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include models of sequence evolution that can vary across the

branches of a phylogeny. By far the most widely used approach is

a “two-phase” method: (1) a multiple sequence alignment (MSA) is

first estimated on the input set of unaligned biomolecular sequences,

and (2) a phylogeny is then reconstructed using the estimated MSA

as input.

Many methods have been developed for addressing the initial

phase of multiple sequence alignment, which is a classical and

well-studied computational problem in computational biology and

bioinformatics. The problem is also known to be NP-Complete [37].

For this reason, a variety of MSA heuristics have been developed.

One such heuristic is progressive multiple sequence alignment,

where an input guide tree is used to successively perform pairwise

alignment of alignments. Among the most accurate and most pop-

ular MSA methods are MAFFT [16], MUSCLE [8], Clustal Omega

[34] and its predecessor Clustal W [20], and FSA [2].

The second phase in a two-phase analysis consists of phyloge-

netic reconstruction using an estimated MSA as input. Statistical

inference and learning methods for this task typically model se-

quence evolution as a branch-homogeneous substitution process

(i.e., a substitution process that does not vary across the branches

of a phylogeny). More general branch-variable substitution mod-

els have been proposed, and phylogenetic software packages for

performing statistical inference and learning under these mod-

els have also been developed. These software are broadly classi-

fied by their statistical optimization criteria. One class consists of

maximum likelihood estimation (MLE) methods. PAML [43] is a

widely used method in this class, as well as nhPhyML [1]. Other

popular phylogenetic MLE methods include limited support for

branch-variable substitution models (e.g., RAxML [35] supports

a leaf-versus-internal-edge substitution model). Another class of

statistical methods utilize Bayesian inference and learning. BEAST

[7] is widely used for Bayesian phylogenetic estimation, and it sup-

ports relaxed molecular clock models of rate heterogeneity among

branches. MrBayes [33] is another option in this class, but it only of-

fers limited support for covarion models [14]. We focus on PAML as

a representative state-of-the-art method that is scalable to relatively

large datasets.

A variety of factors contribute to phylogenetic reconstruction ac-

curacy. Beyond the question of branch-variable sequence evolution,

a large body of studies has demonstrated the central importance

of estimated MSA quality in traditional phylogenetic analyses us-

ing branch-homogeneous substitution models [21, 22, 25]. But this

question has not been well studied for phylogenetic estimation un-

der branch-variable substitution models. The same question arises

in the context of statistical estimation problems that are unique to

branch-variable rate heterogeneity: these include shift edge infer-

ence, rooting phylogenetic trees under non-stationary models, and

continuous parameter estimation (i.e. substitution rates, branch

lengths, and base frequencies) for more complex substitution mod-

els. Another practical consideration is whether methodological

guidance from earlier studies is applicable to inference and learn-

ing under more complex models.

Critically, new tools are needed to perform data-driven assess-

ment of the relationship between upstream MSA estimation error

and downstream phylogenetic estimation error. Such path-breaking

tools promise to convert an “unknown unknown” – to paraphrase

Donald Rumsfeld’s infamous quote – into a quantifiable and sur-

mountable challenge; a sufficient critical mass of evidence, as pro-

vided by such tools, can set the stage for further research progress.

In this study, we directly address both gaps. A comprehensive

performance study using simulated and empirical datasets is con-

ducted to assess the effect of multiple sequence alignment quality

on phylogenetic estimation when evolution is non-homogeneous

and non-stationary. We then apply RAWR (“RAndom Walk Resam-

pling”) [38], our recently introduced sequence-aware statistical

resampling technique, to a new task: confidence interval estima-

tion for phylogenetic tree reconstruction under branch-variable

substitution models when unaligned biomolecular sequence data

are used as input.

2 MATERIALS AND METHODS

We begin with the following notation and definitions. Let) = (+ , �)

be a rooted tree with labeled leaves - ⊂ + and root d ∈ + . An

unrooted version of a tree) can be obtained by “omitting” the root

d (i.e., deleting d and “connecting” its incident edges). Each edge

4 = (D, E) ∈ � where D, E ∈ + has a length 3 (4). An edge (D, E) is a

leaf edge if either D or E is a leaf, otherwise it is an internal edge.

