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A set with no Riesz basis of exponentials

Gady Kozma, Shahaf Nitzan and Alexander Olevskii

Abstract. We show that there exists a bounded subset of R such that no system of
exponentials can be a Riesz basis for the corresponding Hilbert space. An additional
result gives a lower bound for the Riesz constant of any putative Riesz basis of the
two-dimensional disk.

1. Introduction

A system of vectors {u;} in a separable Hilbert space H is called a basis if every vector
f € H can be represented by a series

f=) au

and the representation is unique. The best kind of basis is the orthonormal basis. In this
paper we are interested in questions revolving around the existence of bases when u; are
taken from a specific, pre-given set. More specifically, we are interested in the case that
H = L2(S ) for some S C R or R4, bounded and of positive measure, and the u; are
exponential functions. In this case it is not always possible to find an orthogonal basis:
if S is an interval, then the classic Fourier system is an orthogonal basis. However, for
the union of two intervals it is easy to see that, in general, no exponential orthogonal basis
exists, say for [0, 2] U [3,5]. See [14] for a full treatment. So one needs some generalisation
of orthogonal bases, which would possess many of their good properties, but would be
more available for constructions.

Definition. The image of an orthonormal basis by a linear isomorphism of the space is
called a Riesz basis. Equivalently, a system {u;} is Riesz basis if
(1) itis complete in H;

(2) there is a constant K such that, for any (finite) sum P = > cju;, the following
condition holds:

1
(1.1) Encn2 <|P|* < K|l

where [|c|2 = ¥ fe |2
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Remark. One may ask: is any basis in H a Riesz basis? Babenko [1] gave a counter-
example. His example was a system of exponentials in a weighted L? space. It turned out
later that the weights defined by Babenko are a specific case of the so-called Mucken-
houpt weights [17] (we remark that the same condition was discovered independently and
simultaneously by Krantsberg, see [13] or [19], pg. 73).

Thus the question we are interested in is as follows. Given an S C R, istherea A C R
such that the system E (A) := {e27"** : } € A} is a Riesz basis in L2(S)? It turns out that it
is neither easy to construct Riesz bases, nor to prove that none exist. For the construction
problem, Seip [21] constructed Riesz bases of exponentials for unions of two intervals
(and some cases of unions of larger numbers of intervals). Riesz bases for arbitrary finite
unions of intervals were constructed in [12]. See [3] for Riesz bases for convex, symmetric
polygons, see [8, 11] for a construction of Riesz bases for multitiling sets, and [16] for
exponentials with complex frequencies. See [2,5, 15] for some recent work. Nevertheless,
for many natural sets the question is still open, with famous examples being the ball and
the triangle in two dimensions.

In this paper, we give an example of a set S for which no Riesz basis of exponen-
tials exists. The set providing the example is an infinite collection of intervals with one
accumulation point. The same technique allows us to show that, even if a Riesz basis of
exponentials existed for a two-dimensional ball, its defining constant K (the K from (1.1))
cannot be too close to 1. In particular, this reproduces Fuglede’s result that the ball has
no orthogonal basis of exponentials [6], as that would correspond to K = 1. For different
generalisations of Fuglede’s result, see [7, 10].

2. Preliminaries

Throughout we use the usual notation e(x) = e2™**, and E(A) = {e(Ax) : A € A} (that
is, E(A) is a set of functions with parameter x). Let us start by recalling the Paley—Wiener
perturbation theorem.

Theorem (Paley and Wiener). Let S C R? be a bounded set of positive measure, and let
A = {A,} C R be such that E(A) is a Riesz basis for L*>(S). Then there exists a constant
= (S, A) such that if a second sequence T' = {y,} satisfies |A, — yn| <  for all n,
then E(T) is also a Riesz basis for L*(S).

See, e.g., Section 2.3 in [12] for a proof in d = 1. The proof in higher dimensions is
similar.

We say that a set A C R is uniformly discrete if there exists some ¢ > 0 such that if
A # parebothin A, then |A — | > c. It is easy to see that any Riesz basis of exponentials
of L2(S) for some S C R¢ is uniformly discrete. On the other hand, any set which is
uniformly discrete satisfies the right inequality in (1.1), namely

H 3 cpe(ix) H2 <Yl
AEA AEA

(This inequality is called Bessel’s inequality). See Proposition 2.7 in [20] — the formulation
here follows from the formulation in the book by a simple duality argument.
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We use ¢ and C for constants (usually depending on the Riesz basis involved), whose
value may change from formula to formula and even inside the same formula. We use ¢
for constants which are ‘small enough’ and C for constants which are ‘large enough’.

