
Rev. Mat. Iberoam. 39 (2023), no. 6, 2007±2016

DOI 10.4171/RMI/1411

© 2023 Real Sociedad Matemática Española

Published by EMS Press and licensed under a CC BY 4.0 license

A set with no Riesz basis of exponentials

Gady Kozma, Shahaf Nitzan and Alexander Olevskiı̆

Abstract. We show that there exists a bounded subset of R such that no system of

exponentials can be a Riesz basis for the corresponding Hilbert space. An additional

result gives a lower bound for the Riesz constant of any putative Riesz basis of the

two-dimensional disk.

1. Introduction

A system of vectors ¹ulº in a separable Hilbert space H is called a basis if every vector

f 2H can be represented by a series

f D
X

cl ul

and the representation is unique. The best kind of basis is the orthonormal basis. In this

paper we are interested in questions revolving around the existence of bases when ul are

taken from a specific, pre-given set. More specifically, we are interested in the case that

H D L2.S/ for some S � R or R
d , bounded and of positive measure, and the ul are

exponential functions. In this case it is not always possible to find an orthogonal basis:

if S is an interval, then the classic Fourier system is an orthogonal basis. However, for

the union of two intervals it is easy to see that, in general, no exponential orthogonal basis

exists, say for Œ0;2� [ Œ3;5�. See [14] for a full treatment. So one needs some generalisation

of orthogonal bases, which would possess many of their good properties, but would be

more available for constructions.

Definition. The image of an orthonormal basis by a linear isomorphism of the space is

called a Riesz basis. Equivalently, a system ¹ulº is Riesz basis if

(1) it is complete in H ;

(2) there is a constant K such that, for any (finite) sum P D
P

clul , the following

condition holds:

(1.1)
1

K
kck2 � kP k2 � Kkck2;

where kck2 D
P

jcl j2.
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Remark. One may ask: is any basis in H a Riesz basis? Babenko [1] gave a counter-

example. His example was a system of exponentials in a weighted L2 space. It turned out

later that the weights defined by Babenko are a specific case of the so-called Mucken-

houpt weights [17] (we remark that the same condition was discovered independently and

simultaneously by Krantsberg, see [13] or [19], pg. 73).

Thus the question we are interested in is as follows. Given an S � R, is there a ƒ � R

such that the system E.ƒ/ WD ¹e2�i�x W � 2 ƒº is a Riesz basis in L2.S/? It turns out that it

is neither easy to construct Riesz bases, nor to prove that none exist. For the construction

problem, Seip [21] constructed Riesz bases of exponentials for unions of two intervals

(and some cases of unions of larger numbers of intervals). Riesz bases for arbitrary finite

unions of intervals were constructed in [12]. See [3] for Riesz bases for convex, symmetric

polygons, see [8, 11] for a construction of Riesz bases for multitiling sets, and [16] for

exponentials with complex frequencies. See [2,5,15] for some recent work. Nevertheless,

for many natural sets the question is still open, with famous examples being the ball and

the triangle in two dimensions.

In this paper, we give an example of a set S for which no Riesz basis of exponen-

tials exists. The set providing the example is an infinite collection of intervals with one

accumulation point. The same technique allows us to show that, even if a Riesz basis of

exponentials existed for a two-dimensional ball, its defining constant K (the K from (1.1))

cannot be too close to 1. In particular, this reproduces Fuglede’s result that the ball has

no orthogonal basis of exponentials [6], as that would correspond to K D 1. For different

generalisations of Fuglede’s result, see [7, 10].

2. Preliminaries

Throughout we use the usual notation e.x/ D e2�ix , and E.ƒ/ D ¹e.�x/ W � 2 ƒº (that

is, E.ƒ/ is a set of functions with parameter x). Let us start by recalling the Paley±Wiener

perturbation theorem.

Theorem (Paley and Wiener). Let S � R
d be a bounded set of positive measure, and let

ƒ D ¹�nº � R be such that E.ƒ/ is a Riesz basis for L2.S/. Then there exists a constant
� D �.S; ƒ/ such that if a second sequence � D ¹
nº satisfies j�n � 
nj < � for all n,
then E.�/ is also a Riesz basis for L2.S/.

