2023 IEEE Radar Conference (RadarConf23) | 978-1-6654-3669-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/RADARCONF2351548.2023.10149728

Classification of Traffic Signaling Motion in
Automotive Applications Using FMCW Radar

Sabyasachi Biswas, Student Member, IEEE, Benjamin Bartlett, Student Member, IEEE,
John E. Ball Senior Member, IEEE and Ali C. Gurbuz, Senior Member, IEEE,

Abstract—Advanced driver-assisted system (ADAS) typically
includes sensors such as Radar, Lidar, or Camera to make
vehicles aware of their surroundings. These ADAS systems are
presented to a wide variety of situations in traffic, such as
upcoming collisions, lane changes, intersections, sudden changes
in speed, and other common instances of driving errors. One
of the key barriers to automotive autonomy is the inability of
self-driving cars to navigate unstructured environments, which
typically do not have any traffic lights present or operational
for directing traffic. In these circumstances, it is much more
common for a person to be tasked with directing vehicles, either
by signaling with an appropriate sign or via gesturing. The task of
interpreting human body language and gestures by autonomous
vehicles in traffic directing scenarios is a great challenge. In this
study, we present a new dataset collected of traffic signaling
motions using millimeter-wave (mmWave) radar, camera, Lidar
and motion-capture system. The dataset is based on those utilized
in the US traffic system. Initial classification results from Radar
microDoppler (1-D) signature analysis using basic Convolutional
Neural Networks (CNN) demonstrates that deep learning can
very accurately (around 92%) classify traffic signaling motions
in automotive applications.

Index Terms—Micro-Doppler, autonomy, traffic gesture classi-
fication, mmWave, ADAS, CNN.

I. INTRODUCTION

N recent times, due to the creation of reasonably priced

solid-state transceivers and powerful graphics processing
units (GPUs), the radio frequency (RF) sensors have gained
much popularity in wide range of applications including
advanced driver assisted systems (ADAS) and autonomy due
to their advanced sensing capability, size and low cost. Side
by side, deep leaning (DL) has also gained much popularity
in many fields due to its representation capability directly
from data. The use of DL has added a new dimension and
raised the bar for radar-based human activity recognition
(HAR) performance compared to earlier decades [!]. Some
of the applications where radar has gained much popularity
over the last decades include defense and security [2], UAV
classification [3], ADAS [4], indoor monitoring human activity
recognition [5], sign language recognition [6], and contact-less
health monitoring [7].

In ADAS and autonomous vehicle (AV) systems radar is
being utilized as one of the main sensing systems. AVs are
currently trained to operate pristine road conditions. However,
in our daily lives we face many situations where the traffic
rely on human directions to navigate. This would be the case,
for example, when a vehicle passing through a construction
zone, in and out of school or related high traffic areas, or

when automatic traffic lights are not functional. Under all
these circumstances it is much more common for a person
to be tasked with directing vehicles, either by signaling with
an appropriate sign or via gesturing. This person could be a
traffic officer or sometimes a school official, or a construction
worker. If the AV were passing through any of these zones, it
will have to rely on human directions to navigate and it should
autonomously recognize, and classify human traffic directions.

This paper presents an initial study towards understanding
the success of varying sensors including mm-wave automotive
radar systems in order to recognize gestures from human traffic
directors. While optical sensing have been explored in this area
[8], radar has not been tested for for the problem. 12 different
motions based on those highly used to direct traffic in the
US traffic system are selected (See Section II-B and Fig.3
for details on the traffic gestures). First a dataset is collected
in lab environment from 14 number of participants using
RGB-Depth cameras, Lidars, mm-wave radars and motion-
capture system that record the position of the body parts of the
participant implementing the traffic directions. In this dataset
single human directors using pre-defined classes of directions
within the line of sight of the sensor suite are considered.

In this paper, we focus specifically on the mm-wave radar
and present the effectiveness of radar for understanding of
human traffic directions. At first, time-frequency domain
transformation is done and micro-Doppler(u-D) signatures
have been generated from the collected radar data cubes.
Afterwards, the p-D signatures have been converted to im-
ages and classified using the developed convolutional neural
network (CNN) architecture. Approximately 91% and 93%
testing accuracy was achieved using RGB and gray-scale
images respectively. These results are initial indications that
radar is a highly effective sensor for traffic signalling motion
classification.

