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that resemble bouts of sensory experience. These sequences can occur in either forward or reverse
order, and can even include spatial trajectories that have not been experienced, but are consistent
with the topology of the environment. The neural circuit mechanisms underlying this variable and
flexible sequence generation are unknown. Here we demonstrate in a recurrent spiking network
model of hippocampal area CA3 that experimental constraints on network dynamics such as
population sparsity, stimulus selectivity, rhythmicity and spike rate adaptation, as well as associative
synaptic connectivity, enable additional emergent properties, including variable offline memory
replay. In an online stimulus-driven state, we observed the emergence of neuronal sequences that
swept from representations of past to future stimuli on the timescale of the theta rhythm. In
an offline state driven only by noise, the network generated both forward and reverse neuronal
sequences, and recapitulated the experimental observation that offline memory replay events tend
to include salient locations like the site of a reward. These results demonstrate that biological
constraints on the dynamics of recurrent neural circuits are sufficient to enable memories of
sensory events stored in the strengths of synaptic connections to be flexibly read out during rest
and sleep, which is thought to be important for memory consolidation and planning of future
behaviour.

(Received 13 April 2022; accepted after revision 22 July 2022; first published online 30 July 2022)
Corresponding author A. D. Milstein: 679 Hoes Lane West, Room 238, Piscataway, NJ 08854, USA.
Email: milstein@cabm.rutgers.edu

Abstract figure legend During simulated rodent spatial navigation, place cells in hippocampal area CA3 fire at specific
locations in space, generating a sequence in the order that the animal traverses. Recurrent network models of excitatory
(E) place cells and inhibitory (I) interneurons that included associative synaptic connectivity between E cells, rhythmic
synchrony in E and I cells, and spike rate adaptation in E cells were found to generate sequences in an offline state in
the absence of structured sensory inputs. These sequences replayed those generated during navigation, but occurred in
either forward or reverse order.

Key points
� A recurrent spiking network model of hippocampal area CA3 was optimized to recapitulate
experimentally observed network dynamics during simulated spatial exploration.

� During simulated offline rest, the network exhibited the emergent property of generating flexible
forward, reverse and mixed direction memory replay events.

� Network perturbations and analysis of model diversity and degeneracy identified associative
synaptic connectivity and key features of network dynamics as important for offline sequence
generation.

� Network simulations demonstrate that population over-representation of salient positions like the
site of reward results in biased memory replay.

Introduction

In mammals, the hippocampus is a brain region involved
in the storage and recall of spatial and episodic memories.
As an animal explores a spatial environment, different
subpopulations of hippocampal neurons known as ‘place
cells’ are selectively activated at different positions
in space, resulting in sequences of neuronal spiking
that are on the seconds-long timescale of locomotor
behaviour (O’Keefe & Conway, 1978). The synchronous
firing of these sparse neuronal ensembles is coordinated
by population-wide oscillations referred to as theta

(∼4–10 Hz) and gamma (∼30–100 Hz) rhythms (Colgin,
2016). Within each cycle of the theta rhythm (∼125 ms),
the spiking of active neurons is organized into fast
timescale sequences such that neurons selective for
just-visited positions spike first, then neurons selective
for the current position, and finally neurons selective
for the next and future positions spike last in the
sequence (Drieu & Zugaro, 2019; Foster &Wilson, 2007).
These order-preserving fast timescale ‘theta sequences’ are
thought to be involved in planning and learning of event
order through associative synaptic plasticity (Jensen et al.,
1996; Kay et al., 2020).

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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When an animal stop running, theta and gamma
oscillations decrease, and neuronal circuits in the
hippocampus instead emit intermittent synchronous
bursts of activity that are associated with high-frequency
oscillatory activity detectable in local field potential
recordings in hippocampal area CA1. These
∼50–150 ms-long events are referred to as ‘sharp
wave-ripples’ (SWRs) (Colgin, 2016; Fernández-Ruiz
et al., 2019), and they occur during non-locomotor peri-
ods of quiet wakefulness, during reward consumption,
and during slow-wave sleep, when sensory information
about the spatial environment is reduced or absent.
During SWRs, sparse subsets of neurons are co-activated,
with a tendency for neurons that fire sequentially during
exploratory behaviour to also fire sequentially during
SWRs, either in the same order, or in reverse, or with
a mixture of both directions (Davidson et al., 2009;
Pfeiffer, 2020; Stella et al., 2019; Wu & Foster, 2014). The
hippocampus can also activate sequences of place cells
during SWRs that correspond to possible paths through
the environment that have not actually been experienced,
suggesting a possible role for offline sequence generation
in behavioural planning (Gupta et al., 2010; Igata et al.,
2021; Ólafsdóttir et al., 2015, 2018; Wu & Foster, 2014).
Manipulations that disrupt neuronal activity during
SWRs result in deficits in memory recall (Girardeau et al.,
2009; Jadhav et al., 2012), supporting a hypothesis that
offline reactivation of neuronal ensembles during SWRs
is important for the maintenance and consolidation of
long-term memories (Buzsáki, 1989; Joo & Frank, 2018).

Hippocampal SWRs are thought to be generated by
the synchronous firing of subpopulations of neurons in
the CA2 and CA3 regions of the hippocampus (Csicsvari
et al., 2000; Oliva et al., 2016), which are characterized
by substantial recurrent feedback connectivity (Duigou
et al., 2014; Guzman et al., 2016; Okamoto & Ikegaya,
2019). Recurrent networks have long been appreciated
for their ability to generate rich internal dynamics (Amit
& Brunel, 1997), including oscillations (Ermentrout,
1992). It has also been shown that associative plasticity
at recurrent connections between excitatory neurons
can enable robust reconstruction of complete memory
representations from incomplete or noisy sensory cues
(Amit&Brunel, 1997;Griniasty et al., 1993;Guzman et al.,
2016; Hopfield, 1982; Marr, 1971; Treves & Rolls, 1994).
However, this ‘pattern completion’ function of recurrent
networks requires that similarly tuned neurons activate
each other via strong synaptic connections, resulting in
sustained self-activation, rather than sequential activation
of neurons that are selective for distinct stimuli (Lisman
et al., 2005; Pfeiffer & Foster, 2015; Renno-Costa et al.,
2014). Previous work has shown that, in order for
recurrent networks to generate sequential activity, some
mechanism must be in place to ‘break the symmetry’
and enable spread of activity from one ensemble of

cells to another (Sompolinsky & Kanter, 1986; Tsodyks
et al., 1996). During spatial navigation, feedforward
sensory inputs carrying information about the changing
environment can provide the momentum necessary
for sequence generation. However, during hippocampal
SWRs, sensory inputs are reduced, and activity patterns
are thought to be primarily internally generated by the
recurrent connections within the hippocampus. In this
study we use a computational model of hippocampal area
CA3 to investigate the synaptic, cellular and network
mechanisms that enable flexible offline generation of
memory-related neuronal sequences in the absence of
ordered sensory information.
A number of possible mechanisms for sequence

generation in recurrent networks have been proposed:

(1) Winner-takes-all networkmechanism (Almeida et al.,
2007, 2009a; Lisman & Jensen, 2013). Within this
framework, the subset of excitatory neurons receiving
the most strongly weighted synaptic inputs responds
first upon presentation of a stimulus. This active
ensemble of cells then recruits feedback inhibition
via local interneurons, which in turn prevents other
neurons from firing for a brief time window (e.g.
the ∼15 ms duration of a single gamma cycle).
This highlights the important roles that inhibitory
neurons play in regulating sparsity (how many cells
are co-active), selectivity (which cells are active) and
rhythmicity (when cells fire) in recurrent networks
(Almeida et al., 2009b; Rennó-Costa et al., 2019; Stark
et al., 2014; Stefanelli et al., 2016). However, while
oscillatory feedback inhibition provides a network
mechanism for parsing neuronal sequences into
discrete elements, additional mechanisms are still
required to ensure that distinct subsets of excitatory
neurons are activated in a particular order across
successive cycles of a rhythm (Lisman et al., 2005;
Ramirez-Villegas et al., 2018).

(2) Heterogeneous cellular excitability (Luczak et al.,
2007; Stark et al., 2015). If the intrinsic properties of
neurons in a network are variable and heterogeneous,
when a stimulus is presented, those neurons that are
the most excitable will fire early, while neurons with
progressively lower excitability will fire later, resulting
in sequence generation. This mechanism can explain
the offline generation of stereotyped, unidirectional
sequences, but cannot account for variable generation
of sequences in both forward and reverse directions.

(3) Asymmetric distributions of synaptic weights
(Sompolinsky & Kanter, 1986; Tsodyks et al., 1996).
During learning, if changes in synaptic weights are
controlled by a temporally asymmetric learning
rule, recurrent connections can become biased such
that neurons activated early in a sequence have
stronger connections onto neurons activated later

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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in a sequence (Levy, 1989; Malerba & Bazhenov,
2019; McNaughton & Morris, 1987; Reifenstein
et al., 2021). This enables internally generated
activity to flow along the direction of the bias in
synaptic weights. While this mechanism accounts for
offline replay of specific sequences in the same order
experienced during learning, it cannot account
for reverse replay or the flexible generation of
non-experienced sequences (Gupta et al., 2010;
Igata et al., 2021; Ólafsdóttir et al., 2015, 2018; Wu &
Foster, 2014).

