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Abstract—A high spatial and temporal resolution global soil
moisture product is essential for understanding hydrologic and
meteorological processes and enhancing agricultural applications.
Global navigation satellite system (GNSS) signals at L-band fre-
quencies that reflect off the land surface can convey high-resolution
land surface information, including surface soil moisture (SM).
Cyclone global navigation satellite system (CYGNSS) constellation
generates Delay-Doppler Maps (DDMs) that contain important
Earth surface information from GNSS reflection measurements.
DDMs are affected by soil moisture and other factors such as com-
plex topography, soil texture, and overlying vegetation. Including
entire DDM information can help reduce the uncertainty of SM
estimation under different conditions along with remotely sensed
geophysical data. This work extends our previously developed deep
learning (DL) framework to a global scale by utilizing processed
DDM measurements (analog power, effective scattering area, and
bistatic radar cross-section) and ancillary data (elevation, slope,
water percentage, soil properties, and vegetation water content).
The DL model is trained and evaluated using the Soil Moisture
Active Passive (SMAP) mission’s enhanced SM products at 9-km
resolution. This study comprehensively evaluates the DL model
against publicly available CY GNSS-based SM products at a quasi-
global scale. In addition to the typical comparison against in-situ
measurements, a robust triple collocation technique is used to
evaluate the DL-based SM product and other CYGNSS-derived
SM products.

Index Terms—Convolutional neural network (CNN), cyclone
global navigation satellite system (CYGNSS), deep learning (DL),
global navigation satellite system-reflectometry (GNSS-R), soil
moisture active passive (SMAP), soil moisture retrieval, triple
collocation (TC).

1. INTRODUCTION

OIL moisture (SM) is a key variable for understanding the
Earth’s near-surface land—atmosphere interactions among
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water, energy, and biogeochemical fluxes [1], [2], [3]. An accu-
rate high-resolution SM characterization is essential for various
applications, such as flood forecasting and agricultural water
and crop management [4], [5]. It has been demonstrated that
microwave remote sensing is a useful technique for estimating
SM with global spatial coverage and relatively high temporal
frequency after decades of exploration and development [6], [7].

Currently, several dedicated satellites have been launched
for obtaining SM information from the Earth’s surface. The
National Aeronautics and Space Administration’s (NASA) Soil
Moisture Active Passive (SMAP) [8], and the European Space
Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) [9]
are two satellite missions that operate with L-band passive
radiometers. SMOS, launched in 2009, provides surface SM
with a temporal interval of 2-3 days at a spatial resolution
of roughly 40 km. SMAP mission was launched in 2015, and
was initially designed to map SM at 3 km by integrating both
passive radiometer and radar signals. However, given the SMAP
radar instrument failure in July 2015, SMAP has reverted to
providing only radiometer-based SM retrievals at scales that
are comparable to SMOS SM resolution. Both satellites have
generated SM at the spatial resolution of about 25 to 40 km for
many years. Sentinel-1, an additional ES A mission, is a synthetic
aperture radar that operates in the C-band and can be used to
produce SM at 1-km spatial resolution with a revisit time of 612
days [10], [11].

In December 2016, NAS A launched the Cyclone Global Nav-
igation Satellite System (CYGNSS) mission, which consists of a
constellation of eight small satellites equipped with Global Nav-
igation Satellite System-Reflectometry (GNSS-R) receivers. In
addition to its primary mission of ocean wind monitoring and
hurricane tracking, CYGNSS can facilitate quasi-global SM
mapping with sampling frequencies ranging from sub-daily to
daily [12], [13]. In contrast to the active and passive microwave
platforms, the GNSS-R technique used by CYGNSS repurposes
the GNSS signals for microwave remote sensing at L-band,
representing a feasible approach for obtaining global SM at high
resolution with relatively low cost [14], [15], [16], [17], [18],
(191, [20], [21], [22], [23], [24].

Several studies have demonstrated different approaches for
SM estimation using CYGNSS. For instance, Eroglu et al. [18]
developed an artificial neural network (ANN) retrieval algorithm
with multiple CYGNSS features over limited international soil
moisture network (ISMN) sites as a proof-of-concept using a
tenfold validation method. Yang et al. [19] presented another
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ANN model that was subsequently used to derive long-term and
continuous SM maps over Mainland China.

Chew and Small [13] developed an SM product by calibrating
CYGNSS reflectivity observations to SM retrievals using mul-
tilinear regression. A machine learning (ML) model was devel-
oped in [22] to estimate global scale SM by including more SM
stations and incorporating an independent validation strategy.
The in-situ SM datasets provided by the 170 ISMN locations
over three years were used as the learning model reference.
This study evaluated the model performance against SMAP
observations at 9-km gridded resolution for different temporal
scales within the CYGNSS coverage. In a recent study [25],
an improved random forest (RF)-based retrieval model was
developed with a 72 km x 72 km delineation method using
SMAP SM product as the reference data. The study showed a
good correlation with SMAP SM and in-situ measurements.

Even though one of the key measurements from CYGNSS is
the Delay-Doppler Map (DDM) that results from the mapping of
the received power from the observed surface to delay-Doppler
space, the majority of previous ML-based studies utilized only
handcrafted features from DDMs such as effective reflectivity
obtained from peak reflected power, trailing edge slope (TES),
and leading edge slope (LES). These approaches utilize the
derivative features generated from DDMs as the main variables
for retrieving SM information. However, in addition to SM
content, topographical characteristics and overlying vegetation
canopy also contribute to entire DDM. DDM carries much more
information than just several derived features. Different pro-
cessed DDM observables are available such as Analog Power,
Effective Scattering Area, and Bistatic Radar Cross-section
(BRCS) in the CYGNSS data. A recent study [26] shows that
a single DDM (analog power) can be used to estimate soil
moisture. In a recent study [27], we have demonstrated that
different DDM derivatives, along with other ancillary data prod-
ucts, can be jointly used within a deep-learning (DL) framework
to estimate SM. DL is a powerful tool to learn enhanced features
directly from the images by using multiple convolutional or fully
connected layers. We have demonstrated that using multiple
DDM images jointly with static or time-varying ancillary data
within a DL framework can lead to better SM estimation perfor-
mance with higher correlations [27]. Our previous analysis was
conducted only over the Continental United States (CONUS)
and shown benefit of DL directly using DDM images. However,
a global analysis and detailed evaluation of the proposed method
are conducted in this study to observe more varied SM dynamics
across the world. In this work, the main goal is to extend the DL-
based SM retrieval method to the global scale to extract global
SM dynamics by generating dynamic features from DDMs
and also evaluate the proposed global retrieval algorithm with
other existing CYGNSS-based SM data products. We utilize
a DL framework that uses SMAP-enhanced SM data product
at 9-km spatial resolution as a label to build the relationship
between CYGNSS observations and the SM estimate. In order
to evaluate the performance of the DL approach, fivefold and
year-based cross-validation approaches are used. Moreover, a
robust and independent evaluation technique called triple col-
location (TC) [28], [29] is utilized for evaluating multiple SM
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products at the quasi-global scale. TC is a technique that has
been widely used in evaluating random errors in large-scale
remote sensing or model products [30]. Kim and Lakshmi [15]
presented that TC can be used as an independent evaluation
method specifically for CYGNSS-based SM retrieval. In this
study, an extended TC (ETC) technique is applied to characterize
the correlation between the product and the theoretical truth [31].
The contributions of this article are summarized as follows.

