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Abstract— The utilization of radio-frequency (RF) sensing in
cyber-physical human systems, such as human-computer inter-
faces or smart environments, is an emerging application that
requires real-time human motion recognition. However, current
state-of-the-art radar-based recognition techniques rely on com-
puting various RF data representations, such as range-Doppler
or range-Angle maps, micro-Doppler signatures, or higher
dimensional representations, which have great computational
complexity. Consequently, classification of raw radar data has
garnered increasing interest, while remaining limited in the
accuracy that can be attained for recognition of even simple
gross motor activities. To help address this challenge, this paper
proposes a more interpretable complex-valued neural network
design. Complex sinc filters are designed to learn frequency-based
relationships directly from the complex raw radar data in the
initial layer of the proposed model. The complex-valued sinc
layer consists of windowed band-pass filters that learn the center
frequency and bandwidth of each filter. A challenging RF dataset
consisting of 100 words from American Sign Language (ASL) is
selected to verify the model. About 40% improvement in classifi-
cation accuracy was achieved over the application of a 1D CNN
on raw RF data, while 8% improvement was achieved compared
to real-valued SincNet. Our proposed approach achieved a 4%
improvement in accuracy over that attained with a 2D CNN
applied to micro-Doppler spectrograms, while also reducing the
overall computational latency by 71%.

Index Terms—Radar, RF sensing, FMCW, micro-Doppler
signature, CV-SincNet, human activity recognition, ASL.
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processing units (GPUs) along with novel deep learning (DL)
approaches has increased the usability of radio frequency
(RF) sensors in an ever expanding range of applications
involving human activity recognition (HAR) [I], such as
defense and security [2], [3], [4], mini-UAV classification [5],
advanced driver assistance system (ADAS) [6], [7], indoor
monitoring [8], and health monitoring [9], [10]. Recently, real-
time sign language recognition has experienced significant
advancements, partly attributed to the emergence and progress
of the MediaPipe toolbox [11]. Sign language recognition falls
within the realm of Human Activity Recognition (HAR) due to
the movement-based kinematic components of the language.
Although sometimes conflated with gesture recognition, sign
language differs due to the communicative nature of the
signal, which includes grammatical structure and linguistic
parameters, such as prosody, suprasegmental components,
and phrasing. Thus, comprehensive sign language recognition
involves correlating such linguistic parameters with fine
spatio-temporal dynamics. Towards this aim, RF sensing
has recently been proposed as a novel modality for sign
language recognition [12], [13] as well as gesture-based
human-computer interaction [14]. Advancements in both
these areas have also contributed more broadly the real-time,
radar-based HAR.

Most conventional approaches for radar-based HAR require
a two-level process because raw radar data are a time series
of complex I/Q data. First, time-frequency analysis or other
radar signal processing techniques are applied to generate 2D
(or higher 3D and 4D) radar data representations, such as time
varying range-Doppler or range-Angle maps or micro-Doppler
(u-D) signatures (u-DS) [15]. While there have been some
studies that propose joint domain classification [16], [17], most
studies utilize the -DS for HAR. The p-D is a time-frequency
(TF) domain representation of the radar data that can be
obtained by using transforms such as the short-time Fourier
transform (STFT) [18], wavelet transform [19], or Gabor
transform [20]. These approaches require the optimization
of a number of parameters, including window type, window
size, Fast Fourier Transform (FFT) length, and overlap size
between successive windows. After the first step of pro-
cessing, the magnitude of the w-DS is obtained and given
as the input to a deep neural network (DNN) for human
activity classification [21], [22], [23], [24]. This multi-step
processing with parameter optimization consumes a lot of
computational resources, while also having high temporal
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latency, which imposes limitations in real-time sensing
applications.

Consequently, there has been some interest in the develop-
ment of classification techniques that directly take as input the
raw, complex RF data stream. In [25], the authors proposed a
recurrent neural network (RNN) to decode the time sequence
of 2D raw I/Q radar data, where the I and Q channels are
jointly provided as inputs to a real RNN. Six activities were
classified with an average accuracy of 93%. However, this
accuracy came with high computational cost: training the
network took over 240 hours using four Nvidia GeForce
GTX 1080 GPUs. In [26], a similar approach was utilized but
now the range profile in addition to the raw I/Q data streams
were utilized with a Long Short Term Memory (LSTM)
network. In [27], the authors used real 2D sinc filters and 2D
wavelet filters as the first layer of the neural network model,
which operates directly on 2D raw radar data and addresses
a 6-class gesture recognition problem. Note, however, that in
this work as well the complex-valued (CV) raw radar data is
fed into a real-valued network through separation of the real
and imaginary components of the data.

The complex-valued convolutional neural network
(CVCNN) architectures are proposed for several radar-based
HAR problems. In [28] and [29] the authors proposed a
CVCNN architecture that trains on the complex-valued
spectrograms instead of real-valued spectrogram images
calculated in the logarithmic scale. The authors in [29]
also introduced FourierNet where they used a windowed
Fourier transform which remains as a fixed pre-processing
and operates on the 1D-time series data before the STFT
operation. In [30], the authors used CVCNN techniques
on complex-valued 2D representations such as Range-time,
Range-Doppler maps, or spectrograms.