Deleting an edge 4 from a tree) gives two subtrees)1 = (+1, �1) and

)2 = (+2, �2). The vertex sets+1 and+2 are disjoint, and+1∪+2 = + .

The same can be said for their respective leaf sets, so {-1, -2} is a

bipartition of - . Let this be denoted as 1 (4) = {-1, -2}.

2.1 Methods under study

Multiple sequence alignment. Our study included a range of the

most commonly used and/or most accurate multiple sequence align-

ment methods. We aligned simulated and empirical datasets using

MAFFT [16] version 7.475, MUSCLE [8] version 5.0.1428, Clustal

Omega [34] version 1.2.4, Clustal W [20] version 2.1, and FSA [2]

version 1.15.9. Each method was run using their respective default

settings.

Phylogenetic estimation. We use the General Time Reversible

(GTR) model of finite-sites nucleotide substitution for phylogenetic

estimation. The GTR model is parameterized by base frequencies

c) , c� , c�, c� and substitution rate parameters 0, 1, 2, 3, 4, 5 . We

use the same conventions as used by [42], where 0 corresponds to

) ↔ � , 1 corresponds to ) ↔ �, 2 to ) ↔ � , 3 to � ↔ �, 4 to

� ↔ � , and 5 to� ↔ �. 5 is canonically fixed to 1 and the remain-

ing free rate parameters are specified relative to 5 . The substitution

rate matrix & is then defined as follows:

& =



· 0c� 1c� 2c�
0c) · 3c� 4c�
1c) 3c� · 5 c�
2c) 4c� 5 c� ·



with the diagonals set to &88 = −
∑
8≠9 &8 9 . The transition proba-

bility matrix is given by % (C) = exp(−&C) and is used to calculate

model likelihood for a phylogenetic tree. Typically in phylogenetic

estimation using Markov models of substitution, the rate matrix

is assumed to be constant over the whole tree. We refer to models

under this assumption as homogeneous or “no-shift” models.

More general models are needed to account for substitution

process variation across a phylogeny. To this end, the homogeneity
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For evaluating alignment quality, we use sum-of-pairs false pos-

itive and false negative proportions, denoted SP-FP and SP-FN

respectively. SP-FP is calculated as the proportion of homologous

nucleotide pairs in the estimated alignment and not in the true

alignment. SP-FN is defined vice versa.

We performed linear regression analyses to quantify the rela-

tionship between upstream MSA estimation error and downstream

phylogenetic estimation error. Python was used with the package

scikit-learn [29] to perform the linear regression analyses.

For evaluating phylogenetic support estimation methods (i.e.,

NoHTS and the phylogenetic bootstrap method), we used precision-

recall (PR) and receiver operating characteristic (ROC) curves and

the area under curves (PR-AUC and ROC-AUC, respectively). Con-

fusion matrix entries used to construct the PR and ROC curves

were calculated using the same procedures as in [38].

To quantify the relative importance of each factor in the simula-

tion study, we utilized the random forest approach in the study of

Lanier and Knowles [19]. Likewise, we performed random forest

analysis in R using the package randomForest [6]. We fit 1000 re-

gression trees with the following factors: model condition (indel

probability and model tree height), MLE method, alignment type

(true or estimated), and number of taxa. Relative importance of a

factor was measured as the increase in mean squared error (MSE)

when excluding that factor over the highest increase in MSE.

2.2 Simulated datasets

Supplementary Figure S1 provides a graphical overview of our

study’s simulation procedures.

Model tree generation. Model trees were sampled using INDELible

[12] under a random birth-death process. Non-ultrametricity was

introduced using the procedure described in [27] with deviation

factor 2 = 2. First, a rooted model tree is generated using INDELible

under a birth-death process. For every branch, sample G from a

uniform distribution G ∼ * (− ln(2), ln(2)) and scale the branch

length by G . The tree height is then rescaled so that the maximum

root-to-tip distance is the height specified by the model condition.