(4) Cellular or synaptic adaptation. It has also been
proposed that short-term adaptation of either neuro-
nal firing rate (Ecker et al., 2022; Itskov et al.,
2011; Treves, 2004) or synaptic efficacy (Romani
& Tsodyks, 2015) can enable neuronal sequence
generation in recurrent networks without asymmetric
synaptic weights. According to this scheme, recently
activated neurons initially recruit connected partners
with high efficacy, but continued spiking results in
either a decrease in firing rate or a decrease in the
probability of neurotransmitter release. This causes
connections to fatigue over time, and favours the
sequential propagation of activity to more recently
activated cells. These mechanisms do allow for the
stochastic generation of neuronal sequences in either
the forward or reverse direction, though they do not
prescribe which or howmany neurons will participate
in a given replay event.

In this study, we sought to understand how neuronal
sequence generation in hippocampal area CA3 depends
on the structure and function of the underlying network.
To do this, we constructed a computational neuro-
nal network model comprising recurrently connected
excitatory and inhibitory spiking neurons, and tuned it to
match experimental constraints on the spiking dynamics
of CA3 during spatial navigation, including sparsity,
selectivity, rhythmicity and spike rate adaptation.We then
analysed the direction and content of neuronal sequences
generated both ‘online’ during simulated navigation, and
‘offline’ during simulated rest. We found that when the
network was driven by ordered sensory information in
the online state, it generated forward-sweeping ‘theta
sequences’ that depended on the structure of recurrent
connectivity in the network. In the offline state driven
by noise, the network generated heterogeneous memory
replay events that moved in either forward, or reverse,
or mixed directions, and depended on network sparsity
and rhythmicity, and neuronal stimulus selectivity and
spike-rate adaptation. Model degeneracy analysis and
network perturbations indicated that offline memory
replay does not occur in networks with disrupted
recurrent connectivity, or in networks lacking sparsity,
selectivity, rhythmicity, or spike rate adaptation. Finally,

when particular spatial locations were over-represented
by the network, as occurs in the hippocampus at sites
of reward (Lee et al., 2006; Turi et al., 2019; Zaremba
et al., 2017), memory replay events were biased towards
trajectories that included those salient positions (Gillespie
et al., 2021; Ólafsdóttir et al., 2015; Singer & Frank, 2009).

Methods

Ethical approval

No animal or human subjects were used in this study.
This research was performed in compliance with all
institutional policies regarding ethical research practices.

Neuronal network modelling

Simulations of a recurrent network of excitatory and
inhibitory spiking neurons were executed using the
Python interface for the NEURON simulation software
(Hines et al., 2009). Cell models were single-compartment
integrate-and-fire neuronal cell models, as defined by
Izhikevich (2007), and as implemented for the NEURON
simulator by Lytton et al. (2016). Previously calibrated
cell models were replicated from those previous reports
without modification – the ‘intrinsically bursting cell’
model was used for excitatory neurons (E) with spike rate
adaptation, the ‘regular spiking pyramidal cell’ model was
used for excitatory neurons without spike rate adaptation,
and the ‘fast-spiking interneuron’ model was used for
inhibitory neurons (I) (Izhikevich, 2007; Lytton et al.,
2016). Individual spikes in presynaptic neurons activated
saturable conductance-based synapses with exponential
rise and decay kinetics after a constant delay of 1 ms
to emulate axonal conduction time (Carnevale & Hines,
2006). Excitatory synapses had a reversal potential of 0mV
(like AMPA-type glutamate receptors), and inhibitory
synapses had a reversal potential of −80 mV (like
GABAA-type receptors). In addition to the excitatory (E)
and inhibitory (I) neuron populations, a population of
feedforward afferent inputs (FF) provided a source of
external excitatory synaptic drive to the model network.
The baseline weights of excitatory synapses onto E cells

were sampled from a log-normal distribution (Almeida
et al., 2009b; Buzsaki &Mizuseki, 2014), while the weights
of excitatory synapses onto I cells, and all inhibitory
synapses were sampled from a normal distribution
(Grienberger et al., 2017). In addition to the random
baseline synaptic weights assigned to excitatory synapses
onto E cells, input strengths were increased by a variable
additive factor that depended on the distance between
the place fields of cells with overlapping spatial selectivity
(Supplementary Fig. S1B). The place field locations of
the FF and E populations were assigned by distributing

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Table 1. Model parameter values

Parameter Bounds

Structured
E← E
weights

Random
E← E
weights

Shuffled
E← E
weights

Suppressed
rhythmicity

No sparsity or
selectivity
constraints

No spike
rate

adaptation

E← FF weight mean 0.1–5 1.28 0.29 1.30 0.37 1.57 0.55
E← FF weight st. dev. 0.1–5 1.09 0.21 0.91 0.80 0.88 0.41
E← E weight mean 0.1–5 0.75 0.50 1.43 0.90 0.54 2.45
E← E weight st. dev. 0.1–5 0.52 0.48 0.58 0.25 0.73 1.74
E← I weight mean 0.1–5 0.87 0.70 2.06 0.86 0.59 0.54
E← I weight st. dev. 0.1–5 0.47 0.32 0.41 0.76 0.73 0.16
I← FF weight mean 0.1–5 1.50 1.83 2.44 0.38 1.53 1.60
I← FF weight st. dev. 0.1–5 0.68 0.82 0.45 0.38 0.55 0.22
I← E weight mean 0.1–5 1.85 1.31 1.44 1.63 1.77 0.82
I← E weight st. dev. 0.1–5 0.22 0.28 0.21 0.17 0.14 0.79
I← I weight mean 0.1–5 0.16 1.07 0.26 2.51 0.15 0.23
I← I weight st. dev. 0.1–5 0.12 0.68 0.47 0.33 0.77 0.05
E← FF and E← E max

structured �weight
1–5 3.63 2.80 4.42 3.91 3.63 4.00

E← FF and E← E decay (ms) 2–20 3.43 10.76 3.48 19.87 3.53 5.91
E← I decay (ms) 2–30 2.32 3.89 2.72 17.05 2.53 27.87
I← FF and I← E decay (ms) 2–20 15.04 18.53 17.94 13.49 17.10 18.39
I← I decay (ms) 2–30 8.09 5.65 8.12 9.24 10.19 22.35
E← FF no. synapses/pair 0–2 0.62 0.96 0.70 0.57 0.73 0.18
E← E no. synapses/pair 0–2 0.55 0.57 0.55 0.05 0.33 0.46
E← I no. synapses/pair 0–10 5.12 3.36 4.75 7.93 5.71 7.79
I← FF no. synapses/pair 0–2 0.26 0.77 0.19 0.21 0.19 0.12
I← E no. synapses/pair 0–2 0.31 0.47 0.19 0.22 0.13 0.60
I← I no. synapses/pair 0–10 8.17 4.81 9.07 8.83 9.43 7.38

locations throughout the circular simulated track at equal
intervals and randomly assigning them to cells within
each population. Random connectivity resulted in each E
neuron receiving inputs frommany FF andEneuronswith
heterogeneous selectivity, which produced substantial
out-of-field excitation at all positions along the track.

For each of six types of connections between the three
cell types (E ← FF, E ← E, E ← I, I ← FF, I ← E,
I← I), a number of parameters were varied and explored
during optimization to identify model configurations
that produced dynamics comparable to experimental
observations. These parameters included: the mean and
variance of the synaptic weight distribution for each
connection type, the decay time constants of the synaptic
conductances, the mean number of synapses made by
one presynaptic cell onto one postsynaptic cell for each
pair of cell types, and the maximum increase in synaptic
weight due to shared selectivity, as mentioned above.
Self-connections were not permitted.

Optimization was performed using a population-based
iterative multi-objective algorithm. During each of 50
iterations, a population of 600 models with different
parameters were simulated for one trial of simulated
online run, and for 5 trials of simulated offline rest.
During offline rest trials, a random subset of 25% of feed-

forward inputs were active with a mean rate of 12.5 Hz
for an event duration of 160 ms (8 bins of 20 ms each).
Different trials were implemented by using a distinct
random number stream to sample unique spike times of
the feedforward inputs from an inhomogeneous Poisson
process. The following features of the network dynamics
were evaluated for each model: average minimum and
maximum firing rates of E cells during run, average mean
firing rates of I cells during run, average fraction of active
E and I cells during run, mean firing rates of E cells during
rest, average fraction of active E cells during rest, and
finally, features related to the frequency and power of theta
and gamma band oscillations in E and I cells during run.
These features were compared to target values to obtain
a set of multiple objective error values. Models within a
population were compared to each other and ranked with
a non-dominated sorting procedure (Deb, 2011). Then,
a new population of models was generated by making
small perturbations to the parameter values of the most
highly ranked models from the previous iteration. This
algorithm effectively identified model configurations that
satisfied multiple objective criteria. In Tables 1 and 2, the
final optimized parameter values (Table 1) and measured
features of the network dynamics (Table 2) are compared
for various model configurations discussed in this study.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Table 2. Features of model network dynamics