Although deep learning (DL) and specifically CNNs have
shown unprecedented performance levels in various applica-
tions for directly processing raw data, these models are often
regarded as “black-box” and the high performance is often
obtained at the cost of reduced interpretability of the model.
In [31] more interpretable filters that can directly work on the
raw audio waveform are learned for the speaker identification
task. Instead of learning all elements of every filter as the stan-
dard CNNs, one-dimensional (1D) sinc functions are utilized
in the first layer of the network that implements band-pass
filtering operations. In this SincNet architecture, the low and
high cutoff frequencies of the Sinc filters are the only learnable
parameters for each filter. These parameters are optimally
learned to capture specific frequency components in the input
signal. Moreover, these sinc filters when applied to the input
signals can capture important temporal information. As a
result, these filters provide a more meaningful and contextually
relevant representation of the input signals which allows the
network to focus on higher-level learnable parameters that
have clear physical meanings. However, since audio data is
real, original SincNet [31] learns two-sided band-pass filters,
which can not be directly applied to complex raw radar data.

In this paper, we introduce CV-SincNet, a complex DNN
architecture for classifying various human activities by directly
learning from 1D complex slow-time raw radar data after
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range processing. Different from the real SincNet [31], the
CV-SincNet can directly work with the complex data and
convolves the input waveform with a set of newly designed
complex sinc-functions that implements one-sided bandpass
filters instead of symmetric band-pass filters learned by real
SincNet. We parametrize each complex Sinc filter by the
center frequency and bandwidth and we directly learn these
high-level tunable parameters for each filter that have clear
physical meaning. The remaining DNN operations such as
convolution, non-linear activations, pooling, or normalization
are modified to work on complex raw data [32].

In preliminary work [33], we showed on a small dataset
of 15 ASL signs that a CV-SincNet architecture with fewer
layers can provide comparable classification accuracy relative
to that attainable by applying a 2D CNN on the spectrogram
of RF data, i.e. the micro-Doppler signature. In this paper,
we expand upon this work to show that actually improved
accuracy can even be obtained for quite challenging tasks,
such as the recognition of as much as 100 American Sign
Language (ASL) signs [34] using a slightly deeper vari-
ant of CV-SincNet. We also show that at the same time,
CV-SincNet also results in a significant reduction in com-
plexity and computational latency, rendering it suitable for
real-time applications. We also propose and develop quantita-
tive analysis of interpretability, which provides insight on the
most important velocity-based features and ASL properties.

The proposed CV-SincNet architecture is compared with
various neural network solutions that work on raw radar data
or computed representations: i) standard CNN working on
2D p-DS images, ii) real SincNet that works on raw radar
data taking the real and imaginary parts of the complex radar
data as a two-layer input, and iii) a 1D complex CNN that
directly works on the complex raw radar data. Comparisons
made with the 2D CNN models that operate on the u-D
spectrogram images are produced by the same raw radar
data other models are working on. The proposed CV-SincNet
provided about 8% higher classification accuracy than the real
SincNet approach showing the importance of complex-valued
networks working on the complex-valued dataset. Moreover,
about 4.2% better classification accuracy is observed compared
to standard 2D CNN models applied on the p-D spectrogram
images in addition to significantly reducing the time required
for activity prediction. These outcomes demonstrate how well
the proposed CV-SincNet performs when used for activity
classification with complex-valued raw radar data. In addition,
the obtained filters are more interpretable as the proposed
sinc layer focuses only on physically relevant specific Doppler
frequency bands.

The contributions of this paper can be summarized as

o A general complex Sinc filter learning architecture is
formulated and the proposed CV-SincNet is applied to the
complex raw radar data for human activity recognition.

« The proposed CV-SincNet is compared with the 2D-CNN
model on u-D images and real-CNN, real-SincNet and
CV-CNN models on raw radar data.

« More interpretable band-pass filters are learned focus-
ing on physically meaningful Doppler frequencies and
bandwidths.

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on March 01,2024 at 06:38:41 UTC from |IEEE Xplore. Restrictions apply.



BISWAS et al.: CV-SincNet: LEARNING COMPLEX SINC FILTERS FROM RAW RADAR DATA 495

o The proposed CV-SincNet shows both high accuracy and
compatibility for real-time classification with reduced
overall latency as compared to other approaches.

The organization of the paper is as follows: The radar
signal model used in multiple input multiple output (MIMO)
frequency modulated continuous wave (FMCW) radars for
data collection is provided in Section II. Section III discusses
the proposed CV-SincNet architecture along with complex
implementation details of all the neural network blocks. The
experimental setup for the radar sensor and dataset collection
is provided in Section IV, and Section V presents the different
networks used, comparison between the proposed approach
and other networks and characteristics of the proposed net-
work. Finally, Section VI concludes the paper and discusses
future directions.

II. BACKGROUND
A. Radar Signal Model

An FMCW radar system transmits a radio-frequency (RF)
signal that linearly sweeps over its bandwidth to enable the
acquisition of both range and velocity measurements [35]. The
instantaneous frequency of the chirp signal can be modeled as

B
fC/l(t):fYt+?tv O0<t=<r, (l)

where f;, is the initial frequency at time ¢ = 0, B is the
bandwidth and t represents the sweep time in seconds. The
received signal from a target with time delay 7 is mixed with
a copy of the transmitted signal and passed through a low-pass
filter (LPF) resulting in the intermediate frequency (IF) signal
that is modeled as

B B
Sir(t) = AexpQm(fuTa+ —Tat = z_erz”’ 2)

where A represents the amplitude of the signal. The FMCW
radar samples the IF signal and stores the received data in a
three-dimensional (3D) structure known as a radar data cube
(RDC). Each pulse consists of a fixed number of samples
known as fast-time samples. The return from each pulse, which
is repeatedly transmitted with a fixed pulse repetition interval
(PRI), is stacked to form a two-dimensional (2D) structure,
where the columns denote the slow-time samples. The number
of receiver channels is represented by the third dimension
of the RDC. Here, I x J x K can be considered as the
shape of the RDC consisting of I fast-time samples, J slow-
time samples, and K receiver channels. Different RF data
representations, such as Range-Doppler (RD), Range-Angle
(RA) or u-D signatures can be computed from the RDC.

