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Abstract—Visualization design studies bring together visualization re-
searchers and domain experts to address yet unsolved data analysis
challenges stemming from the needs of the domain experts. Typically, the
visualization researchers lead the design study process and implementa-
tion of any visualization solutions. This setup leverages the visualization
researchers’ knowledge of methodology, design, and programming, but
the availability to synchronize with the domain experts can hamper the
design process. We consider an alternative setup where the domain
experts take the lead in the design study, supported by the visualization
experts. In this study, the domain experts are computer architecture
experts who simulate and analyze novel computer chip designs. These
chips rely on a Network-on-Chip (NOC) to connect components. The
experts want to understand how the chip designs perform and what in
the design led to their performance. To aid this analysis, we develop
Vis4Mesh, a visualization system that provides spatial, temporal, and
architectural context to simulated NOC behavior. Integration with an
existing computer architecture visualization tool enables architects to
perform deep-dives into specific architecture component behavior. We
validate Vis4Mesh through a case study and a user study with com-
puter architecture researchers. We reflect on our design and process,
discussing advantages, disadvantages, and guidance for engaging in a
domain expert-led design studies.

Index Terms—Data Visualization, Design Study, Network-on-Chip, Per-
formance Analysis

1 INTRODUCTION

Complex analysis can benefit from interactive visualization support,
but often existing visualization tools and design knowledge are
not sufficient for the specific needs of experts in a particular
domain. Visualization design studies [49] are an avenue by which
visualization researchers can better understand such scenarios and
develop new knowledge about visualization design, techniques, and
methodology while also helping their domain collaborators.

In a typical design study, a visualization team takes the lead
in designing the visualization system and gathers preliminary data
and evaluation of the system through interactions with the domain
experts. The frequency of these interactions varies and can be a
point of tension in the design process [40]. Furthermore, when the
visualization team implements the system apart from the domain
experts, we as a community gain little insight into the barriers that
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prevent domain experts from successfully developing their own
visualizations. While for some domain expert groups these barriers
are clear, such as when solutions require computer programming
skills, this is not the case in domains where such skills are prevalent.
To explore these issues, we conduct a design study in the domain
of computer architecture, structured such that the domain experts
lead the design and implementation of the visualization.

Our study addresses challenges in analyzing simulation data
during computer chip design. To evaluate, understand, and modify
their design, they simulate their design under workloads (i.e., as
generated by computer programs) and analyze the simulated data
to explore how the chip may behave in reality. As chips grow in
both computing cores and memory units, the network connecting
those components, the Network-on-Chip (NOC) becomes a central
actor in the chip’s performance. Thus, computer architects need
to understand not only what occurs in the computing cores and
memory, but also through the NOC.

Through regular meetings between the domain team and a visu-
alization expert, we design an interactive multi-view visualization
system, Vis4Mesh, to enable computer architects to explore simu-
lated NOC designs. Vis4Mesh supports both temporal and spatial
tasks in exploring simulated NOC data and supports bidirectional
synchronization with an existing state-of-the-art visualization tool
for deep dives into data of additional architectural components.
Our preliminary evaluations through user sessions and a case study
show Vis4Mesh is capable of helping computer architects make
sense of hardware behavior and identify performance bottlenecks.

Throughout our study, we reflect on the challenges and benefits
of our domain expert-led process. We note tensions for domain
experts in applying existing guidance, such as performing task
analysis, differing perspectives of research contributions, and
visualization authoring hurdles. We also identify advantages, such
as familiarity with the data and potential for a tight implementation
loop and integration with existing workflows. Finally, we discuss
what aspects of the people and process of this collaboration enabled
a successful design and design study. Our analysis provides insights
on how the community can address the “design in the wild”
problem [64].

In summary, this paper contributes:

¢ A domain analysis for network-on-chip visualization through
informal observation and a literature review of the flagship
NOC conference,
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Fig. 1. An overview of Vis4Mesh. Vis4Mesh integrates highly coupled Temporal View, Spatial View, and Daisen Visualization tool, representing the
temporal, spatial, and logical organization of the behavior of Network-on-Chip systems and the hardware components connected by the network.

e The design and implementation of Vis4Mesh, a validated
visualization design which provides interactive temporal and
spatial overviews for mesh NOC architectures, and

« Reflections on our domain expert-led design study process
with implications for future such design studies.

2 BACKGROUND

A Network-on-Chip (NOC) system integrates multiple components
of a computing system by allowing them to exchange messages.
The components are called clients and include microprocessors,
accelerators (e.g., audio/video decoders, neural processing units),
caches, memory controllers, input/output devices (e.g., Ethernet
adapters), and persistent storage (e.g., solid-state drives).

The network comprises three fundamental components:
adapters, switches, and links. Adapters are interfaces between
clients and the network. Swiftches receive and forward data to
adapters or other switches based on the destination of the data
and the switch’s routing rules for that destination. Links are wires
connecting a switch to an adapter or switch, responsible for passing
messages from one end to the other.

Data is sent over the network in messages (also called packets),
which can be arbitrarily long. Typically, messages need to be
subdivided into flits, the amount of data that can be transferred
each clock cycle on each link. The flits then traverse multiple
switches to reach their intended destination.

As switches and links have limited capacity, heavy network
traffic (e.g., many flits passing through a switch) can cause delays as
flits have to wait in queues rather than being sent to their destination
immediately. We call this network congestion. Identifying and
understanding reasons for congestion is an important task in
designing NoC systems. Additionally, delays may be caused by
limited buffer space for the flits at the source or destination adapter.

A mesh topology connects switches in a grid. It is one of the
most popular NOC topologies (see our survey in subsection 5.2).
The flat nature of silicons lead to 2D layouts of the mesh. Therefore,
we focus on 2D mesh topologies in this work.

3 RELATED WORK

We discuss related work in visualizing computer networks and
domain expert visualization collaborations.

3.1

Visualization of data-transfer networks has been an extensively
studied domain in both the computing systems [2], [6], [65]
and data visualization communities [15], [21]. Here, we focus
on network-on-chip systems.