Feature Target

Structured
E← E
weights

Random
E← E
weights

Shuffled
E← E
weights

Suppressed
rhythmicity

No sparsity or
selectivity
constraints

No spike
rate

adaptation

E peak rate (run) (Hz) 20. 17.20 19.96 10.42 20.07 19.73 7.30
E min rate (run) (Hz) 0. 0.24 0.25 0.27 0.25 12.37 0.39
I mean rate (run) (Hz) 20. 19.58 32.05 12.08 2.77 19.90 6.17
E fraction active (run) 0.6 0.59 0.60 0.61 0.60 1.00 0.60
I fraction active (run) 0.95 1.00 1.00 0.95 0.23 0.98 0.87
E theta amplitude (run) 0.5 0.78 0.37 0.63 0.15 0.77 1.29
I theta amplitude (run) 0.5 0.48 0.14 0.19 0.26 0.53 1.15
E gamma amplitude (run) 0.25 0.53 0.40 0.66 0.20 0.59 0.27
I gamma amplitude (run) 0.25 1.19 1.85 1.33 1.67 1.39 1.27
E theta frequency (run) (Hz) 7. 7.09 7.45 7.64 11.27 7.09 6.73
I theta frequency (run) (Hz) 7. 6.91 7.27 7.45 12.55 6.91 6.73
E gamma frequency (run) (Hz) 70. 71.06 72.93 71.06 57.98 72.93 39.29
I gamma frequency (run) (Hz) 70. 71.06 72.93 69.19 87.88 76.67 69.19
E theta frequency tuning index

(run)
>5. 6.40 6.30 7.00 0.00 29.05 150.67

I theta frequency tuning index
(run)

>5. 9.83 6.10 3.99 0.00 34.16 150.59

E gamma frequency tuning
index (run)

>5. 10.67 10.90 5.08 −0.37 10.18 −0.01

I gamma frequency tuning
index (run)

>5. 16.16 4.14 31.65 0.36 6.02 3.43

E fraction active (rest) 0.25 0.37 0.20 0.53 0.36 1.00 0.40
E mean rate (rest) (Hz) 12.5 7.11 6.56 7.12 7.65 17.77 6.97

In Tables 1 and 2, theta and gamma amplitudes were
quantified as follows. Average population firing rates
were band-pass filtered, and the envelopes of the filtered
traces were computed from the Hilbert transformation.
Then power was expressed as a ratio of the average
envelope amplitude to the average population firing
rate. To quantify theta and gamma frequency, bandpass
filtered traces were subject to frequency decomposition,
and the frequency corresponding to the centroid or
centre-of-mass of the power spectral density distribution
was taken as the dominant frequency within the band.
The area of the power spectral density distribution was
also used to compute a ‘frequency tuning index’ which
quantified how concentrated the power distribution was
around the centroid frequency. This metric was akin to a
signal-to-noise ratio in the frequency domain instead of
the time domain, and was computed as follows:

FTI = S− N
2× σ × w

(1)

where S is the average power at frequencies within the
centre of mass quartile containing the centroid frequency
(signal), N is the average power at frequencies in the
extreme high and low quartiles outside the centre of
mass quartile (noise), σ is the standard deviation of the

power distribution, and w is the half-width of the power
distribution in the frequency domain normalized to the
width of the bandpass filter. This metric has values near
zero when power is distributed uniformly within the filter
band, and values larger than 1when power is concentrated
around the centroid frequency.
Following parameter optimization, each variant of

the network was evaluated by simulating five trials of
online run, and 1000 trials of offline rest for each of
five independent network instances. For a given set of
model parameters, independent instances of each network
variant were constructed by using distinct random
number streams to assign place field locations, input spike
times, synaptic connections and synaptic weights for all
cells in the network.
Bayesian decoding of spatial position from spike times

recorded during a single trial (Figs 2, 3, 5 and 6,
and Supplementary Figs S3–S6) was performed using
the procedure described in Davidson et al. (2009). The
spatial firing rates of all cells were averaged across five
trials of simulated online run to compute the spiking
probabilities of each neuron in 20 ms bins. Then, spiking
data were taken from either a held-out set of five trials
of simulated run (Fig. 2), or offline rest trials (Figs 3, 5
and 6, and Supplementary Figs S3–S6). The numbers of
spikes emitted by each cell in 20 ms bins were used to

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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determine a likelihood distribution over spatial positions.
The position with maximum likelihood was used as the
decoded position estimate for each temporal bin. In
Fig. 2A, decoded positions of E and I cells sweep smoothly
from past to future positions, and then relax back to the
current position on the timescale of the ongoing theta
rhythm.Toquantify this formof online neuronal sequence
generation, a theta sequence score (Figs 2E and 4H) was
computed as follows: decoded position error was first
bandpass filtered in the theta band (4–10 Hz). Then the
contribution of this oscillation to the total variance in
decoded position error was calculated as the square of
the correlation (R2) between the originalmean-subtracted
error signal and the theta filtered signal. In Figs 3F,M, 4I,
5G and 6G, and Supplementary Figs S3H, S4F, S5K, S6K
and S8E, offline sequences were categorized as consistent
with a continuous trajectory through space if they met
the following criteria: (1) at least one cell in a population
must emit at least one spike in each temporal bin, (2) the
change in decoded position between any two adjacent bins
must not exceed 35% of the track length, (3) the total path
length of the decoded trajectory must not exceed 100% of
the track length, and (4) the net speed of the trajectory
(absolute value of net change in position divided by the
160 ms offline event duration) must exceed 50% of the
run speed of 0.33 track lengths/s used during simulation
of online exploration.

In Fig. 4 and Supplementary Fig. S8, the diversity and
degeneracy of various model configurations was explored
as follows: for each model configuration, 30,000 models
were evaluated during parameter optimization, and the
model with the lowest multi-objective error score was
considered the ‘best’ model. The remaining models were
sorted by their Euclidean distance from the ‘best’ model
in the space of model parameters. This resulted in an
error landscape (e.g. Fig. 4A) in which models with
similar parameters resulted in similar multi-objective
error scores. We then identified models located at local
minima in this error landscape, which as a group
comprised models that were distant from each other in
parameter space, but similar to each other in terms of over-
all multi-objective error.We further enforced that selected
models had to be a minimum distance of 0.15 from each
other in parameter space, and selected five such models
with the lowest error score to be included in a ‘Marder
group’ of models for further analysis. For each alternative
network model configuration (i.e. network models with
and without structured recurrent excitatory connections),
each of five ‘Marder group’ model variants with different
parameters were evaluated for offline sequence generation
by simulating 1000 trials for each of five independent
network instances.

In box and whisker plots in Figs 2D, E, 3F,M, 4D–I, 5G
and 6G, and Supplementary Figs S1C, D, S3H, S4F, S5K,
S6K and S8A–E, centre lines indicate median, boxes span

the first and third quartile of the data, andwhiskers extend
to 1.5 times the inter-quartile range.

Statistics

Differences in mean values between cell populations
(e.g. E vs. FF) across n = 5 instances of a single
variant (e.g. ‘best’ model) of a single network model
configuration (e.g. model with structured recurrent
excitatory synaptic weights in Fig. 1) were evaluated
with a one-sided paired Student’s t test. Differences
in mean values for one cell population between two
model configurations (n = 5 instances each from a
single model variant) (e.g. structured weights vs. random
weights in Fig. 2) were evaluated with two-sided t tests.
Differences in the distributions of data across trials
either between two model configurations or between
cell populations for a single model configuration (n=5
instances each froma singlemodel variant)were evaluated
using the Kolmogorov–Smirnov (K-S) test. Differences
in mean values between two model configurations
across n=5 model variants (data averaged over five
instances of each variant) were evaluated using two-sided
t tests. P-values were adjusted for multiple comparison
using the Bonferonni method for small numbers of
comparisons, and using the Benjamini–Hochbergmethod
to reduce false discovery rate (FDR) for large numbers of
comparisons.

Results

To investigate how sequential activity in the hippocampus
generated ‘online’ during spatial exploration can be
recapitulated ‘offline’ in the absence of sensory cues, we
constructed a simple spiking neuronal network model of
rodent hippocampal area CA3 (Methods). Neural circuits
in the hippocampus and cortex typically comprise a
majority of excitatory neurons that project information
to downstream circuits, and a minority of primarily
locally connected inhibitory interneurons. We included
populations of excitatory (1000) and inhibitory (200)
neurons in proportion to experimental observations
(Pelkey et al., 2017; Tremblay et al., 2016) (Fig. 1A).
Cell models were single-compartment, integrate-and-fire
neurons with saturable, conductance-based excitatory
and inhibitory synapses (Carnevale & Hines, 2006;
Izhikevich, 2007; Izhikevich & Edelman, 2008). Excitatory
neurons were endowed with spike-rate adaptation to
support punctuated bursting behaviour during theta
oscillations (O’Keefe & Recce, 1993; Scharfman, 1993),
and inhibitory neurons exhibited fast-spiking dynamics to
sustain continuous high frequency firing during gamma
oscillations (Csicsvari et al., 2003; Ylinen et al., 1995)
(Supplementary Fig. S1A, Methods).