See, e.g., Section 2.3 in [12] for a proof in d D 1. The proof in higher dimensions is

similar.

We say that a set ƒ � R is uniformly discrete if there exists some c > 0 such that if

� ¤ � are both in ƒ, then j� � �j > c. It is easy to see that any Riesz basis of exponentials

of L2.S/ for some S � R
d is uniformly discrete. On the other hand, any set which is

uniformly discrete satisfies the right inequality in (1.1), namely










X

�2ƒ

c� e.�x/









2

� C
X

�2ƒ

jc�j2:

(This inequality is called Bessel’s inequality). See Proposition 2.7 in [20] ± the formulation

here follows from the formulation in the book by a simple duality argument.
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We use c and C for constants (usually depending on the Riesz basis involved), whose

value may change from formula to formula and even inside the same formula. We use c

for constants which are ‘small enough’ and C for constants which are ‘large enough’.

3. Details and proofs

We start with a result of the third named author which remained unpublished, but a version

of it was included (with his permission) in the book of Heil [9], p. 296 (see also [4] for a

proof in the more general context of frames, or ‘overcomplete’ bases). We chose to present

it here as it provides the simplest demonstration of the ‘translation’ technique which we

apply throughout this note.

Theorem 1. Let S � R be a set of positive measure and let w 2 L1.S/ be a positive
function. If w is not bounded away from 0 or 1, then there is no ƒ � R such that E.ƒ/

is a Riesz basis for the weighted space L2.S; w/.

Proof. Assume that w is not bounded away from 0. In this case, one may find, for every

" > 0, a subset A D A."/ � S of positive measure and a number t D t ."/ such that

w.x/ < " on A but w.x/ > c on A C t , where the constant c does not depend on ". (For

example, one may use the Lebesgue density theorem to find two intervals of equal length,

I and J , where the relative densities of w < " and of w > c are bigger than 2=3 respect-

ively, define t to be the distance between the centers of I and J , and take A D ¹x 2 I W
w.x/ < "; w.x C t / > cº. Then A would have relative density at least 1=3 in I and in

particular have positive measure).

Examine the function f D 1p
jAj 1A. Assume by contradiction that E.ƒ/ is a Riesz

basis for L2.S; w/ with respect to a constant K, and develop f in this basis, i.e., write

f .x/ D
X

�2ƒ

c� e.�x/:

The Riesz basis property tells us that the series converges in L2 and that

(3.1)
X

jc�j2 � Kkf k2
L2.S;w/

� K";

by the definition of A. Now perform a formal translation (by �t ) of the series
P

c� e.�x/,

namely, consider a new series with coefficients d� WD c� e.��t/. Since
P

jd�j2 D
P

jc�j2
< 1, the Riesz basis property gives that the series

P

d� e.�x/ converges in L2.S;w/ and

the limit, g, satisfies

(3.2) kgk2
L2.S;w/

� K
X

�2ƒ

jd�j2 D K
X

�2ƒ

jc�j2
(3.1)

� K2 ":

On the other hand, for every x 2 A C t , we have

g.x/ D
X

�2ƒ

d� e.�x/ D
X

�2ƒ

c� e.�.x � t // D f .x � t / D 1
p

jAj
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(it is perhaps easiest to consider the equalities as holding almost everywhere and the sums

converging in measure ± we use here that convergence in L2 implies convergence in meas-

ure; and that if a sum converges both in L2 and in measure, then the two limits are almost

everywhere equal). But this is a contradiction because then

kgkL2.s;w/ �
Z

ACt

jg.x/j2 w.x/ dx �
Z

ACt

1

jAj c dx D c;

contradicting (3.2), since " was arbitrary.

The case that w is not bounded away from 1 is treated in a similar way.

Next, we turn to the main result of this note.

