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Abstract: Hyperspectral sensors acquire spectral responses from objects with a large number of
narrow spectral bands. The large volume of data may be costly in terms of storage and computational
requirements. In addition, hyperspectral data are often information-wise redundant. Band selection
intends to overcome these limitations by selecting a small subset of spectral bands that provide more
information or better performance for particular tasks. However, existing band selection techniques
do not directly maximize the task-specific performance, but rather utilize hand-crafted metrics as a
proxy to the final goal of performance improvement. In this paper, we propose a deep learning (DL)
architecture composed of a constrained measurement learning network for band selection, followed
by a classification network. The proposed joint DL architecture is trained in a data-driven manner to
optimize the classification loss along band selection. In this way, the proposed network directly learns
to select bands that enhance the classification performance. Our evaluation results with Indian Pines
(IP) and the University of Pavia (UP) datasets show that the proposed constrained measurement
learning-based band selection approach provides higher classification accuracy compared to the
state-of-the-art supervised band selection methods for the same number of bands selected. The
proposed method shows 89.08% and 97.78% overall accuracy scores for IP and UP respectively, being
1.34% and 2.19% higher than the second-best method.

Keywords: hyperspectral imaging; band selection; hyperspectral image classification; deep learning;
convolutional neural networks; measurement learning

1. Introduction

In many remote sensing applications, a hyperspectral image (HSI) provides significant
and important spectral information on a given scene by representing the spectral reflectance
as three-dimensional image tensors, where each pixel has a high spectral resolution with
hundreds of narrow bands [1-3]. Despite providing a rich and differentiable description of
remote objects, the high number of bands in an HSI makes the data volume very large for
storage and computation. HSIs also inherit the ‘curse of dimensionality’ in classification for
a low number of training samples. In addition, the high correlation among the adjacent HSI
bands causes information redundancy. For overcoming these limitations, hyperspectral
band selection (HBS) plays an essential role.

In HBS, the main goal is to select a subset of original bands to capture the most relevant
information, either in general or for a specific task, by discarding the redundant bands.
In contrast to the dimension reduction [4] and feature extraction methods [5], where all
data are acquired first and then a small set of informative combined features are computed,
the goal of HBS is to preserve the useful information in the original spectral channels by
passing only a small number of selected bands. Particularly for the classification task, the
objective of the proposed model, final accuracy depends heavily on selected bands [6,7].
Over the years, various HBS methods have been presented in the literature. A detailed
review of these methods can be found in [7]. Selecting a subset of bands that will lead to the
maximum classification accuracy is basically a combinatorial problem. Instead of directly
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tackling this problem, a typical solution is to define a proxy criterion for classification
accuracy to rank or search bands and select the top-ranked bands. Spectral moments,
mutual coherence, entropy, and information divergence are several of the criteria utilized to
sort the bands for ranking-based approaches [8-11]. A group of techniques adopts various
distance metrics, such as Euclidean, Bhattacharyya, spectral angle, etc., and searches for a
subset that minimizes the relevant distances [12-15]. Clustering bands into several groups
and selects representative bands from each cluster [16-18] or utilizes sparsity-based priors
[19-21], and either of these schemes or a combination of these schemes [22] have also
been used for HBS. In the majority of the existing HBS literature, various types of applied
criteria are only related to the final classification task, and optimizing these metrics can
only provide a suboptimal classification performance.

In this paper, we propose a learning-based data-driven deep learning (DL) architecture
for joint band selection and classification, where the network architecture minimizes the
entropy loss for enhanced classification accuracy and learns a constrained measurement
mask to select the optimal bands jointly. The band channels to be selected are learned from
the utilized dataset during joint training with the classification network. The novelty of the
approach is to implement a constrained measurement network for learning a binary mask
that implements the band selection process simultaneously with a classification network.
For the learning-based optimization of HBS, we utilize a probability mask to generate
an initial proxy HSI dataset with only selected bands that are fed into the deep neural
network-based classification part. The classification model is a deep convolutional neural
network (CNN) with six hidden convolutional layers and two fully connected layers, which
generates the final classification score of the input HSI data; however, any classification
network that takes a similar size input can be used with the proposed band selection
method. From the classification loss in the pipeline, with the help of back-propagation, we
jointly learn the binary mask that satisfies the constraint for a given number of bands and
the parameters of the classification network, implementing the final task of classification
from the selected bands. The proposed architecture is tested over publicly available datasets
and compared with the state-of-the-art approaches in HBS [11,16,23-27]. Our experimental
results show higher classification accuracy than the compared HBS techniques for the same
number of selected bands.

The main contributions of this work are as follows:

¢  Weintroduce a constrained measurement learning network that learns a binary mask
for band selection.

¢ The measurement learning network and the classification network are jointly learned
to minimize the classification loss, leading to optimally selected bands directly for the
classification task.

e The number of selected bands is an additional constraint for the measurement learning
network, and the proposed architecture can learn binary masks for any desired number
of bands.

*  The proposed architecture is flexible enough to adapt a new classification network that
takes selected bands as its input, meaning that any new back-propagation adaptable
classification network that performs better compared to our proposed classification
model can replace the classification part of the proposed architecture, leading to
further improvements in the performance.

The rest of the paper is organized as follows. Section 2 presents a revision of the
background. Section 3 presents the theoretical explanation and the implementation details
of the proposed model for learning-based joint HBS and classification. Section 4 explains
the utilized datasets in detail. Section 5 shows the experimental settings and results. Section
6 provides a thorough discussion based on the study and the evaluations, along with a
discussion of future work. A concluding remark is drawn in Section 7.