Visualization tools for NOC systems have primarily come
from the NOC research community. Most of the existing tools
assume mesh networks and use color encoding to demonstrate the

Visualizing Network on Chip Systems
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amount of traffic on each component. NOCScope [42] shows the
traffic going through each switch and each switch port on a mesh
network. NocVision [16] lets users show the average, minimum,
or maximum traffic on each link in each period. Additionally,
VisualNoC [61] provides a NOC visualization tool specific for
mesh-based accelerators (e.g., Google TPU [23]). VisualNoC
highlights the capability of visualizing the traffic going through
each switch and how the mapping algorithm (i.e., algorithms decide
which core executes each piece of the program) impacts the system
performance. Overall, existing tools provide a good starting point
for the design of Vis4Mesh and define the “must-have” features of
NOC visualizations. However, these tools have limited capability in
visualizing application behavior along with its architectural causes,
constraining users’ capability of digging deep into the root cause
and confirming their findings from another aspect.

Mesh and torus networks are also prevalent in high-performance
computing (HPC) systems (i.e., supercomputers). Several works [9],
[20], [21], [29], [55] visualize the traffic and congestion for 2D
or 3D mesh and torus HPC interconnection networks. Unlike
NOC systems, HPC interconnection networks also include higher
dimension tori, requiring slicing [39] or projections [13], [59].
Fujiwara et al. [15] focuses on improving scalability with an
analytics solution to show routing possibilities. These papers
focus on an already-designed network between computing nodes
and treat traffic as homogeneous. In contrast, chip design is an
integrated process involving the network, computing elements,
memory systems, and scheduling algorithms. Thus, the design of
different systems is needed to support NOC system design-specific
tasks, such as understanding traffic types while removing unneeded
features like high-dimensional network support.

3.2 Domain Collaborations in Design Studies

There are a variety of techniques and guidance for improving
domain understanding in visualization design studies, such as
collaborative workshops [25], [26], [30], [41] and immersion
in the domain workflow [14], [19]. In all of these strategies,
ownership of the visualization design and implementation lies with
the visualization experts. In contrast, in this project, the domain
experts owned the visualization design and implementation while
the visualization expert served in a consulting and guidance role.

Simon et al. [51] discuss a Liaison role for design studies, a
person who speaks both the domain and visualization languages
and thus acts as a bridge between domain experts and visualization
designers. The domain and visualization experts in this project had
experience with both languages, following patterns of knowledge
gain similar to those described in becoming a liaison. This
preparedness for communication further enabled the domain expert-
led design process.

4 DESIGN PROCESS AND TEAM

We followed an iterative design process informed by the design
study methodology (DSM) [49] but with a key choice: the
visualization design and implementation were led by architecture
domain experts rather than visualization experts.

Our design team was composed of a computer architecture
domain expert (“ChipExpert”, 8-10 years computing systems
research experience), a visualization expert (“VisExpert”, 10+ years
visualization research experience), and two computer architecture

3

trainees (undergraduate students with 2-3 years computer architec-
ture research experience) mentored by the ChipExpert. We refer to
the three people from the architecture domain as the “ChipTeam.”

All members of the ChipTeam were involved in interpreting
data generated from the multi-GPU simulator, MGPUSim [56],
which means they could also be viewed as front-line analysts via
DSM. We note that in academic computer architecture research,
there is a need to both build and use tools, such as MPGUSim;
so while the domain experts were also tool-builders, a significant
portion of their work is as front-line analysts.

While the ChipExpert considers themself a computer architec-
ture researcher, they had experience during their graduate studies
designing a visualization system (as first author) and aiding in some
human-centered computing projects of their peers (as co-author).

The project was initiated by the ChipExpert, who began guiding
the trainees. Early in the project, when only the initial detail view
had been prototyped, the ChipExpert reached out to the VisExpert
for guidance because of the VisExpert’s previous experience with
computing network visualization. The collaboration continued with
the full team meeting bi-weekly and the ChipTeam meeting weekly.

The ChipExpert led the project, managing the trainees’ time
and having the most influence on the design and prioritization of
features and evaluation in consultation with the full team. The
trainees implemented data processing and visualization tools.

The VisExpert provided guidance and feedback regarding the
visual design, the task analysis, and the evaluation. Throughout the
project, the VisExpert created memos regarding observations of
interest to the greater visualization community, which are discussed
in section 9.

5 TASK AND DATA ABSTRACTION

We present the task abstraction, data abstraction, and design
requirements, after discussing our processes for eliciting them.

5.1

The initial tasks and data abstractions came from ChipExpert’s
personal research experience, including observations of industry
and academic practices and the demand of ChipExpert’s research
team. When the VisExpert joined, they argued for a broader source
of tasks. Through dialogue with ChipTeam, ChipExpert also helped
refine and codify the existing tasks.

To validate the ChipExpert’s tasks and possibly identify
additional tasks, the ChipExpert and VisExpert discussed other task
elicitation techniques such as surveys, interviews, and literature
searches. The previous survey conducted by the ChipExpert [58]
had focused on architecture simulation analysis in general. As
Vis4Mesh targets a more specific problem, we ultimately conducted
a NOC-focused literature review.

Task and Data Abstraction Process

5.2 NOC Literature Review

To better understand the tasks of computer architects while
designing NOC systems, the ChipExpert performed a literature
review (see Figure 2) of 32 papers published in the most recent
three years’ IEEE/ACM International Symposium on Networks-on-
Chip (NOCS), which is a flagship conference in NOC design.
Particular focus was given to how authors graphically depict
NOC system issues and mechanisms and the metrics they use
to demonstrate the effectiveness of designs. While other computer
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Fig. 2. Themes and individual codes from our literature review of all the papers [63] [11] [35] [47] [24] [45] [46] [33] [4] [38] [60] [3] [44] [27] [22] [28]
[48] [54] [43] [5] [31] [17] [50] [18] [12] [52] [37] [32] [53] [7] [34] [36] published in the most recent three years’ IEEE/ACM International Symposium on
Networks-on-Chip (NOCS). Papers exhibited a variety of analyses between the NOC and architecture and software workload concerns, including
temporal trends and metrics we use to validate and extend our task analysis and visualization design.

architecture conferences feature NOC papers, we aim to system-
atically summarize the visualizations used in communications
among NOC-focused experts. After analyzing three years of papers,
the ChipExpert concluded they were not seeing additional kinds
of visualizations and metrics, and thus, the three-year sample
represented the space. We discuss how we derive tasks and design
guidance from the literature review below.