1) We extend our previously proposed DL framework with
multiple convolutional and fully connected neural network
layers into an improved quasi-global SM product. Multiple
DDM derivatives with ancillary geophysical data (i.e.,
slope, elevation, soil properties, vegetation water content,
and normalized difference vegetation index) relevant to
SM estimation are integrated into this framework.

2) Rigorous spatio-temporal analyses are presented to
demonstrate the capability and limitation of the proposed
DL approach.

3) We have published a new DL-based CYGNSS SM prod-
uct at https://ssm.hpc.msstate.edu/ and this study com-
pares it with other publicly available CYGNSS-based SM
products at a global scale. To compare different remote
sensing-based SM products, the ETC method is utilized
to find the correlation coefficient concerning the unknown
SM value.

The rest of this article is organized as follows. Section II
summarizes CYGNSS, SMAP, ISMN sites, and other ancillary
data needed for the DL framework. Details of the DL approach
and methodologies are described in Section III. Results are
presented in Section IV where CYGNSS SM retrievals are eval-
uated at selected regional, and quasi-global scales. The findings,
difficulties, and implications for further research are discussed
in Section V. Finally, Section VI concludes the article.

II. DATASET

In order to develop an efficient DL-based retrieval model
for global surface SM mapping with CYGNSS measurements,
various land surface products must be leveraged to characterize
the underlying surface conditions. Only DDM information with
DL-model will not be sufficient to extract the underlying surface
condition as SM dynamics change spatially and temporally.
So, different static and time-varying land surface data need
to be incorporated along with DDM images. The subsections
below discuss briefly the selected input data sources for the
retrieval process, including the SMAP SM data as labels and
other ancillary inputs that link the GNSS-R sensitivity to SM.
Different quality control strategies and approaches to integrate
multiresolution datasets are applied to ensure a consistent and
accurate SM estimation.

A. Data for DL Model

In this study, the CYGNSS Level-1 (L1) version 2.1 prod-
uct from March 18, 2017 to June 30, 2021 is used, which is
available at the NASA Physical Oceanography Distributed Ac-
tive Archive Center (PO.DAAC, https://podaac.jpl.nasa.gov/).
CYGNSS provides one of the important measurements in the
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L1 product, called DDM, which maps received power to a delay
and doppler space spread by the observed surface. DDMs are
processed for nonsurface related parameters by inverting the
CYGNSS forward-scattering model and obtaining the surface’s
effective scattering area, and BRCS images [32]. Similar to our
previous studies [27], [33], three types of processed DDMs (ana-
log power, effective scattering area, and BRCS) are considered
the primary inputs of the DL. model.

Additionally, peak reflectivity and incidence angle of specular
points are also added as ancillary inputs from the CYGNSS
L1 dataset. The peak reflectivity is computed using the peak
value of each DDM [13]. To facilitate the retrieval process,
it is essential to obtain a prior knowledge of land surface
conditions, especially topography, vegetation, and a fraction
of open water bodies in pixels. Here, multiple features are
derived from the ancillary datasets and used in the DL-based
model, including vegetation water content (VWC), normalized
difference vegetation index (NDVI), elevation, slope, water per-
centage, soil clay ratio, and soil silt ratio. The 16-day composite
NDVI from Moderate Resolution Imaging Spectroradiometer
is used to characterize vegetation conditions, and can be found
in NASA Land Processes Distributed Active Archive Center
(https://lpdaac.usgs.gov/products/myd13alv006/). This NDVI
data is spatially averaged to 3 km from its original 500-m
resolution. VWC is computed using the NDVI and Land Cover
Type (MCD12Q1) products using the same lookup table method
as the SMAP VWC product [34]. The surface elevation data is
collected using the GTOPO30 (1-km resolution) global digital
elevation model (https://doi.org/10.5066/F7DF6PQS). Soil clay
and silt ratios data are obtained from the Global Gridded Soil
Information (SoilGrids) [35]. A 30-m Global Surface Water
Dataset from the Joint Research Centre (GSW-JRC) [36] is
utilized to indicate the presence of a surface inland water body.
More details about the ancillary data for the retrieval can be
found in our previous study [27].

The DL-based SM retrieval methodology is trained and eval-
uated using the SMAP Enhanced L3 Radiometer Global Daily
9-km EASE-Grid SM product. SMAP collects brightness tem-
perature data with an L-band microwave radiometer to generate
SM estimates. In addition to the standard SMAP SM product
projected at 36-km resolution, a 9-km enhanced grid product
is also created using the Backus—Gilbert optimal interpolation
technique [37]. To obtain a daily SM map with sufficient SMAP
data samples, the descending (a.m.) and ascending (p.m.) over-
passes are combined. SM retrieval quality flags are included
in the SMAP product to indicate whether or not SM retrieval
is recommended and used for masking out SM retrievals with
low quality. The SMAP data is publicly available and can be
obtained from the National Snow and Ice Data Center (NSIDC)
at https://nsidc.org/data/SPL3SMP_E/versions/3.

B. SM Data for Independent Validation

A robust evaluation of a learning-based data product requires
using independent datasets for cross-validation because typical
learning-based models are often impacted by the bias that ex-
isted in the training process. The ISMN dataset is one of the

5631

key datasets used for ground-based independent evaluation of
the developed DL model in this study. ISMN is an integrated
platform providing in-situ SM data from various networks and
can be accessed from (http://ismn.geo.tuwien.ac.at).

Daily averaged SM data from 170 selected ISMN stations
worldwide within the CYGNSS coverage is used to evaluate the
DL model performance. ISMN sites above 2000-m altitude are
not considered for comparison as CYGNSS measurements for
high altitudes are unreliable for CYGNSS version 2.1. Detailed
information about ISMN was reported in [38] and [39].