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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3248 A. D. Milstein and others J Physiol 601.15

To simulate the sensory experience of locomotion in
a spatial environment, we provided both excitatory and
inhibitory neurons with external afferent inputs from a
population of 1000 excitatory neurons, each of which was
selectively activated at distinct but overlapping positions
within a simulated circular track that took 3 s to traverse
(Fig. 1A–C, Methods). Recurrent connections within and
between excitatory and inhibitory cell populations were
also included (Fig. 1A), as they are hallmark features of

hippocampal area CA3, and have been shown to support
rich network dynamics (Renno-Costa et al., 2014; Stark
et al., 2014). Specifically, inhibitory feedback connections
have been shown to regulate the number of simultaneously
active neurons (sparsity) (Stefanelli et al., 2016), and to
contribute to the generation of theta and gamma network
oscillations (Bezaire et al., 2016; Geisler et al., 2005;
Rennó-Costa et al., 2019; Stark et al., 2014; Wang, 2010).
Plastic excitatory connections between excitatory neurons

A

C

G
H

B D E

F

Figure 1. Sparsity, selectivity, and rhythmicity in a recurrent spiking neuronal network model of
hippocampal area CA3
A, diagram illustrating connectivity of networkmodel. Feedforward (FF) external excitatory inputs contact excitatory
(E) and inhibitory (I) neurons. E and I neurons are recurrently connected to other E and I neurons. B, simulations
of rodent ‘online exploration’ emulating the response of the hippocampus during unidirectional locomotion along
a circular linear track that takes 3 s to traverse at constant run velocity. C, firing rates vs. time of all neurons
in each cell population (average of five trials from one example network instance). Cells in each population are
sorted by the location of maximum firing. D, population sparsity (active fraction of neurons) vs. time shown for
each cell population. E, mean firing rate of active neurons vs. time shown for each cell population. F, average
stimulus selectivity of each cell population. Trial-averaged activity of each cell was centred around the location of
maximum firing, and then averaged across cells. G, the average activity of each population on a single trial (top
row) was bandpass filtered in the theta (middle row) and gamma (bottom row) frequency bands. Coloured traces
show filtered signals (theta: green, gamma: purple). Traces derived from one example network instance. H, power
spectrum of average population activity indicates dominant frequency components in the theta and gamma bands
(one-sided paired t tests: theta: E vs. FF, P=0.00001; I vs. FF, P < 0.00001; gamma: E vs. FF, P < 0.00001; I vs. FF,
P < 0.00001). In C, D, F and H, data were first averaged across five trials per network instance. Means (continuous
line) ± SEM (shading) were computed across five independent instances of each network model. P-values reflect
FDR correction for multiple comparisons.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 601.15 Network mechanisms of offline memory replay 3249

have long been implicated in stimulus selectivity and the
storage and recall of memories (Almeida et al., 2007;
Hopfield, 1982; Lisman & Jensen, 2013). It has been
proposed that strong connections between ensembles of
co-active neurons could arise through a combination of
biased connectivity during brain development (Buzsáki
et al., 2021; Dragoi & Tonegawa, 2013; Farooq & Dragoi,
2019; Grosmark & Buzsáki, 2016), and experience-driven
synaptic plasticity during learning (Bittner et al., 2015,
2017; Brunel & Trullier, 1998; Káli & Dayan, 2000;
Milstein et al., 2021; O’Neill et al., 2008). While here
we did not simulate these dynamic processes explicitly,
we implemented the structured connectivity that is the
end result of these processes by increasing the strengths
of synaptic connections between excitatory cells that
share overlapping selectivity for spatial positions in the
environment (Table 1, Supplementary Fig. S1B, Methods)
(Arkhipov et al., 2018).

Despite the relatively simple architecture of this
network model, a wide range of networks with distinct
dynamics could be produced by varying a number of
parameters, including (1) the probabilities of connections
between cell types (Káli & Dayan, 2000), (2) the kinetics
and strengths of synaptic connections between cell
types (Brunel & Wang, 2003), and (3) the magnitude
of the above-mentioned increase in synaptic strengths
between neurons with shared selectivity (Brunel, 2016;
Dorkenwald et al., 2019). To calibrate the network model
to produce dynamics thatmatched experimentally derived
targets, we performed an iterative stochastic search over
these parameters (see Methods, Table 1 for complete list
of parameters), and optimized the following features of
the activity of the model network: (1) population sparsity
– the fraction of active neurons of each cell type, (2) the
mean firing rates of active neurons of each cell type, (3)
stimulus-selective firing of excitatory cells, and (4) the
frequency and amplitude of theta and gamma oscillations
in the synchronous spiking activity of each cell population
(Methods).

This procedure identified a model with dynamics
that met all of the above constraints. Given sparse and
selective feedforward inputs during simulated navigation
(Fig. 1B and C), the excitatory neurons in the network
responded with a fraction of active cells (Fig. 1D) and
with average firing rates comparable to the those of the
feedforward input population (Fig. 1E). The majority of
inhibitory neurons were activated continuously (Fig. 1C
and D) at high firing rates (Fig. 1E). While excitatory
neurons received random connections from feed-
forward afferents and from other excitatory neurons with
heterogeneous spatial tuning, excitatory cells exhibited
a high degree of spatial selectivity (Fig. 1C and F). This
selective increase in firing rate at specific spatial locations
within the ‘place field’ of each excitatory neuron was
supported by enhanced synaptic connection strengths

between excitatory neurons with overlapping tuning
(Supplementary Fig. S1B). While substantial background
excitation occurred in all cells at all spatial positions,
firing outside the place field of each cell was suppressed
by sufficiently strong inhibitory input (Bittner et al.,
2015; Grienberger et al., 2017). Interestingly, inhibitory
neurons also exhibited spatial selectivity, albeit to a
weaker degree and with a higher background firing rate
(Fig. 1C and F). This feature of the network dynamics was
an emergent property that was not explicitly designed or
optimized. While excitatory connections onto inhibitory
cells were random and not weighted according to shared
selectivity (Supplementary Fig. S1B), the total amount of
excitatory input arriving onto individual inhibitory cells
fluctuated across spatial positions, and predicted a small
degree of spatial selectivity (Supplementary Fig. S1C).
Inhibitory inputs received by inhibitory cells reduced
their average activity, effectively enabling fluctuations in
excitation above the mean to stand out from the back-
ground excitation (Supplementary Fig. S1C and D). This
mechanism of background subtraction by inhibitory
synaptic input may explain the partial spatial selectivity
previously observed in subpopulations of hippocampal
inhibitory neurons (Ego-Stengel & Wilson, 2007; Geiller
et al., 2020; Grienberger et al., 2017; Hangya et al., 2010;
Marshall et al., 2002; Wilent & Nitz, 2007).
The tuned network model also exhibited oscillatory

synchrony in the firing of the excitatory and inhibitory
neuron populations, despite being driven by an
asynchronous external input (Fig. 1G and H). The
requirement that the network self-generate rhythmic
activity in the theta band constrained recurrent excitatory
connections to be relatively strong, as this input provided
the only source of rhythmic excitation within the network
(Supplementary Fig. S1E). Interestingly, as the firing rates
of inhibitory cells increased within each cycle of the theta
rhythm, their synchrony in the gamma band increased,
resulting in an amplitude modulation of gamma paced
at the theta frequency (Fig. 1G and Supplementary
Fig. S1F). This ‘theta-nested gamma’ is a well-known
feature of oscillations in the hippocampus (Soltesz &
Deschenes, 1993; Ylinen et al., 1995), and here emerged
from fundamental constraints on dual band rhythmicity
without requiring additional mechanisms or tuning.

Position decoding reveals ‘theta sequences’ during
simulated navigation

Next, we analysed neuronal sequence generation within
the network during simulated navigation. First, we
simulated multiple trials and computed trial-averaged
spatial firing rate maps for all neurons in the network
(Fig. 1C). We then used these rate maps to perform
Bayesian decoding of spatial position given the spiking

