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Abstract—The accuracy of geophysical retrievals from radiome-
ters relies on calibration quality, encompassing both absolute ra-
diometric accuracy and spectral consistency. Radiometers have
employed various calibration techniques, including external tar-
gets, vicarious sources, and internal calibrators like noise diodes or
matched reference loads. Calibration techniques face challenges
like frequency dependence, instrumental effects, environmental
influences, drift, aging, and radio frequency interference. Recent
hardware advancements enable radiometers to collect raw samples
containing both temporal and spectral information. Leveraging
advanced modeling techniques like deep learning (DL) enables
detecting subtle correlations, non-linear dependencies, and higher-
order interactions within the data extracting valuable information
that may have been challenging with conventional methods. This
study utilizes NASA’s Soil Moisture Active Passive (SMAP) satel-
lite’s level 1A and level 1B data products to develop a DL-based
radiometer calibrator to estimate antenna temperature. Spectro-
grams of second raw moments equivalent to power carrying the
2-D spectral features serve as primary input in a supervised con-
volutional neural network-based architecture. DL-based calibrator
has demonstrated high correlation and low root mean square error
when incorporating spectral information from both reference and
noise diodes and when not considering this information. Findings
suggest that the ancillary features such as internal thermistor tem-
perature and loss elements exhibit sufficient accuracy in estimating
antenna temperature to compensate for variations in receiver noise
temperature and short-term gain fluctuations in the absence of
the reference load and noise diode power. The proposed calibra-
tion technique with reduced reference information might enable
radiometers for a higher number of antenna scene observations
within a footprint.

Index Terms—Calibration, deep learning (DL), machine
learning, microwave radiometry, neural network, radio frequency
interference (RFI), soil moisture active passive (SMAP).
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I. INTRODUCTION

ICROWAVE and millimeter wave radiometry has played
M a vital role in advancing our understanding of the distri-
bution and dynamics of geophysical parameters, such as soil
moisture, sea-surface wind, ocean salinity, atmospheric water
vapor, freeze/thaw state, and snow water equivalent [1], [2], [3].
These instruments have proven to be extremely valuable across
diverse fields, including hydrology, agriculture, meteorology,
climatology, and oceanography. Evaluating the performance of
a radiometer involves considering various crucial factors, such
as accuracy and sensitivity. Accuracy directly impacts the relia-
bility of the parameters derived from radiometric measurements.
Conversely, radiometric resolution or sensitivity determines the
smallest detectable change in a radiometer’s readings, account-
ing for its internal noise [4], [5]. Sensitivity plays a crucial role in
microwave radiometry according to the requirement of observed
geophysical parameters. Consequently, enhancing accuracy and
radiometric resolution contributes to higher-quality geophysical
data derived from radiometric measurements [6].

Microwave radiometers employ various calibration methods
to achieve precise and dependable measurements of microwave
radiation. These calibration techniques are designed to enhance
the accuracy and reliability of the collected data. Calibration
techniques can be categorized into two distinct parts: external
calibration and internal calibration [7]. This end-to-end cali-
bration is widely used to estimate antenna temperature in mi-
crowave radiometers [1]. External calibration technique involves
using external references or targets in space to calibrate the
radiometer’s measurements. This involves well-characterized
radiometric properties of two known targets and can be used
as a reference to produce a voltage-to-antenna temperature
calibration line. However, challenges include accessing stable
calibration references, variations in environmental conditions,
instrument stability within the calibration cycle, and correcting
fast 1/f noise gain fluctuations [4], [8].

Radiometer internal calibration includes noise injection and
Dicke-switching reference loads. By employing a fast switch-
ing between internal calibration sources, the gain fluctuation
resulting from 1/f noise at the receiver output can be effec-
tively eliminated. This calibration technique assumes that the
output voltage is linearly related to the noise temperature of the
input source. However, in practice, the calibration of internal
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calibrators may introduce measurement uncertainty attributed
to various factors, including noise diode instability arising from
thermal fluctuations and aging, as well as potential mismatches
at the reference load [9]. These factors can introduce errors
or biases in the calibration, leading to inaccuracies in the ra-
diometric measurements [6], [10], [11]. This study proposes a
new calibration technique based on deep learning (DL) that will
utilize: 1) 2-D time—frequency spectral features and 2) reduced
reference information from reference and noise sources to esti-
mate antenna temperature. The utilization of the DL method
shows promising potential in reducing the need for frequent
internal calibration, thereby facilitating an increased frequency
of antenna temperature measurements. Following the launch,
samples collected from vicarious sources or other calibration
targets can be employed to tune the DL-based calibration of
the instrument during on-orbit operation. This adjustment might
be crucial in accommodating on-orbit effects, nonstationary
instrument changes, such as aging and orbital variations.

Data-driven approaches have been recently introduced for
the calibration of radiometers, as demonstrated in the works of
authors in [12] and [13]. These studies employed both simulated
and airborne microwave radiometer instruments to evaluate the
effectiveness of the proposed techniques. Both of these studies
utilized an artificial neural network (ANN) framework to esti-
mate antenna temperature from the radiometer output voltages.
Different training scenarios are utilized to understand the de-
pendence on reference loads and noise diodes (ND). The input
features consist of average voltage for a particular footprint or
antenna temperature estimation. However, radiometers are mov-
ing toward wideband sensing in the unprotected region, so it is
important to leverage spectral information [ 14]. Radiometers are
collecting time—frequency 2-D data, which is not directly used
in calibration. The proposed approach of this study will be using
those 2-D features along with different ancillary information for
the calibration to examine the robustness with reduced reference
information. Different validation strategies will be employed
to understand the generalization capability of DL in estimating
antenna temperature.

This article presents a novel DL-based calibration framework
that aims to accurately estimate antenna temperature using
spectrograms, which are 2-D time—frequency spectral features
derived from raw antenna counts or voltages. In addition, the
framework incorporates temperature and losses information
from radiometer elements to enhance the calibration perfor-
mance. Convolutional neural networks (CNNs) along with fully
connected layers have been utilized to model the relationship
between the input voltage and output antenna temperatures.
The input consists of several primary and secondary features
to help with data-driven modeling. To understand, how much
information the DL-based calibrator needs from the ND and
reference load, we demonstrate different training and testing
scenarios. NASA’s Soil Moisture Active Passive (SMAP) satel-
lite’s level 1A and level 1B data products are utilized as the
dataset [15], [16], [17]. Level 1A antenna counts are used as
inputs of the DL-model and level 1B antenna temperatures are
used as the label temperature/ ground truth information [18],
[19]. In order to assess the robustness and effectiveness of our

TABLE I
YEAR WISE DATA STATISTICS FOR CALIBRATION

Year | Total Samples | Usable for DL | Land : Land-Water (%)
2017 54,819,788 47,241,275 17.76
2018 49,281,487 38,854,325 17.62
2019 51,411,623 39,611,521 17.82
2020 52,112,242 41,124,791 17.75
2021 53,619,032 43,158,189 17.79
2022 52,235,101 44 431,891 17.77
Total 313,479,273 255,421,992 17.74

model within a new time frame, we trained it using data from
a specific year and evaluated its performance using data from
different years. The occurrence of gain fluctuations necessitates
frequent internal calibration. However, the employment of the
DL method holds promise in reducing the frequency of inter-
nal calibration, thereby enabling a greater number of antenna
temperature measurements. This study’s DL-based framework
provides better performance than previous ANN-based models
with additional cross-validation (CV) techniques to portray the
robustness [12], [13].

The rest of this article is organized as follows. Details of the
utilized SMAP data statistics, dataset preparation, and example
spectrograms are discussed in Section II. Section III details the
preprocessing on data, the proposed DL architecture, training
of the DL architecture and evaluation metrics of DL models.
Results and discussions are provided in Section IV and V,
respectively. Finally, Section VI concludes this article.