Mesh and mesh-like topologies dominated (64% of papers),
so we decided to focus on mesh-like NOCs. While most papers
demonstrated results with fewer than 100 components, there was a
trend towards larger NOCs, suggesting the need for scale.

Many papers (43%) have figures showing temporal behavior,
often with arrows. At least one used multiple figures to explain
temporal behavior. This observation affirms the temporal tasks we
identify.

We observed a strong coupling between NOC system designs,
the architecture of the components (e.g., caches, cores), and the
software workloads (see themes of Research Domain, Solution
Type, and Evaluation Metrics in Figure 2). We thus affirm and
expand tasks relating architecture and workload to NOC design.

NOCs are typically depicted as node-link diagrams, so we
adopted this familiar idiom. The papers typically used color to
indicate the component type. Sometimes, areas of congestion were

also shaded. Traffic was shown through traditional line and bar
charts. We suspect these choices are due to the expectation of
statistical charts in performance results and the unavailability
of interactivity. Thus, we choose color for traffic, an encoding
successfully used by other non-architecture computer network
visualizations in the related work.

5.3 Task Analysis

From the project inception, ChipTeam voiced their high-level goal
of understanding the root causes of network congestion stemming
from NOC and overall GPU design. The need for spatial and
temporal views was more intuitively understood as they began their
design, as congestion exists in both space and time.

The VisExpert helped refine the tasks, their context regarding
goals, and workflow throughout the design process. We present the
refined tasks and their lower-level sub-tasks.

Goal: To identify performance improvement opportunities.
Computer architects aim to improve performance by identifying the
causes of underutilized resources and then altering the design. Both
network congestion and network under-utilization can be symptoms
that stem from either network or non-network components. There-
fore, computer architects analyze congested and non-congested
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periods to investigate fundamental issues rooted in the non-network
subsystem.
T1: Understand the simulation workload. Computer architects
need a high-level understanding (i.e., overview) of behavior
under the simulated workload, including phases with different
characteristics, as each may have different optimization concerns.
These include types of messages (e.g., control versus data) and their
flow patterns in the network (e.g., one component broadcasting to
many others, long-distance paths).
T1.1 Identify workload phases.
T1.2 Characterize workload phases.
T1.1.1 Identify types of messages sent
T1.1.2 Identify high-level traffic flow patterns (e.g.,
north half is busy, but the hot area moves south
over time)
T2: Identify congestion. Congestion must be identified to under-
stand its cause. Both low and high message volumes are of interest
as low traffic can indicate traffic blockage inside switches, possibly
due to architecture choices.

T2.1 Locate congestion in time.
T2.1.1 Identify time periods with extreme (low or high)
overall traffic load.

T2.1.2 Identify time periods with saturated tiles or
links.

T2.2 Locate congested regions of the network.

T3: Assess network design effects on traffic. Poor performance
may be due to sub-optimal network design, requiring the computer
architect to understand how the network design affects traffic. Note
that just as in the overview sub-tasks of T1, message flow patterns
in the network are a key task.

T3.1 Identify types of messages involved in congestion
T3.2 Identify low-level message flow patterns (e.g., data
scatters from a certain node)

T4: Assess architecture effects on traffic. All the messages
transferred on the network originate from non-network components.
Therefore, the root cause may be an unexpected behavior of a non-
network component.

T4.1 Reason why the messages are sent.
T4.2 Identify software/hardware elements that generate the
messages.

5.4 Data Abstraction

We cast the NOC as a directed network with a numeric attribute
for traffic associated with each node and link. The traffic attribute
is derived from event sequences of flits at each component. Thus,
the value can change by filtering flits by type or time range. The
attributes associated with the flits are, in part, designed by our team
and summarized in Table 1.

Additionally, each node (architecture component) in the net-
work (NOC) also has an associated log of processes—an event
sequence with durational events. These are generated and presented
by a separate tool that we integrate.

Data Design. One advantage of including domain experts in
the research team is the full control of the ecosystem that involves
both the data generation, collection, and visualization process.
Therefore, we define our own data trace format, considering
a balance between the expressiveness of the data, simulation
performance, and visualization performance. For example, instead

5
TABLE 1
Trace format generated by the instrumented simulator.
Field Format Description Example
Time Time Time step of the flits 23U s
Src Coordinates  Source tile location 2,4)
Dst Coordinates  Destination tile location 3,98)
Msg Text The message type “Read”
Trans  Text The transfer type “Relay”
Hops Range The total hops “32-47
Count  Number Number of flits of this type 12

of recording the event sequence of each flit, which would produce
too much data and is not necessary for our common tasks, we
instead record the number of flits for each type that passes through
a component at each microsecond. We discuss similar choices in
subsection 6.3.

The traces are stored as JSON files. We chose file-based tracing
over databases to eliminate indexing overhead and use directory
and file naming along with data redundancy to preserve query
performance.

The ChipTeam implemented the trace collection as a Go
library and connect it to MGPUSim, a state-of-the-art GPU
system simulator, using the underlying tracing mechanism of
the Akita computer architecture simulator framework [56]. Minor
modifications were made to MGPUSim to invoke the tracer’s API.
The data format is not coupled with Vis4Mesh nor MGPUSim,
allowing people to either implement their own data collector on
other simulators or their own analysis tool for the data.

5.5 Design Requirements

We summarize a list of design requirements (DR) for Vis4Mesh.
These design requirements are summarized from the research
experience of the ChipTeam, existing network visualization tools,
and the NOCS literature review.

DR1: The visualization should enable users to observe spatial
utilization trends. Users should be able to answer questions such
as “which link is likely to be a global bottleneck?”