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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3250 A. D. Milstein and others J Physiol 601.15

activity of all cells in the network from individual
held-out trials not used in constructing the decoding
template (Fig. 2A, Methods) (Davidson et al., 2009;
Zhang et al., 1998). For the population of feedforward
excitatory inputs, the underlying spatial firing rates were
imposed, and the spikes of each cell were generated by
sampling from an inhomogeneous Poisson process.
Thus, decoding position from the activity of this
population served to validate our decoding method,
and indeed simulated position could be decoded from
the spiking activity of the feedforward input population
with very low reconstruction error (Fig. 2A and D).
When we applied this method to the population of
excitatory neurons within the network, reconstruction
error was increased (Fig. 2A and D). This reflected an
increased fraction of temporal bins (20 ms) where the
decoded position was either behind or in advance of the
actual position (Fig. 2A). However, rather than simply
reflecting reconstruction noise or poor spatial selectivity
of individual cells (Fig. 1F), these divergences from actual
position resulted from consistent sequential structure in
the spiking activity of cells in the excitatory population
(Fig. 2A, bottom row). Ordered neuronal firing resulted
in decoded positions that continuously swept from
past positions, through the current actual position, to
future positions, and then reset to past positions, on
the timescale of the ongoing theta rhythm. These ‘theta
sequences’ caused decoded position estimates to oscillate
around the actual position (Fig. 2A, bottom row), and
this theta timescale oscillation accounted for a large
proportion of the variance in decoded position (Fig. 2E,
Methods). Interestingly, we found that position could
also be accurately decoded from the moderately spatially
tuned activity of inhibitory cells in the network (Fig. 2A
and D), and that the spiking activity of the inhibitory
population was also organized into theta sequences
(Fig. 2A, bottom row and E).
A number of possible mechanisms have been proposed

to account for theta sequence generation in vivo, including
synaptic, cell-intrinsic and network-level mechanisms
(Chadwick et al., 2015, 2016; Drieu & Zugaro, 2019;
Foster & Wilson, 2007; Grienberger et al., 2017; Kang &
DeWeese, 2019; Mehta et al., 2002; Skaggs et al., 1996).
That theta sequences in the model emerged in both
excitatory and inhibitory neuron populations implicates
recurrent interactions within the network (Chadwick
et al., 2016). To further investigate, we analysed neuro-
nal sequence generation in a variant of the model in
which the strengths of recurrent connections between
excitatory neurons were randomized and no longer
depended on shared spatial selectivity between connected
pairs of cells (Supplementary Fig. S2A). This alternative
model could still be tuned to match experimental
targets, including sparsity, selectivity and rhythmicity
(Supplementary Fig. S2B–F). In this case the spatial

selectivity of excitatory cells was entirely determined
by the synaptic weights of the feedforward afferent
inputs (Supplementary Fig. S2A), while the recurrent
excitatory input supported synchronization in the theta
and gamma bands (Supplementary Fig. S2F). However, in
this model, theta timescale neuronal sequence generation
in both excitatory and inhibitory cells was suppressed
(Fig. 2B and E). Decoding of position from spikes
on single trials produced lower reconstruction error
(Fig. 2D), as neuronal population activity more faithfully
followed the current spatial position provided by the
feedforward inputs, and was not organized into the
sweeps from past to future positions characteristic of
theta sequences (Fig. 2B, bottom row and E). We also
tested a related variant of the model in which the skewed
distribution of recurrent excitatory synaptic weights used
in the structured weights model (Figs 1 and 2A, and
Supplementary Fig. 1) was randomly shuffled (Fig. 2C and
Supplementary Fig. S2G–L). Theta sequence generation
was also reduced in this network model variant (Fig. 2E).
These results indicate that structure in the synaptic
strengths of recurrent excitatory connections is required
for the generation of fast timescale (∼125 ms) neuronal
sequences when network activity is driven by behavioural
timescale (>1 s) sequences of sensory inputs, as occurs
during spatial exploration.

Emergence of offline memory replay

The above results show that the same network structure
that enables population dynamics in CA3 to exhibit
sparsity, selectivity, and rhythmicity also supports neuro-
nal sequence generation in the online state when ordered
sensory information is present. We next sought to under-
stand how neuronal sequences consistent with the sensory
environment are generated offline when sensory inputs
are reduced. To mimic the transient (∼50–150 ms)
increase in population activity that occurs during a
hippocampal SWR (Fernández-Ruiz et al., 2019), we
transiently stimulated the network by randomly choosing
sparse subsets of cells from the feedforward input
population to emit spikes (Fig. 3A and B). We then used
the same decoding templates as above, constructed from
the trial-averaged activity during simulated run, to decode
spatial position from spiking activity during these trans-
ient offline events (Methods).
Given that the place field locations of the stimulated

neurons in the feedforward input population were
heterogeneous and unordered, the spatial positions
decoded from their spiking were typically discontiguous
across adjacent temporal bins (Fig. 3A, B and F). This
input pattern evoked spiking in sparse subsets of both
the excitatory and the inhibitory populations in the
network (Fig. 3A and B). In contrast with the feedforward

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 601.15 Network mechanisms of offline memory replay 3251

Figure 2. Online neuronal sequence generation depends on recurrent excitatory synaptic connectivity
A, ‘online exploration’ was simulated for the same network model as in Fig. 1, in which recurrent excitatory
connections between E cells were structured such that neurons with shared selectivity have elevated synaptic
weights. Top row: spike times of all neurons in each cell population on a single trial of simulated ‘online exploration’
are marked. A separate set of five trials was used to construct a spatial firing rate template for each neuron (shown
in Fig. 1C). Cells in each population are sorted by the location of maximum average spatial firing rate. Bottom
row: the spatial firing rate templates for all neurons were used to perform Bayesian decoding of spatial position
from the single trial spiking data shown in the top row. For each cell population, the likelihood of each spatial
position in each time bin (20 ms) is indicated by grayscale intensity. B, same as A for alternative network model
with random synaptic strengths at recurrent excitatory connections between E cells. Spatial firing rate templates
used for decoding are shown in Supplementary Fig. S2B. C, same as A for alternative network model in which
the structured excitatory recurrent synaptic weights between E cells were randomly shuffled. Spatial firing rate
templates used for decoding are shown in Supplementary Fig. S2H. D, decoded position error is quantified as the
difference between actual and predicted position. The absolute value of decoded position error is expressed as
a fraction of the track length (one-sided paired t tests: structured E← E weights: E vs. FF, P < 0.00001; I vs. FF,
P < 0.00001; random E ← E weights: E vs. FF, P = 0.00001; I vs. FF, P = 0.00001; shuffled E ← E weights: E
vs. FF, P = 0.00001; I vs. FF, P = 0.00001; two-sided t tests vs. data from model with structured E← E weights:
random E← E weights: E, P < 0.00001, I, P = 0.00001; shuffled E← E weights: E, P < 0.00001, I, P = 0.00001).
E, in the model with structured E← E weights, decoded positions of E and I cell populations oscillated between
past, current and future positions at the timescale of the population theta oscillation. A theta sequence score was
computed as the proportion of the variance in the decoded position error explained by a theta timescale oscillation
(see Methods) (one-sided paired t tests: structured E← E weights: E vs. FF, P = 0.00005; I vs. FF, P = 0.00005;
random E← E weights: E vs. FF, P = 0.00002; I vs. FF, P = 0.28287; shuffled E← E weights: E vs. FF, P = 0.00010;
I vs. FF, P= 0.99600; two-sided t tests vs. data from model with structured E← E weights: random E← E weights:
E, P < 0.00001, I, P < 0.00001; shuffled E← E weights: E, P < 0.00001, I, P < 0.00001). In (D) and (E), data were
first averaged across five trials per network instance. Box and whisker plots depict data from five independent
instances of each network model (see Methods). P-values reflect FDR correction for multiple comparisons.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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3252 A. D. Milstein and others J Physiol 601.15

Figure 3. Forward and reverse offline memory replay depends on recurrent excitatory synaptic
connectivity
A–B, ‘offline rest’ was simulated for the network model with structured E← E weights (Fig. 1). Top row: spike times
of all neurons in each cell population on a single trial of simulated ‘offline rest’ are marked. Data from five trials
of simulated ‘online exploration’ were used to construct a spatial firing rate template for each neuron (Fig. 1C).
Cells in each population are sorted by the location of maximum average spatial firing rate. Bottom row: the spatial
firing rate templates for all neurons were used to perform Bayesian decoding of spatial position from the single
trial spiking data shown in the top row. For each cell population, the likelihood of each spatial position in each time
bin (20 ms) is indicated by grayscale intensity. A and B correspond to two example trials from one example network

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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instance. C–G, this procedure was repeated for 1000 trials for each of five instances of the network. C, histogram
of spatial positions decoded from each cell population across all simulated replay events (two-sided K-S tests: E
vs. FF, P = 0.99974; I vs. FF, P = 0.99974). D, histogram of the path length of spatial sequences decoded from
each cell population (two-sided K-S tests: E vs. FF, P < 0.00001; I vs. FF, P < 0.00001). E, histogram of the mean
velocity of spatial sequences decoded from each cell population (two-sided K-S tests: E vs. FF, P = 0.00235; I vs. FF,
P = 0.73515). F, fraction of events that met criterion for sequences consistent with continuous spatial trajectories
(see Methods) (one-sided paired t tests: E vs. FF, P< 0.00001, I vs. FF, P= 0.00084). G, power spectrum of average
population activity indicates high frequency components (one-sided paired t tests: 75–300 Hz frequency band: E vs.
FF, P = 1; I vs. FF, P < 0.00001). H–N, same as A–G for an alternative network model with random E← E weights.
H and I correspond to two example trials from one example network instance. J, decoded positions (two-sided
K-S tests: E vs. FF, P = 0.99974; I vs. FF, P = 0.99974; two-sided K-S tests vs. data from model with structured E
← E weights in C: E, P = 0.85869; I, P = 0.87577). K, offline sequence path length (two-sided K-S tests: E vs. FF,
P < 0.00001; I vs. FF, P = 0.99997; two-sided K-S tests vs. data from model with structured E← E weights in D:
E, P < 0.00001; I, P < 0.00001). L, offline sequence velocity (two-sided K-S tests: E vs. FF, P = 0.99877; I vs. FF,
P = 0.99877; two-sided K-S tests vs. data from model with structured E ← E weights in (E): E, P = 0.01591; I,
P= 0.76837).M, fraction of events that met criterion for sequences consistent with continuous spatial trajectories
(see Methods) (one-sided paired t tests: E vs. FF, P = 0.00005, I vs. FF, P = 0.86564; two-sided t tests vs. data from
model with structured E← E weights in (F): E, P < 0.00001; I, P = 0.00001). N, offline high-frequency rhythmicity
(one-sided paired t tests: 75–300 Hz frequency band: E vs. FF, P = 0.97708; I vs. FF, P < 0.00001; two-sided t tests
vs. data from model with structured E← E weights in G: E, P = 0.64948; I, P < 0.00001). In C–E, G, J–L, and N,
means (continuous line) ± SEM (shading) were computed across five independent instances of each network. In F
andM, box and whisker plots depict data from five independent instances of each network model (see Methods).
P-values reflect FDR correction for multiple comparisons.