II. DATASET

In this study, the development of a DL-based calibration unit is
realized on the utilization of level 1A and level 1B data products
from SMAP. These data products serve as the foundation for
training and implementing the calibration framework. SMAP is
an Earth observation satellite that provides 36 x 47 km? spatial
resolution and takes about 23 days to complete global coverage.
The SMAP satellite was successfully launched on 31 January,
2015, and has since been a valuable source of essential scientific
data products contributing significantly to Earth observation
and weather prediction endeavors [20], [21], [22], [23]. Data
products for this study are taken from the year 2017 to 2022 to
perform the training and testing of the algorithm. In the following
sections, we will demonstrate data statistics along with which
features are chosen from SMAP level 1A and level 1B data
products to train the DL model. This will be followed by data
preparation, data statistics, and training scenarios.

A. Data Statistics

Table I gives the overall data statistics. Total 313 million
samples or footprints from SMAP are considered in this study.
In data-driven modeling approaches it is important to ensure
the quality and reliability of the data products. Quality flags
from SMAP level 1B are used to ensure the consistency in
data. SMAP contains different quality flags, such as range
flag—which ensures data temperature value is not out of range,
acceptable quality flag—which confirms the acceptable quality
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Fig. 1.

Ilustration of input features for DL-based radiometer calibration. (a) 2-D (16 x 8) primary inputs. (b) Scalar secondary inputs. (c) Five FG for different

training/testing scenarios illustrated with colors. (d) SMAP data structure for a particular HDFS file and corresponding switching sequence of a particular footprint.
(e) Overall spectrogram of a particular footprint comprises eight antenna measurements and 16 subbands for each antenna measurement.

of the measurements, RFI detection flag—whether a footprint
is RFI contaminated or not, and NEDT flag—footprints have
acceptable radiometric resolution. These flags contribute to the
selection of approximately 255 million samples over a span
of six years, which can be effectively utilized for DL input
purposes. Using footprint surface status these samples are further
divided into land (ground only) and land—water mix (containing
both ground and water) samples. The ratio between land and
land—water ranges from 17.6% to 17.8%. Input features for DL-
based calibration are shown in Fig. 1, which will be discussed
further in the following sections.

B. SMAP Level 1A Data

The SMAP level 1A data product comprises antenna counts
at both full-band and subband levels [16], [18]. These antenna
counts are represented by the first, second, third, and fourth-
order statistical raw moments. In this study, the second raw
moments hold particular significance as they can be treated
as an equivalent measure of power. Therefore, the second raw
moments serve as the primary input for the analysis conducted
in this research. Fig. 1(a) lists the features extracted from level
1A data product. In addition, input features in this study include
the measured counts of the reference load and the reference plus
ND. These reference counts provide valuable information and
are utilized alongside the raw antenna moments for the analysis
conducted in this research. All of these moments are available
in both the in-phase (I) and quadrature (Q) channels for both the
horizontal polarization (H-pol) and vertical polarization (V-pol).
The precise delineation of variable definitions within SMAP
level 1A products is comprehensively outlined in Table II. This
table consists of the information used for DL-based calibration
and corresponding data name fields in SMAP. It also provides a
description of how SMAP stores that particular data field. The
modifications applied to the input features for the DL-based
framework will be comprehensively explained in Section II-D
of this article.

C. SMAP Level 1B Data

The level 1B data products consist of antenna temperature
measurements, quality flags indicating data reliability, and loss
elements pertaining to various radiometer components [17],
[19]. The features are presented and listed in Fig. 1(a) and (b),
respectively. In this study, the antenna temperature values of
both the H-pol and V-pol are utilized as ground truth references.
These measurements are employed to model the relationship
between the measured input voltage and the resulting antenna
temperature. To help with the calibration, thermistor data from
the reference load and ND physical temperature are also taken as
input features to the model. The model also incorporates thermis-
tor/ physical temperature readings from various components of
the satellite, including the reflector, feed horn, orthomode trans-
ducer (OMT), and correlated noise source (CNS) for training.
Loss elements of different components are crucial in calibrating
radiometers and loss elements, such as reflector loss, feed horn
loss, and phase imbalances are also taken from SMAP level 1B
data products. More details about these features can be found
in the algorithm theoretical basis document of SMAP [24]. The
comprehensive elucidation of variable definitions within SMAP
level 1A and level 1B product is provided in Table II. The first
column shows the inputs utilized in the DL-based calibration.
The second column illustrates the corresponding data name
fields in SMAP level 1A and level 1B user guides [16], [17]. The
description of the data field is depicted in the third column. The
subsequent section will showcase the data preparation process
for a DL-based calibrator, employing level 1A and level 1B data
products.

D. Data Preparation

Input features utilized in the DL-based calibrator are divided
into primary and secondary groups as illustrated in Fig. 1(a)
and 1(b). The primary inputs consist of 2-D time—frequency
spectrograms, which are directly fed into the convolutional
layers of the DL model. In addition, secondary inputs comprise
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TABLEII

SMAP LEVEL 1A AND LEVEL 1B DATA USED FOR DL-BASED CALIBRATION [16], [17]

Inputs for DL-Based

Calibration

Data Name Field In SMAP

Description

2nd Raw Moments (T)

The second raw moment in each packet of sub-band radiometer data in the antenna state. Both

2nd Raw Moments (Q) m2_16_ant V-pol and H-pol are separated into their in-phase and quadrature components.
Radiometer Power in
Ref. Load (I) m2 16, ref The second raw moment of sub-band radiometer data in the reference state. Both V-pol and
Radiometer Power in - H-pol are separated into their in-phase and quadrature components.
Ref. Load (Q)
Radiometer Power in
Ref. Load and ND (I) m2 16 ref nd The second raw moment of sub-band radiometer data in the reference plus internal noise diode
Radiometer Power in - state. Both V-pol and H-pol are separated into their in-phase and quadrature components.
Ref. Load and ND (Q)

cal_temp_ref Physical temperature of reference load. Stored as V-pol and H-pol.

Antenna Temperature of
the Reference Load

cal_tempref_offset16

Physical temperature offset for reference load. This is divided into sub-band radiometer data
and separated into V-pol and H-pol.

Antenna Temperature of
ND

cal_temp_nd16

Physical temperature for ND. This is divided into sub-band radiometer data and separated into
V-pol and H-pol.

Phase Difference

cal_xnd_phasel6

External noise diode phase. This is divided into sub-band radiometer data and separated into
V-pol and H-pol.

Reflector Loss

cal_loss1_reflector

Loss factor of reflector. Stored as V-pol and H-pol.

Feed Horn Loss

cal_loss2_feedl6

Loss factor of feed. Stored as V-pol and H-pol.

Reflector Temperature

cal_temp]_reflector

Physical temperature of reflector. Stored as V-pol and H-pol.

Feed Horn Temperature

cal_temp?2_feed

Physical temperature of feed. Stored as V-pol and H-pol.

OMT Temperature

cal_temp3_omt

Physical temperature of OMT. Stored as V-pol and H-pol.

CNS Temperature

cal_temp4_coupler

Physical temperature of CNS. Stored as V-pol and H-pol.

Diplexer Temperature

cal_temp5_diplexer

Physical temperature of diplexer. Stored as V-pol and H-pol.

Radome Temperature

cal_temp12_radome

Physical temperature of radome. Stored as V-pol and H-pol.

ta_filtered_v V-pol antenna temperature after RFI filtering.
Antenna Temperature
ta_filtered_h H-pol antenna temperature after RFI filtering.
. tb_qual_flag_v Bit flags that indicate the quality of the V-pol brightness temperature.
Quality Flags - -
tb_qual_flag_h Bit flags that indicate the quality of the H-pol brightness temperature.