B. Micro-Doppler Spectrogram Generation

The w-D shift refers to modulations in frequencies caused
by vibrations, oscillations, or rotations of parts of a target,
such as the moving arms and legs of a walking person. The
kinematic characteristics of any target in the radar field of view
(FoV) can be determined by the modulated frequencies created
from their movements [36]. A positive Doppler shift implies
motion toward the radar and a negative shift indicates motion
away from the radar. Currently, the most commonly used

Velocity (m/s)

Time (sec)

Fig. 1. Sample u-D signatures of ASL signs.

time-frequency transform for visualizing the wu-D signature of
a target is the spectrogram, which estimates the instantaneous
micro-Doppler frequency as a function of time by computing
the square modulus of the windowed Short-Time Fourier
Transform (STFT) across the slow-time data x(t) as

2

Sn, w) = ‘/Oo h(t — n)x(t)e /“dt| . 3)

where h(t) is the window function. Fig. 1 shows samples of
the u-D signatures of ASL signs acquired from fluent ASL
users using a 77 GHz radar system, where the time-varying
fluctuations of w-D reveal the distinctive characteristics of
each ASL sign.

ITI. PROPOSED METHOD
A. Learning Sinc Filters

Deep learning and modern neural networks have achieved
transformative advancements in many fields, especially com-
puter vision, but are based on the provision of real-valued
inputs and often with the cost of reduced explainability of the
underlying model. The filters learned by CNNs are generally
noisy multi-band shapes that could make sense for a machine
but not for human intuition. To help CNNs to learn more mean-
ingful filters directly from raw data, [31] proposed SincNet,
a new CNN architecture for speaker identification using real-
valued, raw audio data that learns parametrized sinc functions
in its first layer.

SincNet convolves the input waveform with a set of
parametrized sinc functions that implement band-pass filters
[37]. In this case, only the low and high cutoff frequencies of
the band-pass filters are learned from the data instead of learn-
ing all taps of a filter. An ideal real bandpass filter response
can be defined as the subtraction of two low-pass filters with
cut-off frequencies f; and f, in the frequency domain, where
Jfn 1s the higher and f; is the lower cut-off frequencies of
the filter respectively. The ideal bandpass function, which is a
rectangle function in the frequency domain, corresponds to a
sinc function in the time domain. The definition of the real sinc
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filter in time and frequency domains can be found in (4) and
(5). Equation (5) shows that the filter is symmetric with respect
to the origin in frequency domain; hence the time-domain filter
in (4) is real, making it suitable for real-valued signals such
as speech audio.

hin, fo, fn] = 2 fasinc 2w frn) —
f

f
HLf, fe. ful rect(th) rect( f) &)

The trainable parameters for the original SincNet are the
low and high cut-off frequencies f; and fj, respectively. Since
derivatives with respect to these parameters can be calcu-
lated the sinc layer is compatible with the backpropagation
operation, and thus the full model can be trained by the
stochastic gradient descent algorithm. In order to guarantee
that there is no aliasing in the convolution operation, the
cut-off frequencies are first initialized in the range [0, f;/2],
where f; is the sampling frequency. There is no additional
constraint for guaranteeing the range of the parameters during
training since [31] reports that the parameters are observed
not to move out of the range [0, f;/2]. The layer also contains
no additional learnable parameter for the amplitude since the
consequent convolutional layers do the work of assigning
importance over the filtered inputs. The sinc filter is multiplied
with a fixed Hamming window before the convolution process
to mitigate ripples near the edges of the pass-band.

The original SincNet learns only real sinc filters which
have corresponding two-sided band-pass filter responses.
This is effective for real inputs, such as audio waveforms;
however, radar raw data are complex [/Q time streams,
while micro-Doppler frequencies can be positive or negative,
depending on the underlying physical movement. Thus, real-
valued SincNet is not well-matched for radar applications.
In contrast, this paper develops a new DNN, CV-SincNet, that
learns from the radar data complex sinc filters with a one-sided
frequency domain band-pass representation.

2 fusincufon) (4

B. Complex SincNet Building Blocks

One of the most important benefits of using complex-valued
neural network models for radar signals is that it allows us
to use the complex raw radar data directly without requiring
exhaustive pre-processing, which can have steep computa-
tional complexity and latency. The proposed CV-SincNet
architecture is composed of a complex sinc layer followed
by complex convolution and complex fully-connected layers.
Complex activations, pooling, and normalization operations
are also required within the architecture. The theoretical basis
of the complex-valued neural network operations for convolu-
tion or activations are provided by several studies [32], [38].
Next, details of the CV-SincNet architecture are provided.