1.1. Abbreviations

The commonly used abbreviations in the paper are listed here.
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HSI: Hyperspectral Image

HBS: Hyperspectral Band Selection
DL: Deep Learning

CNN: Convolutional Neural Network
DNN: Deep Neural Network

SVM: Support Vector Machine

MI: Mutual Information

IP: Indian Pines Dataset

UP: University of Pavia Dataset

OCA: Overall Classification Accuracy
ACA: Average Classification Accuracy
KC: Kappa Coefficient

The abbreviations used for the methodologies appearing in the paper are listed below.

MVPCA: Maximum Variance Principal Component Ananlysis [11]

FDPC: Fast Density Peak-based Clustering [23]

WaluDI: Ward’s Linkage sSrategy Using Divergence [16]

ISSC: Improved Sparse Subspace Clustering [21]

S-AEIS: Segmented Autoencoding Band Selection [25]

MMCA: Minimum Misclassification Canonical Analysis [11]

MEAC: Minimum Estimation Abundance Covariance [28]

CM-CNN: Contribution Map-based Convolutional Neural Network [26]

BHCNN: Bandwise Independent Hard Thresholding Convolutional Neural network [27]
MLBS: Measurement Learning-Based Band Selection (the proposed method)

2. Background and Related Work

HBS techniques can be supervised or unsupervised and should be selected based
on the availability of labeled samples when gauging a predefined searching criterion.
On the other hand, according to the searching strategy, HBS can use sequential forward
search, sequential backward search, or evolutionary methods. A detailed review of HBS
approaches can be found in [7]. Here, we present existing HBS approaches in two main
categories: supervised and unsupervised. We also summarize deep neural network-based
measurement learning techniques in the literature.

2.1. Unsupervised Hyperspectral Band Selection

Unsupervised hyperspectral band selection methods learn a band selection pattern
without outside direction, either by utilizing structural information from the electromag-
netic spectrum or by statistical approaches. The unsupervised approaches are usually
expected to perform worse on data-specific tasks on average compared to the supervised
approaches due to their data-incognizant nature. Another issue is the relevancy of the
information basis with respect to the application; the selected information criterion may
not be related to the task, and thus, the selected bands may not perform better than the
all-bands case. On the other hand, the band selection process does not require a lengthy
training process and instead can be applied directly to the utilized dataset. Also, unsuper-
vised methods do not require ground-truth labels in order to work; therefore, they can be
applied to a non-labeled dataset.

The first notable application of HBS without using class information is Maximum
Variance PCA (MVPCA) [11], which ranks and selects the bands with higher loading factors.
The Fast Density Peak-Based Clustering (FDPC) [23] method finds the cluster centers as the
distance between all pairwise bands to find the independent density peaks that correspond
to the selected bands. The unsupervised methods are based on clustering partition bands to
a set of clusters where the bands from each cluster are selected from the similarity measures.
For example, WaluDI [16] used Ward’s linkage for maximizing and minimizing inter and
intra-cluster variances, respectively, to find the hierarchical clusters to represent the optimal



Remote Sens. 2023, 15, 4460

40f19

set of bands that are selected from similarity measures like mutual information (MI) and
Kullback-Leibler divergence.

The similarity measures can be derived from the mean of the data [17] using a kernel
approach [29], spectral partitioning [18], or affinity propagation [30] to form the clusters.
Unsupervised approaches also select representative bands that can best represent the
rest of the bands under a given constraint on self-representation. These methods range
from formulating the representation problem [19,20] to sparse regression [31] or sparse
matrix non-negative factorization [21]. Improved Sparse Subspace Clustering (ISSC) [21]
finds the bands in an unsupervised manner based on the notion that hyperspectral data
live on a small number of low-dimensional subspaces, and representative vectors from
these subspaces provide the desired bands. Overall, these unsupervised methods give the
leverage of satisfying classification accuracy without the need for a class label. DL-based
approaches have also started to be used in unsupervised HBS. For example, [25] utilizes
an autoencoder, where the feature maps in the learned autoencoding representations
are segmented to find the most significant bands without class labels. The results show
that the segmented autoencoding band selection (S-AEBS) produces better classification
performance than the non-segmented one (AEBS) and provides high classification accuracy
among unsupervised HBS approaches.

2.2. Supervised Hyperspectral Band Selection

A supervised HBS method utilizes existing known labels on a training dataset to adopt
a model, criterion or score that is associated with classification performance. This approach
allows the obscure features of the dataset to be employed; for this reason, the selected bands
with a supervised method usually provide higher accuracy levels for the task compared to
bands selected by an unsupervised method. However, one should also be careful about the
limitation of supervised methods, such as the dependence of an annotated dataset and the
overshooting problem that occurs when the training dataset is inadequate for representing
general features.

Supervised HBS techniques can rank bands by a selection score and select the top
bands. The Minimum Misclassification Canonical Analysis method (MMCA) [11] sorts
bands based on Fisher’s discriminant function to reduce the misclassification error. The
main advantage of these methods is that they are computationally efficient. But, they are
suboptimal since they do not optimize the final classification directly. In order to find better
sets of bands, the methods in [15,28] utilize an optimization criterion with the aid of prior
information on the class spectral signature. In [15], the concept of the band add-on (BAO)
algorithm was introduced to iteratively select bands that increase the angular separation
between two classes of spectra based on the average distance and minimum distance
methods. In [28], the Minimum Estimation Abundance Covariance (MEAC) algorithm
was proposed to use the prior information of the class spectral signatures for selecting
dissimilar bands incrementally via minimizing the trace of the inverse of the covariance
matrix of the selected bands. In addition, supervised methods based on particle swarm
optimization [32-34] and recursive elimination [35] update the searching strategy with
improved optimization to find the best subset. The idea of linear representation is also used
for HBS. With labeled samples, a sparse linear regression method was developed in [31],
and discriminative bands were selected by ranking their contributions in the representation.
Some supervised HBS techniques [36-38] include a classification step with a classifier, such
as Support Vector Machine (SVM).