Footprint Status footprint_surface_status

Indicates if the footprint center lies on land (0) or water (1).

single-valued features that are combined inside DL-framework
with the extracted features from the primary input. These inputs
are divided into five different feature groups (FGs) shown in
Fig. 1(c) to find the opportunistic solution to calibrate radiome-
ters with or without the power information from reference and
ND. FG; contains the features of 2nd raw moments equivalent
to power of observed scene. FGy and FG3 contains the power of
reference load and ND, respectively. These two FGs are crucial
to implementing a linear relationship between the temperature
and power of the radiometer. FG, contains the internal physical
temperature of reference and ND and FGs contains the element
losses and physical temperatures. FGs are categorized according
to their distinct roles within the radiometer. Five different FGs
will help to create different training scenarios for DL (detailed in
SectionII-E). Among all the FGs, FG; consists of antenna counts
information, FG; and FG3 provide reference counts information.
FG4 and FGs offer internal temperature, loss elements, and
phase information of reference and radiometer components.
Switching of the radiometer for a particular footprint along with
SMAP data structure for a particular HDF? file is illustrated in
Fig. 1(d). A radiometer footprint is defined as a sequence of 12
packets and each packet corresponds to a time duration of 1.2 ms.

Within this sequence, eight packets are dedicated to observing
the scene grouped with FG;, while the 5th, 6th, 11th, and
12th packets are specifically allocated for internal calibration
purposes grouped with FG; and FGs. Each packet contains
1.2 ms of radiometer data integration and they are divided into
16 subbands where each subband covers a band of 1.5 MHz
forming the total SMAP radiometer band of 1400-1427 MHz.
Primary inputs illustrated in Fig. 1 are 2-D spectrograms with a
shape of 16 x 8. Fig. 1(e) illustrates an example antenna count
spectrogram of a particular footprint comprising 8 antenna mea-
surements and 16 subbands. A particular radiometer footprint
consists of two packets of reference and two packets of reference
plus ND. To accommodate a consistent matrix size for the DL
model, we have broadcasted these observations into 16 x 8
rather than 16 x 2. The broadcasting process involves extending
the same reference packet for four consecutive packets within
a specific subband.

Spectrograms of these input features are demonstrated in
Fig. 2. Second raw moments of I and Q channels are illustrated
in Fig. 2(a) and 2(b). These spectrograms show how a particular
antenna footprint comprises 8-time windows and 16 frequency
subband measurements. Spectrograms of reference load (I and
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Fig. 2.

Example spectrograms generated from level 1A and level 1B data products for a particular footprint. Antenna counts of (a) second raw moments (I),

(b) second raw moments (Q), (c) reference load (), (d) reference load (Q). (e) Reference load and ND (1), (f) reference load and ND (Q), (g) reference load physical
temperature, (h) ND physical temperature, and (i) phase. The spectrograms were acquired using vertical polarization.

Q) and reference load plus ND (I and Q) are depicted in Fig. 2(c)—
(f), respectively. As mentioned previously there are two packets
of reference load power for a particular radiometer footprint and
these are converted into 16 x 8 spectrograms to accommodate
directly into the DL-based framework. Fig. 2(g)—(i) illustrate
the physical temperature of reference load, physical temperature
of ND, and phase difference, respectively. These nine different
2-D primary input (see Fig. 1) features are combined to create
a new image with a tensor of 16 x 8 x 9. Secondary inputs are
a single numerical value for each footprint and incorporating
them in a DL-based calibrator helps to increase the performance
by addressing instrument attributes. Nine-channel 16 x & tensor
helps to map a relationship between antenna temperatures and
antenna counts spectrograms by extracting important features
through a DL-based framework. This study’s novel framework
offers enhanced flexibility and capability by learning features
from 2-D spectral inputs and combining them with single-value
loss and temperature elements. This is completely different
than previous architectures based on ANNs [12] that utilize
single-value power feature inputs.

E. Training Scenarios

From the previous section, we have seen all the input features
are divided into five major FG in accordance with their function-
ality in a radiometer calibration. These FGs are used to develop
various training and testing schemes for DL-based frameworks.

These training schemes are essential for determining the op-
timal amount of voltage or power information required from
the reference unit to achieve an accurate estimation of antenna
temperature. These training schemes are given below.

1) Case I: All FG.

2) Case 2: FG1 + FG3 + FG4 + FGs.

3) Case 3: FGy + FG3 + FG4 + FGs.

4) Case 4: FG; + FG; + FG; + FGy4 + FGs.

5) Case 5: FGy + FG, + FGs.

FG} and FGj represent using only the 5th and 6th time
packet observation of FG, and FGs. These training schemes for
DL-based calibrators are illustrated in Fig. 3. Case 1 utilizes the
same input features that are used in conventional radiometer cali-
bration. As we are using SMAP’s antenna temperature as ground
truth, a direct comparison with the conventional approach is out
of scope for this study. But future studies will incorporate this
calibration method in airborne L-band radiometers to compare
the performance. Case 2 will be using the information from
ND and without matched reference load information. Case 3 is
opposite to Case 2 using only reference load information. Case 4
utilizes one packet of reference and ND information whereas
conventional calibration requires two packets of reference and
ND information per radiometer footprint. Case 5 uses no power
information from the reference load and ND. It is important to
note that during our training process, we always incorporate
FGi, FGy4, and FGs. FG4 contains the physical temperature
feature of reference and ND. The findings from this analysis will
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Fig. 3. Different training schemes for DL-based calibrator.

suggest that the thermistor temperature and loss elements exhibit
sufficient stability to compensate for variations in receiver noise
temperature and short-term gain fluctuations in the absence of
the reference load and ND power.

Utilizing the footprint surface status quality flags, we have
trained and tested our model with samples from only land and
samples from the land—water combination. This flag indicates
if the footprint center lies on land (0) or water (1). Training
and testing with land and land—water combinations help to un-
derstand the spatial dependency of the DL-based models. V-pol
antenna temperature of the samples showing different spatial
distributions is depicted in Fig. 4. Samples from the land—water
combination will be critical to understanding if there are any
additional biases affecting the performance of the model. It will
also help to understand if a higher dynamic temperature range in
land—water mix samples has any impact on DL-based calibrator
performance.

ITII. METHODOLOGY

DL is an approach within machine learning that specifically
emphasizes the utilization of neural networks with multiple
layers that can learn and extract meaningful representations
directly from raw data. DL has garnered substantial attention
and popularity because of its remarkable capability to automat-
ically learn hierarchical representations in tasks, such as image
recognition, speech recognition, natural language processing,
and various other domains. This section illustrates the overall
structure and training of the DL-based framework to predict ra-
diometer antenna temperature from SMAP level 1A and level 1B
inputs. Data-driven approaches to estimate radiometer antenna
temperature are first introduced in [12]. These studies examined
the usage of single-point features in different scenarios, includ-
ing cases with or without reference and ND voltages. However,
the increasing adoption of wideband sensing in radiometers is
driven by the growing applications involving various geophysi-
cal parameters [25], [26]. In addition, the presence of unwanted
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Fig. 4. Antenna temperature (V-pol) of the samples showing their spatial
distribution over (a) land and (b) land—water mix. Antenna temperature is
recorded from 17 October, 2021, to 27 October, 2021.

signals like RFI in observations has emphasized the significance
of utilizing spectral features to achieve successful retrieval of de-
sired information [27], [28], [29], [30], [31]. These 2-D spectral
features consisting of both time and frequency features have not
previously been utilized in data-driven radiometer calibration
methods [12]. This study has implemented a novel CNN-based
radiometer calibration unit that estimates the antenna tempera-
ture by leveraging 2-D antenna count spectrograms and combin-
ing learned features from CNN with secondary inputs. CNNs are
designed to process and extract meaningful features from 2-D
input data [32], [33], [34]. They employ convolutional layers
that apply small filters across the input to detect patterns, edges,
and textures. These filters slide over the entire input, performing
element-wise multiplications and aggregating results to form
feature maps. In our analysis, we also demonstrated that the
DL-based framework has the capability to map antenna tem-
perature with reduced reference and ND information. This will
help in increasing spatial and temporal resolution through more
frequent antenna temperature measurements. The large dataset
from SMAP has enabled us to learn a new model for predicting
antenna temperature. First preprocessing of the data for the
input of DL is discussed. Next design and training of the DL
architecture is discussed. In the later sections, the evaluation and
performance metrics are addressed. Various train/test scenarios
are discussed, accompanied by suitable performance metrics to
elucidate the estimation performance.

