2023 IEEE Power & Energy Society General Meeting (PESGM) | 978-1-6654-6441-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/PESGM52003.2023.10252586

Efficiency Contingency Factors for Commercial EVs
Optimal Centralized Charging Stations

Antonio Avila, Student Member, IEEE and Paras Mandal, Senior Member, IEEE

Abstract— This paper provides an Optimal Centralized Charging
Station (OCCS) mechanism using an Optimal Commercialized
Demand Response (OCDR) program coupled with three
efficiency contingency factors (i.e., rolling resistance,
aerodynamic drag, and traffic flow inertia) that are faced by
commercial EVs. Additionally, this paper provides a detailed
formulation for the optimal number of level chargers that can
accommodate the system of operations for commercial and
logistic  businesses (CLBs). The methodology proposed
contributes to curtail EV charging traffic congestion as well as
shedding the load to avoid excess amount of charging loads. In
this paper, three contingency factors are thoroughly examined by
OCCS combined with OCDR for four case studies: high efficiency
contingency, average efficiency contingency, low efficiency
contingency, and ideal efficiency case studies. The results of the
proposed methodology show an increase OCCS cost by
approximately 141% and optimal number of charge level utilized.

Index Terms—Commercial electric vehicles (EVs), efficiency
contingencies, optimal centralized charging station (OCCS),
optimal commercialized demand response (OCDR).

1. INTRODUCTION

ommercial EVs promote as a promising opportunity to

minimize CO, emissions, combat climate change, and
minimize fossil fuel dependency [1], [2]. However, major
battery advancements, substantial maintenance savings, and
government incentives for EV battery technology have
curtailed the proliferation of commercial EV market growth
[3]. Nevertheless, it is expected that by 2024 commercial EVs
will contribute to the vehicle marketplace in four categories:
long-haul trucks, short-haul trucks, city delivery trucks, and
heavy-duty (HD) pick-up trucks [3]. Moreover, the new
emergence of long-haul and short-haul truck EVs is set to roll
out in the vehicle market by the start of 2023 [4].

Alongside the increased growth of EVs and the emergence
of commercial EVs, the global EV charging station is
projected to grow significantly in the upcoming years [4].
Hence, the lack of an EV charging station management system
is a significant issue invoking time-consumption drawbacks,
complex charging processes, high power consumption, and
untenable EV charging traffic congestion [5]. Moreover, no
research paper has attributed to the optimization of commercial
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EV charging station management nor tackled the preceding
growing challenges of commercial EV charging needs and
load growth.

Most papers propose complex forecasting models and
demand response systems with impatient leave scenarios to
overcome EV charging station challenges [6]-[8]. However,
many of these papers only account for commuter EVs charging
behavior and battery characteristics, which have shorter
charging times than commercial EVs. Commercial vehicles
driving and fueling behavior is notably different from
commuter vehicles, as they are bound to the CLBs system of
operation scheduling [9], [10]. Moreover, these commercial
vehicle behaviors can be visualized in present segregated
diesel refueling stations for commercial vehicles to appropriate
their fueling time constraint needs [10]. In previous work, an
optimized commercial EV charging station demand response
was formulated, which convolutes a load-shedding charging
solution, EV charging traffic congestion curtailment, and
CLBs system of operation needs standards appropriation [11].
However, this research paper will implement and examine
efficiency contingency factors that commercial EVs face as
these factors increase charging and driving range demand
needs.

Notably, many of these distributed energy resources (DERs)
are constrained to an efficiency contingency factor that reduces
performance output. Therefore, it is necessary to account for
the vehicular efficiency contingency factors faced by
commercial EVs that constrain driving range performance.
Commercial vehicles are faced with various environmental
efficiency contingency mileage losses when driving. These
vehicle efficiency contingency factors are rolling resistance,
aerodynamic drag, and traffic flow inertia [12], [13]. These
factors are greatly enhanced in commercial EV driving as they
are curtailed by high gross weight loads and large vehicle
sizing [13], [14]. Vehicular driving efficiency contingency
factors in commercial EVs are not appropriated or
implemented in typical EV charging optimization. However,
these efficiency contingency factors play a considerable role in
increasing charging demand needs as more EVs are on the
road and curtailed by charging time constraints, such as
commercial EVs [13].