In the upcoming sections of this paper the analysis of the
dataset will be presented. The paper is organized as follows:
the experimental setup and dataset is provided in Section
II, mmWave FMCW radar signal model, D spectrogram
generation and the proposed CNN architecture are discussed in
the Section III and Section IV presents the evaluation results
of the proposed algorithm. Finally, Section V concludes the
paper and discusses future works.
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II. EXPERIMENTAL SETUP AND DATASET

A. Experimental Setup

To perform motion analysis and classification, six distinct
sensors are used in the data collection to capture both kine-
matic movement and visual data. Four of the six sensors used
are intended for short range automotive applications. They are
TI AWR2243 mmWave radar, a TI AWR1642 mmWave radar,
an Intel Realsense LL515 LiDAR, and an Intel Realsense D435
camera. The fifth and sixth sensors are an Ouster OS-1 360°
scanning LiDAR and MotionMonitor motion capture system
with Vicon motion capture cameras respectively. These six
sensors are controlled in three different data collection envi-
ronments. The AWR2243 is controlled using TI's mmWave
Studio software for raw voltage collection; the AWR1642,
L515, D435, and OS-1 sensors are controlled using the Robot
Operation System (ROS) for radar scan, RGB, and point
cloud information; and the MotionMonitor system collects
three-dimensional positional data for key centroids on the
participants’ upper bodies, as well as rotation and flexion of
joints and the head. Figure 1 below shows the setup for the
automotive sensors, as well as the layout of the capture space
of the laboratory, while Fig. 2 shows the setup for the four
short ranged sensors used in the experiment.

TABLE 1. AWR2243 Radar Parameters

Parameter Value
Number of ADC Samples 256
Number of TX Channels 3
Number of RX Channels 4
Starting Frequency 77 GHz
Frequency Slope 65.998 MHz/us
Bandwidth 3959.88 MHz
Pulse Repetition Interval (PRI) 161.29 ps
Sampling Rate 18750 kHz
RX Gain 48 dB
Periodicity 40 ms
Number of Chirp Loops per Frame 248
Number of Frames 3875
Total Time 155 sec

For now, only TT AWR?2243 automotive FMCW radar from
Texas Instruments is considered for classification. The radar
operates from 77 to 81 GHz, with three transmitting (TX)
channels and four receiving (RX) channels. By Using TI’s
mmWave Studio software, users can collect data using an
attached DCA1000 EVM capture card and store it as a binary
file. The device can be initialized with different parameters
depending on the situation. Table I shows the parameters set
for the AWR2243 radar for the experiment.

The radar was positioned on top of a table with an ele-
vation of 1 meters prior to data collection. Participants were
positioned at a distance of 3 meters in front of the radar. A
computer display was placed left next to the radar, but out of
the radar’s field of view (FOV). The monitor provided prompts
specifying the gestures that needed to be articulated. The data
was collected for 155 seconds. Within this time, four different
gestures have been performed with 5 repetitions each. Between
each repetition there was a gap of 1 second. And after each
gesture a 10 second gap was given to preview the next gesture.
Each sample duration was around 5 seconds.

B. Dataset

For this study, a dataset consisting 12 traffic signalling
motions based on US traffic system is created. These motions
are designed to direct an oncoming vehicle to either stop, move
from the stopping point in one of three directions, or to have
traffic in any given position wait for other traffic to proceed
onto the road. The gestures involve movement of not only the
arms of the participants but also the hands, as well as the
rotation of the head to look in specific directions. Figure 3
shows each gesture performed by a participant, along with a
brief description of each gesture.

1) Stop — stop the oncoming vehicle; the participant moves
their right hand directly in front of them, with the elbow
extended (straight) and the hand open.

2) Go — let the oncoming vehicle move forward; the
participant both hands directly in front of them, with
the elbows extended; the participant then flexes (bends)
both elbows, moving the hands towards the shoulders.

3) Continue — let oncoming vehicles already moving for-
ward continue to move forward; the participant puts their
right hand directly in front of them, with the elbow
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Fig. 3: The 12 Traffic Gestures
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5)
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7)

8)

9)

10)

extended; the participant then flexes the right elbow,
moving the right hand towards the right shoulder.

Left Turn — direct oncoming traffic to take a left
turn; the participant moves their right arm to the side
(shoulder abduction) with the elbow extended, and holds
the right arm in the position, pointing to the participant’s
right; the participant puts their left hand directly in front
of them, with the elbow extended; the participant then
flexes the left elbow, moving the left hand towards the
left shoulder.

Right Turn — direct oncoming traffic to take a right
turn; the participant moves their left arm to the side
(shoulder abduction) with the elbow extended, and holds
the left arm in the position, pointing to the participant’s
left; the participant puts their right hand directly in front
of them, with the elbow extended; the participant then
flexes the right elbow, moving the right hand towards
the left shoulder.