1) Complex Sinc Layer: We propose a newly designed
complex-valued sinc layer with structural changes in filter
definitions in order to adapt to complex-valued raw radar
input. We learn a complex filter-bank composed of single-sided
rectangular band-pass filters that are modeled with their center
frequency f, and bandwidth B parameters. Different from the
real-valued sinc filter in (4), the time-domain representation
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Fig. 2. The CV-Sinc block.

of the complex sinc filter is formulated as
hln, B, f.] = 2Bsinc(27 Bn) x ¢/*™/e" (6)

The complex filter is differentiable with respect to its learnable
parameters: the center frequency, f., and the bandwidth,
B; hence, it is also compatible with backpropagation. Each
complex-valued sinc filter has an equally-sized real and imag-
inary part as h = h, + jh;.

h, = 2Bsinc(2m Bn) x cos(2n f.n) @)
h; = 2Bsinc(2mw Bn) x sin(2x f.n) (8)

We apply windowing by multiplying learned filters with a
fixed Hamming window as h,[n, B, f.] = hln, B, f.] * o[n]
to smooth out the discontinuities at the edges of the band-pass
filters. The Hamming window utilized is defined as

2mn
w[n] =0.54 — 0.46 COS(T) 9)

where L is the length of the window and the learned filters.
The window is fixed and has no learnable parameters; hence,
the only learnable parameters in the complex SincNet layer
as shown in Fig. 2 are f.; and By for each learned filter k.
While the neural architecture in Sinc layer updates f.; and
By parameters of neurons, the input data is passed through
sinc filters corresponding to the updated parameters defined
by equations (7) and (8). As shown in Fig. 2 a pipeline of
pooling, normalization, ReLU activation and a dropout with
complex operations are employed after the initial CV-Sinc
layer. This sequence of layers is considered as the CV-Sinc
block. After the CV-Sinc block, the model is comprised of
three parallel convolutional blocks (CB) followed by six series
CBs. Each CB consists of a convolution, maxpooling, batch
normalization, a ReLU activation function, and a dropout
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Fig. 3. Flow diagram of the CV-SincNet architecture.

layer. The number of convolutional blocks can differ based
on the dimensionality of the input data. Then the tensor is
flattened and fed into a dense layer, after which classification
is done with a softmax layer. The general architecture of the
CV-SincNet model is given in Fig. 3.

The proposed CV-SincNet model has several advantages.
In addition to being directly operable on complex raw radar
data, the proposed complex sinc layers have a fewer number
of learnable parameters as compared to conventional layers.
A 1D sinc filter layer with K number of filters, regardless of
the length of the filter L, has only 2K learnable parameters,
whereas a 1D convolutional layer with K filters has L % K
learnable parameters. This characteristic helps reduce the
model size and computational complexity. Another advantage
is the interpretability of the sinc layer. The parameters learned
in the sinc layer have direct physical significance by showing
which specific Doppler frequencies and bands of the neural
network are important to the radar classification task. This
makes it much easier to interpret what the model has learned
as compared to traditional neural network architectures.

2) Complex Convolution Layer: To utilize complex-valued
representations in deep neural networks [32], complex con-
volution is defined using real-valued representations of the
complex-valued input and the kernel weights. The complex
kernel matrix is defined as W = Wi+ jW;, where W € CLxK
for K number of kernels of length L; Wi and W, are the
real and imaginary parts of W, respectively The distributive
property of the convolution operation allows for the definition
of the complex convolution operation of W with the complex
input x = xg + jx; in the real-domain as in (10).

Wxx=(Wgrxxg—Wrxxp)+ j(Wgxx;+ Wy xxg)

(10)
Note that the real and imaginary parts of the complex convo-
lution can be computed separately and the result is completely
different than just doing real convolutions separately on real

and imaginary channels. We can represent a complex-valued
tensor with N channels as a tensor with 2N channels, where

the first N channels are the real values and the rest of the
N channels are the imaginary values. Such a representation is
helpful for the computations over different layers.

3) Complex Fully Connected Layer: A complex-valued
fully connected layer with M number of neurons has a
complex weight matrix W € CM*" and a complex bias vector
B € CM . The fully connected layer’s output to a complex input
x € CV is simply Wx+ 8 and can be computed in real domain
as

W+ e [i)’t(W) —S(W)] |:§R(x):| N [E)’t(ﬂ)} (11

I(W) RW) J[3x) 3(B)
where the output’s first M channels are the real part and the
second M channels are the imaginary part.

4) Activation Functions With Complex Features: Two acti-
vation functions are used in the real SincNet model; ReLU
within the architecture layers and SoftMax at the final layer.
The proposed CV-SincNet utilizes the complex versions of
ReLU within the architecture layers and SoftMax at the final
layer. The complex ReLLU function (CReLU) proposed in [31]
applies the ReLU function over the real and imaginary parts
of the input separately, as defined by

ReLU (N (x))
ReLU(3(x))

The complex SoftMax function oc(x), on the other hand,
is defined as the standard SoftMax function o (x) applied on
the absolute value of the complex input as oc(x) = o (|x]).

5) Complex MaxPooling and Batch Normalization: The
complex MaxPooling layer is defined as a filtering operator
over the absolute value of the complex input. In the first step,
the absolute values of the complex input tensor are calculated.
Then, the traditional MaxPooling with a specified filter length
and stride is applied over the absolute values and the index
of the highest absolute value is recorded. The actual output
is then defined as the complex value that was located in the
saved index.