Besides the ground-based sparse networks validation, mi-
crowave remote sensing SM data from different satellite sources
and land surface modeling products can provide additional in-
sights for understanding the global-scale SM retrieval accuracy.
Particularly, the C-band Advanced SCATterometer (ASCAT)
SM product [40] is used as an independent validation dataset
as compared to the passive microwave SMAP data. ASCAT
SM retrievals are generated based on the change detection
method developed by the Vienna University of Technology
(TU-Wien) [40]. The spatial resolution of this product is 25 km
with a grid spacing of 12.5 km and is resampled using the
nearest-neighboring approach onto the EASE-Grid 2.0 36-km
resolution. Daily averages from both a.m. and p.m. overpasses
are generated from January 2017 to December 2021. SM re-
trievals obtained over frozen soil conditions are filtered out for
quality control. In addition, the NOAH model-based SM data
from the Global Land Data Assimilation System (GLDAS) [41]
is also included for the independent analysis. For the GLDAS-2
NOAH v3.3 data product, the three hourly SM data is temporally
averaged to daily values and spatially regridded from 0.25° to
36 km using the nearest neighboring method. SM estimates from
the soil profile’s top layer (0—0.1 m) are extracted.

C. Quality Control Mechanisms

This study uses CYGNSS observations from March 2017 to
June 2021. Before performing SM retrieval, critical screening
for the quality of CYGNSS data in underlying land surface
conditions is required. There are several specific flags such
as S-band powered up, black-body DDM, DDM test pattern,
substantial spacecraft attitude error, poor confidence GPS EIRP
estimate are applied in the CYGNSS data [14], [42]. CYGNSS
observations above 600 m from the surface before Decem-
ber 2017 are masked out because of the altitude limitation of
CYGNSS L1 data during this specified period [22]. To avoid
noisy DDMs, observations with an incidence angle greater than
65° are excluded [17]. Standard CYGNSS flags are applied
to remove some problematic DDMs found in CYGNSS data.
Additionally, some DDM images provide no value for effective
scattering area. It generally happens when the specular point bin
zero-based Doppler column is less than 4 or greater than 6 [32].
These DDM images are also removed as part of data-quality
control before applying it to the DL-model. It is also important
to normalize the DDM images for numeric stability before
applying them to the DL framework. Normalization is performed
for all three types of DDMs by computing the mean and standard
deviation for all pixels and scaling these values to attain zero
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mean/unit variance. As part of SMAP quality checks, grid pixels
under frozen conditions with a land surface temperature less
than 273.15 K or with open water fraction greater than 10% are
excluded [43]. If the surface water within the CYGNSS region
is sufficiently large, SM retrieving near water bodies becomes
impracticable due to the highly strong coherency over water
surfaces [44]. A CYGNSS observation is removed if more than
2% of the 9 km grid is covered by permanent or seasonal water.
For each 3-km block within 9-km grid, the water percent is
calculated as the percentage of 30-m grids falling into the 3-km
box that have either permanent or seasonal water presence [36].

III. METHODS

Impacted by varying land surface conditions, such as veg-
etation, topography, and soil properties, the relationship be-
tween SM and the CYGNSS observables can be a complex
nonlinear function. Our main goal of this current study is to
build a DL model that can predict SM information from an
unknown relationship. The data-driven approach, specifically
the convolutional neural network (CNN) has been widely used
in computer vision applications and is shown to capture essential
features directly from images for the classification/regression
tasks [45], [46]. Applying CNN to CYGNSS DDMs for SM
retrieval is particularly attractive as it has the capability to
learn directly from the DDM itself. Some existing approaches
have been developed using derivative features calculated from
DDM to estimate SM using ANN [18], linear regression [20],
or RF [22]. Although these models produce promising results,
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Schematic framework of the DL-based SM retrieval model and validation process.

we hypothesize that a CNN-based model can extract additional
features that will further improve SM estimation, resulting in
a better quality CYGNSS-based SM product. The complex
information contained in the entire 2D DDM is useful in various
conditions, and the DL technique is the state-of-the-art approach
to retrieving features from DDMs. Our previous studies [27],
[33] has demonstrated that the DL technique has a better SM esti-
mation performance when trained and validated using the SMAP
SM data over CONUS. In this paper, we extend our previous
approach to the global scale within the CYGNSS coverage and
evaluate DL-based SM estimation via multiple-scale assessment
approaches, i.e., against in-situ measurements and other global
SM products. CNN is the primary DL framework, with primary
inputs from various types of CYGNSS-processed DDM images
and ancillary data. It is a supervised learning framework that
maps a set of input data to an SM value, which is the proposed
architecture’s final output. The datasets used to train and test the
developed model come from CYGNSS, SMAP, and ancillary
data sources over the CYGNSS coverage from March 2017
to June 2021. The overall DL framework with calibration and
validation strategies are illustrated in Fig. 1, and the following
subsections provide detailed methodology descriptions.

A. DL Framework

In our previous studies [27], [33], we demonstrated that the
DL could be used to estimate SM using CYGNSS DDMs and
ancillary data. The DL architecture comprises three major com-
ponents: 1) convolutional layers; 2) concatenation layers; and
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3) densely connected layers. A detailed explanation of the DL
model can be found in our previous study [27]. First, the three
types of processed DDMs (analog power, effective scattering
area, and BRCS) together with ancillary data pass through
several quality control mechanisms described in Section II-C.
The generic approach in a DL model could be to train a single
model that will predict SM at any given location for the whole
world. Since a single model predicts SM everywhere, memory
requirements are low—only 1 model is learned. However, the
model should be able to address the whole complexity and
variations over the world, and training a model with a huge size of
dataset is highly computationally complex. Another possibility
we proposed and tested in our previous paper [27] is to divide the
region into smaller size clusters and learn a different DL model
for each cluster using the data from that cluster region. In this
case, since variations within smaller regions are less, it is easier
for DL models to learn the DDM—SM relation but creating clus-
ters increases the number of models to be stored and each model
should be learned over a smaller dataset corresponding to the
cluster region. Hence, there is a tradeoff between SM prediction
performance, memory, and training requirements for DL. models
for different size regions which were analyzed in [27]. Fig. 1
shows schematic grid meshes on top of the CYGNSS coverage
with two different lengths of the box, i.e., 36 km and 72 km.
Hereafter, these two stratification methods are called 36-km and
72-km clusters. For the 72 km and 36-km stratification, we have
approximately 16 000 and 64 000 separate clusters, respectively.
72-km clusters have been determined to be the best in the tradeoff
analysis. We have shown the global analysis, and performance
evaluations depending on this cluster size in this study.