DR2: The visualization should depict temporal trends of
network utilization. Users should be able to answer questions
such as “during which period is the NOC underutilized?” DR1
and DR2 should be simultaneously supported so users can quickly
identify points of interest in time and space.

DR3: NOC visualizations must support cross-layer reasoning.
Users should be able to answer questions such as “What are the
computing cores doing, and is it causing congestion?”

DR4: The visualization should support the scale of next-
generation NOC systems that involve thousands of nodes.

6 VIS4AMESH

We design Vis4Mesh based on our collected tasks and design
requirements. We followed an iterative process, with weekly
meetings among the ChipTeam and biweekly meetings with the
VisExpert to refine the design.

The resulting design is a coordinated multi-view system
(see Figure 1). The spatial view represents the full mesh network,
allowing users to view traffic along the links and switches within
a time slice. It also supports temporal animation. The temporal
view summarizes traffic behavior over time in multiple ways and
allows time slice selection. Multiple filters allow the examination of
specific kinds of messages and flits. Finally, features and insights
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Fig. 3. The overview of the software components involved in Vis4Mesh.

discovered in these views can be further investigated through
integrated visualizations of specific architecture components and
scheduling behavior from Daisen, a lower-level architecture visual-
ization tool. VisdMesh is a web-based tool built with D3js [8]. It
supports both in-situ and post-processing visualization. Figure 3
summarizes Vis4Mesh and its underlying components.

6.1

Revealing the spatial features of traffic (e.g., on which link, on
which switch, in which area) is essential in understanding network
performance (T1.1.2, T2.2, T3). VisdMesh provides two views that
reveal the spatial distribution of the traffic (Figure 1 (2), the Spatial
View), including the detailed view and the bird view, to fulfill DR1.

The Detail View. The spatial view of Vis4Mesh is a representa-
tion of the switches and links in the network, allowing users to see
traffic information down to individual network components. We
represent the full mesh network through a regular grid of square
tiles [ | connected by arrows =» representing links. Each tile has
eight arrows for its incoming and outgoing communication with its
four neighbors (east, south, west, and north).

Traffic across each component (tiles, links) within a selected
time period is encoded with color. A darker color indicates more
flits traversing the component. The traffic value associated with the
darkest color is configurable, so users can set it to the capacity of
each link and switch. This encoding supports identifying congested
regions (T2.2), identifying components that generate messages
(T4.1), and identifying message flow patterns (T1.1.2, T3.2)
through spatial trends of color.

We label each link with the exact number of flits delivered in
the selected time range. This allows computer architects to perform
detailed evaluations or compare the flit numbers (e.g., 498 flits
sent over a capacity of 500, one link serving 30 flits fewer than its
neighbor).

It is not feasible to show the entire network for large-scale NOC
systems. Thus, we enable visualization of larger NOCs (DR4) with
two features: 1) a “Bird’s-Eye View” that always presents an
overview of the whole network and 2) a semantic zooming feature
for the detail view.

Bird’s-Eye View. The Bird’s-Eye View is a mini-map of the
entire network overlaid at the bottom-left corner of the Detail
View. Switches are combined into pixels, and links are elided to
summarize traffic in regions (T2.2) and high-level patterns (T1.1.2,
T3.2), allowing users to quickly identify these features across the
network, thereby also helping to identify and characterize phases
during initial overview (T1.1, T1.2).

An interactively linked brush over the Bird’s-Eye View shows
the region displayed by the Detail View with respect to the entire
mesh and can be used for quick navigation.

Visualizing Spatial Traffic Distribution

Fig. 4. Tile-aggregation-based semantic zooming design in the Detail
View. When zooming out, every 16 single tiles (a) are aggregated into a
single 4x4 tile (c). If further zoomed out, 4x4 tiles can also be aggregated
into 16x16 tiles (no limitation). Also, to avoid confusion, we create a
transition view (b) showing both the individual and aggregated tiles so
that (a) and (c) smoothly blend into each other.

Semantic Zooming. The Detail View supports zooming and
panning. As the scale of the network grows large, there is
insufficient screen area to zoom out to the entire network. Thus, to
ensure the Detail View is still comprehensible at high zoom out,
we aggregate tiles and their associated links when zooming out as
shown in Figure 4. Incoming and outgoing links are aggregated
into arrows attached to next-level tiles. We label each aggregated
tile with the true number of tiles it represents (e.g., 1x1, 4x4, 16x16,
etc.) so users know the level they are examining. To avoid confusion
caused by sudden aggregation level changes, we introduce an
intermediate view (Figure 4 (b)) that shows both the low-level
and next-level tiles. As a user zooms through aggregation levels,
the tiles gradually shift through opaque and nested depictions. We
chose to aggregate 4x4 tiles at each level to balance visibility
(sufficient tiles on the screen) and rendering performance (avoid
too many tiles on the screen).

6.2 Visualizing Temporal Traffic Distribution

While the Detail View and the Bird’s-Eye View provide spatial
context to the data, the Temporal View (Figure 1 (D), the Temporal
View) provides both summary and detail regarding the temporal
context of the data. The Temporal View also serves as an important
interactive control for faceting the data in time for the network
views. Overall, the Temporal View uses the x-axis to represent
time. We lay out two charts, the total traffic chart and the peak
link-utilization chart, on the top and bottom of the time axis,
respectively.

View Design. The Temporal View is designed to fulfill DR2,
T1.1 and T2.1 and guide [10] users to select time ranges of interest.

Total traffic is shown as stacked bars, with the total bar height
representing the number of flits transferred in the time slice across
the entire network. Each color represents the number of flits that
belongs to a type of traffic (e.g., reads, writes). We support four
types of traffic that represent the commonly seen data types in GPU
computing (T1.1.1). The classification can be configured using our
data collection library described in subsection 5.4.