Theorem 2. There exists a bounded set S � R of positive measure for which no ƒ � R

may satisfy that E.ƒ/ is a Riesz basis for L2.S/

Proof. We start with S1 D Œ0; 1� [ Œ2; 3�. We then break the interval Œ2; 3� into 442 C 1

intervals of equal length, and keep for each one only the left half (this is S2). We next take

the last interval of S2, break it into 443 C 1 intervals of equal length, and keep for each

one only the left third. We continue this way, and denote S D
T

Si .

Assume by contradiction that S has a Riesz basis of exponentials E.ƒ/. By the Paley±

Wiener theorem, we may assume without loss of generality that ƒ � 1
`
Z for some integer

` � 4. Let K be a Riesz constant for ƒ, i.e., every f 2 L2.S/ can be expanded into a sum

f .x/ D
X

�2ƒ

c� e.�x/

such that
1

K

X

jc�j2 �
Z

S

jf j2 � K
X

jc�j2:

Assume for simplicity that K � `.

Fix some n. The construction of S implies that one may find 44n
intervals I1; : : : ; I44n

of equal length (call it ") and distance between them ".n � 1/. For i D 1; : : : ; 44n
, let

fi D 1p
"

1Ii

so that kfi kL2.S/ D 1. Expand fi .x/ D
P

c�;i e.�x/. Since ƒ � 1
`
Z, this sum converges

in L2Œ0; `�, and the limit is an extension of fi to the whole of L2Œ0; `� (to the whole of R,

if you prefer). Call these extensions zfi and note that the Riesz basis property gives that
P

jc�;i j2 � K, and hence

(3.3) k zfi k2
L2.Œ0;`�/

� `K � K2:

Similarly, if ˇi are arbitrary complex coefficients, then the expansion of
P

ˇi fi in the

Riesz basis E.ƒ/ is
X

�2ƒ

�

X

i

ˇi c�;i

�

e.�x/;
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so the Riesz property shows that

X

�2ƒ

ˇ

ˇ

ˇ

X

i

ˇi c�;i

ˇ

ˇ

ˇ

2

� K









X

i

ˇi fi










2

L2.S/
D K

X

i

jˇi j2:

From this we conclude, as in (3.3), that

(3.4)










X

i

ˇi
zfi










2

L2.Œ0;`�/
� K2

X

jˇi j2:

Let us further define

h D 4

"
1Œ�"=8;"=8�;

so that khk1 D 1. Let gi D zfi � h (the convolution here is a periodic convolution on Œ0; `�).

By the Cauchy±Schwarz inequality, for any coefficients ˇi we have

ˇ

ˇ

ˇ

X

i

ˇi gi .x/
ˇ

ˇ

ˇ
�










X

i

ˇi
zfi










L2Œ0;`�
khk2

(3.4)

� K

r

X

jˇi j2 � 2p
"

8x 2 R:

In other words, the convolution turns the L2 estimate for
P

ˇi
zfi to a pointwise estimate.

Next, enumerate all intervals comprising S which have length strictly bigger than " as

Œa1; b1�; : : : ; Œaq; bq�, where q D
P

k<n 44k � 2 � 44n�1
. Let

A WD
q

[

iD1

Œai � n"; ai C "�:

(A can be thought of as the set of left ‘edges’ of these intervals, as each interval Œai �
n";ai C "� of A is much smaller than the corresponding Œai ; bi �). Then jAj D q.n C 1/" �
2.n C 1/"44n�1

. By Claim 1 below (used with N D 44n
, M D 2K=

p
" and A as above),

there exists an i0 such that
Z

A

jgi0 j2 � M 2jAjp
N

� CK2n

44n�1
�

With i0 selected and this crucial property of gi0 proved, the theorem follows by examining

a few translations of gi0 .