DL models have recently started to be used in hyperspectral image problems [39]. DL-
based band selection approaches typically use a predefined implementation like embedded
learning or classification to select the optimal bands. One notable approach uses a pre-
trained CNN [40] to extract deep features as priors to an AdaBoost SVM classifier to
select the most predominant bands. The work in [41] used a pre-trained CNN model
where the band selection is carried out based on partitioning the subspace of distance
density. HBS based on attention mappings is used in [42], where DL models produce
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more sophisticated feature maps for classification with the most informative sets of bands
by optimizing the deep CNNSs. In [26], contribution maps of each class were produced
to record the discriminative band locations, which are progressively added to CNNs to
select more distinguished bands. Recently, the work in [27] introduced the concept of
band-independent convolution and hard thresholding (BHCNN) to select the bands for the
classification task. BHCNN applies bandwise 1 x 1 convolution and the hard thresholding
of weights based on the absolute values of the kernels to select and remove the bands before
feeding them into the classification network. This method utilizes the straight-through
estimator (STE) to approximate the gradient, and it optimizes the classification network
that consists of 3D dilated convolutions to enable a scalable coarse-to-fine loss (Table 1).

Table 1. Compared state-of-the-art band selection methods, categories of their band selection ap-
proaches, and a brief description of their strategies.

Method HBS Approach Category Brief Description of the Strategy
MVPCA [11]  Unsupervised Ranking-based PCA-based ranking and high order selection
FDPC [23] Unsupervised — Clustering-based Distance clustering and density peak selection
WaluDI [16] Unsupervised  Clustering-based Information clustering and minmax optimization
ISSC [21] Unsupervised Sparsity-based Domain transform and orthogonal rank search with L2-norm optimization
S-AEBS [25] Unsupervised  Learning-based Neural network-based autoencoder training and selecting highest contributing bands
MMCA [11] Supervised Ranking-based Iterative band reduction with respect to misclassification error minimization
MEAC [28] Supervised Search-based Iterative band selection with respect to covariance minimization
CM-CNN [26] Supervised Learning-based  Attention map generation with a neural network and selecting highest contributing bands
BHCNN [27] Supervised Learning-based Band selection with hard tresholding, learning theshold jointly with HSI classification

2.3. Deep Neural Network-Based Measurement Learning

Measurement learning is the problem of learning a measurement pattern jointly for
main tasks such as classification, detection, compression, or reconstruction. The joint
measurement learning-classification approach usually requires a more complex design of
the input-output stream and loss function, compared to applying band selection first and
classification later. These models also usually require more parameters and operation at
training, which increases complications in memory allocation, although usually, this is not
an overwhelming issue. Compared to the complications in design and computation, the
advantage of the joint approach is well worth it for the increase in performance compared
to solving two separate problems.

Measurement learning has been recently studied with DL architectures mainly within
the computational imaging and the sparse signal reconstruction framework [43-48]. These
approaches use the advantage of the end-to-end training nature of deep neural networks
(DNNSs) to model the measurement process by a dense or convolutional layer to replicate
the linear measurement process, starting from a fixed random Gaussian measurement
matrix similar to the compressive sensing scenario [49-51]. It was shown that measurement
matrices leading to enhanced reconstruction or classification performance can be learned;
however, the learned measurement matrices are not constrained in the sense that they
learn a linear combination of all available projections. This makes them unsuitable for
applications such as HBS because the measurement for band selection is only a subset
of the full spectral observation and not a linear combination of spectral observations.
For HBS, a constrained measurement having only binary values needs to be learned.
In [52], constrained measurement matrices are learned with binary or bipolar values by
incorporating additional losses that force the desired constraint. In [53], a DL approach
jointly learning measurement for classification was shown. The work in [27] shows a similar
approach to measurement learning, focusing on reducing the number of bands through
hard thresholding rather than through learning a measurement matrix.
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3. Proposed Method

The proposed data-driven joint band selection and classification architecture can be
decomposed into two concatenated networks: (1) a band selection network that identifies
an optimal band selection pattern, and (2) a classification network that uses only selected
bands to determine the output class. Figure 1 shows the proposed network architecture. The
band selection network takes the full single-pixel spectral dataset as input and generates a
band-selected proxy HSI spectrum. The proxy spectrum is produced by multiplying the
input spectrum with a learned binary mask where the selected bands are represented by
ones and the redundant bands are represented by zeros. The output of the band selection
network is passed into a DNN-based classification network to obtain the final classification
label of the given HSI pixel. The entire architecture comprising both the learned band
selection and the classification networks is learned by minimizing the final classification
loss; hence, learned band selection optimizes the final goal of classification directly. Since
we employ a constrained measurement learning strategy to select the bands, the proposed
approach is named Measurement Learning-based Band Selection (MLBS), and a detailed
description of the architecture is provided next.

—————————————— Band Selection -i\f-------------------|Classification Network |- = = == = === === === - - -,
. HsI Vector Hsl Plxel Network N Fully Fully 1
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Figure 1. Block diagram of the proposed method for T total number of bands.