Batch normalization is generally useful to accelerate learn-
ing. The batch normalization for complex data is achieved

CReLU (x) := [ (12)
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TABLE I
TIIWR1143 RADAR PARAMETERS

[ Parameter | Value
Number of ADC samples 256
Number of TX channels 1
Number of RX channels 1
Start frequency 77 GHz
Stop frequency 81 GHz
Bandwidth 4 GHz
RX gain 45 dB
Periodicity 40 ms
Pulse repetition interval (PRI) 312.5 ps
Pulse repetition frequency (PRF) 3200 Hz
Number of ADC samples per chirp 256
Number of Chirp loops per Frame 128
Total number of frames 700
Total number of chirps 89,600
Total time 28s

following the process proposed in [32]. For this, a whitening
of 2D vector is done by multiplying the zero-centered data
with the inverse square root of the covariance matrix of real
and imaginary data components.

IV. EXPERIMENTAL SETUP AND DATASET
A. Experimental Setup

For RF data collection, a 77GHz TI IWR1443 automotive
short-range radar has been used. The radar has three transmit-
ters and four receivers in total. However, in this experiment,
the data from only one transmitter and one receiver have
been used. The radar system parameters selected for the data
collection are given in Table I.

For the experimental setup, the radar was positioned on
top of a table placed against a wall in a lab environment at
0.91 meters of height. ASL signers were sitting on a chair in
front of the radar at a distance of 1.5m. A computer monitor
was placed exactly behind the radar so that it is outside
the radar field of view (FOV). The monitor continuously
guides the participants about the signs that are needed to be
articulated. The experimental setup is shown in Fig. 4a.

B. Dataset

Five people including three professional ASL signers, two
deafs, one CODA (Child of Deaf Adults), and two lab
members participated in conducting the IRB-approved data
collection. 100 different ASL signs were selected from the
database ASL-LEX2 [39] for this experiment. In order to
make a diverse dataset, high-frequency signs which are not
phonologically related to each other were chosen. To evaluate
the performance of proposed CV-SincNet as compared to other
approaches, this challenging 100-class ASL radar dataset is
used. The corresponding English words for the utilized 100
ASL signs are shown in Table II. More information about the
utilized dataset can be found in [34].

The dataset consists of a total of 2500 radar sign samples
from five participants having 25 samples for each class.
As illustrated in Fig. 4b, five repetitions of each sign were
collected from each participant with 4s durations each fol-
lowed by an inter-stimulus interval of 2s. In total, the data
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(a) Experimental setup for data collection with radar [17]

| Hello | | Hello | | Hello Hello Hello
|

T 4s T2s T 45 Tos T 4s 2s 4s 2s 4

(b) Example of sequential prompts given to user.

Fig. 4. Experimental setup and timing of sign articulation.

was collected for 28s for each class from each participant.
Number of chirps captured during this 28s period was 89,600.
Thus, the number of chirps collected during one sample of data
(4s) 1s 12,800. Because of some small inconsistencies between
the start and finish time of each sample, additional 125 chirps
from both sides were also taken into consideration. For each
chirp 256 fast-time samples are acquired, making the size of
the 2D complex-valued raw radar data 256 x 13050 for a single
sign. After range processing, the range bins corresponding
to the target location are summed, forming a 1D slow-time
complex raw radar data vector of 1 x 13050, which can be
used for computation of the p-D signature or as the input
to a deep neural network. The proposed complex SincNet
architecture uses this 1D complex slow-time radar data after
range processing.

V. PERFORMANCE ANALYSIS OF THE PROPOSED METHOD

To evaluate the performance of the proposed CV-SincNet
architecture, comparisons have been made with several current
state-of-the-art techniques:

« CNN-2D: Conventional 2D real convolutional neural net-

work taking 2D spectrogram images as their input.

o CNN-1D: A real 1D convolutional neural network taking

raw radar data as real and imaginary in two channels.

« CVCNN-1D: A complex 1D convolutional neural net-

work directly working on complex raw radar data.

« SincNet: The real SincNet applied on raw radar data as

real and imaginary in two channels.

o CV-SincNet: The proposed complex SincNet architecture

working directly on the complex raw radar data.

The next sections will discuss the details of each architec-
ture and their training process. For analysis, the dataset was
randomly split into a single split of 80% and 20% training
and testing datasets respectively. The same set of training
and testing datasets have been used for all the architectures
compared.
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TABLE II
DATASET CONSISTING OF 100 ASL SIGNS

100 Class ASL Dataset

YOU YES ME HOME HOLD FATHER

MY MORNING THREE WRONG TOILET THERE

LONG I 10VE YOU DEAF SLEEP THANK YOU TIRED

HELLO OK THIS GOOD MUST HE

TIME BETTER TOMORROW WHY LIKE YOUR

ONE DON’T LIKE FINE SOMETHING MOTHER SEE

HOT BREAKFAST WATER EAT OH I SEE LET ME SEE

SOON WHERE PLEASE SHOULD ALWAYS TABLE

BOOK MORE BED HELP HAVE CITY

GO AHEAD SUMMON LICENSE THRILLED WANT WELL

FRIEND READ CHANCE READY BRING PET

MONTH GAS AGAIN WEEK GO NIGHT

TIE UP CAN RIGHT FAMILY KITCHEN WINTER

WORK TEACH CAR EVENING EXPLANATION PAPER

WHAT TODAY SSCHOOL COFFEE NOTHING SHOP

TECHNOLOGY WALK COOK SHOES TEACHER MAYBE

DOESN’T MATTER EXCITED MONEY PEOPLE
A. Detailed Descriptions of DNNs Compared TABLE III