To see this, expand fi0 using the Riesz basis property and denote the coefficients by c�

so that fi0.x/ D
P

c� e.�x/, and recall that we have extended fi0 so that a similar equality

holds also for zfi0 over all of R. Hence

gi0.x/ D
X

�2ƒ

c�
yh.�/ e.�x/:

So gi0 is supported spectrally on ƒ, and therefore

(3.5)
X

jc�
yh.�/j2 � 1

K

Z

S

jgi0 j2 � 1

2K
;

where the last inequality follows from the definition of gi0 as zfi0 � h, which allows to

calculate gi0 in the middle half of the interval Ii0 .
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On the other hand, the Plancherel formula on Œ0; `� and the Riesz property imply that

(3.6)

Z `

0

jgi0 j2 D `
X

jc�j2 jyh.�/j2
.�/
� K

X

jc�j2 � K2

Z

S

jfi0 j2 D K2:

The inequality .�/ follows from khk1 D 1, which implies jyh.�/j � 1 for all �.

Consider the following n � 1 translations of gi0 :

Gk.x/ D gi0.x � k"/ D
X

�2ƒ

c�
yh.�/ e.��k"/ e.�x/:

Each Gk is also supported spectrally on ƒ, and hence

Z

S

jGkj2 � 1

K

X

jc�
yh.�/j2

(3.5)

� 1

2K2
�

Consider now an interval Œa; b� which is a connected component of S of length larger

than ". Since zfi0 is zero on Œa; b�, we have that gi0 is zero on Œa C 1
8

"; b � 1
8

"� (simply

because gi0 was defined as zfi0 � h). Hence Gk is zero on Œa C .k C 1
8
/"; b�, i.e., on most

of the interval, for any k 2 ¹1; : : : ; n � 1º. On the remaining part, Œa; a C .k C 1
8
/"�, we

have that Gk is a translation of gi0 from the interval Œa � k"; a C 1
8

"� � A. Therefore

X

Œa;b�Wb�a>"

Z b

a

jGkj2 �
Z

A

jgi0 j2 � CK2n

44n�1
;

where the sum is over all Œa; b� which are connected components of S of length larger

than ". This means that, if I is the union of all components of S of length " or less (all

the Ii and then the shorter intervals), then

Z

I

jGkj2 � 1

2K2
� CK2n

44n�1
;

and since Gk is a translation of gi0 , we get

Z

I�"k

jgi0 j2 � 1

2K2
� CK2n

44n�1
�

Since the sets I � "k are disjoint, for k 2 ¹1; : : : ; n � 1º, we get

K2
(3.6)

�
Z `

0

jgi0 j2 � .n � 1/
� 1

2K2
� CK2n

44n�1

�

:

Since n was arbitrary, we have reached a contradiction.

Claim 1. Let A � R be a set of positive finite measure, and let ¹gi ºN
iD1 � L2.A/. If for

every ˇ1; : : : ; ˇN we have

(3.7)

ˇ

ˇ

ˇ

N
X

iD1

ˇi gi .x/
ˇ

ˇ

ˇ
� M

r

X

jˇi j2; 8x 2 A;
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then there exists some i0 such that
Z

A

jgi0 j2 � M 2jAjp
N

�

Proof. Assume that
R

A
jgi j2 > ı for some ı and all i . We get

X

i

Z

A

jgi .x/j2 dx > ıN:

Hence there exists some x0 such that

X

i

jgi .x0/j2 >
ıN

jAj �

Fix some i and apply condition (3.7) with ˇi D 1 and ǰ D 0 for all j ¤ i . We get that

jgi .x0/j � M: Since i was arbitrary, this holds for all i . Hence

X

i

jgi .x0/j � 1

M

X

i

jgi .x0/j2 >
ıN

jAjM �

Now apply condition (3.7) with ˇi D gi .x0/=jgi .x0/j. We get

ıN

jAjM <
X

i

jgi .x0/j D
ˇ

ˇ

ˇ

X

i

ˇi gi .x0/
ˇ

ˇ

ˇ

(3.7)

� M
p

N :

The claim is thus proved.

Remark. It is known [12] that any finite union S of intervals has a Riesz basis of expo-

nentials with some constant KS . Assume jS j D 1 for simplicity. The result above also

shows that KS is not bounded uniformly. Indeed, stopping the construction after n steps

would give a set, Sn, which is a finite union of intervals, for which KSn > cn1=4 (the

proof also needs a quantitative version of the Paley±Wiener theorem). Alternatively, the

fact that KS is unbounded can be concluded from Theorem 2 the same way the main result

of [18] follows from Lemma 7 there.