3.1. Learning-Based Optimization of Band Selection Pattern

The input of the band selection network is a spectral vector X of size T x 1, where T is
the total number of spectral bands as illustrated in Figure 1. The aim is to learn a binary
mask that selects the optimal bands; however, discrete operations are not differentiable. To
make the operation differentiable, we begin with an unconstrained vector V € R that will
be the seed for the band selection process. This seed is initialized randomly from the normal
distribution. These weights will be updated through the backpropagation process. With V
as a parameter, we can construct a probabilistic mask S of size T x 1, as shown in Figure 1.
We want the probabilistic map S to be defined on the entire spectral space and at each
spectral band, taking a non-negative continuous probability value between 0 and 1; thus,

€ [0,1]". This can be achieved via the equation S = 0;(V), where 03(.) is the element-
wise sigmoid function, and ¢ is the slope of the sigmoid that acts as a hyperparameter.

From this,
1

14 e tV’
for the i-th spectral band. Since the value of S; lies in the region [0, 1], it describes a Bernoulli
random variable for the i-th band. If we draw binary realizations from S, we get a binary
mask B € {0,1}7 such that B ~ [T, B(S;), where B(s) represents the Bernoulli random
variable with parameter s. The obtained binary mask B will have a value of 1 for the bands
that are selected and 0 for the bands that will not be selected.

Let us assume we have a labeled hyperspectral dataset with full spectral observations
{X; e RT }]I\L 1» where N is the total number of hyperspectral data samples and each sample
isa T x 1 spectral vector. Since binary realizations drawn from S define the binary mask B,

Si=01(V;) = 1)
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we would like to minimize the classification loss in the expected sense. Hence, we aim to
solve the following optimization problem:

N
argmmEBNHl (v Zl L(fe(BoX;), )
= ()

1
.t = Vv =q,
st zlaV)lh =a

where fg is the mapping for the classification network with learnable parameters O,
B © X; is the classification network input with © being the pointwise multiplication, and
L(fe(B ©X;), ;) refers to the cross-entropy loss between the predicted network output
and the ground truth ¢;. The a value denotes the ratio of the selected bands. The constraint
Lllet(V)|l1 = +[|S|l1 = « ensures that the probabilistic mask has on average « number of
non-zero elements.
The optimization problem in (2) includes an expectation over realizations from the
probabilistic map. To implement the minimization, we can obtain an approximation of the
expectation by Monte-Carlo averaging for K independent trials:

argmin - ) ) L(fo(b™ ©X;),¢))
® K33 3)

1
- Vv =,
st zlaV)lh =a

where b(¥) are independent realizations drawn from the distribution [T, B(S;). The
minimization in (3) takes the same form of variational autoencoder (VAE) in [54], where
the authors use the re-parameterization trick to rewrite p&) = yk) < 0;(V). Here, uk)
deduces the independent identical realizations from [T, u(0, 1), which is a set of random
uniform variables between [0, 1]. Thus, if the inequality is satisfied, then the result of this
inequality would be 1; otherwise, it is 0, leading to a binary mask realization. Although
the inequality operation provides a binary mask, it does not allow end-to-end learning
in this form since the thresholding function is non-differentiable. To make the total loss
function for the HBS and classification differentiable, we relax the thresholding operation
with another element-wise sigmoid function o, with slope r similar to [55,56]. Then, the
loss minimization problem becomes

K N
argmin~ Y Y £(fo (0 (@ (V) — U) © X)), ¢))
ve K=o @)

1
t = A% =a.
st zlaV)lh =a

The optimization in (4) is still a constrained minimization problem, imposing the
number of selected bands. To convert (4) to an unconstrained optimization, we utilize a
normalization layer defined as

s ifs>a
Ny(S) =<7 - 5
«(8) = {1—(1 S) otherwise ©)

where the parameter s is the average of the pre-normalization of probability mask S,
defined as § = ||S||1/T. It can be seen that the values of Ny(S) € [0,1]” and satisfy the
constraint || Ny (S)||1 = Ta. The normalized mask computed from the probability mask is
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shown in Figure 1. Using the normalization layer output, the final objective function can be
rewritten as

K N
arg min ;;ﬁﬁ(fe(ar(Na(Ut(V)) —~uM)ex;), ) ©)
, = =

Minimizing (6) through back-propagation will produce the parameters of the classifi-
cation network ® and the seed vector V for the probabilistic mask jointly. The probability
mask S is generated by using an element-wise sigmoid with slope s on V, and it is rescaled
through the norm layer. The output of the norm layer is passed into another element-wise
sigmoid with slope r to produce the binary mask B = ¢;(N,(S) — U(K)). Once B is obtained,
the selected band )?] can be obtained as the element-wise multiplication of the binary mask
B and X;. The selected bands are then fed into the classification network part, as shown in
Figure 1, which is detailed next.

3.2. Classification Network

The second part of the proposed MLBS algorithm is the classification network, the
visualization of which can be found on the right-hand side of Figure 1. The classification
network takes the band-selected data as the input and gives the class prediction of the given
pixel label /; as the output. Our goal in this study is to demonstrate a joint band selection
and classification scheme, and for the latter task, we opt to use a deep convolutional neural
network (CNN) learning feature hierarchically from the selected bands due to the proven
performance of convolutional layers and deep structures for learning features directly from
the data in many classification tasks, especially in computer vision applications [57]. Kernel
sizes and numbers, on the other hand, were chosen heuristically to trade-off between the
computational time and the accuracy. The proposed framework also allows one to utilize
any other existing DNN-based classification architecture with similar inputs and outputs
the classification network to further optimize classification performance.