A. Data Prepocessing

Before going into the model, preprocessing the data is critical
for DL-based frameworks. Meaningful features play a crucial
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role in the convergence of models as filters and parameters pri-
marily aim to establish a relationship between input features and
output labels. Utilizing SMAP level 1B quality flags, footprints
that are not contaminated by RFI are identified and used in this
study. SMAP quality flags contain nine different algorithms to
label a particular pixel whether it has RFI or not [16], [17],
[24]. The distribution of the input samples is inspected to find
possible outliers in the dataset. The performance of DL-based
frameworks can be negatively impacted by the presence of
outliers [35]. RFI quality flags primarily focus on the distribution
of the dataset so there were no possible outliers in the input
samples. Subsequently, features that exhibit a consistent value
across all samples are identified. Static features do not contribute
new information to the model, and as the system iterates, they
are eventually disregarded [36]. During conventional radiometer
calibration, features, such as loss, in radome are considered.
However, this particular feature maintains a constant value
across all samples and is not taken into consideration in this
study. Table I displays both the total available samples and those
effectively employed in DL-based calibration.

B. Design of the DL Architecture

The proposed DL framework illustrated in Fig. 5 comprises
three main components: convolutional layers, concatenation lay-
ers, and densely connected layers. The convolutional layers are
responsible for extracting features from n-channel spectrograms.
After the convolutional layers, the features are flattened and
combined with other secondary feature inputs through con-
catenation. To map the concatenated features to the radiometer

antenna temperature, three layers of fully connected neural
networks are utilized.

2-D spectrograms consisting of information about the ob-
servation, reference, ND, and phases are the primary input to
the CNN-based DL framework. To analyze the dependence on
reference points, the same framework has been trained and tested
under 5 different train/test cases. This shows the flexibility of
a DL-based model over conventional forward modeling tech-
niques. Three convolutional layers consisting of 32, 64, and 128
filters are utilized to extract meaningful features from the input
spectrograms. The filters in the convolutional layer are 3 x 3
kernels without any padding. Each convolutional layer is accom-
panied by ReLU activation and batch normalization layer. ReLU
activation helps in introducing nonlinearity in the computation
and introduces a threshold or cutoff point for the output of a
neuron [37]. Batch normalization is a technique that normalizes
the activations within a mini-batch of training examples. It
works by scaling and shifting the activations on a per-feature
basis to achieve zero mean and unit variance. This normaliza-
tion process is beneficial as it reduces the internal covariate
shift, which refers to the change in the distribution of layer
activations during training. By maintaining stable distributions,
batch normalization enables subsequent layers to learn more
efficiently and promotes faster convergence of the network [38].
As features are not normalized before going into the model,
batch normalization helps in convergence by reducing the need
for careful initialization. A total of 640 (i.e., 128 x 5 = 640)
features are extracted from the convolutional layers and they are
flattened to combine with secondary features. After combining,
they go through three consecutive fully connected layers with
256, 128, and 64 neurons. These dense layers are propagated
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with the ReLU activation function. The last layer of this network
consists of a single neuron with a linear activation function to
produce the final output.

C. Training the DL Architecture

Fig. 6 illustrates the flowchart outlining the training process
of the proposed DL architecture. The model is trained and tested
with five different training cases mentioned in Section II-E. The
DL-based model discussed in the previous section estimates
antenna temperature and the only distinction lies in the input
layers for different training scenarios. The secondary features
concatenate with the extracted features from the CNN layer by
fully connected layers to map the final antenna temperature in
all cases.

The SMAP antenna temperature for a particular footprint is
considered as ground truth for this study. To achieve global
coverage with varying temporal and spatial resolutions, we
utilized data from the Earth observation satellite service SMAP.
To update the parameters of the DL model, it is backpropagated
with a mean squared error (mse) loss function given as

1 N 2
L=5> |ITi - T4l )
i=1

where T is ground truth antenna temperature extracted from
SMAP level 1B data products and T’ is output from the DL-
based calibration model. N is the total number of samples used in
one iteration. This loss function is not polarization-specific and
can be utilized for different polarizations. The model has been
trained with 128 batch sizes and 40 epochs. To minimize the loss
function Adam optimizer has been used in this study [39]. It in-
corporates adaptive learning rates for each parameter, adjusting
them based on the gradients and the moving average of past
gradients. In order to ensure the development of a model that

MSE Loss

N
Update Parameters ‘ L=%Z||Tﬁ—ﬁ||z ’
i=0

generalizes well and avoids overfitting the training data, several
techniques have been incorporated. These include the use of
learning rate schedulers [40] and early stopping [41], [42]. The
learning rate plays a crucial role in determining the magnitude of
changes made to the model weights during the training process,
based on the predicted error. Setting the learning rate too small
can result in a lengthy training process while setting it too large
can lead to unstable training and failure to converge. To address
this, a learning rate scheduler has been implemented in this
study, specifically an exponential learning rate scheduler. This
approach involves gradually decreasing the learning rate after
each iteration of the model. Exponential learning rate decay
involves initializing the learning rate to 0.001 and progressively
reducing it after each epoch. By doing so, the model can refine its
parameters more effectively over time, leading to improved con-
vergence and potentially better generalization. The combination
of exponential learning rate decay and early stopping contributes
to a more robust and reliable training process, enabling the
model to strike a balance between fitting the training data and
generalizing well to unseen data.

D. Evaluation and Performance Metrics

CV is a fundamental procedure employed for assessing the
generalization capability and efficacy of DL models. It finds
wide application in situations where the primary objective is
prediction, regression, or classification, enabling the evaluation
of a model’s performance in real-world scenarios. This study
employs three CV techniques, namely: 1) train-test split, 2) K-
fold, and 3) time-based analysis. These techniques are employed
to assess the generalization capability in five distinct cases,
encompassing various combinations of different FG detailed in
Section II-E.
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In train-test split CV, the dataset is partitioned into training and
testing sets randomly, with an 80% portion allocated for training
and the remaining 20% for testing. The selection of training
and testing samples is conducted randomly, encompassing the
entirety of the dataset across various geographical regions and
temporal intervals. K-fold CV (for this study K = 5) utilized
in this study partitions the dataset into k subsets of equal size.
It iteratively selects one subset as the testing set and the re-
maining K-1 subsets as the training set. The model is trained
and evaluated K times, with a different subset serving as the
testing set in each iteration. Performance metrics are recorded for
each iteration, and the average of these results provides a more
reliable estimate of the model’s performance. This technique
reduces bias and variability compared with a single train-test
split. K-fold enhances performance assessment by considering
multiple data partitions, facilitating model generalization, and
aiding in model selection and hyperparameter tuning.

In addition to employing traditional CV techniques, this study
incorporates a time-based CV approach by dividing the training
and testing datasets based on different time spans. Specifically,
samples from each year spanning 2017-2022 are considered.
The DL framework is trained using data from 2017 and subse-
quently tested using data from 2018 to 2022. In another analysis,
the DL-based calibrator is trained with samples from [2017,
2018] and tested with data from 2019 to 2022. This evaluation
methodology enables the examination of the radiometer’s char-
acteristics over time and determines whether features learned
from a specific period can be effectively used to model the
calibration process of future time periods. The experimental
results contribute to a comprehensive understanding of the ra-
diometer’s overall characteristics and the time-dependent effects
of individual features.