This paper proposes an optimal demand response
management system with efficiency contingency factors for
the precedented commercial EV technologies. Furthermore,
tailoring to the system of operation needs of CLBs, EV load
curtailment necessities of power system operators, and
overcoming Dbattery efficiency contingency losses in
commercial EVs when driving. To determine the optimal
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number of level chargers needed for a CLB OCCS with an
OCDR formulation through four efficiency contingency case
studies, three-level charge levels 1, 2, and 3, power output and
cost data characteristics as the current average level charger
characteristics available in the market are implemented [15].
Then, through the appropriate selection and gathering of the
commercial EV battery, haul, and physical input data
characteristics by utilizing the prevalent upcoming commercial
EVs through the manufacturer website and the haul, sizing,

truck, Brightdrop Zevo 600 for the city delivery truck, and
Tesla Tri Motor Cybertruck for HD pick-up truck. The four
commercial EV categories are attributed to the selection and
gathering of the commercial EV respective data characteristics
and variable selection split into three sections: commercial EV
battery data, commercial EV haul data, and commercial EV
physical data.

TABLE II. Commercial EV Data Characteristics with its Respective

RO . . Variables
and efficiencies regulations through government-affiliated @ 7 2 3 i
reports [16]-[22]. Followed by the total efficiency contingency Tesla Tri-
: : : : : . Tesla 500 Tesla 300 Brightdrop
factor formulation from three main efficiency contingencies to | Commercial it . | MG i Motor
account for in commercial EV driving [12], [13]. The EV (Long Haul | (Short Haul | (City Delivery Ei;’?frﬁd(
advantages of the proposed method over existing techniques (xn) Truck) Truck) Truck) ( " lck)-up
. . . . . . ruc
are: (1) Prqv1des an optimal commermal EV charging station Commercial EV Battery Data
solution with efficiency factors implemented; (2) Evaluates Battery
four levels of efficiency factors faced when driving; (3) Load Capacity 100 kWh 600 kWh 165 kWh 200 kWh
sheds excess level charger loads; and (4) Applicable to CLBs (bymax)
as it abides by its system of operation standards.. . Range 804 ke 483 kin e 804 ki
The structure of the paper is as follows. Section II provides (r“.max)
the input commercial EV and Level charger data selection. N:"eaige 0.5mi/kWh | 0.5mi/kWh | 1.52mikWh | 2.5 mi/kWh
Followed by the total efficiency factor formulation and the Eﬂ_"?“
OCCS with contingency factors for commercial EV ;Zle)n Y 90% 90% 90% 90%
methodology in Section III and IV. Then, the case study and Br:ke
results through a parameter algorithm-based optimization Efficiency 97 % 97% 97% 97%
model are represented in Section V, followed by the (eb,)
conclusion in Section VI. Acﬂ;'::;itwﬂ 0.5 m/s? 0.5 m/s? 0.5 m/s2 0.5 m/s?
II. INPUT COMMERCIAL EV AND LEVEL CHARGER DATA Venicie sommersial by Hao) Dats
SELECTION Weight 12,701 kg | 10,247 kg 3,538 kg 2,835 ke
This section provides the formulation and selection of (_:f’_'l’n)
o e N 3 aner
ant1c1pat§d.com¥nerf:1al EV gnd leYel charger. 1nput. data Weight 4536 ke 4536 ke Oke 907 ke
characteristics with its respective variables. Section A is the Wi,
collection of level charger power output and cost data. Haul
Followed by accumulation of the commercial EV input data Weight 19,958 kg | 20412kg 907 kg 2,608 kg
battery, hauling, and physical data characteristics in Section B. (g':'nl)
ota
A. Level Charger Data Selection Gross Weight | 37,195kg | 37,195kg 4,536 kg 6.350 kg
.. aTw,)
The level charger data selection is fomulated by the average = Commeral BN Phiysical Dot
power output and cost data characteristics of three sets of level T
chargers available in the marketplace [15]. The level charger Drag 0.36 0.36 0.32 0.38
data characteristics with their respective variables is | Coefficient ) ' ' '
represented in Table I. (€n)
Drag
.. - . Coefficient
TABLE I. Level Charger Data Chslractenstlcs with its Respective With 0.36 0.36 0.32 0.48
Variables Trailer
(m) ! 2 3 (cpn)
Charger Level Frontal
Level 1 Level 2 Level 3
) BURBEEARR| ) c7m? | 10.67m? 6.01 m? 4.06 m?
Honer Ektpat 7kW 17 kW 203 kW A Hael
®m) B (Ayp)
Level Charger Cost Coefficient
s $210 $775 $23,500 of
Rolling 006 006 001 006
B. Commercial EV Data Selection Rez_im"ce
(Crry)