3. Details and proofs

We start with a result of the third named author which remained unpublished, but a version
of it was included (with his permission) in the book of Heil [9], p. 296 (see also [4] for a
proof in the more general context of frames, or ‘overcomplete’ bases). We chose to present
it here as it provides the simplest demonstration of the ‘translation’ technique which we
apply throughout this note.

Theorem 1. Let S C R be a set of positive measure and let w € L'(S) be a positive
Sfunction. If w is not bounded away from 0 or 0o, then there is no A C R such that E(N)
is a Riesz basis for the weighted space L?(S, w).

Proof. Assume that w is not bounded away from 0. In this case, one may find, for every
e >0, a subset A = A(e) C S of positive measure and a number ¢ = ¢(¢) such that
w(x) < eon Abut w(x) > c on A + t, where the constant ¢ does not depend on &. (For
example, one may use the Lebesgue density theorem to find two intervals of equal length,
I and J, where the relative densities of w < ¢ and of w > ¢ are bigger than 2/3 respect-
ively, define ¢ to be the distance between the centers of / and J, and take A = {x € I :
w(x) < e w(x +t) > c}. Then A would have relative density at least 1/3 in / and in
particular have positive measure).

Examine the function f = ﬁh. Assume by contradiction that E(A) is a Riesz

basis for L2(S, w) with respect to a constant K, and develop f in this basis, i.e., write

f(x) =" cre(ix).

AeA

The Riesz basis property tells us that the series converges in L? and that

3.1) Y oleal? < KIS 25wy < Ke

by the definition of A. Now perform a formal translation (by —t) of the series ) _ ¢) e(Ax),
namely, consider a new series with coefficients d; = c; e(—At). Since Y_|d; > =" |ca|?
< 00, the Riesz basis property gives that the series Y d; e(Ax) converges in L2(S, w) and
the limit, g, satisfies

@3.1)

(3.2) Igl7 25y < K D 1dal> =K Y |2l < K2
A€EA A€EA

On the other hand, for every x € A + ¢, we have

)= Y drer) = Y cre@x—1) = flx—1) = ——

AEA AEA |A|
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(it is perhaps easiest to consider the equalities as holding almost everywhere and the sums
converging in measure — we use here that convergence in L? implies convergence in meas-
ure; and that if a sum converges both in L? and in measure, then the two limits are almost
everywhere equal). But this is a contradiction because then

1
lelizowm = [ ls@Pudrz [ Coedx=c
A+t A+t |A|
contradicting (3.2), since ¢ was arbitrary.
The case that w is not bounded away from oo is treated in a similar way. ]

Next, we turn to the main result of this note.

Theorem 2. There exists a bounded set S C R of positive measure for which no A C R
may satisfy that E(A) is a Riesz basis for L*(S)

Proof. We start with S; = [0, 1] U [2, 3]. We then break the interval [2, 3] into 4% 41
intervals of equal length, and keep for each one only the left half (this is S). We next take
the last interval of S, break it into 44’ + 1 intervals of equal length, and keep for each
one only the left third. We continue this way, and denote S = (1] S;.

Assume by contradiction that S has a Riesz basis of exponentials E(A). By the Paley—
Wiener theorem, we may assume without loss of generality that A C %Z for some integer
£ > 4.Let K be a Riesz constant for A, i.e., every f € L?(S) can be expanded into a sum

fx) =Y cie(ix)
AEA
such that

1
X lal < [ 1P <K Tl

Assume for simplicity that K > £.