In the proposed architecture, the main building blocks are 1D convolutional filters
(Conv1D), followed by ReLU activation functions, as illustrated in Figure 1. The first
convolutional block consists of three Conv1D and ReLU pairs, and each Conv1D layer uses
64 filters with a stride of 1 and a kernel length of 3. With the same stride, kernel length, and
activation value, the Conv1D layers in the second convolution block have 32 filters. After
each Conv1D block, a max-pooling layer (MaxpoollD) comes in order to downsample the
extracted features with a pooling size of 2. The output of the second convolutional block is
flattened before being fed into a set of fully connected dense layers. The first dense layer
consists of 25 output neurons with ReLU activation, while the second layer generates class
labels for the given HSI data. The output of the second layer passes through the SoftMax
function as an activation function, converting the output into the class probabilities of the
input HSI pixel. The classification loss function E(EA]-, ¢;) of the j—th spectral sample is the
cross-entropy loss, which is defined as

~ C —
L, 6) ==Y log(;e). @)
=1

[

where Z]-,c is the SoftMax layer output that gives the probability of the j—th sample belong-

ing to c—th class, and EA] and /; represent predicted and ground truth logits, respectively.
Once we have the prediction of the probabilities of all class labels, the final class label is de-
clared as the one that corresponds to the maximum class probability, i.e., ]7] = arg max. E/]\C
The total loss function is back-propagated to learn both the band selection and the classifi-
cation network parameters jointly. The overall steps of MLBS for joint band selection and

HSI image classification can be summarized in Algorithm 1.
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Algorithm 1 MLBS Algorithm

Input: Selection Ratio &, Input HSI Data of size N x T, slopes for sigmoid t and r, Mini-batch size B,
Number of Epoch E
Output: Trained parameters \7,(:)
1: fore=1:Edo
2: forb=1:Bdo
3 Apply Equation (1) with slope ¢ to find the random mask S
4 Apply Equation (5) to generate the normalized mask N,(S)
5: Apply o; to generate the binary mask B
6.
7
8
9

Apply X; © B to select bands
Compute classification network output
Compute loss £ in Equation (7) for the minibatch
end for
10:  Update V,© using backpropagation
11: end for

4. Datasets

In this work, we opt to use two publicly available HSI datasets: the Indian Pines
(IP) [58] and the University of Pavia (UP) [59].

The IP dataset was collected in a test site in Northwest Tippecanoe County, Indiana,
located 6 mi west of West Lafayette via an Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS). The image covers a 2 x 2 mile agricultural area with 20 m spatial resolution.
It has a spectral resolution of 10 nm that covers a range from 200 to 2400 nm. Initially,
the collected HSI data had dimensions of 145 x 145 x 224, where 224 denotes the total
number of spectral bands. Purdue University initially reduced the number of bands to
220 for radiometric corrections, while the Computational Intelligence Group (CIG) further
reduced it to 200 by eliminating bands that were corrupted due to water absorption. The
HSI data contain a total of 10, 249 labeled samples for a total of 16 classes that include alfalfa,
no-till corn 1, minimal-till corn, corn, grass/pasture, grass/trees, mowed grass/pasture,
windowed hay, oats, no-till soybeans, minimal-till soybeans, clean soybeans, wheat, woods,
building/grass/tree drives, and stone/steel towers.

For the UP dataset, a reflective optics spectrographic imaging system (ROSIS)-3 sensor
collected a hyperspectral image of a protion of Pavia city in Italy with 115 bands within the
spectral range from 0.43 to 0.86 um in the University of Pavia area. The spatial resolution is
1.3 m. In this paper, we use 103 bands after removing the bands with low SNR values. The
data tensor size is 640 x 340 x 103. The UP data are divided into 9 classes with a total of
42,776 labeled samples, including asphalt, meadows, gravel, trees, painted metal sheets,
bare soil, bitumen, self-blocking bricks, and shadows. The ground truth images for both
datasets can be found in the first column of Figures 5a and 6a.

5. Experimental Results
5.1. Experimental Setup

The training process follows a 10/90 percent split. For both datasets, only randomly
selected 10% portion of data points belonging to each class are allocated as the training
dataset. The rest of the data points are used to form the test dataset. This is exactly the
same dataset split followed in the compared studies. Both datasets are also normalized to
the interval [0, 1] with respect to the lowest and highest brightness values.

The implementation details of the training procedure for the MLBS model are described
as follows: The slope values for the first and second sigmoid functions in Equation (6) are
chosen as t = 5 and r = 200. These values are selected based on a heuristic grid search. For
the training of the MLBS architecture, the gradient descent based on the Adaptive Moment
Estimation (ADAM) optimizer is used with a batch size of 16. Varying learning rates from
0.1 to 0.0001 were tested to find the best learning rate value heuristically. In the end, the
models were trained with a decreasing learning rate from 0.01 in the first 50 epochs to 0.001
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for the next 50, and finally, 0.0001 for 50 more epochs. The model is therefore trained for
150 epochs in total.

The model implementation, training, and evaluation codes were written in Python
language using the TensorFlow library and the Keras API. Figures were drawn with
matplotlib library, and SciKit’s metrics library was used for evaluation. The training and
evaluation codes were processed in a dedicated server with 3 NVIDIA Titan RTX GPUs.
The implementation of the MLBS model with datasets and the source code can be found in
the link [60].