The total traffic bars help identify temporal patterns, such as
phases in traffic (e.g., perhaps due to application behavior) (T1.1).
For low-traffic regions, users can then examine architectural reasons
why the network is underutilized (e.g., some component is not fast
enough to generate sufficient traffic) as described in subsection 6.4.
For high-traffic regions, users can determine if the network provides
sufficient support for the architecture and the application with the
spatial views.
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Peak traffic is shown with a heat strip, where the color
represents the number of flits that the most congested link transfers
in the time slice. During our development, we observed that the
traffic bars could be misleading as users assume low-traffic periods
are congestion-free. However, it is common for users to miss that
a few congested links may block the entire network, leading to
low message counts despite high congestion. The heat strip shows
cases of high saturation (T2.1.2) regardless of overall traffic. Users
can determine the duration of high congestion in the network and
further target their analysis.

Interaction design. Users can brush across the temporal view
to filter the network views to specific time steps. Hovering over a
time slice will reveal the exact value of the corresponding time in
the simulation.

Animation. Vis4dMesh supports animation during which the
brush automatically steps through time slices, updating the network
view as the selected time slice changes. We design this feature to
support both DR1 and DR2 (dependencies with time and network)
as well as T1 (identifying and characterizing phases).

6.3 Traffic Filters

In addition to the temporal filtering available through brushing the
temporal panel, Vis4Mesh also has several filters for narrowing
down the type of traffic shown in the rest of the visualization
(T1.1.1, T3.1). These are based on attribute data associated with
the flits.

Message Type Filter. We classify the flits by the high-level
message types. The types used here are the same as those used in
the stacked bars. These classes help distinguish the most common
behaviors on the network and the impact they may have on
resources. By turning any type on or off and observing the Detail
view, users can quickly identify if a network behavior is caused
by a particular architecture behavior (e.g., long-distance message
passing is caused by address translation).

Transfer Type Filter. Another useful way to categorize flits
is by their origin from the point of view of switches. The flit
can originate at a component (e.g., an adapter), be relayed by a
switch, be consumed by a component (e.g., the receiving adapter),
or may come from a peripheral component outside the NOC
system. We refer to these cases as the flit’s transfer type as it
traverses a component. For origination and consumption, we use the
networking-specific abbreviations TX (transmit) and RX (receive),
respectively.

Transfer type filtering helps users identify components that
produce (T4.2) or consume many flits or identify when traffic is
coming mostly from outside the network. They provide additional
insight to message flow patterns (T1.1.2, T3.2).

We identified the utility of understanding transfer types through
analysis sessions with the entire design team. The ChipTeam then
added transfer type to flit data collection. We discuss the integration
of data collection and visualization design further with the next
filter.

Hop Filter. Analysts may be interested in messages (flits) that
have long (or short) paths to reach their destination (T3). Thus, we
enable users to filter traffic by the number of “hops” (transfers)
a flit requires to reach its destination. This filter allows users to
examine different kinds of traffic by distance and understand the
proportion of long or short routes.

This hop-filtering feature was proposed during a group analysis
session with the entire design team. To support the desired distance-
based analysis, the ChipTeam then added a feature to append a
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hop-distance attribute to flits in the trace. In implementing both the
data collection and data visualization requirements for hop-filtering,
the ChipTeam determined that collecting exact hop counts per flit
would greatly increase the data size. The ChipTeam thus decided
to collect hop-count ranges as a trade-off between specificity and
data size.

6.4 Architecture Drill-Down via Daisen Integration

Computer architects designing NOC systems require both the
network context, which tracks data flows through the network, and
the architecture context, which considers the architecture choices
for the individual components using the network. The views we
have presented thus far mainly focus on the network context.

Rather than designing new architecture context views, we chose
to integrate an existing validated visualization tool, Daisen, for
drilling down into architectural details (T4). This choice reduces
design and development efforts and leverages prior knowledge for
users already familiar with Daisen.

Daisen provides visual support for analyzing the detailed
behavior of each individual component. The component view of
Daisen can show all the tasks (e.g., instruction execution, memory
access, flit transfer) completed by a component. Moreover, The task
view of Daisen allows users to trace the tasks up (what task triggers
the current task) and down (what subtasks need to be completed)
the task hierarchy across components.

To support a tight analysis loop between the network and
architecture contexts, we implemented coordination between
Daisen and the Vis4Mesh views. Changes to the switch and time
selection in the Vis4Mesh original views will update the Daisen
views. Temporal zooms in Daisen will update the temporal panel
brush in Vis4Mesh. If other components are associated with tasks
selected by navigating Daisen, the Vis4dMesh Spatial View will
re-center accordingly. These bi-directional synchronization features
required small modifications to the Daisen code base.

7 CASE STUuDY

The ChipTeam conducted a case study analyzing the execution
of the Finite Impulse Response (FIR) Filtering benchmark from
the Hetero-Mark suite [57] simulated on a large-scale hypothetical
GPU design. The GPU is organized in a 32 x 32 mesh. Each tile
equips one Compute Unit (i.e., a GPU core) and a 4 MB Static
Random Access Memory (SRAM) that stores the data that needs
to be processed by the GPU. All data is initially located outside
the GPU and needs to be copied to the GPU. After the program
execution, the output data will be moved outside the GPU. The
benchmark and the hypothetical hardware configuration originated
from another research project in the ChipExpert’s group.

Upon opening our simulation trace in Vis4Mesh, we first notice
three distinct phases in the Temporal View (see Figure 5 (a)): two
long periods with low traffic volume separated by a short phase
with high traffic volumes. The heat strip along the bottom shows
that while traffic volumes are low in the first and third phases, there
are still individual links with medium traffic. Both high-traffic and
low-traffic periods may need further investigation because both
may have performance improvement opportunities. Since these
low-traffic phases take up most of the time, we focus on the first
such phase for our case study.

Animated visualization of the host-to-accelerator copy phase
identifies periods of heavy network traffic in the top left quadrant.
To examine these in more detail, we select a time slice for deeper
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Fig. 5. Major views used in the case study, analyzing the FIR benchmark running on a mesh-based GPU architecture.

analysis. From Figure 5 (b), we observe that the data-transfer
hotspot occurs in the top left region.

To further investigate, we can use the Detail View to take
a closer look at the exact number of flits sent over the top-left
region links (see Figure 5 (c) and (d)). Using the animation and
observing the numbers on the links, we see a clear gather and
scatter pattern where the top-left node serves as a central hub. This
pattern results in an unbalanced and underutilized mesh network,
with data congested in a single node. Furthermore, by toggling the
Hops Filter (results not shown due to limited space), we notice a
large amount of traffic travels long distances, causing long delays.