MODEL S1ZES OF CVCNN-1D, CNN-1D, SINCNET AND CV-SINCNET

1) CNN-2D Architecture: Using Eq. (3), u-D signatures are Blocks G

generated and saved as 128 x 128 images, which are then (Num. of filters, CVCNN-1D | CNN-1D | SincNet | CV-SincNet
. . . Kernel Size, Maxpool)
supplied as input to a 2D CNN. Based on earlier work [8], Sinc(256 Nan.3) 004 1336
a CNN architecture of four convolutional layers with 32, 32, Conv 1 (256, 5, 3) 4096 3840
64, and 64 filters, respectively, was utilized. Each convolu- Parazlgi C(g’gvi)z’g)&d' 493440 246720 | 246720 493440
tional filter uses a kernel size of 5 x 5, which is then followed Fom 5 i6’4, s, 3) 123520 61760 61760 123520
by 2 x 2 maxpooling, batch normalization, ReLU activation Conv 6 (64, 5, 3) 41600 20800 | 20800 41600
. . Conv 7 (64, 5, 3) 41600 20800 20800 41600

function, and dropout of 0.3. After the convolutional blocks, Conv 8 (64. 5. 3) 21600 20800 30300 21600
the tensor is flattened and fed into a dense layer of size 256 x 1, Conv 9 (64, 5, 3) 41600 20800 20800 41600
after.which dropout of 0.5 is applied and input to a softmax C(;;ang 56?2’556’)2) 2é822 15908 19008 géggg
classifier. The CNN-2D architecture has a total of 469,060 Softmax (100) 51400 25700 25700 51400
parameters. Total Parameters 947,528 469,060 | 466,244 943,944

2) CNN-1D and SincNet Architectures: Two real networks,
a ID CNN and SincNet, were utilized to process the 1D
complex raw radar data. Both real networks separate the raw
complex RF data stream into its real and imaginary parts,
forming a real input representation of size 13050 x 2. The
first layer of SincNet is comprised of 256 real sinc filters,
each with 251 data points. This sinc layer is then followed
by a maxpooling layer of size 1 x 3, batch normalization,
ReLU activation, and dropout of 0.2. This sequence of layers
comprises the sinc block, which is shown in Fig. 2. The sinc
block is followed by three parallel and five series convolutional
blocks, as well as two dense layers. The kernel sizes of the
parallel convolutional blocks were selected as 1 x 3, 1 x 5,
and 1 x 7 to enable multi-resolution feature extraction, yielding
more information and making the model more stable, while
also enhancing the resulting accuracy. The kernel sizes for the
series convolutional blocks were fixed at a size of 1 x 5. The
outputs of the convolutional blocks are flattened before input
to a dense layer with a size of 256. After application of dropout
of 0.3, the network uses a softmax layer for classification.

In lieu of the sinc blocks, the CNN-1D architecture uti-
lizes a convolutional block as its first layer, after which its
architecture is the same as that of SincNet. Details about the

architectures and a layer-by-layer comparison of the number
of parameters for each network are given in Table III.

3) CVCNN-ID and CV-SincNet Architectures: In con-
trast with the real networks, the complex-valued networks,
CVCNN-1D and proposed CV-SincNet, directly take as
input the raw complex RF data. The principle differences
between the complex DNNs and their real counterparts
are that 1) complex convolutions, complex max-pooling,
complex batch normalization, complex ReLU and complex
dropout blocks replace their real counterparts; and 2) The
complex sinc block in CV-SincNet have been completely
redesigned to be one-sided, complex bandpass filters that
separately focus on positive or negative Doppler frequencies.
While the CVCNN-1D employs 10 convolutional blocks, in
CV-SincNet the first convolutional block is replaced with a
sinc block, while the remainder of the architecture is the
same.

For better visualization, the flow diagram of the full
CV-SincNet architecture is shown in Fig. 3. Detailed infor-
mation about the complex networks and their parameters are
given in Table III as well.
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TABLE IV

PERFORMANCE OF THE COMPARED MODELS IN TERMS
OF EVALUATION METRICS

Network Input iestmg Precision | Recall Fl
ccuracy Score

CNN-2D 2D u-Ds 60.97 65.47 60.65 59.5

CNN-1D 1D 17.51 18.56 17.55 16.36

CVCNN-1D | slow-time | 23.21 21.73 23.20 21.61

SincNet raw radar | 57.05 62.96 57.55 56.73

CV-SincNet data 65.19 73.29 65.45 64.95
TABLE V

TESTING ACCURACY FOR TOP-1,3 AND-5 FOR COMPARED APPROACHES

Testing Accuracy
NEALS Top 1 | Top3 | Top 5
CNN-2D (on p-Ds) | 60.97 | 81.01 | 87.76
CNN-1D 17.51 | 3038 | 38.40
CVCNN-1D 2321 | 3544 | 41.98
SincNet 57.05 | 75.69 | 82.69
CV-SincNet 65.19 | 81.86 | 88.82

B. Performance Comparison

1) Performance for 100 Class ASL Data: For performance
evaluation, the entire dataset was split into 80% training and
20% testing as mentioned earlier in this section. Each model
has been trained for a long enough time to reach convergence.
All of the compared models are trained for 150 epochs.
Afterward, the trained models are tested on the same test data
and confusion matrices were generated for each model. Testing
accuracy, precision, recall and F1 scores were evaluated from
the confusion matrices and shown in Table IV.