population, the activity evoked in excitatory neurons
was structured such that neurons with nearby place field
locations spiked in adjacent temporal bins, resulting in
decoded spatial trajectories that were continuous (Fig. 3A,
B and F). Inhibitory neuron activity during these events
was organized into high-frequency oscillations (Fig. 3A,
B and G). This procedure was repeated to produce
thousands of offline events evoked by stimulation of
different random ensembles of inputs (Methods). Across
these events, each position along the track was decoded
with equal probability (Fig. 3C). For each event, the
length and mean velocity of the decoded trajectory was
calculated from the differences in decoded positions
between adjacent bins (Fig. 3D and E). A mean velocity
of zero corresponds to events with equal steps in the
forward and reverse directions, while positive velocities
correspond to net forward-moving trajectories, and
negative velocities correspond to net backwards-moving
trajectories. While the trajectories decoded from the
random feedforward input population comprised large,
discontiguous steps that traced out large path lengths
with an average velocity near zero, the excitatory neuron
population generated shorter, more continuous sequences
that progressed in either the forward or reverse directions
(Fig. 3D–F). These trajectories on average covered
∼0.5 of the length of the track in the short (∼150 ms)
duration of the offline event. Compared to the run
trajectory, which took 3 s to cover the full track length,
this corresponded to a ∼10-fold temporal compression
(Fig. 3E), similar to experimental data (Davidson et al.,
2009). Spatial trajectories decoded from the inhibitory
neuron population were intermediate in length, but with
little forward or reverse momentum, similar to the feed-
forward inputs. However, the inhibitory cells exhibited

high-frequency synchrony (Fig. 3A, B and G), similar
to experimentally recorded CA3 interneurons during
hippocampal SWRs (Csicsvari et al., 2000; Tukker et al.,
2013).
These data demonstrate that random, unstructured

input can evoke sequential activity in a CA3-like recurrent
spiking network, with sequences corresponding to
forward, reverse, or mixed direction trajectories through
an experienced spatial environment. This self-generated
memory-related activity implicates information stored in
the synaptic weights of the recurrent connections within
the network as being important for offline replay of
experience. However, in most previous models, sequence
generation was unidirectional, and was enabled by an
asymmetric bias in the strengths of recurrent connections
such that neurons encoding positions early in a sequence
formed stronger synapses onto neurons encoding later
positions (Levy, 1989; Malerba & Bazhenov, 2019;
McNaughton & Morris, 1987; Reifenstein et al., 2021;
Sompolinsky & Kanter, 1986; Tsodyks et al., 1996).
In contrast, the current network flexibly generated
sequences in forward, reverse or mixed directions, and
had symmetric recurrent connections such that synaptic
strengths between pairs of excitatory neurons depend only
on overlapping selectivity, not on sequence order. Does
sequence generation in the present network still depend
on recurrent connectivity? To test this, we first verified
that including an asymmetric bias in the strengths of
excitatory connections produced offline replay events that
were biased towards forward sequences (Supplementary
Fig. S3). We next analysed the sequence content of
offline events generated in the variants of the network
model with random (Fig. 3H–N and Supplementary Fig.
S2A–F) or shuffled Supplementary Fig. S2G–L and S4)

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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3254 A. D. Milstein and others J Physiol 601.15

Figure 4. Exploration of model parameter diversity and degeneracy
A, during networkmodel optimization, 30,000model variants with different parameters were evaluated. To explore
model diversity and degeneracy, for each network model configuration, a subset of model variants termed a
‘Marder group’ were selected based on their large distance from each other in the space of parameters, but their
similar performance with respect to multiple optimization objectives (see Methods). This selection procedure is
illustrated here for the model with random E← E weights as an example. The five ‘Marder group’ members with
the lowest multi-objective error (labelled ‘best’ and ‘M1’–‘M4’) were selected for further evaluation. B, for the
network model configuration with structured E← E weights, the range of parameter values across five distinct
‘Marder group’ models is shown. C, same as B for the model with random E← E weights. D–I, features of the
simulated network dynamics produced by distinct model variants within a ‘Marder group’ are compared across
networkmodel configurations. Each data point (grey circles) depicts one ‘Marder group’ model.D, spatial selectivity
of the excitatory neuron population during simulated ‘online exploration’ is computed as a ratio of maximum to
mean activity (two-sided t tests vs. data from model with structured E← E weights: random E← E weights: P= 1;
shuffled E← E weights: P = 0.00224). E, the fraction of the excitatory neuron population that is synchronously
active during simulated ‘online exploration’ is shown (two-sided t tests vs. data from model with structured E←
E weights: random E← E weights: P = 1; shuffled E← E weights: P = 0.12079). F, gamma rhythmicity of the
excitatory neuron population is computed as the integrated power spectral density in the gamma frequency band
(two-sided t tests vs. data from model with structured E ← E weights: random E ← E weights: P = 0.03552;

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 601.15 Network mechanisms of offline memory replay 3255

shuffled E← E weights: P = 0.16364). G, theta rhythmicity of the excitatory neuron population is computed as
the integrated power spectral density in the theta frequency band (two-sided t tests vs. data from model with
structured E ← E weights: random E ← E weights: P = 0.00272; shuffled E ← E weights: P = 0.01944). H,
theta sequence score (see Fig. 2 and Methods) (two-sided t tests vs. data from model with structured E ← E
weights: random E← E weights: P = 0.02817; shuffled E← E weights: P = 0.01473). I, fraction of events during
simulated ‘offline rest’ that met criterion for sequences consistent with continuous spatial trajectories (see Fig. 3,
Supplementary Fig. S3 andMethods) (two-sided t tests vs. data frommodel with structured E← E weights: random
E← E weights: P< 0.00001; shuffled E← E weights: P= 0.00044). In D–I, for each network model configuration,
box and whisker plots depict five distinct ‘Marder group’ model variants with different parameters (see Methods).
Data for each model variant (grey circles) were first averaged across five independent instances of that model
variant. In F–I, grey dashed lines indicate value for the feedforward input to the network for reference. P-values
reflect Bonferroni correction for multiple comparisons.

recurrent connection weights. Indeed, without structure
in the recurrent connection weights, spatial trajectories
decoded from the activity of excitatory neurons was more
similar to those of the feedforward inputs, consisting of
large, discontinuous steps without forward or reverse
momentum (Fig. 3H–M and Supplementary Fig. S4A–F).
Still, these networks exhibited high-frequency oscillatory
synchrony during these offline events (Fig. 3N and
Supplementary Fig. S4G).

Exploration of model diversity and degeneracy

The above results strongly supported the hypothesis that
recurrent connectivity is important for offline sequence
generation. During optimization of each of the alternative
network model configurations shown above to meet the
multiple objectives of sparsity, selectivity and rhythmicity,
we evaluated 30,000 variants of each model with different
parameters (Methods). For each model configuration,
the model with the lowest overall multi-objective error
was chosen as the ‘best’ model for further analysis, as
shown in Figs 2 and 3 and Supplementary Figs S1, S2
and S4. However, we noted that the parameter values
that specified these ‘best’ models were variable across the
multiple network configurations (Table 1). This raised
the possibility that while many models with diverse
parameters may produce networks with similar online
dynamics (referred to as model degeneracy; Marder &
Taylor, 2011), perhaps only a smaller subset of models
would additionally support the emergence of offline
sequence generation. The fact that sequence generation
was not observed for either of the ‘best’ models with
disrupted recurrent excitatory synaptic weights could
reflect an incomplete sampling of the parameter space
and a failure to identify models that both meet the
objective criteria for online dynamics and produce offline
sequences. Therefore, in order to explore the diversity
and degeneracy of models evaluated during optimization,
we devised a method to identify models that performed
similarly with respect to multiple optimization objectives,
but were specified by divergent sets of parameters
(Methods). For each model configuration, all model
variants evaluated during parameter optimization were

sorted by their Euclidean distance from the ‘best’ model
in the space of model parameters. This resulted in an
error landscape (e.g. Fig. 4A) in which models with
similar parameters resulted in similar multi-objective
error scores. We then identified models located at local
minima in this error landscape, which formed a group of
models that were distant from each other in parameter
space, but similar to each other in terms of overall
multi-objective error. We termed a set of such models
as a ‘Marder group’ after pioneering work characterizing
degeneracy in biological systems (Marder & Taylor, 2011).
For each alternative network model configuration, we
selected the five members of this ‘Marder group’ with the
lowest multi-objective error (labelled ‘best’ and ‘M1’–‘M4’
in Fig. 4A), and evaluated their network dynamics during
simulations of both online exploration and offline rest.
We first verified that for all model configurations with
and without structured recurrent excitatory connectivity
analysed above (Figs 1–3 and Supplementary Figs S1,
S2 and S4), model variants within a ‘Marder group’
exhibited considerable diversity across model parameters
(Fig. 4B and C), and met all objective criteria for neuro-
nal stimulus selectivity (Fig. 4D), population sparsity
(Fig. 4E), and rhythmogenesis in the theta and gamma
bands (Fig. 4F and G). However, only model variants with
synaptic weights structured by shared stimulus selectivity
exhibited theta sequences during online run (Fig. 4H) and
generated offline sequences consistent with continuous
spatial trajectories (Fig. 4I). This analysis demonstrated
that generation of memory-related neuronal sequences
by recurrent networks requires that information about
the topology of the sensory environment is stored in
the strengths of recurrent excitatory connections between
excitatory neurons.