After clustering, the DIL-based model is trained with
CYGNSS and ancillary data as inputs and SMAP-enhanced
SM product as the reference. Particularly, each cluster has a
separate model, and each model is validated using different
cross-validation strategies, such as the fivefold cross-validation
and year-based cross-validation. SM predictions are generated
via the DL-trained model, which correlates the inputs with
the label SM data through nonlinear relations and learned pa-
rameters. A root-mean-square error (RMSE) loss is defined
as the loss between the predicted and labeled SM. The Root
Mean Squared Propagation (RMSprop) is used as the optimizer,
where the initial learning rate is set as 0.01. An early stopping
criterion is set to reduce the computational time, which means
if the model performance doesn’t improve on the validation
dataset within ten epochs, the system will stop training. Finally,
the predicted results are validated using different independent
validation methods.

B. Evaluation and Validation Methods

The K-fold approach is a popular and widely used validation
technique for assessing a model’s performance. This method
ensures the separation of training and test data and tests each
fold. Fivefold cross-validation is used over the dataset at 9-km
resolution from March 2017 to June 2021. The performance
of the DL model is also evaluated via the year-based cross-
validation approach, where a trained model from several years
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of data is tested on a completely different year’s data. In both
validation methods, the performance metrics are computed for
all available grids and the SMAP-recommended grids. In terms
of model evaluation, several metrics are utilized to assess a
model quantitatively. The most commonly used evaluation met-
rics for SM estimation are RMSE, unbiased RMSE (ubRMSE),
and correlation coefficient (R-value). Additionally, the root-
mean-square difference (RMSD) is also used to compute the
differences between DL-based CYGNSS and the SMAP SM
product as the label SMAP SM data also contain measurement
errors [47]. The term “RMSE” is commonly used for in-situ
evaluation because those measurements are regarded as ground
truth data for SM. In our case, RMSE and ubRMSE metrics are
used when comparing remote sensing products with in-situ SM
stations. For independent validation at the global scale, ETC is
utilized and detailed in the next Section III-C.

C. Triple Collocation (TC)

TC is widely used for evaluating large-scale remote sensing
products by incorporating a minimum of three mutually indepen-
dent measurement systems. Assuming each independent product
is linearly related to the “Truth” and measurement errors are or-
thogonal, classical TC can be used to estimate error variances of
three products by choosing one product as the reference. Besides,
an ETC is developed to estimate the correlation coefficient of
the measurement system with respect to the unknown target [31]
and is used in this work.

We begin with an affine error model [48], which is commonly
used in the literature on TC for relating data to a geophysical
variable.

Xi=X{+e =0+ Fit +i. (1)

In (1), X; (i € {1,2,3}) are three collocated measurements
from independent systems that are linearly related to the true
underlying value ¢ with additive random errors &;. Here, X,
X!, t and ¢; are all random variables. a; and [3; represent the
ordinary least squares (OLS) intercepts and slopes, respectively.
The random error variance [31] can be derived as

2

where o, represents the error standard deviation for three mea-
surements system and () shows the covariance matrix. To char-
acterize the relationship between product X and the theoretical
truth, an ETC-based correlation coefficient was used [31]. Here,
pe.x, is the correlation coefficient between ¢ and X;. The corre-
lation coefficients can be derived as

Q1213
11Q2a

pe.x = £ | sign(Q13Q23)
sign(Q12Q23)

P 3

913 923
Q33Q12
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where p; x, are corrected up to a sign ambiguity. In an actual
scenario, it is expected that the measurement systems will almost
always have a positive correlation to the unobserved truth.

The p; x, keeps important additional information that is not
included in o, in the original TC analysis. In this paper, the cor-
relations are used to compare different SM products generated
from CYGNSS via different approaches. The evaluation using
TC analysis for satellite-based SM data products is based on few
assumption: 1) SM estimations are linearly related to the “true”
SM value; 2) errors for each SM retrievals are uncorrelated with
true SM; and 3) errors within each selected triplet are uncorre-
lated with each other [49]. In this work, the active microwave SM
product from the Advanced SCATterometer (ASCAT) and the
numerical model-based Global Land Data Assimilation System
Version (GLDAS) NOAH SM products are included to complete
the triplets in TC analysis. The main purpose of TC analysis is
to compare the performance of different CYGNSS products.
Since the ASCAT and GLDAS products are fixed in the triplet,
the difference in representative depths can be neglected for this
purpose. The primary limitation for conducting TC analysis is
the relatively coarse spatial resolution of ASCAT and NOAH
datasets. Therefore, the analysis is mainly performed at 36 km
using collocated data from March 2017 to June 2021. However,
to enhance the TC analysis at a higher resolution, both ASCAT
and NOAH SSM products are resampled from their original spa-
tial resolution to 9 km using the nearest neighboring approach.

IV. RESULTS

In this section, the DL model’s performance is discussed based
on different cross-validation scenarios. Qualitative and quantita-
tive performances under different validation strategies of the DL
model are provided. The K-fold and year-based cross-validation
is used to evaluate global performance evaluation against the
SMAP SM within the CYGNSS coverage across the world.
Then, the DL model performance is also compared against
publicly available SM data products such as the University Cor-
poration for Atmospheric Research (UCAR) SM product [13],
and Mississippi State University Geosystems Research Institute
(MSU-GRI) SM product [25], both of which use SMAP as
reference for training. Besides these analyses, the DL predicted
resultis compared with the SM station (ISMN sites) and presents
the temporal variation of different SM products for different
stations. Temporal variations for several selected regions of
the world are also demonstrated to examine the region-wise
performance of different models. Land-cover information is
also included in this section to demonstrate the performance
of the DL approach for each land-cover type. Results based
on ETC are also shown here, which serve as an independent
technique for characterizing the product’s accuracy. Details of
each performance analysis approach are provided in the below
subsections.

A. Quasi-Global Performance Results

In this subsection, global SM predictions generated from
the DL-based approach are compared with SMAP. Previous
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studies [25], [27] presented clustering approaches for SM re-
trieval using different algorithms. Lei et al., 2022 [25] pre-
sented three different clusters such as 9-km, 72-km, and 288-km
where 72-km outperformed all other clusters. In our previous
work [27], we also demonstrated 36 km, 72 km, 144 km, and
global clusters, where 36 km and 72 km perform similarly. The
main difference between these two works is the algorithmic
difference. Based on these knowledge, two different cluster
cases are examined, i.e., 36-km and 72-km clusters. Both cluster
methods perform very similarly, with a significant difference in
computational complexity. The 36-km case has more clusters
that require more memory and time to train models. On the
other hand, 72-km clusters require fewer models to train, so
the computational complexity is less than the 36-km cluster-
ing method. So, the 72-km cluster is chosen as the main ap-
proach, and the rest of the results in this article are generated
based on the 72-km cluster. Other cluster sizes were analyzed
and found to perform poorly compared to 36-km and 72-km
clusters [27]. It is worth noting that a sample size limitation
of 300 samples is set for the 72-km cluster. Therefore, grids
with fewer than 300 samples are discarded from the training
process.