Fix some 1. The construction of S implies that one may find 4*" intervals I;,.. .,/ 44n
of equal length (call it £) and distance between them e(n — 1). Fori = 1,...,4*" let
1
Ji=—14

NG

so that || f;[|12(s) = 1. Expand f;(x) = ) _cy;e(Ax). Since A C %Z, this sum converges
in L2[0, £], and the limit is an extension of f; to the whole of L?[0, £] (to the whole of R,

if you prefer). Call these extensions ﬁ and note that the Riesz basis property gives that
> |cx.il* < K, and hence

(3.3) 1122 0.0y < €K < K2

Similarly, if B; are arbitrary complex coefficients, then the expansion of ) f; f; in the

Riesz basis E(A) is
> (Z Bi CA,i) e(Ax),

AEA i
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so the Riesz property shows that

Z\Zm, <KHZﬁlf,

From this we conclude, as in (3.3), that

(34) H Zﬁlﬁ o = K2 IBiP

2
s = Z 1Bl

Let us further define 4
h = " I—¢/8,e/8]

sothat |k|; =1.Letg; = f: * h (the convolution here is a periodic convolution on [0, £]).
By the Cauchy—Schwarz inequality, for any coefficients §; we have

~ (3.4) 2
‘lzﬂig"(")‘ < HlZﬁifi prog Il = KI8T vrck

In other words, the convolution turns the L? estimate for Y_ 8; f: to a pointwise estimate.
Next, enumerate all intervals comprising S which have length strictly bigger than ¢ as
lai,b1), ..., [ag, bg), whereq = > _, 4% <2447 Let
q
A= U [ai —ne,a; + €].

i=1

(A can be thought of as the set of left ‘edges’ of these intervals, as each interval [a; —
ne,a; + €] of A is much smaller than the corresponding [a;, b;]). Then |[A| =g(n + 1)e <
2(n + 1)844"_1. By Claim | below (used with N = 44, M = 2K/ /¢ and A as above),

there exists an ig such that
M24] _
2
I

o
With iy selected and this crucial property of g;, proved, the theorem follows by examining
a few translations of g;,.
To see this, expand f;, using the Riesz basis property and denote the coefficients by ¢,
so that fj,(x) = Z ¢y e(Ax), and recall that we have extended f;, so that a similar equality

holds also for f,o over all of R. Hence

2is(x) = Y ca h(A) e(Ax).

A€A

So gi, is supported spectrally on A, and therefore

1
3.5) Y leah)? = —/ 1i0l” = 75

where the last inequality follows from the definition of g;, as ﬁo * h, which allows to
calculate g;, in the middle half of the interval I;,.
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On the other hand, the Plancherel formula on [0, £] and the Riesz property imply that

¢ ~ )
6o [ el = eGP 0P E K Yl < & [ 1= K

The inequality () follows from ||]|; = 1, which implies |iz\ (A)] < 1forall A.
Consider the following n — 1 translations of g;,:

Gir(x) = giy(x —ke) = Z cy }7(/1) e(—Ake)e(Ax).
AeA
Each Gy is also supported spectrally on A, and hence
1 1
Gl = — AP
16 = & el =

Consider now an interval [a, b] which is a connected component of S of length larger
than e. Since flo is zero on [a, b], we have that g;, is zero on [a + —8 b — —e] (simply
because g;, was defined as f,o * h). Hence Gy, is zero on [a + (k + 8)8, b], i.e., on most
of the interval, for any k € {1,...,n — 1}. On the remaining part, [a,a + (k + %)8], we
have that Gy, is a translation of g;, from the interval [a — ke, a + %8] C A. Therefore

I’l
§: /|Gk|2 [ 10l = ot
4
l:b—a>¢

where the sum is over all [a, b] which are connected components of S of length larger
than . This means that, if / is the union of all components of S of length ¢ or less (all
the I; and then the shorter intervals), then

CK?n
/|Gk|2— 2K2 - 4n 1 ’

and since Gy is a translation of g;,, we get

1 CK?n
[ el S
I—ck

= 2K2 44!
Since the sets I — ¢k are disjoint, for k € {1,...,n — 1}, we get
(.6) CK?n
R [l 2 01 (50 - )
Since n was arbitrary, we have reached a contradiction. [

Claim 1. Let A C R be a set of positive finite measure, and let {g, - C L2(A). If for
every B1, ..., Bn we have

N
(37) Y B =M [ Ise vxea

i=1
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then there exists some iy such that

, _ M?|4]
|gio| < —
A VN

Proof. Assume that [, |g; |2 > § for some § and all i. We get

Z/A lgi (x)|? dx > 8N.

Hence there exists some xg such that

Z|g,(xo>| |A|

Fix some i and apply condition (3.7) with 8; = 1 and B; = 0 for all j # i. We get that
|gi(x0)| < M. Since i was arbitrary, this holds for all i. Hence

,Z'g"(“)' > —Z 1gi (x0)I |A|M
Now apply condition (3.7) with 8; = gi(x0)/|gi(xo)|. We get

|A|M Zlg,(xo)|_ ‘Zﬂzgz(x())‘ < MIN.