Finally, a subtree containing as close to half of the leaves is selected

to evolve under the shift substitution model.

Simulating sequence evolution. Our simulations utilized model

conditions that were based on the study of Wang et al. [38] (Table

2). Following the rationale of Wang et al. [38], the model condition

parameter settings reflect a range of evolutionary divergence that

are often encountered in modern-day phylogenetic systematics

and related research topics. To simulate sequence evolution on the

model trees, INDELible was used to perform finite-sites simulations

under a GTR-based branch model and the indel model of [12]. Based

on Nabholz et al. [26]’s report of GC content variation in the avian

phylogeny, the GTR model parameters were empirically estimated

using single-copy orthologs from [15] for the subset of species

(Calypte anna, Alligator mississippiensis, Melopsittacus undulatus,

Corvus brachyrhynchos, andManacus vitellinus) included in Nabholz

et al. [26]’s study. To estimate these parameters, we aligned the

single-copy orthologs using MAFFT with the default settings. MLE

under the single-shift model was used to estimate parameters on

each individual aligned sequence. Then, we looked at the two sets

of estimated substitution rates, and we observed that the ratio

Table 1: Simulation study: GTRmodel parameters used for the

single-shi� substitutionmodel in our simulations.The single-

shift substitutionmodel is comprised of two sets of model pa-

rameters: one corresponding to a “background” substitution

process, and the other to a “shift” substitution process. Set-

tings for each set of base frequency parameters c) , c� , c�, c�
are listed, followed by the settings for each set of substitution

rate parameters 0, 1, 2, 3, 4, 5 . (See Methods section for details.)

Parameter c) c� c� c� C↔T A↔T G↔T A↔C C↔G A↔G

Shift 0.216 0.237 0.317 0.230 5.847 3.186 1.214 3.437 1.307 1.0

Background 0.183 0.226 0.058 0.534 1.505 0.367 0.141 0.412 0.094 1.0

Table 2: Simulation study model conditions. The 10-taxon

model conditions are named 10.A through 10.E in order of

generally increasing evolutionary divergence, and the 20-

taxon model conditions are named 20.A through 20.E simi-

larly. As noted in the Methods section, model condition pa-

rameter settings were based on the study of Wang et al. [38]

and reflect a range of evolutionary divergence. The model

tree height and indel model parameter are listed for each

model condition. Each model condition consists of settings

for these two parameters and the single-shift substitution

model parameters. (See Methods section for details.)

Model Number Tree Indel
condition of taxa height probability

10.A 10 0.47 0.13
10.B 10 0.7 0.1
10.C 10 1.2 0.06
10.D 10 2 0.031
10.E 10 4.4 0.013
20.A 20 0.47 0.13
20.B 20 0.7 0.1
20.C 20 1.2 0.06
20.D 20 2 0.031
20.E 20 4.4 0.013

between themwas bimodal. We chose GTRmodel parameters based

on the estimated parameters in the lower rate mode (Table 1). The

simulation outputs consisted of a true multiple sequence alignment,

the corresponding set of unaligned sequences, a model tree with

branch lengths, and the true substitution model instance. Table 3

lists summary statistics for true and estimated MSAs.

Experimental replication. For eachmodel condition, the simulation

procedurewas repeated to obtain 30 experimental replicates. Results

are reported on average (along with standard errors) across all

experimental replicates in each model condition.

2.3 Empirical datasets

Flowering monocot dataset. The distribution of GC content in the

Poales, an order of flowering monocots, is bimodal [5]. This pattern

is notably strong in rice. We applied nonhomogeneous substitu-

tion model-based phylogenetic tree estimation to a set of 7 taxa

from the Poales – Oryza sativa japonica [28], Sorghum bicolor [23],

Carex cristatella, C. scoparia, Juncus effusus, Juncus inflexus [30],

and Ananas comosus [24] – and one additional taxon from the order

Zingiberales –Musa balbisiana [39]. We identified 1900 single-copy

orthologs using OrthoFinder [10] with default settings. Average

sequence length across all taxa and single-copy orthologs was 1377.
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Table 3: Simulation study: summary statistics for ground

truth and estimatedMSAs.MAFFT,Muscle, ClustalW, Clustal

Omega, and FSA were used to estimated MSAs on each sim-

ulation study dataset. For each model condition, each MSA

method’s average alignment SP-FN and SP-FP error (“SP-FN”

and “SP-FP”, respectively) are reported across all replicate

datasets (= = 30). Alignment length (“length”), average nor-

malized Hamming distance (“ANHD”) for aligned sequence

pairs, and proportion of MSA cells that consist of indels

(“Gappiness”) are reported for each method as an average

across all replicates in a model condition (= = 30).