The proposed CV-SincNet architecture outperforms the
compared approaches in all the metrics. First, among the
methods that utilize radar raw data, SincNet and CV-SincNet
significantly outperform the convolutional networks, CNN-1D
and CVCNN-1D. The use of sinc filters as the initial layer
of the network and learning frequency domain information
has improved the performance as compared to trying to learn
random convolutional filters directly from the raw radar data.
Second, the proposed CV-SincNet performs higher in all
evaluation metrics as compared to the real SincNet. This
signifies the importance of complex network computational
and learning complex Sinc filters that are physically more
relevant for radar data. Utilizing complex networks also helps
the performance of 1D CNN architectures since raw radar data
is naturally complex. Third, the proposed CV-SincNet achieves
improved accuracy relative to that obtained using a CNN-2D,
a real-valued network that takes as input u-D signatures after
pre-processing with a time-frequency transform. This approach
is one of the most applied approaches in the literature [8]
and consistently provides high performance because target
kinematics are explicitly revealed by the w-D. Thus, it is
significant that CV-SincNet can provide comparable or even
slightly better results without the computational burden of
explicitly computing the u-D signature.

For further assessment, top-3 and top-5 accuracies were also
computed and shown in Table V. Top-N accuracy indicates
whether the model is able to predict the expected class within
the top-N highest probabilities. Since the dataset consists of
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Fig. 5. Testing accuracy for all networks with respect to varying number of
classes.

100

100 classes, Top-N accuracy measurement is an important
performance-evaluating factor to consider. The top-3 and top-5
accuracies of CV-SincNet also surpass that of other meth-
ods, although the performance gap between CV-SincNet and
CNN-2D is much lower in these two cases. While CNN-1D
and CVCNN-1D are still showing poor performance both mod-
els have around 40% accuracy while estimating the top-5 case.
Both complex-valued networks yielded better performance
than their real counterparts.

2) Performance for Varying Number of Classes: Radar-
based activity recognition applications may require the recog-
nition of a varying number of classes. To test the effectiveness
of the proposed approach as a function of the number of
classes, the dataset was divided into subsets by varying
the number of classes from 10 to 100 with an interval of
10 between each of them. Each subset of data was then
divided into 80% training and 20% testing. The same network
architectures were used to train the 10 datasets separately.
Figure 5 shows the testing accuracy results for each network as
a function of the number of classes. While all models followed
a downward trend in performance when the number of classes
increased, the CV-SincNet has the highest accuracy for almost
all cases. The CV-SincNet yielded 85.72% and 65.19% testing
accuracy, whereas the 2nd best model, CNN-2D, yielded
80.74% and 60.94% accuracy for 10 and 100 classes, respec-
tively. CV-SincNet also performed on average 10% higher
accuracy as compared to real SincNet. The CVCNN-1D and
CNN-1D models’ performances were much lower than the
rest of the networks for all cases. While the complex model
CVCNN-1D showed approximately 8% higher performance
than the CNN-1D, the significant improvement of utilizing
sinc filters in lieu of convolutional layers is a testament
to the significance of frequency-domain information and the
efficiency of learning frequency-domain representations using
the proposed approach.

3) Comparison of Computational Latency: A key metric
that is as critical as classification accuracy when considering
real-time classification applications, is the total computational
latency for classification. The overall latency is the time
required starting with data acquisition to generate a prediction.
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TABLE VI
COMPUTATIONAL TIME REQUIRED FOR EACH NETWORK
Total Pre- Avg.
s q pre- Total la-
Network training processing| . .
5 A diction tency
time time q
time
CNN-2D (on p-Ds) 8 min 2601 ms 29 ms 2630 ms
CNN-1D 33 min 377 ms 179 ms 556 ms
CVCNN-1D 42 min 377 ms 216 ms 603 ms
SincNet 2.25 hrs 377 ms 338 ms 715 ms
CV-SincNet 2.68 hrs 377 ms 379 ms 756 ms

Methods with low latency and high performance are desired to
achieve near real-time human activity recognition. To compare
the computational requirements of each approach, we observed
the average pre-processing, training, and prediction times,
which are listed in Table VI.

The pre-processing time is the duration for one data sample
from data acquisition to be ready as an input to the deep
neural network. First, the 2D fast-time slow-time data matrix
is obtained from the corresponding TX-RX pair. Next, range
processing is applied to the fast-time samples and 1D slow-
time data is obtained through summing the range bins for
each slow-time sample. This 1D data is the input for all
networks other than CNN-2D. For CNN-2D, an additional
short-time Fourier transform (STFT) operation is needed over
the slow-time data to generate the p-D spectrogram images.
The computation of an STFT requires multiple windowed
Fourier transforms in order to generate the spectrogram output.
This is the reason why the pre-processing of the data takes
much longer for CNN-2D as compared to the other 1D
approaches. Next, each network is trained over the training
dataset and after training the average prediction time represents
the time for a trained network to generate the prediction result
when given an input data sample. Both the data processing
and network training have been done using an Alienware m15
R7 laptop with an NVIDIA 3060 GPU, Intel 11th Gen CPU,
and 32 GB memory.