5.2. Joint Band Selection and Classification with MLBS

We first demonstrate the performance of MLBS for the case where the binary mask
selects 30 bands. The learning curves over different epochs are shown in Figure 2, which
illustrates the overall training and test classification accuracy over 150 epochs. The figures
for both datasets clearly show that classification accuracy increases as training progresses.
Learning curve plots also show very close training and validation accuracy values, indicat-
ing that the MLBS approach is not overfitting.

o
©

e
@
a

o
)

°
~
a

e
3

e
o

nd
o
a

Overall Classification Accuracy (%)
@
&

Overall Classification Accuracy (%)

Training Accuracy | 4
Validation Accuracy

Training Accuracy
Validation Accurac)

20 40 60 80 100 120 140 20 40 60 80 100 120 140
Epoch Epoch

a b
Figure 2. Learning curves for 30 selected bands over 150 epochs for (a) Indian Pines dataset and
(b) University of Pavia dataset.

The binary mask over different epochs as learning progresses over the training data
is also visualized in Figure 3 for both IP and UP datasets, together with the average
classification accuracy values corresponding to the dataset and the epoch. The figure shows
that the initial binary mask in the first epoch expectedly produces a low classification
accuracy for both datasets. The weights for the binary mask are initialized randomly from
the normal distribution satisfying the selected number of band constraints. As the learning
progresses with increasing epoch numbers, better band selections are obtained, which in
turn leads to higher classification performances. For example, for the IP dataset, while the
initial band selection provided an accuracy of 44%, after 10 epochs with updated band
selections, this increased to 75%. At 100 epochs, an accuracy of 88% is achieved, and more
stable changes are observed after 100 epochs. A similar trend can be observed in the UP
dataset. In the first epoch, the average accuracy starts at 83%, and just after 10 epochs, the
accuracy level approaches 93%. At the end of the training, the accuracy level reaches 95%.
Another important point is that the selected bands are randomly spread or connected in
the earlier epochs; as the training progresses, selected bands are more clustered in certain
spectral ranges that are useful for class separation, but many selected bands are not adjacent,
which means they are less correlated.
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Figure 3. Learned masks for 30 selected bands by the proposed approach over different epochs with
classification accuracies. Yellow bands are selected, blue ones are discarded. (a) Indian Pines dataset.
(b) University of Pavia dataset

Figure 3 also shows that in the first epoch, the condition in Equation (5) roughly
satisfies the selected ratio of selected bands with the randomly initialized weights, but as
the training progresses, the number of selected bands converges to the chosen ratio—in this
case, 30 bands. Overall, Figures 2 and 3 together show the effectiveness of the data-driven
manner for the HBS problem, jointly enhancing the classification performance. The MLBS
model reaches a higher overall classification performance for both datasets during training
and provides a transparent framework for a post-training analysis of the selected bands.

5.3. Quantitative Analysis and Comparisons

The next analysis is the quantitative comparison of the proposed MLBS model with
various state-of-the-art HBS techniques for both datasets as a function of the number of
selected bands in terms of classification performance. The MLBS is a supervised technique,
where we train the proposed joint band selection and classification neural network utilizing
the training dataset described earlier. For a fair comparison, the proposed approach is
compared with state-of-the-art supervised techniques such as MEAC [28], BHCNN [27], and
CMCNN [26]. While MEAC is a signal processing-based technique, BHCNN and CMCNN
are deep neural network-based approaches like MLBS. These methods are selected for
comparison because they provide the state-of-the-art available classification performance
according to their respective publications and reviews, such as [7]. In addition, there are
many unsupervised techniques, and the classification accuracies of the high-performing
ones like FDPC [23], WaluDI [16], ISSC [21], and S-AEBS [25] are already given in [7]. Here,
we focus on the comparison of the supervised techniques, wherein we implemented each
of the compared approaches and achieved the classification results in the same machine.

All the compared techniques were tested over the same two publicly available HSI
datasets discussed in Section 4. For quantitative comparisons, we use the overall accuracy
(OCA), average accuracy (ACA), and kappa statistics (KC) metrics as defined in [61]. OCA
is defined as the ratio of the total number of correctly classified testing samples to the total
number of testing samples. ACA metric shows the average classification accuracy for all
class labels. And finally, KC measures the agreement between the classification results and
the ground truth.

The OCA of all compared approaches is shown in Figure 4 as a function of the number
of selected bands varying from 5 to 60 with an increment of 5. The OCA achieved using all
the available bands is shown on the same plots as a red-stripped line. All of the compared
approaches use the same classification network architecture, and hence the observed
performance differences, are expected to be due to different band selection approaches.
From Figure 4, it is clear that the proposed MLBS approach outperforms compared state-of-
the-art approaches in both datasets, providing higher OCA over all the tested number of
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band cases. MLBS provides approximately 3% more accuracy for the IP dataset and 2%
more for the UP dataset than the next performing approach. This enhanced performance
is due to the design of the MLBS, which directly minimizes the classification loss while
learning to select the bands and implement classification jointly. BHCNN, which is also a
DL-based approach, provides the overall second-highest classification accuracy compared
to other techniques.

100
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Figure 4. Comparison of overall classification accuracy among the methods on datasets of (a) Indian
Pines and (b) University of Pavia.

Figure 4 shows the change in classification accuracy with respect to the available
number of selected bands for all the compared algorithms. The accuracy of MLBS gets
higher compared to the all-bands case only when the selected number of channels is
more than 10. It can also be observed that as more bands are selected, the OCA for all
approaches increase, and after the number of selected bands exceeds 30, the change in the
OCA performance of the MLBS and the compared techniques mostly flattens. MLBS is
seen to outperform the compared techniques for both low or high numbers of selected
band regimes.