Statistic Alignment
Model condition

10.A 10.B 10.C 10.D 10.E 20.A 20.B 20.C 20.D 20.E

SP-FN

MAFFT 0.531 0.667 0.751 0.831 0.890 0.392 0.539 0.775 0.873 0.948

MUSCLE 0.526 0.637 0.716 0.788 0.851 0.355 0.480 0.702 0.812 0.908

CLUSTALW 0.715 0.765 0.806 0.855 0.892 0.630 0.736 0.846 0.890 0.943

CLUSTALO 0.710 0.769 0.813 0.854 0.884 0.640 0.728 0.843 0.889 0.937

FSA 0.680 0.751 0.820 0.886 0.927 0.550 0.706 0.864 0.923 0.961

SP-FP

MAFFT 0.526 0.663 0.750 0.833 0.893 0.364 0.519 0.770 0.872 0.949

MUSCLE 0.513 0.633 0.715 0.792 0.858 0.331 0.465 0.700 0.814 0.913

CLUSTALW 0.702 0.759 0.803 0.856 0.896 0.595 0.715 0.843 0.891 0.945

CLUSTALO 0.667 0.741 0.795 0.847 0.886 0.566 0.679 0.827 0.884 0.939

FSA 0.394 0.501 0.599 0.695 0.763 0.181 0.313 0.535 0.529 0.782

Length

TRUE 2123.8 2315.8 2315.8 2313.2 2063.0 2410.3 2585.1 2895.8 2696.2 2723.6

MAFFT 1478.6 1477.1 1484.5 1461.8 1529.2 1643.7 1670.7 1683.0 1691.4 1804.3

MUSCLE 1518.5 1570.1 1573.1 1561.9 1590.5 1790.2 1863.0 1907.7 1890.0 1979.5

CLUSTALW 1191.4 1186.0 1170.6 1143.0 1146.5 1278.6 1261.2 1227.8 1181.6 1162.8

CLUSTALO 1247.1 1248.7 1237.6 1222.9 1234.0 1306.3 1318.2 1303.2 1287.4 1283.8

FSA 3609.3 4471.2 4992.4 5729.6 6196.2 4394.5 5959.0 8231.8 10177.9 11566.5

ANHD

TRUE 0.306 0.364 0.364 0.465 0.649 0.301 0.374 0.484 0.581 0.667

MAFFT 0.389 0.435 0.484 0.528 0.569 0.368 0.433 0.516 0.569 0.608

MUSCLE 0.413 0.449 0.499 0.542 0.589 0.380 0.445 0.530 0.585 0.630

CLUSTALW 0.466 0.496 0.537 0.573 0.614 0.449 0.509 0.573 0.615 0.652

CLUSTALO 0.484 0.504 0.541 0.565 0.602 0.471 0.518 0.570 0.602 0.637

FSA 0.280 0.319 0.377 0.420 0.477 0.289 0.349 0.429 0.486 0.525

Gappiness

TRUE 0.528 0.564 0.564 0.566 0.510 0.581 0.606 0.649 0.622 0.629

MAFFT 0.326 0.321 0.328 0.310 0.342 0.390 0.394 0.400 0.403 0.444

MUSCLE 0.342 0.361 0.364 0.353 0.366 0.439 0.456 0.470 0.466 0.493

CLUSTALW 0.165 0.155 0.148 0.119 0.124 0.216 0.198 0.178 0.148 0.140

CLUSTALO 0.202 0.198 0.194 0.177 0.187 0.233 0.232 0.226 0.218 0.221

FSA 0.715 0.770 0.795 0.820 0.836 0.763 0.819 0.874 0.899 0.913

We aligned the sequences individually using MAFFT, MUSCLE,

Clustal Omega, Clustal W, and FSA using the same settings as

those used in the simulation study. We performed phylogenetic

estimation under a single-shift model for every individual gene.