Constraints on online sparsity, selectivity and
rhythmicity enable offline memory replay

Our above findings suggest that experimental constraints
on the online dynamics of hippocampal area CA3 during
spatial exploration are sufficient to enable the emergence
of offline memory replay. We next sought to determine
whether all or only a subset of these constraints were

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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3256 A. D. Milstein and others J Physiol 601.15

required for generation of memory-related sequences. To
determine the importance of rhythmicity, we removed
the optimization criteria that excitatory and inhibitory
neuron populations synchronize in the theta and gamma
bands, and instead added an objective to minimize
power density across the full frequency spectrum
(Supplementary Fig. S5E). Following optimization, this
alternative network model exhibited reduced rhythmicity,
but still met objectives related to sparsity and selectivity
(Supplementary Fig. S5A–D). However, when challenged
with random stimuli during simulated offline rest, this
model with suppressed rhythmicity failed to generate
continuous forward or reverse sequences (Supplementary
Fig. S5F–L). Rather, spatial trajectories decoded from
offline population activity contained large discontiguous
jumps in position, andmost events had zero net velocity in
either the forward or the reverse direction. This indicated
that the same reciprocal interactions between excitatory
and inhibitory neurons that support rhythmogenesis
in the theta and gamma bands also contribute to the
sequential organization of neuronal activity during offline
memory replay.
We next optimized a network model variant without

constraints on population sparsity and neuronal stimulus
selectivity (see Methods). In this network model, while
feedforward excitatory inputs remained spatially tuned,
their connectivity with excitatory neurons was shuffled to
prevent inheritance of spatial selectivity. This resulted
in a complete loss of sparsity of excitatory neuron
activity (Supplementary Fig. S6A and B), and suppressed
stimulus selectivity in excitatory neurons even below
the level exhibited in the inhibitory neuron population
(Supplementary Fig. S6C and D). Rhythmogenesis in
the theta and gamma bands in excitatory and inhibitory
neurons was maintained (Supplementary Fig. S6E).
During simulation of offline rest, this network generated
highly synchronous population bursts that tended to
either hover at one decoded position or make large
discontiguous jumps between positions (Supplementary
Fig. S6F–K). These results suggest that the network
connectivity parameters that support highly sparse and
selective neuronal activity in the online stimulus-driven
state, also enable sparse reactivation of neuronal
sequences in the offline state. We also repeated the
model degeneracy analysis described above (Fig. 4) for
multiple model variants with compromised sparsity,
selectivity or rhythmicity, which corroborated these
findings (Supplementary Fig. S8).

Role of neuronal spike rate adaptation in forward
and reverse offline memory replay

Above we showed that structure in the synaptic
connectivity of the CA3 network is important for

neuronal sequence generation. However, unlike pre-
vious models of sequence generation where asymmetry
in connection strengths biased the direction of neuro-
nal sequences (Levy, 1989; Malerba & Bazhenov, 2019;
McNaughton & Morris, 1987; Reifenstein et al., 2021;
Sompolinsky & Kanter, 1986; Tsodyks et al., 1996), here
synaptic connectivity was symmetric, and yet variable
neuronal sequences were flexibly generated in both
forward and reverse directions (Fig. 3A, B and E). If this
symmetric connectivity enables recurrent networks to
generate either forward or backward steps, what ‘breaks’
this symmetry and produces sequences that make net
progress in either the forward or backward direction?
We next wondered if directionality of offline sequences
in our network model was facilitated by our choice of
‘bursty’ excitatory cell model, which exhibited spike-rate
adaptation (Fig. 5A). Asmentioned before, use-dependent
decreases in either firing rate or synaptic transmission
over time can provide momentum to neuronal sequences
by favouring the recruitment of new neurons that have
not yet been activated during a network population event
(Itskov et al., 2011; Romani & Tsodyks, 2015; Treves,
2004). To test a possible role for cellular adaptation in
sequence generation in our model network, we replaced
the ‘bursting’ excitatory cell model with a ‘regular spiking’
model without spike rate adaptation (Fig. 5A). This cell
model did not support the high instantaneous firing rates
of the bursting cell model, which compromised the peak
firing rates of excitatory cells in the network and their
entrainment by higher frequency gamma oscillations
during simulated online navigation (Supplementary Fig.
S7). Otherwise, this variant of the network did meet
the criterion for sparsity, selectivity and rhythmicity
(Supplementary Figs S7 and S8A–D). However, during
simulated offline rest, random feedforward inputs evoked
a truncated response from the network (Fig. 5B and C),
with the high frequency rhythmic activity of the inhibitory
neurons diminishing before the end of the stimulus period
(Fig. 5B, C and H). Spatial trajectories decoded from the
activity of excitatory neurons in the network comprised
large steps that did not progress in either forward or
reverse direction, similar to the random feedforward
inputs (Fig. 5E–G and Supplementary Fig. S8E). These
data show that adaptation of neuronal spiking provides
a cellular-level mechanism for flexible and reversible
sequence generation in recurrent spiking networks.

Preferential replay of reward location

Thus far, we have simulated network activity during
spatial navigation, and identified features of the network
that enable offline replay of behavioural sequences
stored in memory. However, in these simulations all
spatial positions were visited with equal occupancy,

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 601.15 Network mechanisms of offline memory replay 3257

and considered to be of equal salience or relevance to the
virtual animal. This resulted in all positions being replayed
with equal probability offline (Fig. 3C), mimicking
experimental conditions where all spatial positions
contain discriminable sensory cues, and opportunities

for reward are provided at random times and positions
(Turi et al., 2019; Zaremba et al., 2017). However, it has
been shown that when a reward is provided at a fixed
location that the animal must discover through learning,
offline memory replay events become biased towards

Figure 5. Neuronal spike rate adaptation supports offline memory replay
A, intracellular voltage recordings of three neuronal cell models with distinct spiking dynamics in response to
simulated square-shaped intracellular current injections. B–H, same as Figs 3A–2G for an alternative network model
in which E cells are regular-spiking cell models without spike rate adaptation. B and C correspond to two example
trials from one example network instance. D, decoded positions (two-sided K-S tests: E vs. FF, P = 0.99974; I vs. FF,
P = 0.89825; two-sided K-S tests vs. data from model with structured E← E weights in Fig. 3C: E, P = 0.84875;
I, P = 0.85869). E, offline sequence length (two-sided K-S tests: E vs. FF, P < 0.00001; I vs. FF, P < 0.00001;
two-sided K-S tests vs. data from model with structured E← E weights in Fig. 3D: E, P < 0.00001; I, P = 0.99997).
F, offline sequence velocity (two-sided K-S tests: E vs. FF, P = 0.15282; I vs. FF, P = 0.73515; two-sided K-S tests vs.
data from model with structured E← E weights in Fig. 3E: E, P = 0.03099; I, P = 0.91017). G, fraction of events
that met criterion for sequences consistent with continuous spatial trajectories (see Methods) (one-sided paired t
tests: E vs. FF, P = 0.00038, I vs. FF, P = 0.00119; two-sided t tests vs. data from model with structured E ← E
weights in Fig. 3F: E, P < 0.00001; I, P = 0.03860). H, offline high-frequency rhythmicity (one-sided paired t tests:
75–300 Hz frequency band: E vs. FF, P = 0.00114; I vs. FF, P = 0.00003; two-sided t tests vs. data from model
with structured E← E weights in Fig. 3G: E, P < 0.00001; I, P = 0.00027). In D–F and H, means (continuous lines)
± SEM (shading) were computed across five independent instances of each network. In G, box and whisker plots
depict data from five independent instances of each network model (see Methods). P-values reflect FDR correction
for multiple comparisons.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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3258 A. D. Milstein and others J Physiol 601.15