R? or the coefficient of determination is a widely utilized
performance metric in regression analysis. It quantifies the ex-
tent to which independent variables explain the variability in
the dependent variable. With values ranging from O to 1, an
R? value of 0 denotes the lack of explanatory power, while a
value of 1 signifies a perfect fit of the independent variables
to the dependent variable. Thus, R? serves as a measure of the
goodness of fit for a regression model, indicating a better fit with
higher values. R? can be calculated as

L (T4 —T%)
2
YL, (T5 - T4

where N is the number of observations in the dataset. T
represents the true values of antenna temperature. T'§ represents
the estimated values of the antenna temperature with DL. T}
represents the mean of the true values of the antenna temperature.
Nonetheless, it should be noted that R? alone cannot determine
the overall quality or validity of a model, as it can be influenced
by factors, such as the number of predictors, model complexity,
and the presence of outliers. Therefore, it is often used in
conjunction with other evaluation metrics for a comprehensive
assessment of regression model performance. The root mean
square error (RMSE) is a widely employed metric in regression
analysis to assess the accuracy and performance of regression

R?=1- 2

TABLE III
PERFORMANCE METRICS OF DL-BASED CALIBRATOR WITH TRAIN-TEST SPLIT
AND K-FOLD

Validation | Training Land Land and Water
Techniques | Scenarios | RMSE (K) R2 RMSE (K) R2
Case 1 0.24 0.9998 0.29 0.9997
Case 2 0.42 0.9994 0.40 0.9995
T’asigg“‘ Case 3 0.43 09994 | 037 | 0.999%
Case 4 0.35 0.9996 0.33 0.9996
Case 5 0.67 0.9991 0.45 0.9993
Case 1 0.27 0.9997 031 0.9997
Case 2 0.45 0.9993 0.41 0.9994
K-Fold Case 3 0.47 0.9992 0.40 0.9994
Case 4 0.37 0.9996 0.36 0.9996
Case 5 0.72 0.9990 0.51 0.9992

models. This metric quantifies the average magnitude of the
residuals or prediction errors generated by the model. RMSE is
given as

1 N
RMSE = \/ﬁ > ITE =T8I 3)

where T is ground truth antenna temperature and 7§ is output
from the DL-based calibration model. NV is the total number
of samples. It is crucial to note that the performance metrics
presented in the subsequent Results section were computed on
a testing dataset that was previously unseen by the model.

IV. RESULTS

In this section, we present a comprehensive performance
analysis of radiometer antenna temperature estimation utilizing
the DL-based framework. In Section IV-A, performance with
train-test split and K-fold has been demonstrated with five
different training scenarios. Dependency on data is presented
in Section IV-B. Computational complexity is explained in
Section I'V-C. Comparison between existing ANN and proposed
DL approach has been illustrated in Section IV-D. Finally,
time-based CV is detailed in Section I'V-E.

A. Overall Performance of DL-Based Calibrator

The overall performance with a DL-based calibrator predict-
ing antenna temperature is illustrated in Table III. This analysis is
performed with two validation techniques—train-test split and
K-fold. Both V-pol and H-pol show very similar performance
with DL-based calibration and throughout the rest of this article,
all the performance metrics are shown in terms of V-pol. A
particular validation technique has five different training and
testing scenarios. The dataset comprises samples obtained from
both land and land-water combinations in each case. In the
train-test split CV approach, Case 1 demonstrates superior
performance by achieving the lowest RMSE values for both
land and land—water sample combinations, with RMSE values
of 0.24 and 0.29, respectively. Furthermore, Case 1 exhibits
high levels of predictive accuracy, as indicated by the high
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R-squared values of 0.9998 and 0.9997 for land and land-water
combinations, respectively. The findings of this case indicate that
a DL-based calibrator exhibits comparable efficacy in estimating
antenna temperature for radiometers. Performance with land and
land—water mix samples shows that ground-only samples are
enough and demonstrate no additional biases to achieve good
performance in calibration. It is crucial to bear in mind that
in Case 1, DL employs an equivalent number of features as a
conventional radiometer utilizes for calibration. In Case 2, DL
shows RMSE of 0.42 and 0.40 with land and land—water com-
bination, respectively. R-squared value of 0.9994 and 0.9995
shows a high correlation between the ground truth and the
predicted value. In Case 2, power information of reference load
is not utilized during training and testing. The only information
that is available from the reference is its physical temperature.
The low RMSE value shows that DL has the capability to
estimate antenna temperature with less reference information.
The nonlinear modeling capabilities of DL enable it to capture
complex relationships and patterns within the available FG that
may be challenging for traditional linear calibration models to
capture. Case 3 exhibits a similar performance as Case 2. The
observed performance enhancement in Case 3 suggests that the
combination of the reference plus ND power provides a richer
set of feature information that is closely associated with the
antenna temperature. Case 4 shows better performance than both
Case 2 and Case 3 with RMSE of 0.35 and 0.37, respectively,
for land and land—water combination. Case 4 utilizes a single
packet of power information from both reference and reference
plus ND. This scenario helps to extract critical features from
both of these calibration units which has an impact on overall
performance. In Case 5, performance deteriorates from other
training scenarios. This is because no reference and reference
plus ND power features have been used during the training
and testing of the model. Important considerations can be—
DL-based calibrator has RMSE of 0.67 K and 0.45 K with
land and land-water combination which is still less than the
SMAP radiometer uncertainty that is 1.3 K. Training and testing
with both land—water mix data provide lower RMSE comparing
the cases with training and testing over land only. This might
be due to the fact that the land—water mix has more samples
with diverse feature information. Another reason can be that
samples from the water provide features that have lower antenna
temperatures (i.e., 70-110 K) compared with the ground-based
samples. A higher dynamic temperature range in the land—water
mix helps the DL-based calibrator to learn the important feature
information compared with ground-based samples. Fig. 7 shows
a comparison with the Case 5 training scenario. The same set of
observations are considered for this analysis and it can be seen
that land—water mixed samples provide better performance over
land-only samples. To understand the robustness and unbiased
estimation of the model, performance with K-fold is depicted in
Table III. The observed performance exhibits a similar pattern to
that of the train-test split technique, providing evidence that the
DL-based calibrator demonstrates resilience against data vari-
ability and overfitting. Case 1 shows the best performance among
the training scenarios with RMSE of 0.27 K and 0.31 K for
both land and land—water combinations, respectively. However,
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reduced reference information in Cases 2—5 shows significantly
low RMSE and high R-squared performance. Choosing the
correct training scenarios lies within the specification of the
radiometer. If the error budgeting process for a spaceborne
radiometer necessitates high radiometric resolution and reduced
radiometric uncertainty, the calibration training scenarios em-
ployed in Case 1 and Case 4 exhibit promising characteristics
and can be considered as ideal options. To enhance the reliability
of data products within a footprint by incorporating a greater
number of scene observations, the utilization of Case 2, Case 3,
and Case 5 calibration training scenarios could prove to be
effective strategies.

Fig. 8 illustrates the spatial distribution of the antenna tem-
perature, showcasing a comparison between the ground truth
and predicted values. This analysis will be critical to under-
standing any spatial discrepancy with the predicted antenna
temperature. Fig. 8(a) shows ground truth antenna temperature
zoomed over a certain location—for this study, USA is chosen.
Fig. 8(b) shows the antenna temperature profile predicted by
the DL-based calibrator. The spatially distributed profiles of the
antenna temperature exhibit a high degree of similarity, indicat-
ing that the DL-based calibrator demonstrates negligible spatial
variability within the sampled data. Fig. 8(c) helps to understand
the absolute error between ground truth and predicted antenna
temperature. The results demonstrate that the absolute error of
each sample remains within the range of 0.2 K. This analysis
is based on the Case 4 training scenario. Fig. 9 will help to
understand the absolute error with different training scenarios
proposed in this study. In each case, spatially distributed absolute
error is plotted. The RMSE with train/test split between 5 cases
is 0.24, 042, 0.43, 0.35, and 0.67 K, respectively. Case 1
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DL, and (c) absolute error for each footprint between ground truth and predicted
value.