Fig. 2 demonstrates ubRMSD and correlation coefficient
maps generated using the 72-km cluster. The ubRMSD map
[Fig. 2(a)] is the error between daily averaged SMAP and
CYGNSS SM retrievals for each 9 km x 9 km grid. Regions
generally flagged as poor quality by SMAP are shown to have
relatively higher ubRMSD errors. On the other hand, most of the
remaining regions show a high agreement with SMAP observa-
tions with lower ubRMSD results. The correlation coefficient
map [Fig. 2(b)] shows high correlations in most of the world
except the Sahara and Amazon regions. Slight degradations are
found in regions with dense vegetation due to the masking effects
of dense vegetation and arid conditions due to lower dynamic
range.

B. Model Performance via Year-Based Cross-Validation

It is also necessary to assess the performance of the DL
method under a year-based cross-validation scenario. This more
challenging cross-validation will indicate how the developed
model can be generalized for future years. Table I shows the
statistics generated based on different validation years, which
means the model is first trained using data from several selected
years and then tested using left-over years. For example, for the
validation of 2021, the DL model is trained using data from
2017 to 2020 and the learned model is tested with the data of
year 2021. Similarly, if year 2019 is selected for prediction,
the model is trained using 2017, 2018, 2020, and 2021 years
data. The year-based cross-validations are evaluated for all
grids and SMAP-recommended grids seperately. For the 2021
validation case, ubRMSD is 0.0564 m*m—3 and the correlation
coefficient is 0.91 when considering all available grids. When
only taking into account SMAP recommended grids, ubRMSD
is 0.0403 m*m—3 and the correlation coefficient is 0.88. A higher
correlation coefficient is obtained for all grids than the SMAP-
recommended grids due to the higher number of data samples.
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(a) Unbiased root-mean-square difference (ubRMSD). and (b) correlation coefficient map between CYGNSS-based model prediction and SMAP retrievals

daily averaged for each 9 km x 9 km grid over available data from 2017 to 2021. (a) ubRMSD (9 km x 9 km). (b) Correlation coefficient maps.

TABLE 1
YEAR-BASED CROSS-VALIDATION RESULTS USING THE 72-KM CLUSTER APPROACH CONSIDERING ALL AVAILABLE GRIDS AND SMAP RECOMMENDED GRIDS

Training Validation 5 ; RMSD bias ubRMSD
years years Grid Selection m3m-3) | (m3m=3) | (m3m—2 RI[-]
2019, 2020, 201742018 All grids 0.0567 0.0051 0.0565 0.92
and 2021 SMAP-recommend grids 0.0414 0.0091 0.0404 0.90
2017, 2018, 2019 All grids 0.0559 0.0028 0.0558 0.92
2020, and 2021 SMAP-recommend grids 0.0396 0.0057 0.0392 0.90
2017, 2018, 2020 All grids 0.0602 -0.0027 0.0602 0.90
2019, and 2021 SMAP-recommend grids 0.0441 -0.0029 0.0440 0.87
2017, 2018, 2021 All grids 0.0566 -0.0041 0.0564 0.91
2019, and 2020 SMAP-recommend grids 0.0403 -0.0030 0.0403 0.88

TABLE II
OVERALL PERFORMANCE COMPARISON OF DIFFERENT SM PRODUCTS AGAINST SMAP SM PRODUCTS (FROM MARCH 2017 TO DECEMBER 2020)

Methods Grid Selection RMSD (m3 m_3) bias (m3m—3) ubRMSD (m*m—%) R[]
CYGNSS-DL All grids 0.0488 0.0035 0.0487 0.94
Product SMAP-recommend grids 0.0369 0.0056 0.0365 0.92
UCAR All grids 0.0648 0.0102 0.0640 0.89
Product SMAP-recommend grids 0.0457 0.0092 0.0446 0.88
MSU-GRI All grids 0.0538 -0.0128 0.0522 0.93
Product SMAP-recommend grids 0.0400 -0.0077 0.0392 0.90

Note: All products are resampled to 36 km for comparison.

It is observed that the correlation coefficient slightly decreases
from 2017 to 2021. A slight variation of ubRMSD over the years
is seen in both all grids and SMAP recommended gird cases. The
year-based cross-validation shows good potential when data is
trained from 2017 to 2020 and tested in 2021 as low errors
with high correlations are observed. It is important to note that
year-based cross-validation will be valid if the environmental
condition does not change significantly. If the environmental
condition is changed significantly in the future, then it will have
an impact on overall data dynamics for SMAP, CYGNSS, and
other ancillary data.

C. Performance Comparison Among SM Products

This section compares publicly available CY GNSS-based SM
data products with respect to SMAP SM data product. Two dif-
ferent publicly available CYGNSS-based SM data products [13],
[25] are considered that are trained using SMAP standard SM
(Table II). The overall performance shows that CYGNSS-DL
outperforms the existing approaches; UCAR [13] and MSU-
GRI [25] products. If all grids are considered, CYGNSS-DL
provides the lowest ubRMSD of 0.0487 m’m—3 and the high-
est correlation coefficient (0.94) when compared fo the other
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Temporal evaluation of the spatial correlation between different model-based SM prediction and SMAP retrievals (from March 2017 to December 2020).

CYGNSS-DL SM is presented as red dots, MSU-GRI V1.0B SM as green dots, and UCAR SM as blue dots.

two methods. For SMAP-recommended grids, the proposed
approach achieves ubRMSD of 0.0365 m*m~ and the correla-
tion coefficient of 0.92. Note that while the proposed approach
learn features directly from DDMs, both UCAR and MSU-GRI
products mainly use several specific features from DDMs as
the primary input of their retrieval approaches. For the SMAP
recommended grids, the UCAR product reaches an ubRMSD
of 0.0446 m*m~3 and a correlation coefficient of 0.88, and the
MSU-GRI product achieves 0.0392 m*m~? ubRMSD and 0.90
correlation coefficient. These results clearly show that improved
performance can be obtained when exploiting the full DDM for
SM retrieval.

Besides the overall performance statistics shown in Table II,
daily spatial correlations between different CYGNSS products
and SMAP are compared within the time frame from March
2017 to December 2020. Specifically, the daily correlation is
calculated as the correlation coefficient between CYGNSS and
SMAP SM maps on a particular day. Fig. 3 illustrates the spatial
correlations between the SMAP SM and the CYGNSS SM
products; the proposed CYGNSS-DL, MSU-GRI, and UCAR.
The CYGNSS-DL SM product provides consistently higher
correlations with the SMAP SM as compared to the other two
CYGNSS products. The average correlation for CYGNSS-DL
SM is more than 0.90 within the study time frame. Slightly
higher correlations are found during the warm seasons. On the
other hand, MSU-GRI provides slightly lower correlations than
the DL method. UCAR SM shows similar but slightly lower
correlations from 2017 to 2018 with an average correlation
greater than 0.85. However, the correlations quickly drop after
mid 2018. Similarly, all three products have degraded corre-
lations after 2018, while the proposed CYGNSS-DL sustains
comparably higher correlation levels.

