worth
summarizing that the errors of the generated friction map
increase instead of decrease when the cluster friction
interval is smaller than 0.03, approximately three standard
deviations of friction measurement noise (0.011). This
finding provides valuable guidance for selecting an appro-
priate cluster interval in the data aggregation process:
cluster intervals should not be smaller than approximately
three times the measurement noise.

Mapping Accuracy and the Number
of Measurements

In "Friction Data Acquisition Simulation", the friction
measurement from the traffic volume with 1038 vehicles in
30 min is collected as the raw data for the road friction map-
ping. The same friction map generation process elaborated in
"Friction Data Aggregation" for the snowy bridge was also
conducted for various traffic volumes. The results, which
are summarized in Table 4, reveal the trade-off between the
traffic volume, an indicator of collected raw measurements

@ Springer

Table 4 Friction mapping performance with different traffic volume

Number of K  Number of RMSE RMSPE (%) MAE
vehicles friction boxes

1038 6 104 0.0180 5.36 0.0127
779 6 159 0.0199 5.74 0.0129
519 6 217 0.0205 6.06 0.0130
256 6 441 0.0268  7.87 0.0146
128 6 587 0.0314  9.85 0.0166

data size, and mapping accuracy. Larger data sets provide
more accuracy at the cost of longer data aggregation time
and thereby mapping latency. In addition to the amount of
measurement data, the confidence results in Fig. 8 empha-
size the importance of data spatial diversity in improving
the overall mapping accuracy, especially for the friction pat-
tern with large spatial variance as the second extreme case
examined in "Granularity, data size, and mapping accuracy".
Thus, both the size and distribution of the raw data play
critical roles in the accuracy of the generated friction map.

Polygon Representation of Friction Blocks

In "Represent the friction cluster block with rectangular
boxes", the axis-aligned bounding boxes (AABBs) were used
to represent the friction cluster block. In fact, it is also pos-
sible to define the cell boundaries simply using the cluster
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block boundary. Figure 7a provides an example of a friction
block which is the region within the bold red polygon bound-
aries. In this paper, the boundaries of each block are detected
using image dilate and erode operation with a disk-shaped
morphological structuring element of radius 1. The polygon
boundaries can be depicted using the vertices coordinates
values in ST coordinates. With this method, fewer polygons
are required to represent the friction map, which is shown in
Table 1. The drawback of representing friction maps using
boundary definitions rather than AABBs is that managing an
arbitrary polygon object, including data storage and the spa-
tial query, is much less efficient in a database, especially for
polygons with holes. Because most databases are designed
to support AABB queries (for example, R-tree structures),
rectangular partitions have clear implementation advantages.

Conclusions and Future Work

This paper presents a road friction map generation strategy
by aggregating the measured road-tire friction coefficients
from a fleet of CAVs. To demonstrate the strategy, a simu-
lation was developed to collect friction measurement data
from CAVs. The simulation integrates traffic simulations,
vehicle chassis dynamics and on-vehicle friction estimators,
and a highway road surface with varying friction, particu-
larly over bridge segments that have strong friction variation
due to weather events. Due to the large size of collected raw
data, a road-grid-based data aggregation process is intro-
duced to generate a friction map that associates friction val-
ues with appropriate spatial context. The results indicate that
the road friction distribution can be measured effectively
by collecting and aggregating the friction data from CAVs.
Moreover, an insight of work is that the friction map can be
represented compactly by rectangular axis-aligned bounding
boxes defined by a pair of corner coordinates in space and a
friction value within the box, as long as STH (curvilinear)
coordinates are used.

This road friction mapping strategy provides great
potential for improving CAVs' control performance and
stability via database-mediated feedback systems, with a
cloud-based data sharing method that is suited for real-
time deployment in actual networks of CAVs. In addition,
the friction information could potentially support road
maintenance strategy development, especially in adverse
weather conditions, thus mitigating the impact of inclem-
ent road conditions on traffic mobility and safety. Such
friction information may also benefit human drivers with
more assistance.

Future work can readily improve the approach of this
work toward data aggregation. Specifically, the identical
fine grid size is not necessary for all road sections, and
a coarse grid may be suited for non-bridge areas. Thus,

an algorithm can be developed that adaptively estimates
grid sizes for different road sections and road conditions.
Similarly, this study ignored time-varying friction effects
(as only 30 min of data is studied), simply because typical
road friction variation occurs at much longer time scales
(hours). Given time-varying data, there are methods that
can be used to determine the appropriate time window
scale or forgetting factor to represent the time variation of
friction, including, for example, Allan Variance (AVAR)
(Sinanaj et al. 2021). One could even develop a friction
prediction model by considering the time dynamics of
road and weather conditions. Moreover, in this work, we
assume that all vehicles measure the same road-tire fric-
tion. However, it is worth noting that the measured value
of road-tire friction may also depend on the tire's char-
acteristics in addition to the road texture. Therefore, it
would be interesting to explore the mapping performance
with the data obtained from a fleet of vehicles equipped
with different tires. Such exploration can provide insights
into the robustness and generalizability of the proposed
friction mapping approach in real-world scenarios, where
different types of vehicles and tires are used. This can also
help to understand the impact of tire characteristics on
road-tire friction measurement and improve the accuracy
and reliability of the generated friction map. Finally, the
integration of on-vehicle data with roadside sensors (Hippi
2010) or in-vehicle camera friction estimation methods
(Roychowdhury et al. 2018) holds promise for future work.
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