2.4 Data availability statement

Data and scripts used are available under an open copyleft license at

https://gitlab.msu.edu/liulab/nonhomogeneous-substitution-model-

study-data-scripts.

3 RESULTS

3.1 Simulation study

MSA estimation error and topological error of single-shift MLE. We

focus first on phylogenetic reconstruction with no model mis-

specification. On the least divergent 10.A model condition, MLE

under the single-shift model returned the lowest average topologi-

cal error when the true MSA was provided as input, followed by

estimated MSAs excluding FSA (i.e., ClustalOmega, MAFFT, MUS-

CLE, and ClustalW), and FSA-estimated MSAs returned the worst

accuracy overall. As evolutionary divergence increased across the

10-taxonmodel conditions – with 10.A being the least divergent and

10.E the most divergent – topological error returned by the different

methods also increased to differing extents. The smallest effect was

seen on true alignments; a relatively stronger effect seen on esti-

mated alignments, with FSA exhibiting the greatest effect among

all MSA estimation methods. Across the 10-taxon model conditions,

MLE(TrueAln), MLE(ClustalOmega), MLE(MAFFT), MLE(Muscle),

MLE(ClustalW, and MLE(FSA) returned average topological error

of 0.116, 0.232, 0.245, 0.277, 0.253, and 0.386, respectively; the corre-

sponding estimated MSAs had average SP-FN (SP-FP) error of 0.778

(0.816), 0.706 (0.743), 0.677 (0.723), 0.776 (0.816), and 0.782 (0.321),

respectively.

All MSA estimation methods returned some degree of alignment

error, and comparison of phylogenetic MLE using estimated MSAs

vs. true MSAs demonstrates the clear impact of upstream estimation

error on downstream phylogenetic reconstruction. However, rela-

tive comparisons among MSA methods were not a perfect predictor

of resulting topological error, at least at the coarse granularity of

per-model-condition averages. Muscle and MAFFT were generally

among the more accurate MSA methods in terms of SP-FN and

SP-FP error – with Muscle outperforming MAFFT slightly, FSA con-

sistently returned lower SP-FP error compared to all other methods,

and ClustalW-estimated alignments were generally least accurate.

We note that our findings are consistent with other related studies

involving traditional homogeneous model-based MLE [21, 22].

We performed linear regression analyses to examine the rela-

tionship between upstream MSA error and downstream topological

error at a finer granularity. Per-replicate scatterplots and fitted

linear regression models are shown in Figure 3. The correlation be-

tween alignment SP-FN error and topological error was observed to

be positive and statistically significant across all model conditions.

A similar outcome was observed between alignment SP-FP error

and topological error, except on 2 of the least divergent 10-taxon

model conditions (Supplementary Figure S4 in the SOM Appendix).

Correlation coefficients tended to increase as evolutionary diver-

gence increased, with the strongest associations observed on the

most divergent model conditions.

Similar outcomes were observed on the 20-taxon model condi-

tions. Topological error on the 20-taxon model conditions were

somewhat higher than on the 10-taxon model conditions, as ex-

pected due to the combinatorially larger solution spaces required by

the former compared to the latter. Across the 20-taxon model condi-

tions,MLE(TrueAln),MLE(ClustalOmega),MLE(MAFFT),MLE(Muscle),

MLE(ClustalW, and MLE(FSA) returned average topological error

of 0.121, 0.329, 0.352, 0.310, 0.325, and 0.408, respectively; the corre-

sponding MSAs had average SP-FN (SP-FP) error of 0.792 (0.814),

0.696 (0.712), 0.643 (0.675), 0.791 (0.822), and 0.778 (0.255), respec-

tively. (Per-method regression analyses also yielded consistent re-

sults, as shown in Supplementary Figures S11 through S15.)