D. Spatial and Temporal Analysis

In this subsection, SM temporal variations of three different
CYGNSS SM products and SMAP data are examined to conduct
the region-wise comparison for selected regions. Since different
SM products are generated using different methods under dif-
ferent assumptions, SM predictions can vary over different parts
of the world. In order to show the region-wise SM variation,

a 225-km x 225-km box is posted on several parts of the
globe, i.e., midwest USA, India, and the West Africa (Ghana
and Togo) regions. These regions are selected to be near the
locations presented in [22]. Spatial maps are shown for SMAP
and CYGNSS-DL products and daily global averaged SM values
are calculated for all SM products.

First, we consider a small region in the midwest USA, which
is marked as the black box in Fig. 4(a) and (b). The SM maps are
generated using the daily averaged data for four years (2017—
2020) time frame applying a fivefold 72-km cluster DL method.
Fig. 4(c) shows the temporal variations within this selected
region. SMAP SM shows strong SM dynamics (black line) and
all three CYGNSS SM products generally follow the patterns.
However, all three CYGNSS products provide a much smoother
dynamic range as compared to SMAP. Overall, CYGNSS-DL
(red-dotted line) has a slightly greater temporal variation than
MSU-GRI and UCAR products. The UCAR SM (marked with
a blue-dotted line) product generally overestimates during the
dry-down period. UCAR product tries to capture the dynamic
range rather than providing a mean value for the time frame.
Specifically, in the dry-down period, it can capture the trend with
SMAP SM data. Besides, MSU-GRI (green-dotted line) shows
low SM variation with respect to the SMAP SM, and it shows
an approximately averaged SM of 0.3 m*m—. The MSU-GRI
product shows very low SM variation during the growing season,
whereas all other SM products provide greater SM variations.

Second, the western part of India is considered, which dom-
inantly features croplands in an equatorial winter-dry climate
zone. A high spatial correlation can be found with the 9-km
SMAP and CYGNSS SM maps in Fig. 5(a) and (b). CYGNSS-
DL tends to overestimate SM in some small areas when com-
pared to SMAP. However, this area is also flagged by SMAP’s
Retrieval Quality Flag (RQF) due to high uncertainty for SM
retrieval. SM temporal variations of the selected sub-region
from different products are presented in Fig. 5(c). High SM
dynamic ranges are seen, given the seasonal standing surface
water and dense vegetation during the growing seasons in this
region. Abrupt changes in SM during monsoon seasons are clear
from the temporal trend plot. Aside from these monsoon events
typically occurring from June to September, a high correlation
between CYGNSS-DL and SMAP SM retrievals can be seen.
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The MSU-GRI follows the pattern nicely during the dry seasons
but fails to capture the trend and underestimates SM during the
monsoon seasons. The opposite scenario is found for the UCAR
SM product. It shows good estimates with respect to the SMAP
SM during the growing seasons but overestimates SM during the
dry-down periods. The temporal result shows that CYGNSS-DL
is able to follow dry-down and rainy patterns closely.

The last test region from West Africa is depicted in Fig. 6,
representing a transitional area from barren to grass and savanna
land cover types in arid and equatorial climate zones. While both
SMAP and CYGNSS estimates follow a similar spatial pattern,
CYGNSS SM tends to underestimate SM over some regions
compared to SMAP. From the time-series analysis shown in
Fig. 6(c), good correlations can be seen between SMAP and
CYGNSS-DL estimates, and CYGNSS-DL follows the SMAP
SM trends closely. CYGNSS-DL slightly overestimates SM
during the dry-down period but captures the dynamic range
during the rainy seasons. Similarly, patterns are found for the
other two CYGNSS SM products over this region. UCAR SM
shows relatively higher SM values than SMAP, especially during
the beginning of the year, but it offers a good correlation during
the rainy seasons. On the other hand, the MSU-GRI product
consistently underestimates SM as compared to other products.

E. Land Cover Analysis

Additionally, the capabilities of the different SM prediction
models are compared considering different land cover condi-
tions. In total, eight primary land cover types are examined in this
study. Two commonly used performance metrics (ubRMSD and

correlation coefficient) are considered, and all the comparison
results are made against SMAP SM. Fig. 7 shows the number
of samples for each land cover type and their corresponding
ubRMSDs and correlation coefficients for different CYGNSS
SM products. The dominant land covers are Forest, Shrub, Sa-
vanna, Grass, Crop, and Barren. Since grids with significant sur-
face water presence are excluded during the data quality control
process, only very few samples are left for wetland land cover
(approximately 55 000 samples). As clearly shown in Fig. 7,
CYGNSS-DL performs better than the other method in terms of
ubRMSD and correlation coefficient. On average, CYGNSS-DL
provides minimal errors with consistently higher correlation
coefficients. Overall, CYGNSS-DL has an average correlation
greater than 0.80 for all land cover types. MSU-GRI SM product
performs similarly to the DL method in terms of correlation but
has higher ubRMSD errors. UCAR SM product shows higher
ubRMSDs and smaller correlation coefficients than the other two
approaches. Note that regions with open barren and shrub land
covers are generally associated with relatively dry soil, therefore
ubRMSD values are relatively small and correlations tend to be
comparatively low. For the other land cover types, i.e., forest
woody, savanna, grass, and croplands, relatively higher errors
are found than the other two land cover types. Nevertheless,
the correlations with regard to SMAP SM are moderately high.
Furthermore, the sampling sizes for the forest, shrub, savanna,
and grassland cover types are relatively large. A larger sample
size typically helps a DL-based model to capture the empirical
relationship between input features and label data. The relatively
small sample sizes could be an important reason for the higher
error levels over woody, wetland, and urban land cover types.
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F. Performance Evaluation Against ISMN

To further assess the performance of the CYGNSS-DL
method, SM estimates derived through the DL method along
with other SM products are compared against ISMN data. Three
ISMN sites are selected to demonstrate the temporal variations
of different SM products. Three sites are selected one from each
of the three different ISMN network (i.e., USCRN, SCAN, and
COSMOS) which have a good number of samples for all soil
moisture products throughout the years. Some sites are selected
that are commonly used in previous studies [22], [25]. Here,
SM observations recorded at these sites from 2017 to 2020 are
shown in Fig. 8.