At this point, we understand the traffic properties and have
identified the congestion point. However, without linking the
network behavior with the architectural behavior, it is difficult
to understand why the messages must be sent and, therefore, to
design an improved solution.

To examine how architectural behavior affects performance, we
select the top-left node and open the Daisen panel to examine all
the flits that pass through the node. With Daisen, we first observe
that a large number of flits pass through the node (see Figure 5 (e)),
which matches our observation in the Detail View. The question
we want to answer is why there are so many flits at this time and
location. We thus utilize Daisen to trace back the architectural tasks
toward the root of the task tree.

As we trace back to the whole network level, we see that each
flit traverses many hops (not shown due to space limit), confirming
our observation with hop filters. Moreover, as we keep tracing
until the Direct Memory Access (DMA) unit level, we see that the
DMA unit initiates the traffic (also not shown due to space limit).
Finally, at the whole benchmark level, we observe the timeline of
the 3-stage application execution. The timeline in Daisen (Figure 5
(f)) matches with the timeline in Vis4Mesh (Figure 5 (a)), which
can help users map the traffic phases with the program execution
phases, enhancing their confidence in analysis results.

The observation at the DMA unit and the whole benchmark
level suggests that the first low-traffic phase involves communica-
tion between elements outside and inside the mesh, passing through
the top-left node. As the single entry point of the whole mesh, the
top-left node suffers from high traffic pressure. This observation
confirms that the long low-traffic phase is due to moving memory
from outside the GPU. We can now consider designing alternatives

either within the architecture or in how the NOC ingests data.

8 USER EVALUATION

To further validate the Vis4Mesh workflow and visual design,
we conducted a preliminary qualitative user study with 7 GPU
researchers and professionals. All sessions were conducted via
online meeting software (i.e., Zoom) and recorded and transcribed.
Two authors reviewed the recordings and transcripts, took notes,
and open-coded the notes to find themes. This research was
approved by our Institutional Review Board (IRB).

8.1 Method

We began each session with a demonstration using the example de-
scribed in our case study (FIR Benchmark, section 7). Participants
were then asked to perform a list of tasks based on a more complex
dataset: the execution of a convolutional layer in a Convolutional
Neural Network. The first task was an open exploration. Afterwards,
we gave them shorter tasks that guided them through the workflow
and asked them to identify features. Finally, we asked them about
the overall bottleneck.

While performing tasks, participants were asked to think aloud
and share their screens, allowing us to observe and understand their
interactions. They were also given a PDF “cheatsheet” user guide
for Vis4Mesh.

Following the tasks, we conducted semi-structured interviews
to gather additional feedback. Finally, participants completed a
survey regarding Vis4Mesh. We also used this survey to collect
demographic information. Each session lasted between 75 and 90
minutes. We provide the tasks, interview questions, and survey in
the supplemental materials.

Participants. We recruited seven participants with computer
architecture experience through our networks. Table 8.1 summa-
rizes their years of experience in architecture and their previous
experience with Daisen. One is a Ph.D. student who works
with ChipExpert. None are authors. The participants were not
compensated for participating.

8.2 User Study Findings

The two ChipTeam students conducted the user study sessions.
They discussed each session after the interview, going over the
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TABLE 2
Participant demographics.
Participant Pl P2 P3 P4 P5 P6 P7
Highest Edu.  B.S M.S. Ph.D. B.S. PhD. PhD. M.S.

Years Exp. 1-3 1-3 1-3 1-3 1-3 5-8 3-5
Daisen Exp. No No No Yes  Little  Little

recordings and transcripts to gather data relevant to the research
questions and any other Vis4Mesh feedback. We present our
findings below.

We did not expect participants to be familiar with Vis4Mesh.
To keep the study a feasible length while still covering the major
features of Vis4Mesh, the short tasks were designed to guide
participants to use each feature along the expected workflow. Five
of the seven participants followed the guide closely, while two
preferred to explore it on their own first. Thus, our findings mostly
pertain to feedback on the workflow and visual design. We cannot
draw strong conclusions regarding how people would use Vis4Mesh
if given just the tool.

Participants gained performance insights throughout our
workflow from temporal overview to spatial and architectural
detail. All participants identified bottlenecks during the session,
but required additional help regarding architectural root causes in
the final part of the workflow.

Participants were able to use the temporal panel to identify
phases and execution patterns. P6 stated that “when I find patterns
in the application, I feel that this is the most relevant. My analysis
would start from this view first.”

Insights from the stacked bars included speculations about
architecture behavior such as memory copying, kernel launching
and intensive computing. Additionally, some participants used the
heat strip to identify bandwidth issues. P3 said the heat strip was
the second most important feature because “we can detect when
the traffic is bound by bandwidth and it shows us the bandwidth
bottlenecks.”

After filtering in time, Participants considered the spatial
behavior of traffic with the bird’s eye view. P1 noted “This is a
very important feature and most of the time are spent on this bird’s
eye view.” P7 said “During the early stage of network analysis, we
can directly see the approximate location of the bottleneck through
the bird’s eye view.”

Five of the seven participants also used the the transfer type
and message type filters, but not the hop filter, to further refine both
the temporal and spatial views. The traffic type was used to check
sources and destinations, allowing them to further hypothesize
about traffic patterns, such as message broadcasting. The message
type filter hinted at architectural causes (e.g., memory reads and
writes). P6 said the filters were “the most power” feature, noting
“you can actually filter outside messages and just keep one type of
message to see what the traffic is about.”

Once a spatial location was found in the bird’s eye view, several
participants then successfully zoomed on the detailed view, though
this was not as universally used as the other view. P2 said “I can
zoom in layer-by-layer to see the details I want, without getting
lost in too many details at first.”

After identifying a particular component of interest in the spatial
view, participants opened Daisen for more details on architectural
behavior. They used Daisen to trace through processes within the
component. P7 said ”The integration with Daisen is very useful.
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You can actually find the bottleneck in architecture with Daisen,
such as message latency and task duration.” P2 noted Daisen
provides an “instruction view” which “enables users to analyze the
reason of a hot spot at the instruction level.”