The claim is thus proved. ]

Remark. It is known [12] that any finite union S of intervals has a Riesz basis of expo-
nentials with some constant Kg. Assume |S| = 1 for simplicity. The result above also
shows that K is not bounded uniformly. Indeed, stopping the construction after n steps
would give a set, S,, which is a finite union of intervals, for which Kg, > cnl/4 (the
proof also needs a quantitative version of the Paley—Wiener theorem). Alternatively, the
fact that K s is unbounded can be concluded from Theorem 2 the same way the main result
of [18] follows from Lemma 7 there.

This might be a good place to mention an interesting question for which we have no
answer. Is Kg bounded uniformly for S C [0, 2] which are a union of two intervals? The
constructions known to us [12,21] give, for S =[0,1/2] N [1/2 4 &, 1 + €] a constant that
increases to oo as ¢ — 0, but these are only upper bounds and we have no corresponding
lower bound.

Our last result is that, even if a Riesz basis of exponentials would exist for the disk,
its constant cannot be too close to 1. The way we defined the Riesz constant in (1.1),
though, makes it easy to compare to orthogonal bases only when |S| = 1 (otherwise even
an orthogonal basis of exponentials would not be normalised and would not satisfy (1.1)
with K = 1). For simplicity, we prove the result for D = ﬁ D, a disk with area 1.

Theorem 3. Any Riesz basis of exponentials for D must have K > +/ HT‘E
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Proof. Assume by contradiction that A C R? satisfies that E(A) is a Riesz basis for

L2(D), with the Riesz constant K (the K from (1.1)) satisfying K < v (1 + +/5)/2.
Fix ¢ > 0 and examine the function

1
—1
Jme D
i.e., a normalised indicator of a disk of radius ¢ around 0. Use the Riesz basis property to

write
f) =) cre({r.x)),

AEA

f=

with the sum converging in L2(D). As before, we use this representation to extend f to
[-2, 2]2, though there will be two differences from the previous theorem. First, it will be
more convenient to not distinguish between f and its extension, and call the extension f
as well. And second, rather than using Paley—Wiener, this time we use the fact E(A) is a
Riesz basis in L2(D) to conclude that A is uniformly separated and hence E(A) satisfies
Bessel’s inequality in L2([-2,2]?), i.e.,

3-8) 1f 2220 < C D leal* < CK|| f} = CK.
AeA

Fora 6 € [0, 2], denote tg = (1/4/7 — &)(cos 0, sin #) and consider the translation of f
by g, i.e.,

go(x) =Y _ cae({A,x —14)).

A€EA

As before, we must have

lgalZ2p) < K Y leae((h=te)> =K Y |eal® < K.
AEA AEA

However, gg(x) = —= on a disk of radius & contained in D and also in D + 9. Hence

JTe
/ lgol® < K> — 1.
D\(D+tp)

Translating back we get an estimate for (the extended) f outside D, namely

(3.9) / If?<K>—1.
(D—tg)\D

This is our upper bound for f.
To get a lower bound we again examine one @, and this time translate by sg = (JLE +¢)
(cos 8, sin 6). Denote the translated function by /g, namely

hg(x) :== Z cpe({A, x —sg)),

AEA
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and get
1
||h0||i2(D) = E Z |C,1|2 = 2

which we again map back to f to get

]
If1? > —
/(D—So)\D K>

(note that we used in this last step that the little disk that allowed to subtract 1 when we
did the corresponding calculations for g is outside D for kg, so does not contribute to
176 || L2(p))- With the lower bound (3.9), we get

1
IfI?P> — —(K*—1).
/<D—s9)\(D—t9> K2

When K < v/ (1 4+ +/5)/2, we get that the right-hand side is at least some constant ¢ > 0.
Integrating over 6 and using Fubini gives (omitting the details of the elementary geometry
exercise involved)

27
cs/ / |f(x)|2dxdes/ C Vel ()P dx.
0 (D—s9)\(D—tp) 2/J/7+e)D

Or, in other words,

¢
IfOP = —,
/(2/ﬁ+s)D NG
contradicting (3.8) if ¢ is taken to be sufficiently small. ]
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