The first representative site is Batesville-8-WNW which be-
longs to the USCRN network. This site is located in the mideast
of the United States. SM temporal variation at this site is
presented in Fig. 8(a). As shown in the figure, SM has a large
dynamic range with the highest SM at around 0.4 m*m~— and
the lowest SM at around 0.1 m®*m—3. SMAP (black dotted line)
provides higher SM values than ISMN which indicates high bias
error. However, all three CYGNSS SM products have low bias
error comparable to ISMN and follow very closely to SMAP
SM. The comparison between CYGNSS-DL (red dot line) with
ISMN gives an ubRMSE of 0.0607 m3m 3 and a correlation of
0.56. MSU-GRI shows relatively small SM dynamics. UCAR
SM product shows a relatively good SM range as compared to
in-situ SM.

The second representative site is Knoxcity which belongs to
the SCAN SM network. This site is located in the midwest of the
United States. The time-series analysis for this site is presented
in Fig. 8(b). SM variation at this site is slightly smaller than the
first site. CYGNSS-DL provides an ubRMSE of 0.0385 m*m
with a correlation of 0.81. UCAR SM performs almost similarly
to the DL approach at this site. On the other hand, MSU-GRI
shows a good correlation with SMAP but fails to capture the SM
trend when the SM value is high.

The final example site is SMAP-OK which belongs to the
COSMOS SM network. The SM time series from this site are
presented in Fig. 8(c). This site is located in a relatively arid

region with SM ranging from 0.05 to 0.2 m®m—>. All CYGNSS
and SMAP SM products show much higher SM values than
the ground-based measurements from ISMN. CYGNSS-DL
provides an ubRMSE of 0.0354 m*>m~ with a correlation of
0.72 when compared with ISMN SM.

Table III shows the statistic calculated between different SM
products with respect to ISMN data at different networks. Some
of the sites are removed from the comparison as there are a
smaller number of samples. A total of 129 sites are considered for
this comparison. Most of the sites belong to the SCAN network
and the averaged metrics across sites are shown in this table.
CYGNSS-DL method and UCAR provide similar results across
the 70 sites in the SCAN network. In general, SMAP provides a
better correlation than all CYGNSS products. CYGNSS-DL has
very close ubRMSE values with SMAP but smaller correlation
coefficients. When considering all sites, the average ubRMSE
values are 0.050, 0.053, 0.058 and 0.053 for SMAP, CYGNSS-
DL, MSU-GRI, and UCAR, respectively. The averaged correla-
tion coefficients are 0.68, 0.51, 0.40, and 0.48, respectively.

G. Triple Collocation (TC) Analysis

In this section, the TC technique is applied to evaluate dif-
ferent SM products by estimating the correlations (7Cr) with
regard to the theoretical true values. Although the TC approach
can be used to characterize the accuracy of SM products at
the global scale, it requires at least three independent data
sources and a sufficient number of collocated samples for robust
estimation. In this analysis, ASCAT and GLDAS products are
chosen as two fixed datasets and the third SM product varies
from SMAP to CYGNSS products. It is important to note that
seasonal climatologies in all SM time series are removed before
applying the TC analysis to eliminate the impact of seasonal
systematic errors. The analysis is conducted at both 9 km and
36 km. ASCAT and GLDAS NOAH products are resampled
from their native spatial resolution to 9 km as described in
Section III-C. For each grid, a minimum of 100 collocated
samples are required for conducting TC analysis. The first triplet
consists of SMAP, ASCAT, and GLDAS NOAH. Similarly,
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Fig. 8. Time series examples of daily averaged SMAP, CYGNSS-DL, MSU-GRI, and UCAR SM predictions against selected ISMN sites with a moderate

performance. (a) Site name: Batesville, ubRMSE: 0.060729, R: 0.562473 (CYGNSS vs ISMN). (b) Site name: KnoxCity, ubRMSE: 0.038556. R: 0.811475
(CYGNSS vs ISMN). (c) Site name: SMAP-OK, ubRMSE: 0.035475, R: 0.720991 (CYGNSS vs ISMN).

TABLE Il
STATISTICS BETWEEN GROUND-BASED SM MEASUREMENTS WITH DIFFERENT SM PRODUCTS FOR DIFFERENT NETWORKS WITH CORRESPONDING EXAMINED
ISMN SITES
Network NQ. of ISMN vs SMAP ISMN vs CYGNSS-DL ISMN vs MSU-GRI ISMN vs UCAR
sites RMSE  ubRMSE R RMSD  ubRMSE R RMSE  ubRMSD R RMSE ubRMSE R
SCAN 70 0.100 0.053 0.66 | 0.108 0.056 0.52 0.094 0.060 040 | 0.110 0.056 0.51
USCRN 32 0.097 0.048 0.70 | 0.102 0.052 0.54 0.085 0.060 0.41 0.112 0.056 0.49
COSMOS 12 0.096 0.045 0.70 0.100 0.048 0.049 0.070 0.038 0.40 0.129 0.044 0.45
ALL 129 0.097 0.050 0.68 | 0.104 0.053 0.51 0.091 0.058 040 | 0.109 0.053 0.48

CYGNSS-DL, UCAR, and MSU-GRI performances are also
evaluated by keeping ASCAT and GLDAS as fixed members in
the TC triplet. The global mean and median values of all valid
grids are calculated and shown in Table IV. In the case of 9-km
grid, SMAP offers a global mean of TCr is 0.7810, whereas
CYGNSS-DL, MSU-GRI and UCAR provide 0.6174, 0.4957,

Note: Metrics are calculated separately for each site with mean values shown for each network or across all sites.

and 0.5356, respectively. On the other hand, the global mean TCr
for a 36-km grid of SMAP is 0.7960 and the global averaged TCr
of three CYGNSS products are 0.5979, 0.4928, and 0.4682 for
CYGNSS-DL, MSU-GRI, and UCAR, respectively.

Fig. 9 demonstrates the 36-km grid-wise spatial distribution
of TCr for different SM products. Fig. 9(a) shows that SMAP
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TABLE IV
TC ANALYSIS RESULTS FOR DIFFERENT SM PRODUCTS WITH RESPECT TO THE
UNKNOWN TRUE SM VALUE

9-km 36-km
Products Mean Median Mean Median
correlation | correlation | correlation | correlation
SMAP 0.7810 0.8071 0.7960 0.8255
CYGNSS-DL 0.6174 0.6297 0.5979 0.6191
MSU-GRI 0.4957 0.4898 0.4928 0.4941
UCAR 0.5356 0.5323 0.4682 0.4604

All data are spatially and temporally collocated for this analysis. The result shows the
mean and median results for two different grid cases (9 km and 36 km).

generally has high TCr over the majority of the globe, indicating
superior sensitivity to SM compared to any other CYGNSS SM
products. This is due most likely to intrinsic differences between
SMAP and CYGNSS. The quasi-global medians for CYGNSS
products are around 0.5 as listed in Table IV. Moreover, CYGSS-
DL [Fig. 9(b)] has demonstrated higher correlations than the
other two CYGNSS SM products [Fig. 9(c) and (d) |, suggesting
its improved performance in characterizing the temporal varia-
tions of soil moisture.