While training times for SincNets are higher than CNN-1D
or CNN-2D approaches, since training is done only once,
the total latency time, which is the sum of pre-processing
and average prediction time, is the important metric for the
real-time suitability of the approaches. For the total latency,
all 1D raw data processing networks have much lower latency
values compared to CNN-2D. A method is desired to have
both low latency and high accuracy performance. Figure 6
is a visual representation of testing accuracy and prediction
time for each network. It can be seen that real SincNet and
the proposed CV-SincNet provide both high accuracy and
low latency, while the proposed CV-SincNet provides the best
performance for both considerations. While CNN-2D provides
high accuracy, it also has a very long latency, which precludes
it from being used in real-time applications. CNN-1D and
CVCNN-1D have low latency, but also a very low accuracy,
also making it an untenable approach. The performance of the
proposed CV-SincNet shows that it is a good solution for near
real-time and high-accuracy radar-based activity recognition
problems.
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Fig. 6. Testing accuracy vs prediction time.

TABLE VII
CV-SINCNET PERFORMANCE V. # SINC FILTERS
Num of fil- NI Training Testing ac- Avg.. .
parame- . prediction
ters time curacy .
ters time
8 466,296 0.35 hrs 30.97% 83 ms
16 481,704 0.37 hrs 47.68% 100 ms
32 512,520 0.45 hrs 61.18% 111 ms
64 575,152 0.58 hrs 64.98% 167 ms
256 943,944 2.68 hrs 65.19% 379 ms
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Fig. 7. Weights of each sinc filter.

We further analyze the proposed CV-SincNet in terms of
the effect of the number of sinc filters on both accuracy and
latency metrics. The model is trained with sinc layers with a
varying number of sinc filters from 8 to 256 and the achieved
testing accuracy and average prediction times for each case are
shown in Table VII. Using fewer sinc filters reduces prediction
times; but too few filters also reduces the accuracy. Using
64 filters, the average prediction time was reduced by about
56% while maintaining almost the same performance level as
using 256 filters.

C. CV-SincNet Interpretability

An important property of the proposed CV-SincNet is its
enhanced interpretability. Each sinc filter only depends on
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Fig. 10. Filter and weight distribution in frequency domain of the learned

parameters with a clear physical meaning, such as Doppler
frequencies and bandwidths. In order to understand which fre-
quency bands are spanned by the learned filters, the cumulative
weights of the three parallel convolutional filters subsequent
to the sinc blocks have been calculated. The normalized
magnitude of the weights corresponding to each of the 256 sinc
filters is shown in Figure 7. It may be observed that the model
gives higher importance to some of the learned filters. Figure 8
indicates the time and frequency domain representation of
the top three learned sinc filters based on their calculated
weights. The corresponding center frequencies and bandwidths
for these filters are also illustrated. For better visualization,
these three filters were projected over a u-D spectrogram
image as shown in Fig. 9. It is interesting to see that two of
the top learned filters mainly focus on the lower and upper
Doppler frequencies. The third filter learns a band around
-250 Hz, near zero Doppler.

complex sinc filters.

Furthermore, insights about sign language can be obtained
from results revealed by plotting the histogram and the
cumulative weight distribution of the learned sinc filters in
the frequency domain, as shown in Figure 10. It may be
observed that 98 out the 256 learned filters lie between
-400 Hz and 400 Hz. This shows that the model focuses
on this part of the Doppler spectrum by using more filters
and weights, while some of the top learned filters focus
on upper and lower envelope frequencies. While the model
doesn’t give importance to some frequency regions such as
[1200,1600), where not much of the activity response resides,
other bands such as (-1200 to -800] or [400,800) are utilized
with a greater number of learned filters and corresponding
weights. This also makes sense since intervals span frequency
bands containing much of the higher-frequency micro-Doppler
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components, which correspond to the movement of the hands
during sign language articulation. In fact, it is interesting
to note that the distribution of filters across frequency is
asymmetric, with a larger number of filters spanning positive
frequencies rather than zero or negative frequencies. This is not
a coincidence. The signs comprising our database of 100 signs
are more kinetic in nature, with intentional inclusion of a
distribution of signs articulated using 2, 3, or 4 strokes of
movement. Signs that start on the head or the body are more
likely to embody forward movements. Such movements toward
the radar result in positive Doppler frequencies observed by
the radar, which accounts for the increased number of filters
learned over positive frequencies.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced complex-valued SincNet
(CV-SincNet), where the network learns more interpretable fil-
ters and directly works on complex raw radar data. In order to
make our model efficient and compatible with the raw complex
radar data, we designed a complex sinc layer, where the model
learns sinc filters having a center frequency and bandwidth
as trainable parameters for each filter. The remaining aspects
of the CV-SincNet architecture utilized complex versions
of common DNN blocks, such as convolution, maxpooling,
and batch normalization, ReLU and dropout. Furthermore,
the efficacy of the proposed CV-SincNet architecture was
demonstrated on a challenging 100-sign dataset using complex
radar data as input. The results of our current approach show
promise for ubiquitous, real-time RF sensing applications. Not
only does the CV-SincNet architecture provide better accuracy
result than the widely used state-of-the-art CNN-2D that works
on wu-D spectrogram images or other CNN variants working
on 1D radar data, but it also provides much lower latency
results showing a high potential for near real-time human
activity recognition. The learned sinc filters depend only on
meaningful physical parameters, such as the center Doppler
frequency and bandwidths; hence, they are more interpretable.
Future work will focus on embedding the proposed models on
edge computing platforms to demonstrate RF-sensing based
cyber-physical human system applications.
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