MSA estimation error and topological error: role ofmodelmis-specification.

Across the different model conditions in our study, single-shift MLE

using a given MSA as input (i.e., the true MSA or one of the esti-

mated MSAs) returned the best (or among the best) average topolog-

ical error, compared to the zero-shift and all-shift MLEmethods (Fig-

ure 2). In fact, on the most divergent 10.E and 20.E model conditions,

zero-shift model-based MLE on the true MSA returned topological

error that was comparable to estimated MSA-based MLE under any

of the substitution models. For MLE on the true, MUSCLE, Clustal

Omega, ClustalW, MAFFT, and FSA alignments, the respective av-

erage topological error for single-shift phylogenetic estimation was

0.094, 0.258, 0.261, 0.269, 0.289, and 0.380; the respective average

topological error for all-shift phylogenetic estimation was 0.120,
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single-shift MLE phylogenetic estimates. The genome-wide distri-

butions of substitution rate estimates were also variable between

alignment methods. We caution that direct comparison between

the simulation study and empirical genomic sequence analyses

are complicated by differences in data type: the former involves

single-locus data and all loci were simulated i.i.d., whereas the lat-

ter utilized multi-locus data where different loci may well evolved

under more complex and non-i.i.d. evolutionary processes (e.g.,

genetic recombination). A new generation of species-tree-aware

phylogenomic inference methods can help better account for com-

plex evolution of multi-locus biomolecular sequences [3, 9], but we

anticipate that the influence of upstream MSA estimation error will

become even greater under more complex evolutionary models.

5 CONCLUSIONS

Our performance study assessed the impact of upstream MSA es-

timation error on downstream phylogenetic MLE under branch-

heterogeneous substitution models. Throughout the simulation

study, MSA estimation error was consistently and significantly as-

sociated with downstream topological error for single-shift MLE.

Greater correlations were observed as evolutionary divergence in-

creased across model conditions. We introduced NoHTS, a random

walk resampling method that assesses phylogenetic support for

branch-variable model-based estimation using unaligned biomolec-

ular sequence inputs. For all simulated model conditions, we found

that NoHTS support estimation performed better for phylogenetic

support estimation, compared to the phylogenetic bootstrapmethod.

Estimation of continuous parameters, tree rooting, and shift edge

were also impacted by MSA estimation error. Additional MLE ex-

periments with under- and over-parameterized models indicate

that our study findings are robust to model mis-specification. An

empirical study of the order Poales revealed findings consistent

with the simulation study experiments.

Several recommendations follow from our study’s findings. First,

NoHTS can and should be used to directly quantify the effects

of upstream MSA estimation error on downstream phylogenetic

MLE under branch-variable substitution models. We also recom-

mend that NoHTS-estimated phylogenetic confidence intervals be

reported alongside any phylogenies that are reconstructed using

heterogeneous model-based MLE. Second, our study reinforces a

through-line in computational phylogenetics: there is a great need

for alignment-aware phylogenetic inference and learning – both

under homogeneous [21, 22, 25] and branch-heterogeneous sub-

stitution models. Ideally, an MSA and phylogenetic tree would be

co-estimated under the same evolutionary model that generated se-

quence observations. Such co-estimation methods exist for homoge-

neous models [22, 25, 31] but not for branch-heterogeneous models.

In the interim, mitigation via best practices when reconstructing

species trees offers a stop-gap workaround. We recommend that

species trees be reconstructed using multi-locus data and the latest

statistical methods for phylogenomic inference and learning, such

as ASTRAL [44]. We caution that this mitigation measure is no

silver bullet. More deliberate decision making is needed during up-

stream phylogenetic study and analysis design [3, 9]. For example,

denser taxon sampling may help ameliorate long branch attrac-

tion [13], but our experiments suggest that the impact of upstream

MSA error on downstream phylogenetic inference becomes more

pronounced as both dataset sizes and divergence increase.