The OCA metric shows the overall accuracy. In order to show a more detailed classi-
fication performance of each class, as well as the ACA and KC metrics, the performance
of the MLBS model along with the compared algorithms for 30 selected bands with both
the IP and the UP datasets are listed in Tables 2 and 3, respectively. Each row shows the
classification performance for the specified classes, as well as the average metrics of ACA,
OCA, and KC for the compared techniques and when using all the bands. The highest
performance for each row is indicated in bold. The proposed MLBS model can distinguish
individual labels more clearly compared to other algorithms for most of the cases, as it did
for OCA. For both the IP and UP datasets, MLBS gives the highest classification accuracy
for most of the individual classes, while for several classes, BHCNN is the top-performing
approach. The overall highest score in most individual classes indicates MLBS as achieving
the highest ACA and OCA results for both datasets; that is, 89.08% and 97.78% OCA and
82.88% and 93.77% ACA for the IP and UP datasets, respectively. For the KC metric, while
MLBS is the outperforming approach for the IP dataset with a score of 81.14%, BHCNN
is the top-performing technique for the UP dataset with a score of 93.55%. It should be
noted that the two DL-based joint band selection and classification techniques provide
the highest performances, indicating the benefit of data-driven DL approaches for band
selection. Since the same classification network is utilized for all compared techniques, the
differences between techniques are mainly due to the different band-selection schemes.

For the visualization of the classification results, the classification labels of both
datasets as color maps, along with the color maps of the predictions of all compared
methods, are shown in Figures 5 and 6. The classification maps of the DL-based methods
(CM-CNN, BHCNN and MLBS) for the 30 selected band case are illustrated in the bottom
rows. The sixteen classes of ground objects in Figure 5a for the IP dataset and the nine
classes of objects in Figure 6a for the UP dataset are detailed in Tables 2 and 3, respectively.
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The classification maps produced by both the proposed MLBS and the BHCNN techniques
are very close to the ground truth images, with MLBS showing slightly better performance.
Since classifications are performed for each spatial pixel, misclassifications at the pixel level
can be seen for all compared techniques and for both datasets.

d CM-CNN e BHCNN f MLBS
I A falfa [ Grass/Pasture [ Joats I \Wheat
I \o-Till Corn [ IGrass-Trees [ INo-Till Soybean I \Woods
I MVin-Till Corn [ IMowed Grass/Pasture [ |Min-Till Soybean I Building/Grass/Trees/Drives
I Corn [ Jwindrowed Hay [ Clean Soybean I stone/Steel Towers

Figure 5. Comparison of the band selection models for 30 selected bands on the color map of IP
dataset labels.

Table 2. Classification results of DL-based band selection methods for 30 selected bands with
IP dataset.

Class Name Method

MEAC BHCNN CM-CNN MLBS  All Bands
Alfalfa 76.47 69.05 65.22 70.39 36.59
No-till corn 71.24 76.92 70.31 78.43 75.41
Minimal-till corn 63.67 70.69 63.86 72.14 66.8
Corn 64.04 71.23 58.02 65.16 59.14
Grass/pasture 90.61 87.44 88.13 90.21 82.53
Grass/trees 94.34 97.54 97.21 98.08 96.04
Mowed grass/pasture 80.95 88.61 82.39 86 56
Windrowed hay 97.49 98.65 96.54 99.05 98.61
Oats 53.33 57.76 52.49 63.05 38.89
No-till soybeans 70.78 79.37 76.56 81.98 66.4
Minimal-till soybean 80.39 83.29 79.22 84.56 80.76
Clean soybean 64.49 84.08 81.63 86.34 69.85
Wheat 98.70 96.86 96.37 97.23 98.91
Woods 93.36 97.47 96.89 98.15 94.38
Buildings/grass/trees/drives 55.17 58.83 55.08 62.03 52.74
Stone/steel towers 94.29 92.49 85.44 93.34 89.29
ACA 78.08 81.89 77.84 82.88 72.65
OCA 78.90 87.74 78.06 89.08 79.12

KC 75.93 80.41 77.56 81.14 76.05
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Table 3. Classification results of DL-based band selection methods for 30 selected bands with
UP dataset.

Class Name Method
MEAC BHCNN CM-CNN MLBS All Bands

Asphalt 92.86 94.49 84.43 95.2 91.62
Meadows 96.43 98.28 97.31 98.65 98.16
Gravel 78.61 80.31 65.85 82.04 77.27
Trees 93.55 94.83 86.02 95.42 89.75
Painted Metal Sheets 99.59 99.38 93.43 99.03 98.95
Bare Soil 84.11 89.57 79.03 91.76 90.14
Bitumen 83.21 88.95 72.56 87.96 85.38
Self-blocking Bricks 84.70 92.78 72.89 93.85 90.2
Shadows 99.30 100 89.92 100 99.89
ACA 90.26 93.17 82.38 93.77 91.26
OCA 92.09 95.59 83.32 97.78 93.56
KC 89.49 93.55 87.46 93.21 91.42

d CM-CNN e BHCNN f MLBS

I Asphalt [ ITrees I Bitumen
I Meadows [ lprainted Metal Sheets [ Self-Blocking Bricks
I Gravel [ Bare Soil I shadows

Figure 6. Comparison of the band selection models for 30 selected bands on the color map of UP
dataset labels.

5.4. Computational Analysis

A final analysis shows the performance of MLBS and the compared band selection
models in terms of computational time. For supervised techniques such as MLBS or the
compared approaches, there are two categories of computation. First, the models are
trained over the training dataset with an offline learning process, and later, the inference
on a sample test dataset can be achieved with the trained model. Here, we provide both
the training and the inference computational times for the compared approaches.