[see Fig. 9(a)] and Case 4 [see Fig. 9(d)] provide the best
performance because of the availability of both reference and
ND power information. Case 2 [see Fig. 9(b)] and Case 3 [see
Fig. 9(c)] performance deteriorates because of reduced reference
information. With land-only samples, it becomes challenging for
the DL-based framework to estimate antenna temperature with
no reference power information evident in the Case 5 scenario
shown in Fig. 9(e).

In Fig. 10, we examine the error probability density graph for
various cases. Notably, Case 1 and Case 4 exhibit higher density
with lower error values, indicating favorable performance. How-
ever, Case 2 and Case 3 experience performance deterioration
due to missing reference voltage values, yet they still maintain
error values within a range of 1.3 K. Furthermore, Case 5
demonstrates higher error values due to the absence of both
reference and ND information. Despite this, our findings suggest
that even with reduced reference information, it is possible to
leverage DL-based calibration techniques to predict antenna
temperature. These results underscore the significance of refer-
ence information in enhancing performance. However, they also

highlight the potential for utilizing limited reference information
in DL-based calibrators to achieve accurate predictions.

During the training of a DL model, it is crucial to assess
whether the model is exhibiting signs of overfitting or under-
fitting. Overfitting occurs when a model performs well on the
training data but fails to generalize effectively to testing samples.
Underfitting, on the other hand, refers to a model’s inability to
perform adequately on both the training and testing data. Finding
the optimal balance in DL, known as a good fit, is of utmost
importance. A good fit is achieved when both the training and
test loss consistently decrease after each epoch and eventually
converge to a low loss level, as illustrated in Fig 11. This is
plotted for the Case 4 training scenario with land-based samples
and other training scenarios show similar behavior.

B. Data Dependency

This study has developed a supervised DL framework to pre-
dict antenna temperature for the SMAP radiometer. The data dis-
tribution consists of samples from various spatial and temporal
distributions. This section will provide a quantitative analysis in
terms of choosing the amount of data required to predict antenna
temperature. For each case, the test dataset is kept fixed and the
training dataset is changed from 5% to 80%. RMSE performance
for five different cases with respect to training size is shown in
Fig. 12. It also shows a fixed SMAP radiometer uncertainty
line of 1.3 K [15], [27]. If RMSE is under that region for a
particular training scheme, it might be considered acceptable.
For all cases, RMSE is decreasing with increasing training sizes.
In the previous analysis, the overall dataset is randomly divided
into 80% training and 20% testing. However, analysis shows that
during Case 1 and Case 4 RMSE is under the uncertainty range
with 25% of the training dataset. Cases 2 and 3 require a higher
number of training samples (around 40%) to get the error under
that range. Case 5 needs around 60% of the total samples to
achieve similar performance. Cases 1 and 4 contain one packet
reference and reference plus ND power features that help in
quick convergence. Because of the absence related to reference
information Cases 2 and 3 require a higher number of training
samples. Case 5 requires more data to achieve this performance
as it does not utilize any power features from reference and
reference plus ND. This analysis proves it requires more training
data for DL-based calibrators if there is less reference informa-
tion available. After 60% Cases 1-4 mostly converges to the
same level. Case 5 converges to a little higher level after 70% of
training data but still below the 1.3 K range. This analysis overall
proves that the DL-based calibrator shows satisfactory perfor-
mance even with reduced reference information and training
data.

RMSE will indicate how close we obtain to current SMAP
antenna temperature values. But to understand how well the
DL-based calibration algorithm performs over known sources
in comparison with the SMAP values we provided a measure of
the distribution of the calibrated values with the help of standard
deviation (STD). STD is calculated over a particular region in the
Amazon rain forest, Antarctica Dome C, and the North Atlantic
Ocean. Historical data illustrates the presence of homogeneity



ALAM et al.: MICROWAVE RADIOMETER CALIBRATION USING DL WITH REDUCED REFERENCE INFORMATION 759

= = e |l
o \:C?Z"ﬁ.,. Y vg-’% iyl IE
0°N m Y {_Q&}gé;\( . Iﬁ 2 0§
N ’ -} ; v ! E
%, o Ny o o , 15
30°5 ' L 1.0 3
10 _ ) 2
PO [ B = s o S p— e 05
I B N P e T =i,
& a;.ﬁ A S g e ap"' 5% & '
N ¥ o Longitude " v ”
(a)
= 30
j - I !
= | AT ‘gzng‘i‘. s e

t&ﬁ

Ly
=]

L
w

w
=
=

I
o

Latitude
=

g
o

,_.
w
Absolute Error (K)

30°5

=
n

ol
o

W
o

T
n

T L A 0T 30°N 20%
NECE A N :
o "y e 1]
%, IR LA S : - 5
2 . o et 15 2 15'y
q K{ ? ,5 PN E| 3 E}
0°s &'5, e ; i) 5 1.0 E 30°s 1.0 §
2 2
60°s A 0.5 60°5 0.5
o . MWL R e 0.0 0.0
R A S g8 $ o
” Longitude “ Longitude
(c) (d)
3.0
25
“
205
8 e
2 15y
£ &
- 103
o
<<
0.5
0.0

Fig. 9.
2, (c) case 3, (d) case 4, and (e) case 5.

within the Amazon Basin and Dome C region, making it a
valuable asset for satellite radiometer calibration [43], [44], [45].
Nevertheless, STD may be influenced by the day of the year, the
specific time on a given date, and the geographic area within
the region [46]. Fig. 13 shows STD with different time intervals
for SMAP and DL in the Amazon, Antarctica Dome C, and
North Atlantic Ocean region. As the time interval increases,
the STD also shows an upward trend, reflecting the changing
weather conditions and their consequential impact. It also shows
that STD obtained with the DL-based calibrator is always lower
than SMAP’s conventional calibration technique. This obser-
vation underscores that the fluctuations in antenna temperature
estimates, when utilizing the DL-based calibrator, are notably
smaller compared with the SMAP’s conventional calibration
method. It is plausible to assert that the DL approach yields esti-
mates that closely align with the expected antenna temperature
readings, particularly when one anticipates a stable temperature
reading during the brief interval of an antenna scan cycle. This
propensity may be attributed to the intricate, nonlinear structure
inherent in DL, which has the capacity to resolve the intricate
radiometer characteristics. Nonetheless, it is essential to exercise
caution when asserting that the DL calibrator results in lower

Longitude

(e)

Spatially distributed absolute error between ground truth SMAP antenna temperature and predicted antenna temperature with DL for (a) case 1, (b) case

radiometric resolution compared to the conventional technique,
given the inherent limitations in system information. Although
the DL calibrator yields estimates much closer to the desired
radiometer output than its conventional counterpart, a more
comprehensive evaluation could be facilitated through thermal
chamber experiments that include controlled target temperature
observations of the radiometer. To determine whether there
exists a significant bias in the antenna temperature estimates
between SMAP and the DL-based calibrator, the difference
between mean values is computed. The bias between the mean of
SMAP and DL-based calibrator in Amazon, Dome C, and North
Atlantic Ocean are 0.44, 0.35, and -0.04 K, respectively. Lower
bias and STD values demonstrate higher accuracy and lower
uncertainty for the performance of the DL-based calibrator.

C. Computational Complexity

One important aspect of data-driven models is computational
complexity. The model required 28.72 h training and 0.23 h
testing time for land-based samples with an 80—20 split. For land-
water mix samples training time increased to 49.53 h and testing
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time 0.45 h. For K-fold training time increases to 41.3 h for land-
based samples and 62.5 h for land—water mix samples. After
saving the model state by completing the training and validation,
it requires around 0.06 s to predict antenna temperature within a
footprint. Future studies aim to optimize the model even further
and develop an onboard calibration inside the radiometer digital
back-end unit. The DL model is developed using the Pytorch
Python interface [47], [48]. It is trained and tested on a machine
with Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40 GHz, 512 GB
memory, and NVIDIA TITAN RTX GPU. A total of 302,337
parameters are used to develop the DL-based calibrator.