Figure 6. Offline memory replay is biased towards reward positions over-represented by the network
A, in this variant of the network, an increased proportion of E cells are selective for spatial positions near the
site of a simulated reward. Firing rates vs. time of all neurons in each cell population are shown (average of five
trials from one example network instance). Cells in each population are sorted by the location of maximum firing.
The simulated reward site is marked with red dashed line. B–H, same as Figs 3A–G for an alternative network
model with population-level over-representation of reward location in E cells. B and C correspond to two example
trials from one example network instance. The simulated reward site is marked with red dashed line. D, decoded
positions (two-sided K-S tests: E vs. FF, P < 0.00001; I vs. FF, P = 0.41580; two-sided K-S tests vs. data from
model with structured E ← E weights in Fig. 3C: E, P < 0.00001; I, P = 0.84875). E, offline sequence length
(two-sided K-S tests: E vs. FF, P < 0.00001; I vs. FF, P < 0.00001; two-sided K-S tests vs. data from model with
structured E ← E weights in Fig. 3D: E, P = 0.25150; I, P < 0.00001). F, offline sequence velocity (two-sided
K-S tests: E vs. FF, P = 0.02742; I vs. FF, P = 0.73515; two-sided K-S tests vs. data from model with structured E
← E weights in Fig. 3E: E, P = 0.16847; I, P = 0.62023). G, fraction of events that met criterion for sequences
consistent with continuous spatial trajectories (see Methods) (one-sided paired t tests: E vs. FF, P < 0.00001, I vs.
FF, P = 0.00027; two-sided t tests vs. data from model with structured E← E weights in Fig. 3F: E, P = 0.05397;
I, P = 0.00754). H, offline high-frequency rhythmicity (one-sided paired t tests: 75–300 Hz frequency band: E vs.
FF, P = 0.00067; I vs. FF, P = 0.00006; two-sided t tests vs. data from model with structured E ← E weights in
Fig. 3G: E, P = 0.00003; I, P = 0.00001). In D–F and H, means (continuous line) ± SEM (shading) were computed
across five independent instances of each network. In G, box and whisker plots depict data from five independent
instances of each network model (see Methods). P-values reflect FDR correction for multiple comparisons.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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sequences of place cells that encode positions nearby and
including the site of the reward (Gillespie et al., 2021;
Ólafsdóttir et al., 2018; Pfeiffer, 2020; Singer & Frank,
2009). In parallel with the development of this bias in
offline memory replay during learning, it has been shown
that the fraction of hippocampal pyramidal cells that
selectively fire along the path to reward increases (Lee
et al., 2006; Turi et al., 2019; Zaremba et al., 2017). Here
we sought to test the hypothesis that this network-level
over-representation of reward location is sufficient to bias
the content of offline memory replay.

We chose a position along the virtual track to be
the fixed location of a simulated reward, and biased the
allocation of place field locations such that an increased
fraction of excitatory neurons were selectively activated
at positions near the reward (Fig. 6A). As before, feed-
forward and recurrent synaptic connection strengths were
increased between neurons with overlapping selectivity
(Supplementary Fig. S9A). Aside from an enhanced
fraction of active excitatory neurons near the reward
site (Supplementary Fig. S9B), this produced network
dynamics during simulated navigation that conformed
to experimental constraints for sparsity, selectivity and
rhythmicity (Fig. 6A and Supplementary Fig. S9B–E).
During simulated offline rest, the excitatory neurons in
the network responded to random feedforward inputs by
generating neuronal sequences corresponding to forward,
reverse and mixed direction trajectories through the
environment (Fig. 6B–G), paced by high frequency
oscillations in the inhibitory cells (Fig. 6H), as before
(Fig. 3A–G). However, now positions near the simulated
reward site were replayed in a higher proportion of
replay events (Fig. 6D). This preferential replay of
locations over-represented by the network recapitulated
experimental findings and supported the hypothesis that
non-uniform place cell allocation and biased memory
replay are causally linked (Levy, 1989).

Discussion

In this study we used a simple recurrent spiking network
model of hippocampal area CA3 to investigate the
structural and functional requirements for offline replay
of spatial memories. We optimized synaptic, cellular and
network parameters of the network to produce population
dynamics that match experimentally observed sparsity,
selectivity and rhythmicity. We found that networks
that fit these constraints exhibit additional emergent
properties, including the ability to generate fast timescale
memory-related neuronal sequences. During simulated
spatial navigation, when ordered sensory information was
provided on the seconds-long timescale of locomotion
behaviour, the network produced neuronal sequences that
swept from past to future positions on the faster timescale

(∼125 ms) of the theta rhythm (‘theta sequences’).
During simulated offline rest, the network responded
to transient noisy activation of random, sparse inputs
by generating neuronal sequences that corresponded to
forward, reverse or mixed direction trajectories through
the spatial environment.
Both online and offline sequence generation depended

on structure in the strengths of excitatory synaptic
connections such that pairs of neurons with over-
lapping spatial tuning were more strongly connected.
In the online phase, different sparse subsets of excitatory
neurons were activated at different spatial positions due
to structure in the strengths of connections from spatially
tuned feedforward afferent inputs. The constraint that
recurrent excitation must drive rhythmic synchronization
in the theta band resulted in relatively strong recurrent
connections. During each cycle of the theta rhythm,
when the firing rates of the excitatory neurons were
at their maximum, synaptic excitation from recurrent
connections exceeded that from the feedforward afferents
(Supplementary Fig. S1E). This caused the sum of
forward-moving feedforward inputs and symmetric
mixed-direction feedback inputs to favour activation
of cells encoding positions at or ahead of the current
position. This generated forward-sweeping sequences
that outpaced the speed of locomotion. However, at the
opposite phase of the theta rhythm, when the firing
rates of the excitatory cells reached their minimum, the
non-rhythmic feedforward input became greater than
recurrent excitation (Supplementary Fig. S1E), causing
theta sequences to reverse direction and relax back
towards the current position encoded by the feedforward
inputs.
In the offline phase, the feedforward inputs were not

activated in a sequence, so momentum had to be entirely
internally generated by the network. In this case, the
particular subset of active feedforward inputs initially
selected a sparse subset of excitatory neurons to begin
to fire, which set a starting position for the replayed
trajectory. Slight biases in the feedforward input could
then influence whether the active ensemble of excitatory
neurons next recruited neurons encoding spatial positions
in either the forward or reverse direction. Once activity
began moving in one direction, spike-rate adaptation
facilitated continued sequence movement along that
direction. However, depending on fluctuations in the
feedforward inputs, sequences were also generated that
included changes in direction. Interestingly, this process
is akin to interpolation or smoothing – the recurrent
connections within the network served to bridge large,
discontinuous jumps in position encoded by the noisy
feedforward inputs with smaller, more continuous steps.
This produced offline sequences that were consistent with
the topology of the spatial environment, but did not
necessarily replay exact experienced trajectories. These

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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findings are consistent with a recent report that neuro-
nal sequences activated during hippocampal SWRs in vivo
resembled Brownian motion, or a random walk through
the sensory space, rather than precise replay of experience
(Stella et al., 2019). This suggests that, rather than
serving mainly to consolidate specific episodic memories
of ordered sensory experiences, neuronal sequences
during SWRs could also explore possible associations
within the environment that had not been fully sampled
during experience. Our modelling results showing that
increased population representations of goal sites bias the
content of offline memory replay also corroborate recent
findings that previously rewarded locations are replayed
more readily than immediate past or immediate future
trajectories (Gillespie et al., 2021).Within this framework,
synaptic plasticity during offline replay could modify
connection strengths to increase the chance that a new
pathwill be taken that is likely to lead to a desired outcome
(Ólafsdóttir et al., 2015).
In summary, our modelling results identified a

minimal set of elements sufficient to enable flexible
and bidirectional memory replay in neuronal networks:
spike rate adaptation, recurrent connectivity between
excitatory and inhibitory neuron populations with
strengths and kinetics optimized for rhythmogenesis
and sparse and selective stimulus representations, and
associative structure in the synaptic strengths at recurrent
synapses between excitatory neurons. In previous models
of neuronal sequence generation, additional network
components were proposed to enable unidirectional
sequences stored in memory to be reversed during
offline recall, including neuromodulation (Gauy et al.,
2018), excitability of neuronal dendrites (Gauy et al.,
2018; Jahnke et al., 2015), coordinated plasticity at both
excitatory and inhibitory synapses (Ramirez-Villegas
et al., 2018) and functional specialization of diverse
subpopulations of inhibitory interneurons (Cutsuridis &
Hasselmo, 2011). While these mechanisms may regulate
and enhance memory replay, our results suggest that they
are not necessarily required.
This model also makes some experimentally testable

predictions. First, it implies that ion channel mutations
that disrupt neuronal spike rate adaptation may also
degrade neuronal sequence generation and memory
consolidation (Peters et al., 2005). Secondly, while the
direction and content of offline sequences may be
largely controlled by internal dynamics and information
stored in the synaptic weights within a recurrent neuro-
nal circuit, the model network still required a small
amount of random feedforward afferent input to evoke
an offline population burst, suggesting that experimental
manipulations of afferent projections to hippocampal area
CA3 may alter the frequency or content of memory
replay events (Chenani et al., 2019; Sasaki et al., 2018).

Recent work has also begun to explore the advantages of
generative replay for learning in artificial neural networks
(Roscow et al., 2021). In addition to better understanding
the biological mechanisms of memory consolidation
and flexible planning of behaviour, characterizing the
minimal mechanisms of memory replay could facilitate
the engineering of artificial systems that can refine their
internal representations of the environment during peri-
ods of offline rest (Buzsáki, 1989).
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