Table 4 presents the training and inference times of the compared techniques under
both datasets. All approaches were trained and evaluated on the same computer, which
has 3 NVIDIA Titan RTX GPUs, and the computational time values were collected during
the training and inference processes. The total number of trainable parameters in the final
MLBS model is counted as 212,954 for the IP dataset and takes 2.79 MB in memory, while
the MLBS model for the UP dataset has 188,050 parameters and takes 2.48 MB in memory.

With the dataset training setup detailed in Section 5.1, the training with the whole IP
dataset takes approximately 1216 s for the MLBS approach, while the inference time for
an individual test sample is 0.0937 s on average. For the UP dataset, the computational
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time for training takes 5050 s, and the average inference time is 0.1249 s for an individual
test sample.

Table 4. Comparison of the training and inference time of the compared band selection models.

Dataset Method
MEAC CM-CNN BHCNN MLBS
Training 1278 1275 s 1293 s 1216 s
I Tnference 0.0904 s 0.1406 0.1093 s 0.0937 s
Training 4959 s 4877 s 5625 s 5050 s
up Tnference 0.1099 5 0.1939 5 0.1406 5 0.1249 5

In general, the overall training time for the DL-based methods are much higher
compared to the testing time. It should be noted that the time used for training MLBS and
other DL-based band selection models is related to the model size, model hyperparameters,
and dataset dimensions. Although high, the training for DL-based approaches should be
conducted once, and when trained, the same model can be used for testing; the inference
times listed in Table 4 indicate the testing computational complexity for testing. Compared
approaches show varying training and inference times depending on the overall complexity,
but usually, the training and inference times are generally similar; while slightly higher, the
training time for BHCNN and the inference time for CM-CNN are observed. The proposed
MLBS has an average computational complexity across the compared techniques.

6. Discussion and Future Work

In this work, a DL-based architecture that is composed of a band selection network
followed by a classification architecture is trained jointly to optimize the final classifi-
cation. In this way, the proposed network learns to select the bands that will optimize
the classification performance. The evaluation of the proposed MLBS approach on two
test datasets shows enhanced classification performance for the same number of selected
bands. Nevertheless, there are several points to consider in the implementation of MLBS in
order to prepare a roadmap for future work. In this section, we discuss several points for
improvement and various directions for future work.

The first important point is that MLBS is a supervised neural network model that
needs to be trained. Hence, annotated, clean, high-quality, and diverse training data are
needed to train the model that can be generalizable for various cases. Our results evaluate
MLBS over two publicly available hyperspectral datasets; however, further developments
related to annotated datasets, such as those in [62], will benefit DL-based techniques such
as MLBS. In addition, the IP and UP datasets used in this study have different bandwidths,
number of bands, image size, resolution, and segmentation classes; this prevents them
from being used together simultaneously. Instead, evaluations within each dataset are
made. Datasets that are compatible with each other will enhance DL-based techniques and
provide better evaluations against the generalization of the DL models.

A tangential problem to the first issue concerns the nature of the datasets. Both the IP
and UP datasets used in this study have different bandwidths, number of bands, image
sizes and resolution and segmentation classes; by themselves, they are not adequately
numerous datasets for ML solutions. These differences prevent them from being used
together at once; rather, only one dataset can be used for a single evaluation. Making the
available datasets compatible to provide consistency between them will be beneficial work
for better DL-based HSI band selection models.

The second important point is the lack of interpretability of the general neural network-
based models. MLBS is a neural network model, and as most other neural networks, the
internal decision process of why the model prefers certain bands against others is almost
completely unclear to an observer. While this is a more general limitation for major DL-
based approaches, more interpretable models and physical explanations related to some
selections are desired for understanding the selection process and the advantages of the
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selected bands. We plan to add more interpretability to the next iteration of the MLBS
model, and we plan to make it more physics-aware by adding prior physical information by
updating the loss function. Physics-informed NN algorithms applied in different problems
shed light on this discussion [63].

The third point is that MLBS provides a general framework for band selection and
classification. MLBS is composed of two networks following each other, and one can select
a different classifier and jointly learn the band selection and classification scheme as long
as the classifier is learnable, in the sense that we should be able to apply back-propagation
through the classifier. This allows for the optimization of the classification network so
that the joint architecture can provide enhanced band selection and classification perfor-
mance. Currently, the MLBS approach uses a classical convolutional network structure
for classification. While this study focuses on the band selection model, for future work,
we plan to design and compare different classification networks to optimize the joint per-
formance. One current trend in this respect seems to be combining signal compression
with autoencoder-based architectures for more efficient classification and dimensionality
reduction embedded in the architecture [64-66]. There are also architectures based on
attention maps for better feature extraction [67,68]. Such enhancements on the classification
part of the model have the potential to lead to higher joint performance.

7. Conclusions

In this work, a deep neural network-based learning model is proposed to select bands
from the hyperspectral data. The proposed architecture is composed of a constrained
measurement learning network for band selection, followed by a convolutional network
for classification. The combined architecture is jointly trained to minimize the classification
loss learning to select the bands that will directly enhance the classification performance.
The architecture is flexible to adapt any superior DL-based classification model that can
lead to enhanced band selection and classification performance.

The proposed MLBS approach has been evaluated with Indian Pines (IP) and the
University of Pavia (UP) datasets. It is observed that the proposed approach results in
higher classification accuracy compared to the existing state-of-the-art supervised band
selection methods for the same number of bands selected. In the case of the 30 selected
bands, MLBS achieves ACA and OCA scores in both the IP (89.08% OCA and 82.88% ACA)
and UP (97.78% OCA and 93.77% ACA) datasets. Computational analysis indicates that
the proposed technique has similar computational complexity to compared approaches for
both training and inference.
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