Stop Left, Go Front — stop traffic on the left of the
oncoming vehicle, then direct the oncoming vehicle to
proceed forward; the participant moves their right arm to
the side (shoulder abduction) with the elbow extended,
and holds the right arm in the position, with an open
hand; the participant puts their left hand directly in front
of them, with the elbow extended; the participant then
flexes the left elbow, moving the left hand towards the
right shoulder.

Stop Right, Go Front — stop traffic to the right of the
oncoming vehicle, then direct the oncoming vehicle to
proceed forward; the participant moves their left arm to
the side (shoulder abduction) with the elbow extended,
and holds the left arm in the position, with an open hand;
the participant puts their right hand directly in front
of them, with the elbow extended; the participant then
flexes the right elbow, moving the right hand towards
the right shoulder.

Stop Both Sides, Go Front — stop traffic on both sides
of the oncoming vehicle, then direct the oncoming vehi-
cle to proceed forward; the participant raises both shoul-
ders to the side (abduction) with the elbows extended
and the hands open; the participant then puts both hands
directly in front of them, with the elbows extended; the
participant then flexes (bends) both elbows, moving the
hands towards the shoulders.

Stop Front, Go Right — stop the oncoming vehicle,
then direct traffic to the right of the oncoming vehicle
to proceed forward; the participant moves their right
hand directly in front of them, with the elbow extended
(straight) and the hand open and keeps the right arm and
hand in this position; the participant raises their left arm
to the side, and quickly flexes (bends) their left elbow,
bringing their hand towards their shoulder

Stop Front, Go Left — stop the oncoming vehicle,
then direct traffic to the left of the oncoming vehicle
to proceed forward; the participant moves their left
hand directly in front of them, with the elbow extended

(straight) and the hand open and keeps the left arm and
hand in this position; the participant raises their right
arm to the side, and quickly flexes (bends) their right
elbow, bringing their hand towards their shoulder.
Stop Front, Go Back — stop the oncoming vehicle, then
direct traffic opposite the oncoming vehicle to proceed
forward; the participant moves their left hand directly
in front of them, with the elbow extended (straight) and
the hand open and keeps the left arm and hand in this
position; the participant then turns their torso to the right,
raises their right arm, and quickly flexes the right elbow,
moving the hand towards the right shoulder.
Stop Back, Go Front — stop traffic opposite the on-
coming vehicle, then direct the oncoming vehicle to
proceed forward; the participant turns their torso to the
right, raises their right arm, and extends the elbow with
the hand open; the participant keeps the right arm in
this position; the participant then moves their left hand
in front of them with the elbow extended, and quickly
flexes the left elbow, moving the left hand towards the
left shoulder.

In the end, a total of 840 samples were collected for 12
different gestures, making it 70 samples per gesture from 14
different participants.

1)

12)

III. PROPOSED METHOD
A. Radar Signal Model

A Frequency modulated continuous wave (FMCW) radar
system, shown in Fig. 4, consists of transmitters, receivers,
mixers and analog-to-digital (ADC) converters. RF energy
pulses are transmitted by a radar in various directions. When
this energy strikes a target, it disperses in all directions. Only
the fraction of the transmitted signal is scattered back and
received by the radar receiver. The frequency of the transmitted
signal in an FMCW radar changes linearly over time, typically
sweeping through the whole bandwidth, allowing for the
acquisition of both range and velocity measurements [9]. The
chirp signal can be modeled as,

B
fC(t) = fstart + —1, 0<t<Tsw (1)

Tsw

where, f.(t) denotes the chirp frequency, fsiqr+ is the start
frequency at time ¢ = 0, B denotes the bandwidth and Ty
is the sweep time in seconds. The samples received by an
FMCW radar is stored in a structure known as the radar
data cube (RDC). The rows of RDC represent the fast-time
samples, or the analog-to-digital conversion (ADC) values,
and the columns represent the slow-time samples, or the chirp
loops transmitted by the radar. The third dimension of RDC
represents the different RX channels. Since angle estimation
is not considered in our experiment, only the first channel is
considered for further processing.