V. DISCUSSION

The space-borne GNSS-R observations have become popular
given their wide variety of applications [50], [51], [52].

This work extends our previously developed DL framework
to estimate global SM retrievals using DDMs. In previous
research [20], the whole DDM frame was investigated to ex-
ploit a better understanding of CYGNSS data for SM retrieval.
Different statistical moments of surface reflectivity were em-
ployed, including the maximum, mean, variance, skewness, and
kurtosis. By leveraging the power of a DL model with better
approximation functions and the ability to find complex nonlin-
earity, the entire DDMs can be easily investigated and extract
more important features that contribute to the SM estimation.
A reliable, accurately labeled, and well-organized dataset is
also required to use a DL algorithm for proper SM estimation.
Our study shows that enhanced features can be learned directly

5641
N
N
(
"'s \
| i r : N
5 | §8 S
s SRS ” o) 3
1407 W 100" W oW W w'E K 10 E 40 E 150 E
N
mw N
Ws
| £
A ! ¥ |
308 14 i
(%5 ol b3
40 W " w o w 0w wE o E 100 E 0 E 180 E
I
(d)
S I B |
L 1

L 0.2 4 L] g 1

TC-based correlation coefficient for different SM data products against ASCAT and GLDAS at 36-km resolution. (a) SMAP TC,. (b) CYGNSS-DL TC,.

from the full DDMs leading to more accurate SM estimation
performance compared to utilizing several engineered derivative
DDM features.

Ancillary data plays an important role in SM retrieval al-
gorithm. Several static and time-varying geophysical data are
utilized, which can provide land dynamics for SM retrieval. But
reducing the dependency on ancillary data is also important. In
some previous studies, more ancillary features are used than
the CYGNSS-derived features in the retrieval algorithms, so
the algorithms become more dependent on auxiliary data. In
our developed DL model, we used 128 features [27] that are
derived directly from DDMs. In our case, the model becomes
more tends to depend more on CYGNSS data for SM retrieval. It
may still need some improvement by reducing the dependencies
of ancillary data.

Different cross-validation strategies are used to evaluate the
model’s capability to predict SM accurately. A comprehensive
comparison among several publicly available CYGNSS-based
SM data products is provided in this work. Both spatial and
temporal comparisons demonstrate a high correlation between
CYGNSS products with SMAP SM data. Additionally, the ro-
bust TC results also suggest that CYGNSS-DL performs higher
correlation with the underlying true SM compared to other
CYGNSS-based SM products.

The proposed approach utilizes SMAP as the label SM for
learning the DL model parameters. While SMAP is seen to
perform best across different land covers and climate con-
ditions in TC analysis, considering its own intrinsic instru-
mental and retrieval errors that could propagate to CYGNSS
SM retrival process [30], a high-quality reference SM data
is seen as highly important for all DL-based SM retrieval
approaches.

The in-situ analysis also demonstrates CY GNSS-DL can cap-
ture temporal dynamics closely producing the lowest ubRMSE
or highest correlations among CYGNSS based SM products.
Regarding the temporal variation and land cover analysis, supe-
rior performance are observed in CYGNSS-DL across different
land cover types with specifically low ubRMSDs and high
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correlations for savanna, croplands, and grassland compared to
other land covers.

Training DL. models over a huge amount of data are generally
computationally expensive, but when the model is trained esti-
mating SM is only a forward pass of the model which is generally
not computationally significant. We observed that rather than
learning a single model for the whole world, the introduced
clustering approach; learning a DL model for each cluster; both
increased the performance and reduced the training complexity
of the DL approach. However, such clustering artifacts can be
seen in CYGNSS SM maps [Figs. 4(b), 5(b), and 6(b)], as
changes on the borders of each 72-km cluster. A more dynamic
DL network with smoother transitions can be used for varied
soil moisture conditions in future work. It is essential to note
that the true spatial resolution of CYGNSS data is subject to in-
terpretation. The actual spatial resolutions depend on the surface
dynamics because the instrument DDM can spread unevenly for
a given area. The DL model trained with 9-km enhanced SMAP
data products, so we refer to 9 km as our posted resolution. But,
it does not necessarily have the CYGNSS native resolution as it
might vary from a few kilometers depending upon the degree of
coherence. Bringing DDMs into retrieval algorithms helps better
replicate SMAP SM product as DDM can provide additional
features that technically learn from the degree of signal spread.
Full DDM images seem to help better than the handcrafted
features (e.g., peak reflectivity) for SM estimation as they can
cover SMAP’s original resolution (36 km). However, it requires
further investigation to prove this claim.

V1. CONCLUSION

This article evaluates the DL-based framework for quasi-
global SM estimation, which uses CYGNSS DDMs and ancil-
lary geophysical data. One of the most widely-used DL methods
(i.e., CNN) is utilized in this work to learn features from DDMs.
DL models are trained and validated based within regional
clusters. In particular, the 72-km clusters are chosen to optimize
both estimation performance and computational complexity.
Separate models are trained for each cluster, and the models are
validated using fivefold cross-validation and a year-based cross-
validation method with data from 2017 to 2021. An ubRMSD
0f 0.0365 m*m > and an R-value of 0.92 is achieved for fivefold
cross-validation over all data on SMAP recommended grids.
The year-wise cross-validation shows an overall performance
of an ubRMSD of 0.0403 m*m~ and an R-value of 0.88 when
models are learned using data from 2017-2020 and tested in
2021. Anessential evaluation of the DL method is to compare the
predictions with other publicly available CYGNSS-based SM
products. Two additional CYGNSS SM products are included
for comparison, i.e., MSU-GRI and UCAR, that are also trained
with SMAP SM data. The DL method outperforms the publicly
available SM products by providing smaller ubRMSD values
and higher correlation coefficients. Moreover, CYGNSS-DL SM
estimates are compared with ISMN SM data. Results show that
CYGNSS-DL performs similarly to SMAP across the ISMN
sites, suggesting that the DL. model can be generalized in space
and time with promising confidence. An independent global
evaluation is conducted via the TC approach. Results show that
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good improvements can be obtained from CYGNSS-DL when
compared with MSU-GRI and UCAR products. In conclusion,
the DL algorithm shows clear advantages for global-scale SM
retrieval using the entire DDM information.
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