This might be a good place to mention an interesting question for which we have no

answer. Is KS bounded uniformly for S � Œ0; 2� which are a union of two intervals? The

constructions known to us [12,21] give, for S D Œ0; 1=2� \ Œ1=2 C "; 1 C "� a constant that

increases to 1 as " ! 0, but these are only upper bounds and we have no corresponding

lower bound.

Our last result is that, even if a Riesz basis of exponentials would exist for the disk,

its constant cannot be too close to 1. The way we defined the Riesz constant in (1.1),

though, makes it easy to compare to orthogonal bases only when jS j D 1 (otherwise even

an orthogonal basis of exponentials would not be normalised and would not satisfy (1.1)

with K D 1). For simplicity, we prove the result for D D 1p
�

D, a disk with area 1.

Theorem 3. Any Riesz basis of exponentials for D must have K �
q

1C
p

5
2

.
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Proof. Assume by contradiction that ƒ � R
2 satisfies that E.ƒ/ is a Riesz basis for

L2.D/, with the Riesz constant K (the K from (1.1)) satisfying K <
p

.1 C
p

5/=2.

Fix " > 0 and examine the function

f D 1p
�"

1"D

i.e., a normalised indicator of a disk of radius " around 0. Use the Riesz basis property to

write

f .x/ D
X

�2ƒ

c� e.h�; xi/;

with the sum converging in L2.D/. As before, we use this representation to extend f to

Œ�2; 2�2, though there will be two differences from the previous theorem. First, it will be

more convenient to not distinguish between f and its extension, and call the extension f

as well. And second, rather than using Paley±Wiener, this time we use the fact E.ƒ/ is a

Riesz basis in L2.D/ to conclude that ƒ is uniformly separated and hence E.ƒ/ satisfies

Bessel’s inequality in L2.Œ�2; 2�2/, i.e.,

(3.8) kf kL2.Œ�2;2�2/ � C
X

�2ƒ

jc�j2 � CKkf k2
D D CK:

For a � 2 Œ0; 2��, denote t� D .1=
p

� � "/.cos �; sin �/ and consider the translation of f

by t� , i.e.,

g� .x/ WD
X

�2ƒ

c� e.h�; x � t� i/:

As before, we must have

kg� k2
L2.D/

� K
X

�2ƒ

jc� e.h�; �t� i/j2 D K
X

�2ƒ

jc�j2 � K2:

However, g� .x/ D 1p
�"

on a disk of radius " contained in D and also in D C t� . Hence

Z

Dn.DCt� /

jg� j2 � K2 � 1:

Translating back we get an estimate for (the extended) f outside D, namely

(3.9)

Z

.D�t� /nD

jf j2 � K2 � 1:

This is our upper bound for f .

To get a lower bound we again examine one � , and this time translate by s� D . 1p
�

C"/

.cos �; sin �/. Denote the translated function by h� , namely

h� .x/ WD
X

�2ƒ

c� e.h�; x � s� i/;
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and get

kh� k2
L2.D/

� 1

K

X

�2ƒ

jc�j2 � 1

K2
;

which we again map back to f to get

Z

.D�s� /nD

jf j2 � 1

K2

(note that we used in this last step that the little disk that allowed to subtract 1 when we

did the corresponding calculations for g is outside D for h� , so does not contribute to

kh� kL2.D/). With the lower bound (3.9), we get

Z

.D�s� /n.D�t� /

jf j2 � 1

K2
� .K2 � 1/:

When K <
p

.1 C
p

5/=2, we get that the right-hand side is at least some constant c > 0.

Integrating over � and using Fubini gives (omitting the details of the elementary geometry

exercise involved)

c �
Z 2�

0

Z

.D�s� /n.D�t� /

jf .x/j2 dx d� �
Z

.2=
p

�C"/D

C
p

" jf .x/j2 dx:

Or, in other words,
Z

.2=
p

�C"/D

jf .x/j2 � cp
"

;

contradicting (3.8) if " is taken to be sufficiently small.
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