The commercial EV data characteristics with their
respective variables are represented in Table Il and are
formulated by the utilization of anticipated commercial EVs
upcoming in the market split into four categories [3]. The
commercial EV chosen is as follows: the Tesla 500 Mile Semi
for the long-haul truck, Tesla 300 Mile Semi for the short haul
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In Table I, the EV battery capacity, range, mileage, total
gross weight, and vehicle drag coefficients are obtained
through the vehicle manufacturer's website, followed by the
Tesla Cybertruck and Brightdrop Zevo 600 vehicle weight
[16], [17]. Next, the efficiency, brake efficiency, and
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acceleration are gathered from the computational assumption
by the Environmental Protection Agency (EPA) automotive
power trend of EVs [18]. The commercial EV vehicle weight
of the Tesla semis, trailer weight, haul weight, drag coefficient
with trailer, and frontal surface with haul is formulated by
associating a trailer from the Department of Transportation
(DOT) truck and trailer regulations [19]. The Tesla Semis are
entailed to a class eight 53-foot dry van trailer, the Brightdrop
Zevo 600 with no trailer, and the Tesla Cybertruck to a class
three 7 x 14 flatbed trailer with its associated average trailer
weight and allowed haul weight [19]. Next, the Tesla Semis
vehicle weight assumption is computed by deducting the trailer
and haul weight from the total gross weight stated by Tesla
and the Federal Highway Administration for class eight EV
vehicles [19], [20]. Furthermore, the Tesla 500 Mile Semi is
renounced to a lowered allowed haul weight limit to attribute
the larger battery capacity in its vehicle weight limit compared
to the Tesla 300 Mile Semi allowable load weight. The frontal
surface area and drag coefficient of the Tesla Semis with haul
and Brightdrop Zevo 600 are obtained from the manufacturer's
website [17], [20]. Moreover, the Tesla Cybertruck values are
assumed by a computational analysis from the truck height and
trailer width dimensions with load characteristics from the
Tesla website and DOT trailer regulations [16], [19]. The
coefficient of rolling resistance is obtained from the Minnesota
DOT rolling resistance study through an average estimation of
the associated vehicle class [21].

III. TOTAL EFFICIENCY CONTINGENCY FACTOR FORMULATION

This section is the formulation of the total efficiency factor
from the convolution of the three main efficiency contingency
factors that commercial vehicles encounter: rolling resistance,
aerodynamic drag, and traffic flow inertia [12], [13]. The
section is constructed by the equation formulation of the
rolling resistance, aerodynamic drag, and traffic flow inertia
factors represented in Sections A, B, and C, followed by
Section D, the total efficiency contingency factor formulation.

A. Rolling Resistance Factor

The rolling resistance factor is attributed to the frictional
road surface roughness, slope grade, and gravitational forces
acting against the longitudinal movement of the vehicle [11],
[12]. The rolling resistance factor equation is defined as:

RF;LE = (Crrﬂ. * Tm/ﬂ. * g * I/;l..&‘) +
(ann.e * Tml * g * I/:Le * trn.e)

NG
where RE, . is the rolling resistance factor composed of TW,
represented as the total gross weight of the commercial EV,
V,. as the commercial EV average velocity, an,,; as the
incline slope angle, and tr,, ., as the percentage of road grade.
With the addition of g represented as the gravity constant and
Crr, as the coefficient of rolling resistance. Moreover, each is
associated with their respective commercial EV (n) and case
study (e) characteristics.

B. Aerodynamic Drag Factor

The aerodynamic drag factor is attributed to the external
wind frictional force opposing the directional movement of the
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vehicle [12], [13]. The aerodynamic drag factor equation is
defined as:

1
AELE = (; * Cdn * An * (Vn.e + an.e)s 5

)
where AF, . is the aerodynamic drag factor composed, 4,
represents the front surface area with haul, and €d,, as the drag
coefficient. Followed by p as the wind density constant, Vw,, ,
as the wind speed, and V,, as the commercial EV average
velocity. Moreover, each is associated with their respective

commercial EV (n) and case study (e) characteristics.

C. Traffic Flow Inertia Factor

The traffic flow inertia factor is associated to the traffic
contingencies of decelerations and accelerations attributable
from city and highway driving efficiencies from the
Environmental Protection Agency (EPA) [13], [18]. The traffic
flow inertia factor equation is defined as:

Ean.e = (a’ﬂ. * Empgn.e) Py (6)

1 1
T‘rn.e = (E * Tml * Ve * Ean.e (; —ey ¥ ebn)) > (7)

n.e
where T'I, . is the traffic flow inertia factor composed of T'W,,
represented as the total weight of the commercial EV, V, . as
the commercial EV average velocity, and Ea,, as the
acceleration efficiency factor. Followed by the e, represented
as the commercial EV efficiency and eb,, as the commercial
EV braking efficiency. The acceleration efficiency factor
equation (Fa,,.) is composed of a, represented as the
acceleration variable and Empg, . as the miles per gallon
equivalent (MPGe) efficiency. Moreover, each is associated
with their respective commercial EV (n) and case study (e)
characteristics.