Participants gave positive feedback regarding our workflow.
P1 commented “Vis4Mesh can provide information about when,
where, and what the hotspot is and then Daisen tells why there is a
hotspot.” And P6 said “The workflow is very straightforward and
intuitive. You have information of different granularity, and it is
easy to target hotspot step by step”.

Participants suggested additional refinement of zooming
features. Though participants used the zooming in the detail view
to locate components of interest and verify traffic patterns from
the bird’s eye view, some struggled with the semantic design.
P1 suggested more explicit prompts were needed to help users
understand the zoom level.

Participants also requested zooming features in the temporal
panel. For example, P1 commented “It would be much better if
Vis4Mesh supported zooming in on the temporal panel to focus on
a specific time range.” While participants were supportive of the
animation feature, they did not utter insights during its use and one
suggested animation might be better for replay in a smaller time
range of the simulation.

Participants suggested improvements for the integration
with Daisen. Three participants found Daisen tricky and less
intuitive than ViséMesh. They recommended adding more tooltips
and help materials. One participant (P1) also noted that Daisen
increases the tool dependencies because it uses a back-end server,
while otherwise Vis4Mesh could be run in a more portable fashion.

Integrating two tools provided many features, but also
introduced new problems. Participants used Daisen to explore
architectural causes for bottlenecks discovered in ViséMesh. They
noted the benefits, but also the mismatch in complexity. P2
commented “Daisen provides information at the instruction level
and it helps me understand why the hotspot takes place by telling
me lots of instructions are issued.” P7 said: “Daisen has massive
data and provides lots of views which makes me get lost easily.
However, Vis4Mesh allows me to find potential bottlenecks in an
intuitive way and then I can use Daisen to get what I want.”.

Participants found Vis4Mesh unique among architecture
visualization tools. P1 commented: “Vis4Mesh is friendly and
intuitive for users. It focuses more on network traffic other than
architecture.” P7 had the same feeling as “Vis4Mesh is for external
Network-on-Chip, while Daisen is for internal GPU architecture.
Besides, P6 noted that VisdMesh not only provides you static
results, as “It has a lot of like interesting features. They are very
interactive and very responsive.”.

Quantitative Survey Results. Figure 6 shows the Likert
scale responses to our post-study survey. The full survey prompts
can be found in the supplemental materials. Participants were
largely positive regarding Vis4Mesh’s ability to aid with the given
tasks. However, there were lower average scores regarding user
experience/ease of use concerns as well as architectural concerns
and high and low-level information. We discuss this further in the
Discussion section below.

s

8.3 Discussion on User Study Findings

Overall participants used Vis4Mesh as expected by our design, with
all of the features being used by at least some of the participants
and all leading to performance analysis hypothesizing and insights
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Fig. 6. Post-study quantitative survey results, with the questions sorted
in the same order as the survey.

by those who used them with the exception of the Hop Filter and
the animation in the time view.

The Hop Filter was implemented by the ChipTeam to provide
more information regarding how far flits have to travel in the
NOC. Several trade-offs were made in data collection as true paths
would be expensive to collect. We hypothesize that the inference
expected was not obvious to the participants which may have been
compounded by lack of familiarity with the presented evaluation
NOC design.

We note that the lowest average score regarded architectural
causes of performance issues. We suspect the difficulty in using
Daisen, especially among the new users, may have contributed to
this score. Additionally, participants expressed unfamiliarity with
the architectural design of the given scenario. In practice, they
would use Vis4Mesh on an architecture they were designing.

The combination of the two tools is tricky for both users and
developers. The separate tool requires its own learning curve as
well as additional data collection and deployment. We developed
our tracing capabilities such that VisdMesh and Daisen data can
be collected simultaneously. We also had to design a protocol and
modify both tools to support double-ended communication.

There were also a few participants who were neutral regarding

Vis4Mesh’s ability to show both high and low-level information.

Their scores may reflect some of the zooming issues found in the
qualitative feedback.

8.4 Limitations and Threats to Validity

As we recruited participants through our own networks, the
participants may be biased toward giving positive feedback. We
have tried to discuss observations as well as direct feedback and
carefully analyze where feedback and observations were more
reserved, even when still positive.

Our user study is limited to seven participants. We were
conscientious in recruitment as expert time is valuable. Thus, when
we began to observe similar feedback, we decided to stop recruiting
both to respect to our colleagues’ time and reserve participants for

future evaluations of VisdMesh or other architecture visualizations.

Vis4Mesh was designed under the assumption of regular use by
people familiar with both the designed GPU architecture and the
benchmark used to collect data. We supplied the data in this user

study, so participants lacked that assumed background knowledge.

The choice to supply data was because not all participants were
actively working on a NOC design and we wanted to decrease the
burden on participants in terms of running new tools to collect
data for those who were. Thus, the feedback we received was
speculative on the part of the participants for their own scenarios.
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9 DOMAIN EXPERT-LED VISUALIZATION DESIGN:
REFLECTIONS AND RECOMMENDATIONS

We discuss advantages, disadvantages, pitfalls, and recommenda-
tions for domain expert-led visualization design projects.

The domain experts were inclined to intuitively design
without making tasks explicit, leading to interventions by the
visualization expert. The members of the ChipTeam, especially
the ChipExpert, had strong initial notions of what they wanted
to see and what their high-level goals were. They were eager to
implement views and features without cataloging or examining
their implied tasks. The VisExpert was concerned these design and
development practices could lead to prioritizing less-useful features
or creating a design based on incorrect or vague assumptions that
could be avoided with more careful examination.

The VisExpert performed two interventions in the design
process to better elicit tasks. The first was arguing for a broader
point of view—seeking tasks outside the ChipTeam. This led to
the NOC literature survey (subsection 5.2) which in turn led to the
decision to focus on meshes and the choice of prevalent metrics.