The intermediate frequency (IF) signal received from a
target with time delay 7 can be modeled as,

B B
SIF(t) = Aexp(Qﬂ-(fstartT + 7 (2)
S

_ 2
Tow ~ 2Tew )
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Fig. 4: Flow Diagram of an FMCW Radar [9]

where, the amplitude of the signal is A. After sampling, N fast
time samples are produced for each pulse. The pulse number is
referred to as the slow time samples. As the analog-to-digital
converter (ADC) sampling interval is significantly less than
the pulse repetition interval (PRI). The radar data cube (RDC)
can be represented by NxPxM if the radar has M receiver
channels. Different RF data representations, such as Range-
Doppler (RD) videos or u-D signatures, can be produced by
Fourier processing over this RDC which will be discussed in
the next section.

B. Micro-Doppler Spectrogram Generation

w-D for a radar refers to the changes in received frequencies
from a target involving small oscillating movements, such as
the propellers of an aircraft spinning or a human walking with
their arms and legs constantly moving. These small movements
induce frequency modulations on the frequencies of a radar’s
signal, which is helpful in determining the kinematic properties
of any given target [10]. Any radial motion that occurs toward
the radar will result in a positive Doppler frequency, while
radial motion away from the radar results in a negative
Doppler frequency (assuming positive velocity occurs towards
the radar). One way to visualize the p-D information in a
radar signal is with a spectrogram. Spectrograms are a widely
used method for visualizing changes in both the time and fre-
quency domains simultaneously. The p-D spectrogram can be
generated by using the Short-Time Fourier Transform (STFT).
Equations (3) and (4) below show the discrete calculation
for a signal in the time-frequency domain and computing the
spectrogram from the STFT, respectively.

STFT[z[n]]mw = X[m,w] = Z z[njw[n — m)e 7"
T 3)
Spectrogram[z[n]] .o = | X [m, w]|? 4)

The STFT uses a FT with a windowing function rather than
taking the FT of an entire signal at once. The spectrogram
is the power output of the STFT. Figure 5 below shows a
visualized spectrogram example of traffic sign ‘Go’ using
an image of scaled colors. Positive Doppler frequencies are
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Fig. 5: A microDoppler Spectrogram example of the traffic
sign ‘Go’

represented above the horizontal axis at 0 Hz, while negative
frequencies sit below the horizontal axis.

C. The CNN Architecture Development

To classify the radar p-D spectrogram a CNN structure has
been developed. As shown is Fig. 6, the CNN structure has
four convolution layers, each with kernel size 3x3, stride 1x 1
and comprising of 32, 64, 64 and 128 filters respectively. A
3x3 maxpooling, batch normalization, and activation ReLU
are performed after each convolutional layer. The tensor is then
flattened, fed into a dense layer with a size of 512, dropped
out by 0.2, and activated with ReL.U. Then finally ending with
the softmax classifier.

IV. PERFORMANCE ANALYSIS

To analyse the performance of the dataset, all of the
spectrograms that were created were saved as 200x200 png
files in both grayscale and 8 bit RGB images as we observed
better performance than directly using spectrogram values (in
dBm/volts). CNN input shapes are 200x200x3 and 200x200x1,
respectively for RGB and grayscale images. For classification,
the dataset was split into 80% training and 20% testing.

The results are shown in the Table II. From the table
it is seen for both RGB and Gray-scale images the model
is giving an accuracy score of more than 90%, where the
RGB performed slightly better than the Gray-scale, 93.45%
and 91.67% respectively. In terms of precision, recall and f1
score, the CNN (RGB) shows better performance (around 2%)
than the CNN (Grayscale). The confusion matrix in Fig. 7
shows that the model performed very promisingly for most
of the classes. Though the dataset were very challenging as
the movements for each class varied from person to person as
shown in Fig. 8, still the proposed CNN model were able to
work on the dataset very effectively. This shows great promise
as it can be great and necessary feature to add in the ADAS
system.

V. CONCLUSION AND FUTURE WORK

The goal of this study is to provide an initial study towards
understanding the success of varying sensors including mm-
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Fig. 6: The CNN architecture for traffic signalling motion classification.
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Fig. 7: Confusion matrix of CNN (rgb) for 12 class traffic
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Fig. 8: Comparison of “Stop” Between Four Participants

TABLE II: Performance Comparison

Network Lty Precision | Recall Lont
Accuracy Score
| CNN (Grayscale) [ 91.67 [ 91.68 [ 91.76 [ 91.60
| CNN (RGB) [ 93.45 [ 93.75 ] 94.06 [ 93.70

wave automotive radar systems to recognize gestures from
human traffic directors autonomously. The results of the radar
data analysis show that, even with limited data samples, a
learning process can accurately classify pre-defined traffic

direction classes. However the initial results are from single
traffic directions and in lab environment. Future work will
include more realistic scenarios including fusion of radar and
other automotive sensors.
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