D. Efficiency Contingency Factor Formulation

The total efficiency contingency factor formulation is
convoluted through the efficiency contingency energy capacity
equation from the construction of the three efficiency factors:
rolling resistance factor, aerodynamic drag factor, and traffic
flow inertia factor. The efficiency contingency energy capacity
equation is defined as:

pe. = (e + REwe

r,max
* TITLE) * (— * m)

eﬂ Vﬂ e ) (8)

where EC,, , is the efficiency contingency capacity needed to
overcome all three efficiency factors. Furthermore, the
equation is composed of RE, . represented as the rolling
resistance factor, AF, . as the aerodynamic drag factor, and
TIL,. as the traffic flow inertia factor. Followed by e,
represented as the commercial EV efficiency, r,,max as the
max battery range of the commercial EV, V,. as the
commercial EV average velocity, and w as the energy per
work constant in kilowatt hour per joule. Moreover, each is
associated with their respective commercial EV (n) and case
study (e) characteristics. The formulation of the efficiency
contingency factor is defined as:

ECF’."LJH.E = bn.m/ECn.e (9)

>
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where ECF, .. is the total efficiency contingency factor
composed of b,,,,, represented as the battery capacity of the
commercial EV associated level charger and EC, . as the
efficiency contingency energy capacity. Moreover, each is
associated with their respective commercial EV (n), case study
(e) and level charger (m) characteristics.

IV. OCCS wiTH EFFICIENCY CONTINGENCY FACTORS FOR
COMMERCIAL EVS METHODOLOGY

The efficiency contingency factors with OCCS for
commercial EVs is formulated with the utilization of previous
work, OCCS with an OCDR methodology [11]. Moreover,
implementing the total efficiency contingency factor through
the parameter-bound optimization algorithm model of OCCS
with an OCDR methodology. The total efficiency contingency

factor implementation is executed through the battery
computational  characteristics computation within  the
algorithm model, as shown in Fig. 1.
Cum]l:‘:n‘iminl Total Efficiency
Charactesiatio Contingency Factor

!

Compute Battery
Characteristics

I

Compute the Range for
Each Commercial EV
Mileage

Set Level Charger
Characteristics

OCCS for
Commercial
EVs

Fig. 1. OCCS with efficiency contingency factors flow chart diagram.

V. CASE STUDY AND RESULTS

To analyze the impact of efficiency contingency factors
through an OCCS with an OCDR formulation of a CLB. A
convolution of four case studies will be conducted, which
follows as high, medium, low, and ideal efficiency
contingency cases. The input case duty data is represented in
Section A, defining the CLB parameters and efficiency
contingency characteristics, followed by Section B results and
discussion of the four case studies.

A. Input Case Study Data

The parameter constraints and efficiency contingency input
data are represented in Table III and IV. With its
correspondent case study, commercial EV, and level charger
variable.

TABLE III. OCDR Parameter Constraints Input Data

Total Number |Commercial Set Dispatch Desired Range | Cost
Of EV Time Constraint Constraint
Commercial (Xn) Constraint  [(rymin <1, (0 < Xtc <
EVs (0 < cthm < r,max) TCmax)
(Xn) = ctymax)
5 Tesla 500 mi Semi o<ty < 250km<r <30 <
(x1) 900 min 804 km X te; <8250,000
4 Tesla 300 mi Semi 0<ty < 200 km <
(x3) 720 min r, < 483 km
4 Brightdrop Zevo 600 |0 <t3 < 120km <y <
(x3) 280 min 402 km
3 Tesla Tri-Motor 0<ty < 120km < <
Cybertruck 180 min 804 km
(x4)
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In Table III, the OCDR parameter constraints are formulated
by the average system of operation needs of the correspondent
vehicles of CLBs with a randomized number of commercial
EVs.