The second intervention by the VisExpert was ongoing through-
out the project. During the full team’s regular meetings, the
VisExpert deliberately probed the statements of the ChipTeam
to refine the group’s understanding of tasks. These statements
included design proposals, goal statements, and utterances while
using the prototype to examine sample data. It was during one of
these meetings that the VisExpert recognized the mismatch between
the visualization of total flits and the task of identifying congestion,
leading to the addition of the heat strip in the temporal view.

The ChipTeam had little experience with task elicitation and
documentation and were unsure of its value, especially when they
“knew” what they wanted to see. The VisExpert had difficulty
compelling the need for task analysis through stories of other
projects. There is no way of knowing if the ultimate design would
have been different without the VisExpert’s interventions as design
decisions could have come about in other ways, such as test-driving
the prototypes with data. With the expertise of the ChipTeam, the
extended task elicitation and analysis advised by the VisExpert here
may be more about risk mitigation than in other projects where the
designers are not the intended audience.

The ChipTeam was responsive to the VisExpert’s suggestions
due to trust in the VisExpert. Improved ways to quickly com-
municate the need for task analysis to non-visualization experts
may be necessary for other domain expert-led design projects.
While the first intervention, the literature survey, was a significant
undertaking by the ChipTeam, we note the second intervention,
deliberate probing in regular meetings, can be easily integrated
without much disruption of the domain team, and recommend the
action by people in the VisExpert’s role.

The project setup led to a fluid data collection, data
processing, and visualization design loop. The ChipTeam refined
the data collection process while designing the visualization, as seen
with the hop-filter feature. The VisExpert observed that trade-off
decisions regarding the difficulty and resources (including human,
computational, and storage resources) were made fluidly and
rapidly in comparison to other visualization designs projects [62],
likely because the ChipTeam had implementation ownership of
both the data collection and the visualization.

Similarly, code design decisions about data processing, such
as building the summed-area tables for the Temporal View or the
hierarchies for the semantic zooming of the network, could be
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made more consistent across the data and visualization pipeline.
Though the visualization is designed to run separately from the
data collection so it can be used with other simulators, the data
processing is consistent across ChipTeam’s code because there is
no translation or hand-off of data from the domain experts to the
visualization designers.

Developing the visualization tool within the domain also
builds expertise to maintain it, but resource issues persist.
Vis4Mesh is developed within ChipTeam’s organization, ensuring
that ChipTeam has the expertise and familiarity to maintain
and evolve it. However, there are still issues of maintenance.
On reflection, the ChipExpert expressed regret in not having it
developed within Daisen directly but as a separate tool and tracing
library. Not integrating the existing tool chain may hinder adoption
by potential users outside his team. Further, merging the tools
increases the maintenance work. Discussing plans for integration
and maintenance early in the project can make trade-offs explicit
and provide the opportunity to alleviate some of these issues. The
VisExpert can bring their experience and other perspectives of
the visualization community, such as Akbaba et al.’s findings on
maintenance in design studies [1].

The ChipExpert’s sincere interest in visualization, tools,
and design was essential in their leading the project. The
ChipExpert consistently affirmed the importance of tools, including
visual ones, in conducting computer architecture research. They
had experience in previous visualization projects, familiarity with
design choices beyond the selection of chart type (e.g., encoding
choices, multi-view concerns), and experience with visualization
libraries such as D3js. This enabled them to guide the ChipTeam
on visualization matters without the VisExpert and understand and
trust recommendations made by the VisExpert.

Though the ChipExpert is a computer architecture researcher,
they were also interested in the visualization research aspects. This
interest influenced the project process, including the formality of
the evaluation, the choice of a design study over a design project,
and the ultimate decision to present the work in publication. The
decision to approach the project as visualization research was
made early in the process. We recommend other domain expert-led
visualization design projects determine research goals, if any, early
so such process and methodology decisions can be made.

The VisExpert acted to fill knowledge and methodology
gaps of the domain team. The VisExpert served to extend
the visualization knowledge of the ChipExpert in terms of the
design process, methodology, iterating on visual designs, designing
evaluations, and providing context for possible visualization
research contributions. The process and methodology guidance
of the VisExpert served as a bridge to understanding existing
literature and may suggest that more accessible guidance could
help interested domain experts, especially those with programming
skills, better design visual tools.

Summary of recommendations. Based on these experiences and
reflections, we make the following recommendations for domain
expert-led design studies:

R1 The domain and visualization experts should devise a
collaboration schedule where the domain expert feels
comfortable in directing their team between meetings while
the visualization expert can intervene with guidance before
design decisions become too hardened.

R2 Domain experts will need additional guidance and reinforce-
ment regarding methodological aspects new to them, like
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task analysis and generation of non-code design artifacts.

R3 Discussions about research contributions and maintenance
should occur early and be revisited regularly.

R4 The team should embrace the ability to extend data
collection as permitted by the domain expert-led format.

From these recommendations, we note there is a need to
create and curate translational materials and examples of design
methodology that are more accessible to domain experts, other than
visualization research papers.

10 CONCLUSION

We presented a domain expert-led design study in which the
initial design, day-to-day design decisions, and implementation
were managed by the domain experts. Through this design study,
we developed and validated Vis4Mesh, an interactive multi-
visualization that aids Network-on-Chip design through high- and
low-level views in time and space. By integrating Daisen, an
existing tool, into Vis4Mesh, we enabled a more comprehensive
and detailed exploration of the computer architecture perspective
of the on-chip network. Participants in our user study were able
to identify performance bottlenecks with Vis4dMesh and affirmed
the workflow we designed. Despite this success, we also identified
areas for further research in terms of better navigation support
between overview and detail in large datasets.

Our design study demonstrates that this form of research can
be successfully led, with the consultation of a visualization expert,
by domain experts who have computing skills and visualization
interests. We observed benefits to this approach in terms of potential
for data design, intrinsic domain understanding, and potential
for rapid development. However, we also observed hazards in
understanding methodological needs such as task consideration
and even in maintenance despite the domain home of the tool.
Additional guidance, early and throughout, may help alleviate
these issues. We also note key factors in the success of this
study, including the consultation and intervention actions by the
visualization expert and the commitment level of the domain expert.
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