We conclude with thoughts on future work. Our study exam-

ined the relationship between upstream MSA estimation error and

downstream phylogenetic reconstruction where exactly one sub-

stitution process shift occurred along a phylogeny. Even stronger

effects are anticipated where multiple evolutionary shifts occur

along a phylogeny, as is expected to be the case where larger and

more divergent clades are sampled within Tree of Life. This hy-

pothesis merits future study with an expanded set of multiple-shift

simulations. Finally, a fundamental issue is model mis-specification

due to the use of substitution-only model-based analysis of aligned

biomolecular sequence data. This simplifying assumption is perva-

sive throughout phylogenetics and phylogenomics. Phylogenetic

MLE under traditional homogeneous substitution models is known

to be statistically inconsistent where sequences evolved under in-

sertion and deletion processes [40]; a similar theoretical limitation

is also expected for heterogeneous substitution models. As noted

above, statistical co-estimation methods are needed to reconstruct

MSAs and phylogenetic trees under a variable-across-phylogeny

model of substitutions, insertions, and deletions.
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S1 SUPPLEMENTARY METHODS

Additional assessments of phylogenetic tree estimates. A way to

extend RF distance to rooted trees is to consider the bipartition rep-

resentation for labeled nodes (i.e. - ∪ {d}). So for the two subtrees

)1,)2 induced by deleting an edge 4 ∈ �, if d ∈ +1 then the edge

representation becomes 1′ (4) = {-1 ∪ {d}, -2} and vice versa if

d ∈ +2.

For assessing branch length estimation error, we used the branch

score developed by Kuhner and Felsenstein [4].

Pseudocode for NoHTS phylogenetic support estimation procedure.

Pseudocode for NoHTS is shown in Algorithm 1.

Software commands used. INDELible [2] version 1.03 was run

using the following settings to simulate model tree evolution

[TYPE] NUCLEOTIDE 1

[MODEL] mymodel

[submodel] JC

[TREE] mytree

[rooted] <# taxa>

[PARTITIONS] mypartition [mytree mymodel 1]

[EVOLVE] mypartition <# replicates> output

The trees are rescaled to have non-ultrametric branch lengths

and the following control settings to simulate sequence evolution:

[TYPE] NUCLEOTIDE 1

[SETTINGS]

[output] PHYLIP

[MODEL] background

[submodel] GTR <CT> <AT> <GT> <AC> <CG>

[statefreq] <T> <C> <A> <G>

[indelmodel] USER <path to indel distribution>

[indelrate] <indel rate>
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Algorithm 1 NoHTS procedure and support estimation algorithm.

1: procedure Resample(�, W )

2: - ← 〈〉

3: 8 ∼ * (1, . . . , |�|)

4: direction ∼ * (−1, 1)

5: for 9 ∈ {1 . . . |�|} do

6: - [ 9] ← �[8]

7: A ∼ * [0, 1]

8: if A < W ∨ 8 + direction ∉ {1, . . . , |�|} then

9: direction← −1 × direction

10: end if

11: 8 ← 8 + direction

12: end for

13: remove all indels from -

14: return -

15: end procedure

16:

17: procedure CalculateSupport(�, W , =, ) , MSA, MLE)

18: ∀4 ∈ ), n (4) ← 0

19: for 8 ∈ {1 . . . =} do

20: -8 ← Resample(�,W)

21: )8 ← MLE(MSA(-8 ))

22: for 4 ∈ {4 |4 ∈ ) ∧ 4 ∈ )8 } do

23: n (4) ← n (4) + 1
=

24: end for

25: end for

26: return n

27: end procedure

[MODEL] shift

[submodel] GTR <CT> <AT> <GT> <AC> <CG>

[statefreq] <T> <C> <A> <G>

[indelmodel] USER <path to indel distribution>

[indelrate] <indel rate>

[TREE] mytree <tree>

[treedepth] <specified tree height>

[BRANCHES] mymodel <tree with model placements defined>

[PARTITIONS] mypartition [mytree mymodel <sequence length>]

[EVOLVE] mypartition 1 sequence

The following command was used to perform MSA estimation

with MAFFT [3] version 7.475

mafft <input sequence> <output alignment>

MUSCLE [1] version 5.0.1428 was run with the following:

muscle -align <input sequence> -output <output alignment>
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