D. Comparison Between ANN and DL-Based Calibrator

In this section, a comparison between DL and ANN-based
calibrators will be demonstrated. This analysis will help to
understand if the CNN-based DL framework is able to extract
crucial information from the two-dimensional spectral features
of the radiometer. ANN utilized in this study is directly taken
from this [12]. This is based on a multilayer perceptron feed-
forward neural network model with three hidden layers. The
main difference between this study’s CNN-based calibrator and
ANN is that CNN is capable of extracting meaningful features
from 2-D input directly, whereas ANN utilizes single-value
features (averaging the power over 2-D domain) to estimate
antenna temperature.

Table IV gives the performance comparison between ANN
and DL with five different training scenarios along with land and
land—water mix samples. Performance metrics show that with
the Case 1 training scenario both DL and ANN give a similar
performance with RMSE of 0.24 K and 0.38 K respectively with
land-only samples along with RMSE of 0.29 and 0.37 K with
land—water mix samples. Across Cases 2-5, the performance of
the ANN calibrator exhibits a notable decrease in comparison to
its DL-based calibrator. It shows that reduced reference and ND
features have a significant impact on ANN-based calibrators
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Fig. 14. Performance comparison in terms of absolute error between (a) DL-based calibrator and (b) ANN-based calibrator. Correlation between true antenna
temperature and predicted antenna temperature with (c) DL-based calibrator and (d) ANN-based calibrator. This analysis is conducted with Case 4 training scenario.

TABLE IV
PERFORMANCE COMPARISON BETWEEN DL AND ANN-BASED CALIBRATOR

Calibrator Training Land Land and Water
Techniques | Scenarios | RMSE (K) R2 RMSE (K) R2
Case 1 0.24 0.9998 0.29 0.9997
Case 2 0.42 0.9994 0.40 0.9995
DL Case 3 0.43 0.9994 0.37 0.9996
Case 4 0.35 0.9996 0.33 0.9996
Case 5 0.67 0.9991 0.45 0.9993
Case 1 0.38 0.9994 0.37 0.9994
Case 2 1.56 0.9942 1.54 0.9944
ANN Case 3 1.63 0.9939 1.59 0.9941
Case 4 1.32 0.9951 1.27 0.9952
Case 5 1.73 0.9935 1.62 0.9937

compared with DL. Fig. 14(a) and (b) demonstrate the per-
formance comparison in terms of absolute error between the
DL-based calibrator and ANN-based calibrator with the Case 4
training scenario. RMSE between DL and ANN-based calibrator
is 0.35 and 1.32 K, respectively. Fig. 14(c) and (d) shows
the correlation between true antenna temperature and predicted
antenna temperature of DL and ANN-based calibrators, respec-
tively. R? between them is 0.9996 and 0.9951, respectively. The

analysis of performance metrics using land—water mix samples
demonstrates comparable results, with a slight improvement in
performance compared with land-only samples. The DL-based
calibrator demonstrates superior performance in terms of both
2-D spectral features and the utilization of reduced reference
information.

E. Time-Based Analysis

This section will provide results of the DL-based calibrator
when it is trained with samples from a particular time frame and
tested in another. During this CV we have analyzed two different
training scenarios. 1) Trained the model with samples from 2017
and tested it with samples from 2018 to 2022. 2) Trained the
model with samples from 2017 to 2018 and tested from 2019
to 2022. Both of these analyses will be critical to understanding
if samples from a particular time frame are enough to predict
antenna temperature in a future time frame. For example, testing
a model trained over only 2017 data in 2022 will be evaluating
the validity of the DL model after 5 years.

Tables V and VI illustrate the performance when the model is
trained with samples from 2017 and [2017, 2018], respectively.
The performance table is divided into five different training
scenarios with land and land—water mix samples. The RMSE of
each year’s sample is given in each row. Performance metrics in



762

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE V
PERFORMANCE METRICS TIME-BASED ANALYSIS [TRAINED WITH SAMPLES FROM 2017]

Training Land Land and Water
Scenarios
Year Wise Case 1 | Case 2 | Case3 | Case4 | Case 5 | Case ] | Case2 | Case3 | Case 4 | Case 5
RMSE (K)
2018 0.29 0.44 0.45 0.37 0.71 0.31 0.41 0.39 0.36 047
2019 0.32 0.47 0.49 0.39 0.75 0.32 0.43 042 0.38 0.52
2020 0.34 0.51 0.52 0.41 0.95 0.33 0.44 0.45 0.41 0.56
2021 0.37 0.56 0.55 0.44 1.11 0.37 0.47 049 0.42 0.61
2022 0.41 0.55 0.57 047 1.32 0.39 0.48 0.51 0.45 0.65
TABLE VI
PERFORMANCE METRICS TIME-BASED ANALYSIS [TRAINED WITH SAMPLES FROM 2017 AND 2018]
Training Land Land and Water
Scenario
Year Wise Case 1 | Case2 | Case3 | Cased | Case5 | Casel | Case2 | Case3 | Cased | Case 5
RMSE (K)
2019 0.31 0.44 0.48 0.37 0.73 0.33 0.42 0.41 0.36 0.49
2020 0.33 0.51 0.50 041 0.89 0.32 0.43 0.44 0.40 0.54
2021 0.36 0.55 0.53 0.43 1.05 0.35 0.46 0.47 0.43 0.59
2022 0.40 0.58 0.56 0.46 1.21 0.38 0.48 0.49 0.45 0.63

both of these tables show that if the duration between training and
testing samples increases (i.e., train with 2017 test with 2022),
performance will deteriorate. This could be because during the
long lapse between training and testing time-frames, radiometer
instrument characteristics might have changed or the receiver
parameters have drifted. Comparing the performance with 2022
samples for both of the time-based CV, it is evident that when
the model performs better when it is trained with 2017-2018
samples than the 2017 samples. The number of samples might
play a crucial role in that result. The model might also perform
better because there is less time-lapse between training and
testing with 2017-2018 samples. A sharp decline in performance
is noticeable with Case 5 in the land-based samples for both time-
based CV, whereas land—water mix samples for Case 5 have less
driftin RMSE over the years. Extracted features from land—water
mix samples might compensate for less reference information
in this particular training scheme. During the development of
a DL-based calibrator, this might be important information for
consideration.

Fig. 15 will help to understand the spatial variability of
the samples in terms of the absolute error calculated for each
footprint. This figure shows the absolute difference between the
ground truth and predicted value with years from (a) 2018, (b)
2019, (c) 2020, (d) 2021, and (e) 2021. The initial training of
the model is performed using samples from the 2017 land—water
mix dataset with Case 5. During shorter time lapses between
training and testing dataset, there is less absolute error within
the samples evident in Fig. 15(a)—(c). However, as the duration
arises between training and testing dataset there are differences
between ground truth and predicted value. Fig. 15(d) shows
some sparse hot spots with absolute error values and not a fixed
spatial location that contains those errors. But in Fig. 15(e) there
is a high absolute error in Africa (latitude 34.5°S and longitude

—8°W). However, it is important to consider that the highest
RMSE within those years (illustrated in Table V—land and
water—Case 5) is 0.65 K. This analysis is portrayed with Case 5
training scenarios but other cases have better performance in
terms of RMSE and spatial variability. This is because samples
contain some sort of reference and ND power information from
the radiometer.