TABLE IV. Efficiency Contingency Case Study Input Data
(n) 1 [ 2 ] 3 [ 4
(e) High Efficiency Contingency Case Study (1)
Incline
Slope
(any, )
Road Grade
(try)
Average
Velocity
(Vie)
Wind Speed
Vwye)
City
MPGe.
Efficiency
(Empgpe)
(e) Average Efficiency Contingency Case Study (2)
Incline
Slope
(an, )
Road Grade
(try)
Average
Velocity
(Vie)
Wind Speed
(VWye)
Average
MPGe.
Efficiency
(Empgp.e)
(e) Low Efficiency Contingency Case Study (3)
Incline
Slope 3%
(any )
Road Grade
(tr,)
Average
Velocity
(Vye)
Wind Speed
(Vwye)
Highway
MPGe.
Efficiency
(Empgn )
(e) Ideal Efficiency Contingencies Case Study (4)
Incline
Slope
(an, )
Road Grade
(try)
Average
Velocity
Vie)
Wind Speed
(Vwye)
MPGe.
Efficiency 0 0 0 0
(Empgp.)

10 % 10 % 10 % 10 %

1 % 1 % 1 %

1 %

29.1 m/s 29.1 mv/s 29.1 m/s 29.1 m/s

4.47 m/s 4.47 m/s 4.47 m/s 4.47 m/s

1.67 1.67 1.67 1.67

5% 5% 5% 5%

1% 1% 1% 1 %

29.1 m/s 29.1 m/s 20.1 m/s 29.1 m/s

2.24 m/s 2.24 m/s 2.24 m/s 2.24 m/s

1.54 1.54 1.54 1.54

3 9 0 3 uf_l 3 '%l

1% 1% 1% 1%

29.1 m/s 29.1 m/s 29.1 m/s 29.1 m/s

0.67 m/s 0.67 m/s 0.67 m/s 0.67 m/s

1.5 1.5 1.5 1.5

0% 0% 0% 0%

0% 0 0 0

29.1 m/s 29.1 m/s 29.1 m/s 29.1 m/s

0m/s 0nmv/s 0m/s 0ms

In Table IV, the incline slope, road grade, and average
velocities are formulated by utilizing the average road
constraint characteristics of the U.S [19]. The wind speeds are
portioned equally throughout the contingencies case studies by
the average wind speed in the U.S [20]. Moreover, the MPGe
efficiency is attributed to the city and highway efficiency MPG
loss for EVs formulated by the EPA [16].
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B. Results and Discussion

The formulation of the four case studies through the OCCS
with an OCDR methodology is represented in Table V. This is
done by integrating the correspondent total efficiency
contingency factor formulated from the four case studies' input
data within the algorithm model for each respective
commercial EV. Moreover, utilizing the OCDR parameter
constraints input data consistently throughout the four
efficiency contingency case studies for each correspondent
commercial EV.

TABLE V. Case Study Results and Data

OCCS with Level1 | Level2 | Level3 Total OCDR Total
Efficiency Charger | Charger | Charger | Cost Cost Average
Contingency Constraint | Efficiency
Case Study Validation | Contingency
Factor
(1) High
Efficiency 0 3 13 $307.825 NO 46.75 %
Contingency | :
(2) Average
Efficiency 0 3 13 $307,825 NO 54.23 %
Contingency
(3) Low
Efficiency 0 4 12 $285,100 NO 59.52 %
Contingency
(4) Ideal
Efficiency 0 7 9 $216,925 YES 0%
Contingency

The case study results obtained from the algorithm model
represent the OCCS optimal combination of level chargers
with its correspondent total cost, OCDR cost constraint
validation, and total average efficiency contingency factor
from all four commercial EVs. The ideal efficiency case
prompted as the only efficiency case to validate all the CLB
system of operation needs with a total cost of $33,075
underneath the $250,000 cost margin. Furthermore, the low
efficiency case over validates the cost constraint by $35,100
compared to the average and high efficiency case by $57,825.
This total cost over-validation of the low efficiency case is
attributed to a 59.52% total efficiency factor, whereas the
average and high efficiency cases are at 54.23% and 46.75%.

VI. CONCLUSION

This paper implemented efficiency contingencies for
commercial EVs through an OCCS with an OCDR
methodology model. Implementing an amalgamation of three
main efficiency contingency factors encountered in everyday
commercial vehicles, rolling resistance, acrodynamic drag, and
traffic flow. To convolute an appropriated load shedding
solution of an optimal number of level chargers and reliable
charging station management structure for commercial EVs by
considering the system of operation needs of the CLB
accounting commercial EV efficiency losses. Furthermore, it
demonstrates the effects of optimizing level charger
combinations and cost through a set of four case study
scenarios, high, medium, and ideal efficiency contingency
cases, through a CLB OCDR parameter case. Future work may
involve implementing a short-term and long-term power grid
load analysis of the proposed OCCS with efficiency
contingencies through a full, partial, and idle charging
connection case scenario.
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