V. DiscussioN AND FUTURE WORK

This study has provided empirical evidence that DL can be
effectively employed for radiometer calibration, requiring re-
duced reference information while utilizing 2-D antenna counts
partitioned into time and frequency subbands. The developed
calibration framework has been validated with different strate-
gies, such as K-Fold and time-based analysis, to understand
the robustness and generalization capability. The data-driven
technique has been further trained and tested with land-only
and land—water mix samples. The findings indicate that the
utilization of a composite mixture of land—water samples con-
tributes to the development of an augmented dynamic range,
thereby facilitating performance improvement. A comparative
analysis has been conducted between the proposed calibration
technique and a pre-existing calibration framework based on
ANN. The incorporation of 2-D spectral features in this study’s
DL-based calibrator has demonstrated enhanced performance
with reduced reference information when compared with the
ANN-based calibrator. Lower RMSE and high R? values with
reduced reference information show the capability of DL to
extract valuable information from the input features. Both V-pol
and H-pol have exhibited similar performance under DL-based
calibration. Future studies may extend DL-based calibration to



ALAM et al.: MICROWAVE RADIOMETER CALIBRATION USING DL WITH REDUCED REFERENCE INFORMATION 763

T T 3.0
s A=A et egene] I
= T {v"'-" AR T _J?IV _
30°N \Q { ;@Q\%ﬁ DRI 203
o By e e o ' g
g, vz e Y Vi INE
- B MR 3
3 30°5 ] £ IL_,‘;S : gu\ 1.0 3
& : N2 e
60°5 = 0.5
-\_H——'___'_‘_r\__u_“ft—\__f’_'_\’w #M-\_‘W‘E 0 0
'»'?P. 4;9“‘ .,pé g ° h‘;{" oﬁ(‘l .@"’Q’ & .
s Longitude
(a)
et : 3.0
o[RS D R
e N --:-1;.: o .ﬁ;w T LA o 2.5
PIREES” T o g
30°N e \\\ o (_‘ —\ﬁ—\( ; e 20 :
o + -1 - - 0 H =4
g - R SL I \f:é L 15
T Do |
~ 300 5 - /- L_,U\ ‘ 103
&! ; : N p 2
60°5 Tl b3 0.5
D e o e e s i I
»%6 ",{s‘- oP.»:‘ o4 4 s £ /g';@ »@' '
> Longitude v
(b)
o I R :E=-+~l:t;7_ 20
BO°N at‘ﬁ, T Tl ?_ o o g L1 Q"-; 25
30°N . Ilwﬁih_ Qﬁﬁ‘;‘l\:{ - I‘C? 2.0%
1} 2 o o X g
g, AT e B SN / W .-
E Yo ! Y S BN -
3 \ 7 ;Ij 5 E
30°5 ; - bl 1.0 3
4 i e o |
60°5 iy o — 0.5
_&Q' ‘5-!‘ @-ﬁ h‘é 4 g_;@ o?ﬂ 4,‘"" & ’
Longitude v
(©
p s g 3.0
o PR A S i
TR TR E,,‘w D TEETR !?,;;- 25
MEEn Nmoo A The|
g g Bea] AL s g
§ o % : S gl é} 5 154
F i s s e 10 &
” 758 : A 4
60°5. - : : 0.5
i b R e ey b oo
»"P. ,.;';‘zx qu;\ & °© h";{" UP((’ %’Q’ »"P. .
ks Longitude >
(d)
T = T 3.0
= e g
60N ”“'5;' - HEE bﬁ‘" R é—w’?’ ..?._: 25
o \&%‘h m@@ﬁ;‘ e 205
" 5 ; : . ; e
R o (14; i o \‘(ﬁ i 15
e el
= 300 il = J: et 103
R A S 2
60°5 il Bt - 0.5
S e B R e Do e e oo
»%6 ,;.;‘"‘ oﬁa\ o [ g £ /g';“' @5 '
N Longitude v
(e)
Fig. 15. Spatially distributed absolute error (K) with time-based CV and

training Case 5. The DL model is trained with 2017 samples and tested with
(a) 2018, (b) 2019, (c) 2020, (d) 2021, and (e) 2022 samples.

include the third and fourth Stokes antenna temperatures, with
a focus on careful input feature selection.

This study could be an attractive alternative to the overall
calibration unit. Since we are using calibration outputs of SMAP
as ground truth to train the model, our predictions can only be a
proxy to SMAP’s algorithm. However, this DL-based calibration
procedure has the capability to directly compare with the conven-
tional radiometer outputs by conducting controlled experiments
in anechoic and environmental chambers. In future studies, the
proposed calibration framework will be trained and tested with
our developed radiometer [49]. This DL-based calibrator will
serve as a crucial component within a data-driven microwave
radiometer framework. The framework will encompass an al-
ready developed RFI detection and mitigation unit, followed
by the DL-based calibrator [50]. The calibration unit proposed
in this study exhibits potential for application in wideband
radiometers, particularly due to its ability to effectively utilize
time—frequency 2-D data that was not directly employed in the
calibration process previously. Different training schemes dis-
cussed in this article can be useful to identify a proper DL-based
calibrator that meets the requirements.

Supervised DL-based techniques might require a substantial
amount of data to learn the complex relationship between in-
puts and outputs which might be challenging and expensive.
However, DL does not require an exhaustive dataset that cov-
ers every possible input-output scenario. Instead, a subset of
measurements within a defined range is adequate for initializ-
ing DL-based models, obviating the need for exhaustive data
inclusion. This diversity helps the model generalize and learn
the underlying patterns within the data, which is evident in
this study’s land and land—water combination results. Instru-
ments undergo rigorous thermal and vacuum chamber testing,
generating millions of data points. These data sets are ample
for constructing a model and training a system to replicate a
radiometer’s behavior. However, it is crucial to take careful
consideration in addressing the difference between on-ground
and on-orbit environmental differences. After launch, raw data
samples collected from vicarious sources or other calibration
sources can be used to tune the DL-based calibration of the
instrument during on-orbit operation. This adjustment accounts
for on-orbit effects, nonstationary instrument changes, such as
aging and orbital variations. Like traditional calibration meth-
ods, DL-based calibration models are instrument-specific, while
various calibration architectures cater to instrument stability
and operational requirements, the fundamental techniques re-
main consistent. Similarly, DL models are tailored to specific
instruments, but the model-building techniques can be applied
to different instruments. In addition, we show over vicarious
spatial sources our DL calibration provides reasonable calibrated
antenna temperature values in comparison to SMAP values. This
model has the potential to provide more accurate antenna tem-
perature values in case if prelaunch data are used together with
post-launch data for the calibration. Future studies of DL-based
calibration can be trained and tested over SMAP’s CAL/VAL
sites if a sensor providing antenna temperature information is
available [51], [52]. The computational time of a DL-based
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calibrator can hold significant importance in the context of
real-time processing. Depending on the specific scan duration
during descending and ascending orbits for radiometers, addi-
tional optimization efforts and the potential implementation of
specialized DL chips may become necessary.

VI. SUMMARY AND CONCLUSION

This study showcases the capability of calibrating radiometers
using DL technique, leveraging reduced reference information
and 2-D antenna counts divided into time and frequency sub-
bands. This study established five unique training scenarios
containing the features from antenna observation power, ref-
erence and ND power and physical temperature, radiometer
elements losses, and temperature. We have demonstrated that
a radiometer can be calibrated with less or no information
from the reference unit. The low RMSE and high R? value
show that this study’s robust DL-calibrator can contribute to
more antenna observation within a footprint which might help
to reduce radiometric uncertainty and solve spatial variability.
Among the training scenario, cases 1 and 4 provides the best
performance because of the availability of some reference and
ND power information. SMAP level 1A and level 1B products
are used in this study to understand the effectiveness of this
DL-based model with different spatial and temporal distribu-
tions. SMAP’s antenna temperature is considered ground truth
for this study and helped in updating the parameters during the
training phase. To understand model does not overfit, this study
employs three different CV techniques—train-test split, K-fold,
and time-based, incorporating samples from both land and land—
water mix. Among them, samples comprising land—water mix
help with the dynamic range and provide better performance.
Analysis has shown that a DL-based calibrator could be an
attractive consideration to calibrate radiometers for future Earth
observation and weather satellites.
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